




�

� �

�

Methods and Techniques in Deep Learning



�

� �

�

IEEE Press
445 Hoes Lane

Piscataway, NJ 08854

IEEE Press Editorial Board
Sarah Spurgeon, Editor in Chief

Jón Atli Benediktsson
Anjan Bose
Adam Drobot
Peter (Yong) Lian

Andreas Molisch
Saeid Nahavandi
Jeffrey Reed
Thomas Robertazzi

Diomidis Spinellis
Ahmet Murat Tekalp



�

� �

�

Methods and Techniques in Deep Learning

Advancements in mmWave Radar Solutions

Avik Santra
Souvik Hazra
Lorenzo Servadei
Thomas Stadelmayer
Michael Stephan
Anand Dubey

Infineon Technologies, Munich, Germany



�

� �

�

Copyright © 2023 by The Institute of Electrical and Electronics Engineers, Inc. All rights
reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise,
except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without
either the prior written permission of the Publisher, or authorization through payment of the
appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to
the Publisher for permission should be addressed to the Permissions Department, John Wiley &
Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at
http://www.wiley.com/go/permission.

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley &
Sons, Inc. and/or its affiliates in the United States and other countries and may not be used
without written permission. All other trademarks are the property of their respective owners.
John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best
efforts in preparing this book, they make no representations or warranties with respect to the
accuracy or completeness of the contents of this book and specifically disclaim any implied
warranties of merchantability or fitness for a particular purpose. No warranty may be created or
extended by sales representatives or written sales materials. The advice and strategies contained
herein may not be suitable for your situation. You should consult with a professional where
appropriate. Further, readers should be aware that websites listed in this work may have
changed or disappeared between when this work was written and when it is read. Neither the
publisher nor author shall be liable for any loss of profit or any other commercial damages,
including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please
contact our Customer Care Department within the United States at (800) 762-2974, outside the
United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in
print may not be available in electronic formats. For more information about Wiley products,
visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data
Names: Santra, Avik, author.
Title: Methods and techniques in deep learning : advancements in mmwave

radar solutions / Avik Santra, Souvik Hazra, Lorenzo Servadei, Thomas
Stadelmayer, Michael Stephan, Anand Dubey, Infineon Technologies,
Munich, Germany.

Description: Hoboken, New Jersey : John Wiley & Sons, Inc., [2023] |
Includes bibliographical references and index.

Identifiers: LCCN 2022036520 (print) | LCCN 2022036521 (ebook) | ISBN
9781119910657 (hardback) | ISBN 9781119910664 (adobe pdf) | ISBN
9781119910671 (epub)

Subjects: LCSH: Millimeter wave radar–Data processing. | Radar
targets–Identification–Data processing. | Radar receiving
apparatus–Data processing. | Deep learning (Machine learning)

Classification: LCC TK6592.M55 S26 2023 (print) | LCC TK6592.M55 (ebook)
| DDC 621.38480285–dc23/eng/20220929

LC record available at https://lccn.loc.gov/2022036520
LC ebook record available at https://lccn.loc.gov/2022036521

Cover Design: Wiley
Cover Image: © Yurchanka Siarhei/Shutterstock

Set in 9.5/12.5pt STIXTwoText by Straive, Chennai, India

http://www.wiley.com/go/permission
http://www.copyright.com
http://www.wiley.com
https://lccn.loc.gov/2022036520
https://lccn.loc.gov/2022036521


�

� �

�

This book is dedicated to our respective families.



�

� �

�



�

� �

�

vii

Contents

About the Authors xv
Preface xix
Acronyms xxiii

1 Introduction to Radar Processing and Deep Learning 1
1.1 Basics of Radar Systems 1
1.1.1 Fundamentals 1
1.1.2 Signal Modulation 2
1.2 FMCW Signal Processing 4
1.2.1 Frequency-Domain Analysis 6
1.2.1.1 Discrete Fourier Transform 7
1.2.1.2 Short-Time Fourier Transform (STFT) 9
1.2.1.3 Wavelets 9
1.3 Target Detection and Clustering 10
1.4 Target Tracking 13
1.4.1 Track Management 13
1.4.2 Track Filtering 14
1.5 Target Representation 18
1.5.1 Image Representation 19
1.5.1.1 Doppler Spectrogram 19
1.5.1.2 Range Angle Images 20
1.5.1.3 Video of Range-Doppler Images 22
1.5.2 Point-Cloud Maps 22
1.6 Target Recognition 23
1.6.1 Feedforward Network 24
1.6.2 Convolutional Neural Networks (CNN) 24
1.6.3 Recurrent Neural Network (RNN) 27
1.6.4 Autoencoder and Variational Autoencoder 30
1.6.5 Generative Adversarial Network 32



�

� �

�

viii Contents

1.6.5.1 Minmax Loss 34
1.6.5.2 Wasserstein Loss 35
1.6.6 Transformer 35
1.7 Training a Neural Network 37
1.7.1 Forward Pass and Backpropagation 37
1.7.2 Optimizers 40
1.7.3 Loss Functions 42
1.8 Questions to the Reader 43

References 43

2 Deep Metric Learning 49
2.1 Introduction 51
2.2 Pairwise Methods 52
2.2.1 Contrastive Loss 52
2.2.2 Triplet Loss 53
2.2.3 Quadruplet Loss 53
2.2.4 N-Pair Loss 54
2.2.5 Summary 54
2.3 End-to-End Learning 55
2.3.1 Cosine Similarity 56
2.3.1.1 Multiplicative Margin – SphereFace 57
2.3.1.2 Additive Margin – CosFace 58
2.3.1.3 ArcFace 58
2.3.1.4 Summary of Faces 58
2.3.1.5 D-Softmax 59
2.3.1.6 Softmax Center-Loss 61
2.3.2 Euclidean Distance 61
2.3.2.1 Direct Optimization 63
2.3.2.2 Euclidean Softmax 65
2.3.3 Summary 66
2.4 Proxy Methods 68
2.5 Advanced Methods 68
2.5.1 Statistical Distance 68
2.5.1.1 Gaussian Classifier 69
2.5.1.2 Statistical Triplets 70
2.5.2 Structured Metric Learning 71
2.6 Application: Gesture Sensing 72
2.6.1 Radar System Design 73
2.6.2 Data Set and Preparation 73



�

� �

�

Contents ix

2.6.2.1 Gesture Set 73
2.6.2.2 Data Preparation 74
2.6.3 Architecture and Metric Learning Procedure 76
2.6.3.1 Statistical Distance Triplet Loss 79
2.6.3.2 Reconstruction Loss 80
2.6.3.3 KL-Divergence Loss 80
2.6.3.4 Center Loss 80
2.6.3.5 TVAE Loss 80
2.6.3.6 Class Scores 81
2.6.4 Results 81
2.6.4.1 Training 82
2.6.4.2 Accuracy and F1-Score 82
2.6.4.3 Confusion Matrix 83
2.6.4.4 Clustering Score 84
2.6.4.5 Discussion 85
2.7 Questions to the Reader 86

References 86

3 Deep Parametric Learning 89
3.1 Introduction 89
3.2 Radar Parametric Neural Network 92
3.2.1 2D Sinc Filters 93
3.2.2 2D Morlet Wavelets 94
3.2.3 Adaptive 2D Sinc Filters 96
3.2.4 Complex Frequency Extraction Layer 96
3.3 Multilevel Wavelet Decomposition Network 99
3.4 Application: Activity Classification 101
3.4.1 Proposed Parametric Networks 102
3.4.1.1 2D SincNet 102
3.4.1.2 The 2D WaveConvNet 103
3.4.2 The State-of-Art Networks 104
3.4.2.1 DSNet 104
3.4.2.2 RDCNet 104
3.4.2.3 The 2D ConvNet 104
3.4.3 Results and Discussion 105
3.4.3.1 Clean Dataset 106
3.4.3.2 Fixed Disturbance 110
3.5 Conclusion 111
3.6 Question to Readers 112

References 112



�

� �

�

x Contents

4 Deep Reinforcement Learning 115
4.1 Useful Notation and Equations 115
4.1.1 Markov Decision Process 115
4.1.2 Solving the Markov Decision Process 116
4.1.3 Bellman Equations 116
4.1.3.1 Expectation Equations 116
4.1.3.2 Optimality Equations 116
4.2 Introduction 116
4.3 On-Policy Reinforcement Learning 119
4.4 Off-Policy Reinforcement Learning 119
4.5 Model-Based Reinforcement Learning 119
4.6 Model-Free Reinforcement Learning 120
4.7 Value-Based Reinforcement Learning 120
4.8 Policy-based Reinforcement Learning 121
4.9 Online Reinforcement Learning 121
4.10 Offline Reinforcement Learning 122
4.11 Reinforcement Learning with Discrete Actions 122
4.12 Reinforcement Learning with Continuous Actions 122
4.13 Reinforcement Learning Algorithms for Radar Applications 122
4.14 Application: Tracker’s Parameter Optimization 125
4.14.1 Motivation 126
4.14.2 Background 127
4.14.2.1 Traditional Signal Processing Tracking for Radar 128
4.14.2.2 Potential Target Detection and Parameter Estimation 128
4.14.2.3 Kalman Filter 129
4.14.2.4 Unscented Kalman Filter 129
4.14.2.5 Deep Reinforcement Learning for Continuous Optimization 132
4.14.2.6 Multitarget Tracking via Reinforcement Learning 133
4.14.3 Approach 134
4.14.3.1 Data Processing 134
4.14.3.2 Training Phases 134
4.14.3.3 Reward Formulation and Model-Based Variance 135
4.14.3.4 Auxiliary Tasks and Pre-training for Transfer Learning 136
4.14.4 Experimental 137
4.14.4.1 Implementation Settings and Dataset 137
4.14.4.2 Hyperparameters and Training 138
4.14.4.3 Ablation Study and Results 140
4.14.4.4 Euclidean (d1) and Variance-Aware Reward (d2) 140
4.14.4.5 Tracking Prediction 140
4.14.4.6 Statistical Relevance of the Variance-Aware Reward 145
4.14.5 Outcomes of the Proposed Approach 145



�

� �

�

Contents xi

4.15 Conclusion 146
4.16 Questions to the Reader 146

References 147

5 Cross-Modal Learning 151
5.1 Introduction 151
5.2 Self-Supervised Multimodal Learning 154
5.2.1 Generating Audio Statistics 154
5.2.2 Predicting Sounds from Images 154
5.2.3 Audio Features Clustering 154
5.2.4 Binary Coding Model 155
5.2.5 Training 155
5.2.6 Results 155
5.2.6.1 Discussion 156
5.3 Joint Embeddings Learning 156
5.3.1 Feature Representations 157
5.3.2 Joint Embedding Learning 157
5.3.3 Matching and Ranking 157
5.3.4 Training Details and Result 159
5.3.5 Discussion 159
5.4 Multimodal Input 159
5.4.1 Multimodal Compact Bilinear Pooling 160
5.4.2 VQA Architecture 161
5.4.3 Training Details and Result 162
5.4.4 Discussion 162
5.5 Cross-Modal Learning 162
5.5.1 Data Acquisition 162
5.5.2 Cross-Modal Learning for Keypoint Detection 163
5.5.3 Training Details and Results 163
5.5.4 Discussion 166
5.6 Application: People Counting 166
5.6.1 FMCW Radar System Design 167
5.6.2 Data Acquisition 167
5.6.3 Solution 1 167
5.6.3.1 Data Processing 167
5.6.3.2 Learning Methodology 170
5.6.3.3 Results 172
5.6.4 Solution 2 173
5.6.4.1 Data Processing 173
5.6.4.2 Learning Methodology 174
5.6.4.3 Results 175



�

� �

�

xii Contents

5.7 Conclusion 176
5.8 Questions to the Reader 177

References 177

6 Signal Processing with Deep Learning 181
6.1 Introduction 181
6.2 Algorithm Unrolling 182
6.2.1 Learning Fast Approximations of Sparse Coding 183
6.2.2 Learned ISTA in Radar Processing 185
6.3 Physics-Inspired Deep Learning 186
6.4 Processing-Specific Network Architectures 188
6.5 Deep Learning-aided Signal Processing 190
6.6 Questions to the Reader 197

References 198

7 Domain Adaptation 201
7.1 Introduction 201
7.2 Transfer Learning and Domain Adaptation 201
7.3 Categories of Domain Adaptation 203
7.3.1 Common Data Shifts 204
7.3.1.1 Prior Shift 204
7.3.1.2 Covariate Shift 204
7.3.1.3 Concept Shift 204
7.3.2 Methods of Domain Adaptation 204
7.3.2.1 Discrepancy-based Domain Adaptation 205
7.3.2.2 Adversarial-based Domain Adaptation 206
7.3.2.3 Reconstruction-based Domain Adaptation 208
7.4 Domain Adaptation in Radar Processing 209
7.4.1 Domain Adaptation with a Different Sensor Type 209
7.4.2 Domain Adaptation with Different Radar Settings 211
7.4.2.1 Introduction 211
7.4.2.2 Problem Statement 212
7.4.2.3 MDD 213
7.4.2.4 Setup 215
7.4.2.5 Results 217
7.4.2.6 Conclusion 219
7.5 Summary 219
7.6 Questions to the Reader 220

References 220



�

� �

�

Contents xiii

8 Bayesian Deep Learning 223
8.1 Learning Theory 224
8.2 Bayesian Learning 225
8.2.1 Parametric Bayesian Models 226
8.2.2 Nonparametric Bayesian Models 229
8.2.3 Priors 230
8.3 Bayesian Approximations 232
8.3.1 Laplace’s Approximation 232
8.3.1.1 Laplace Approximation for Bayesian Inference 234
8.3.1.2 Limitation and Extension 235
8.3.2 Markov Chain Monte Carlo (MCMC) 235
8.3.3 Variational Approximations 239
8.4 Application: VRU Classification 244
8.4.1 VAE as Bayesian 245
8.4.1.1 Re-parameterization Trick 247
8.4.2 Bayesian Metric Learning 248
8.4.2.1 Vulnerable Road Users (VRUs) 248
8.4.2.2 Metric Learning 250
8.4.3 Kalman as Bayesian 252
8.4.3.1 Integrated Bayesian Tracking 254
8.4.3.2 Target Association 254
8.4.4 Results 255
8.4.4.1 Pretrained Target Class 255
8.4.4.2 Unseen Target Class 257
8.5 Summary 259
8.6 Questions to the Reader 259

References 260

9 Geometric Deep Learning 261
9.1 Representation Learning in Graph Neural Network 262
9.1.1 Fundamentals 262
9.1.2 Learning Theory 263
9.1.3 Embedding Learning 267
9.2 Graph Representation Learning 267
9.2.1 Convolution GNN 268
9.2.2 Recurrent Graph Neural Networks (RGNNs) 268
9.2.3 Graph Autoencoders (GAEs) 269
9.2.4 Spatial Temporal Graph Neural Networks (STGNNs) 269
9.2.5 Attention GNN 269



�

� �

�

xiv Contents

9.2.6 Message-passing GNN 270
9.3 Applications 271
9.3.1 Application 1: Long-Range Gesture Recognition 271
9.3.1.1 Camera Point Cloud 271
9.3.1.2 Radar Point Cloud 273
9.3.1.3 mmWave FCMW Radar Sensor 273
9.3.1.4 Architecture and Learning 276
9.3.1.5 Experiments and Results 279
9.3.2 Application 2: Bayesian Anchor-Free Target Detection 280
9.3.2.1 Direction Field Estimation 282
9.3.2.2 Direction Attention 283
9.3.2.3 Experiments 285
9.3.2.4 Bayesian Sampling 285
9.3.2.5 Multi-task Learning 288
9.4 Conclusion 293
9.5 Questions to the Reader 294

References 294

Index 299



�

� �

�

xv

About the Authors

Avik Santra
Avik Santra received his B.S. degree in electronics and communications engineer-
ing from West Bengal University of Technology. He then received his M.S. degree
in signal processing with first-class distinction from Indian Institute of Science
and a Ph.D. degree in electrical, electronics, and informatics from the FAU
University of Erlangen, Germany. He is currently heading the advanced AI team
responsible for developing signal processing and machine learning algorithms
and system solutions for radars and depth sensors at Infineon, Germany. Earlier
in his career, he worked as a system design engineer for LTE chipsets at Broadcom
Communications developing and implementing calibration algorithms for LTE
chipsets. Subsequently, he has worked as a research engineer developing system
concepts and representative demonstrators of next-generation long-range radars
and data analytics at Airbus. He has received several spot awards for project
excellence in multiple forums. He has been an invited speaker at various confer-
ences and workshops, as well as delivered several tutorials on deep learning and
signal processing topics. He is a reviewer at various IEEE and Elsevier journals
and is a recipient of several outstanding reviewer awards. He has been lead guest
editor at IEEE Sensors Journal and associate editor at Elsevier Machine Learning
with Applications. He is the coauthor of the book Deep Learning Applications of
Short-Range Radars, published by Artech House in September 2020. He has filed
over 70 US/EU patents and published over 55 research papers related to deep
learning and signal processing topics. He is a senior member of IEEE.

Souvik Hazra
Souvik Hazra received his B. Tech degree in electrical engineering from KIIT
University in 2017 and then received his MS degree in data science and engi-
neering from EURECOM and IMT, France, in 2019. He is currently working as
a senior staff machine learning engineer at Infineon Technologies AG, Munich,
where he is responsible for the overall development of machine learning and



�

� �

�

xvi About the Authors

signal processing solutions for radars and microphones. Earlier in his career,
he has worked as a research intern at Airbus and CCAF, University of Cambridge,
on various deep learning topics. He has been invited as a speaker at various
summits and has been a reviewer at various IEEE journals and conferences. He
is the coauthor of the book Deep Learning Applications of Short-Range Radars,
published by Artech House in September 2020. Besides his full-time job at Infi-
neon, he is pursuing his PhD degree at Friedrich-Alexander-University (FAU),
Erlangen.

Lorenzo Servadei
Dr. Lorenzo Servadei is a senior staff machine learning engineer at Infineon
Technologies AG. His main interests are methods of reinforcement learning
applied to quantum computing design, signal processing, and design automation
of microchips. He obtained a PhD in computer science from a collaboration
between Infineon Technologies AG and Johannes Kepler University of Linz.

His PhD focused on the use of methods of reinforcement learning for hardware
design optimization. To this end, he researched and approached methods of
combinatorial optimization for the improvement of power, performance, and
area (PPA) on digital hardware. In particular, he developed combinatorial rein-
forcement learning (RL) algorithms that gradually improve the positioning and
connection of subcomponents within the hardware schematic. During his PhD, he
collaborated and published two journal papers with Professor Hochreiter, inventor
of the Long-Short Term Memory (LSTM) networks. Additionally, he spent several
months at Duke University, working on machine learning contributions on Hard-
ware Security. Dr. Lorenzo Servadei has also served as a machine learning trainer
for Infineon Technologies AG, helping to grow the artificial intelligence commu-
nity within the company in different sites around the world. He is currently an
IEEE member, a senior lecturer, Habilitand, and a post-doc in the Department of
Electrical and Computer Engineering at the Technical University of Munich.

Thomas Stadelmayer
Thomas Stadelmayer was born in Regensburg, Bavaria, Germany, in 1994.
He studied computational engineering at Friedrich-Alexander University (FAU)
Erlangen-Nuremberg and graduated with a bachelor’s degree in 2015 and a
master’s degree in 2018. He then worked as a research assistant in the Circuits,
Systems and Hardware Test (CST) research group at the Institute of Electrical
Engineering, FAU Erlangen-Nuremberg. His research interests include digital
signal processing and machine learning for short-range and indoor radar appli-
cations. During his research, he worked in close collaboration with Infineon
Technologies on various radar applications based on machine learning, such as
hand gesture recognition and person localization. He is particularly interested
in combining classical signal processing and machine learning to obtain more



�

� �

�

About the Authors xvii

interpretable neural networks. He is also interested in deep metric learning
for detecting outliers or unknown motion to make applications more robust in
real-world environments. He has contributed to his research area with scientific
publications and several patent applications. He joined Infineon Technologies in
February 2022 in the Advanced Artificial Intelligence group. His task is to improve
current signal processing-based radar algorithms using artificial intelligence to
overcome application limitations while also exploring new applications enabled
by artificial intelligence for short-range radars. He also builds proof-of-concept
demonstrators and works closely with academic partners. Besides his work at
Infineon, he is pursuing his PhD degree.

Michael Stephan
Michael Stephan was born in Forchheim, Bavaria, Germany, in 1995. He
received his bachelor’s degree in electrical engineering and master’s degree in
advanced signal processing and communications engineering from the Friedrich-
Alexander-University Erlangen-Nuremberg in 2017 and 2019, respectively.
During his studies, he was a visiting scientist at Nokia Bell Labs, Holmdel, New
Jersey, USA, where he looked into the RF-chains for Hybrid MIMO Precoders.
He wrote his master thesis at the Poly-Grames Research Center in Montréal,
Canada, about algorithmically reducing the effect of coupling on the angle of
arrival estimation performance of MIMO FMCW radar and also completed an
internship at Infineon Technologies AG in Linz, Austria, marking his first contact
with deep learning for indoor target localization using FMCW radar sensors.
He is currently pursuing his PhD degree with the Friedrich-Alexander-University
Erlangen-Nuremberg at the Institute for Electronics Engineering in cooperation
with Infineon Technologies AG, Neubiberg, Germany. Coming from a signal pro-
cessing perspective, his current research focuses on various deep learning topics
with application in mmWave radar signal processing for indoor localization and
tracking in real-world environments. He has written numerous publications and
filed multiple patents on deep learning applications for radar processing. Recently,
his research focuses on explicitly using traditional signal processing knowledge
during the neural network training process to achieve better generalization and
performance in the low-data regime.

Anand Dubey
Anand Dubey was born in Mirzapur, Uttar Pradesh, India, in 1990. He studied
electronics and communication engineering at Jaypee Institute of Information
Technology University (JIITU) for his bachelor’s degree in 2012 and automotive
software engineering at Technical University of Chemnitz for his master’s degree
in 2018. Later, he worked as a research assistant in the Circuits, Systems and
Hardware Test (CST) research group at the Institute of Electrical Engineering,
FAU Erlangen-Nuremberg. His research interests include digital signal processing



�

� �

�

xviii About the Authors

and machine learning for automotive radar applications. During his research, he
worked on an application to detect and classify pedestrians and cyclists using their
motion and spatial signatures. He is particularly interested in combining statisti-
cal signal processing and Bayesian machine learning to obtain more interpretable
and reliable neural networks. He is also interested in the domain of geometric
learning where data are sparse and correlated. He has contributed to his research
area with several scientific publications. He joined Infineon Technologies in
January 2022, and his task is to investigate and propose novel signal processing
pipelines for speech enhancement using Bayesian machine learning algorithms.
He is also exploring areas of tiny machine learning algorithms for low-powered,
microcontroller units.



�

� �

�

xix

Preface

Radar has evolved from a complex, high-end military technology into a relatively
simple, low-end solution penetrating industrial, automotive, and consumer mar-
ket segments. This rapid evolution has been driven by the advancements in silicon
and the use of deep learning algorithms to utilize the full potential of sensor data.
The use of radar sensors has grown multifold penetrating automotive, industrial,
and consumer markets, offering a plethora of applications. The advent of deep
learning has transformed many fields and resulted in state-of-the-art solutions in
computer vision, natural language processing, speech processing, etc. However,
the application of deep learning algorithms to radars is still by and large at its
nascent stage. This book attempts to present the theoretical concepts behind sev-
eral advanced deep learning concepts and highlight how such techniques enable
such applications, which were not otherwise possible.

This book presents cutting-edge artificial intelligence (AI)-based processing
using advanced deep learning to a short-range radar. AI is the hottest topic in all
industrial sectors and has led to disruptions across all fields, such as computer
vision, natural language processing, speech processing, medical imaging, etc.
However, the application of AI to radars is relatively new and unexplored. We in
this book present the cutting-edge deep learning processing that we worked and
are working on at Infineon Technologies. This book covers how advanced deep
learning concepts are being used to enable applications ranging from industrial
sector, consumer space, to emerging automotive industries. This book presents
examples of several human–machine interface applications such as gesture
recognition and sensing, human activity classification, people counting, people
localization, and tracking along with automotive target detections, localization,
and classification.

Chapter 1 introduces the fundamentals of deep learning, its evolution over
time, and the different facets that make deep learning so powerful. This chapter
introduces various components of conventional convolutional neural networks,
recurrent neural network, and fully connected layers in relation to various
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tasks such as classification, localization, segmentation, or translation. Chapter 2
presents deep metric learning with an intensive overview of the state-of-the-art
algorithms and how open-set classification tasks are handled using metric
learning. Then, a short-range radar application that aims to classify among a set
of predefined hand gestures amid random unknown motions is presented.

Chapter 3 introduces deep parametric learning, where the preprocessing
pipeline can be integrated into a deep neural network and made data driven, thus
enhancing the performance to be task specific as well as making the architecture
compact. Chapter 4 introduces deep reinforcement learning, where the learning
algorithm depends on the sum of rewards produced by policy interacting with
an environment. We review the basics of deep reinforcement learning and then
present the overview of different typologies of deep reinforcement learning
algorithms. We present the efficacies of deep parametric learning with activity
classification application, and for reinforcement learning, we present how it
helps to update the parameters of a tracker adaptively as a function on the target
dynamics.

Chapter 5 introduces cross-modal learning algorithms by giving an overview
of the state-of-the-art approaches, and then, we present two approaches of
cross-modal learning to improve radar-based people counting solutions in
comparison with unimodal learning approaches. In Chapter 6, we present
signal processing-led learning that gives an overview over different model-based
approaches to incorporate expert knowledge in deep learning methodologies.
We present the advantages of signal processing-driven deep learning with respect
to radar-based target detection and segmentation use case.

Chapter 7 presents domain adaptation wherein the model is trained on a
source data distribution and then deployed for a different target data distribution.
Transfer learning and fine-tuning are subsets of domain adaptation, and here,
we present the overview of the existing techniques and introduce them to
specific applications of human activity classification. Chapter 8 presents Bayesian
deep learning, introducing an overview on the history of learning theory for
deterministic and Bayesian neural networks followed by understanding on
different elemental blocks required to formulate Bayesian deep learning and then
a practical application demonstrating the efficacies of Bayesian deep learning
for an automotive radar. Chapter 9 introduces geometric deep learning, starting
with the overview followed by the need to capture and learn underlying patterns
in a complex non-Euclidean data structure. Subsequently, practical application
is demonstrated using automotive radar point clouds for automotive target
classification and for long-range gesture sensing.

This book is intended for graduate students, academic researchers, and industry
practitioners working with deep learning who strive to apply deep learning tech-
niques to mmWave radars or depth sensors. This book is written keeping beginners
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to advanced researchers in mind and assumes sufficient knowledge of linear alge-
bra and engineering mathematics. Each chapter has end questions to assess the
understanding of the reader. This book covers the theoretical foundation of each
deep learning algorithm or paradigm and also presents the adaptations of such
algorithms to a specific mmWave radar application. This book covers advanced
concepts such as deep metric learning, parametric learning, reinforcement learn-
ing, reinforcement learning, cross-learning, signal processing-led architectures,
domain adaptation, and geometric deep learning. While each chapter is indepen-
dent of the other, it is suggested that an early researcher reads the first introductory
chapter introducing basic radar signal processing and deep learning before reading
the specific deep learning chapter.

The authors would like to express their heartfelt gratitude to their PhD super-
visors Prof. Robert Weigel and Prof. Robert Wille for their constant guidance
and support. We look at them with great respect for their profound knowledge
and experience, their unparalleled teaching and problem-solving skills, and their
relentless pursuit for perfection, which has something we try to emulate all the
time and in this book.

We are thankful to our department head, Gerhard Martin, for being extremely
supportive and encouraging us all the time to give our best. We would also like to
greatly thank Dr. Christian Mandl who has been a lighthouse of inspiration for us,
guiding us with his accurate understanding of technical concepts along with his
leadership skills. We would also like to thank Dr. Ashutosh Pandey for the techni-
cal guidance and unparallel knowledge and his relentless strive for excellence.

The authors would also like to thank their editors and reviewers for his
encouragements, reviews, and suggestions to improve this book.
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FADA Few-shot adversarial domain adaptation
FMCW Frequency-modulated continuous-wave
GMM Gaussian mixture model
GP Gaussian process
GRV Gaussian random variable
GAN Generative adversarial network
GRL Gradient reversal layer
GAE Graph autoencoder
GNN Graph neural network
IID Independent and identically distributed
ISTA Iterative shrinkage-thresholding algorithm
K-NN k-nearest neighbor
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xxiv Acronyms

LAR Label-aware ranked
LIDAR Laser imaging detection and ranging
lse log-sum-exp
LSTM Long short-term memory
ML Machine learning
MDD Margin disparity discrepancy
MCMC Markov chain Monte Carlo
MDD Maximum mean discrepancy
MH Metropolis–hastings algorithm
mLSTM multifrequency long short-term memory
mWDN multilevel wavelet decomposition network
MCB Multimodal compact bilinear
MMDL Multimodal deep learning
NN Neural network
NMS Nonmaxima suppression
OKS Object keypoint similarity
OS-CFAR Ordered statistics CFAR
RAI Range-angle image
RDI Range-doppler image
RGNN Recurrent graph NN
RNN Recurrent neural network
RL Reinforcement learning
RCF Residual classification
SPKF Sigma-point Kalman filter
STGNN Spatial-temporal graph neural networks
SVM Support vector machine
TL Transfer learning
TRPO Trust region policy optimization
VAE Variational auto-encoder
VBGM Variational Bayesian Gaussian mixture model
VI Variational inference
VQA Visual question answering
VRU Vulnerable road users flow
UMAP Uniform manifold approximation and projection
UKF Unscented Kalman filter
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Introduction to Radar Processing and Deep Learning

At the end of this chapter, reader will have understanding on

● How radar data cubes are processed to extract range, velocity, and angle of the
multiple detected targets and are tracked over time.

● Different target representations used for radar target recognition.
● Introduction to deep learning architectures used for radar target recognition.

1.1 Basics of Radar Systems

Radar is an acronym that stands for radio detection and ranging. It is basically
an electromagnetic system used to detect the presence of one or more targets of
interest and estimate their range, angle, and velocity relative to the radar. Instead
of just measuring the target’s location and velocity, modern radars can predict the
target given the reflected radar signals. The main objective of radar compared to
infrared and optical sensors is to discover distant targets under difficult climate
conditions and to determine their spatial location while tracking them over time
with precision. The general working principle and signal processing fundamental
details are explained in the following sections.

1.1.1 Fundamentals

The radar system generally consists of a transmitter that produces an electromag-
netic signal, which is radiated into space by the transmit antenna. When this signal
strikes an object, it gets reflected or re-radiated in many directions. This reflected
echo signal is received by the receive antenna, which delivers it to the receiver
circuitry, where it is processed to detect the target and also localize it over time
along with certain characteristics of the target. A simplified version of a typical
continuous wave radar front-end with the most important building blocks can be

Methods and Techniques in Deep Learning: Advancements in mmWave Radar Solutions, First Edition.
Avik Santra, Souvik Hazra, Lorenzo Servadei, Thomas Stadelmayer, Michael Stephan, and Anand Dubey.
© 2023 The Institute of Electrical and Electronics Engineers, Inc. Published 2023 by John Wiley & Sons, Inc.
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Figure 1.1 Block diagram of the continuous wave radar front-end and its receive chain
including the mixer, band pass filter, and analog-to-digital converter. The digitized
samples sIF(t) are stored into a data matrix s[k, l]. The radar in this case is sensing a
human target in the field of view.

seen in Figure 1.1. The chosen waveform is generated by a local oscillator (LO)
and transmitted via the transmit (Tx) antenna. The receive (Rx) antenna then
captures the incoming signal reflections from the target at a distance. After ampli-
fying the received signal, it is mixed with the original transmitted waveform and
is passed through subsequent analog bandpass filtering (BPF). This removes any
high-frequency components that could cause aliasing as well as low-frequency
components from direct coupling of the LO signal into the receiver. After mixing
and filtering the signal that has been shifted to an intermediate frequency (IF),
and it is referred as sIF(t). The IF bandwidth BIF is determined by the upper cut-off
frequency of the bandpass filter, which is typically in the order of tens of kHz to
few MHz.

1.1.2 Signal Modulation

To detect and differentiate multiple targets along its range, relative velocity, and
azimuth-elevation angle dimensions, linear frequency modulated continuous
wave (FMCW) is used as the most standard sensing waveform [1]. Usually,
consecutive identical chirps are transmitted within a frame with a predefined
time spacing referred to as chirp repetition time. The received IF signal is arranged
within a two dimensional matrix, and the intratime, i.e., within a chirp, is referred
as fast-time, while the intertime, i.e., across chirps, is referred to as slow-time.
If the target is static, the round trip delay in the received signal is manifested
as a frequency offset along the fast-time dimension after down-mixing at the
receiver. But if the target or the radar is not stationary, the received signal will
have an additional frequency offset caused by the Doppler shift manifested across
slow-time dimension.

Figure 1.2 shows the concept of a FMCW modulation in detail. The LO gener-
ates a chirp signal sLO(t) with starting frequency f0,LO, bandwidth Bc, duration Tc,
and resulting sweep rate 𝜇LO = Bc∕Tc. By taking advantage of time integral over
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Figure 1.2 Illustration of typical modern radar sensors with several identical transmit
chirps within a frame and the digitized IF samples sIF[k] are then stored chirpwise in a
data matrix for coherent processing.

Tx frequency, instantaneous phase is calculated as shown in Eq. (1.1), where 𝜑0,LO
corresponds to the initial phase of the LO:

fTx(t) = f0,LO + Bc∕Tct (1.1a)

𝜙Tx(t) = 2𝜋 ∫
Tc

0
fTx(t)dt = 2𝜋f0,LOt + 𝜋

Bc

Tc
t2 + 𝜑0,LO (1.1b)

Assuming unity amplitude for a single chirp, sLO(t) can be formulated by

sTx(t) =
{

cos
(
𝜙Tx(t)

)
0 ≤ t ≤ Tc

0 else
(1.2)

If this transmit signal gets reflected by some object, also referred to as target, the
reflection will be received at the radar with a time delay 𝜏, which is proportional to
the target’s distance to the radar. Additionally, signals of multiple reflections, like
extended targets, are superimposed on each other at the receiver. For an arbitrary
number of point targets Ntgt composing a spatially distributed target, the received
signal sRx(t) can thus be expressed as follows:

sRx(t) =
Ntgt∑
i=1

sTx(t − 𝜏i(t)) + n (1.3)

where n represents thermal receiver noise or clutter and 𝜏i(t) is the round trip delay
to the ith target located at distance Ri and moving with a relative radial velocity
of 𝑣i. As a result, 𝜏i(t) can be described as 2Ri−2𝑣i t

c0
, where c0 is the speed of light.

For ease of notations, the noise term is dropped for all the following considerations.
The received and amplified signal is mixed with the original transmitted signal
(smix(t) = sTx(t) ⋅ sRx(t)). As discussed before, both transmitted and received signal
follows cosine waveform. Thus, the down-mixed signal smix(t) can be transformed
into two components using trigonometric formulation.

smix(t) = sRx(t) ⋅ sTx(t) =
1
2
(cos(𝜙diff(t)) + cos(𝜙sum(t))) (1.4)
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here 𝜙diff(t) contains the difference of Tx and Rx signal frequencies and 𝜙sum(t)
contains the sum frequencies respectively. The sum component is removed by the
following BPF and the resulting IF signal sIF(t) is obtained as follows:

sIF(t) =
1
2

cos(𝜙diff(t))

≈ 1
2

cos
(

2𝜋
( fb
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

2f0R
c0

⏟⏟⏟
𝜙0

+
( 2BcR

c0Tc
⏟⏟⏟

fR

−
2f0𝑣

c0
⏟⏟⏟

fD

)
t −

2Bc𝑣

c0Tc
t2
)) (1.5)

This shows that intermediate received signal contains both distance-dependent
frequency fR and also speed-dependent frequency shift fD which are factors of
modulation parameters. This includes chirp duration Tc, chirp repetition time Tcc,
sweep frequency or bandwidth Bc, and number of chirps in a frame Nc as main
configuration parameter for the design of a FMCW waveform. As a result, these
parameters control the range and Doppler resolution, as presented in Eqs. (1.6)
and (1.7), respectively. The maximum observable range and the maximum unam-
biguous Doppler is given in Eqs. (1.8) and (1.9).

ΔfR =
2BcR
c0Tc

(1.6a)

ΔRmin = 1.21
c0

2Bc
(1.6b)

Δf𝑣 =
2f0𝑣

c0
(1.7a)

Δ𝑣min = 1.21
c0

2f0NcTcc
(1.7b)

Rmax =
fsc0Tc

2Bc
(1.8)

Vmax =
c0

2Tccf0
(1.9)

1.2 FMCW Signal Processing

The IF signal, obtained from Eq. (1.5), is then digitized by an analog-to-digital
converter with sampling period Ts at the discrete time instants kTs, where
k ∈ [0, ...,Ns − 1]. Consequently, the discrete time signal s[k] contains Ns samples
per chirp. Typically, modern short-range radar sensors rapidly transmit several
identical chirps in a so-called chirp sequence modulation. The digitized IF sam-
ples s[k] are then stored chirp wise in a data matrix s[k, l] for coherent processing.
Figure 1.3 summarizes the FMCW signal processing multistage pipeline, where
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Figure 1.3 Summary of FMCW signal processing pipeline including both pre- and postprocessing over s[k, l] chirp matrix for target
detection, tracking, and classification.
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s[k, l] is first preprocessed in time-domain for removal of spectral leakage or
static targets followed by interference mitigation. Later, the preprocessed s[k, l] is
transformed to frequency domain for target detection. Once a target is detected,
then the measurement is fed into a tracking algorithm for temporal smoothening.
At the end, the tracked target’s features are extracted using their motion or spatial
signature in the form of images or point-clouds, respectively, which are used for
target recognition.

The frequency domain analysis for range-Doppler processing is explained in the
following section.

1.2.1 Frequency-Domain Analysis

As indicated by Eqs. (1.6) and (1.7) both range and radial velocity information
of the target are functions of frequency shifts in the received signal. As a result,
frequency-domain analysis is used to determine respective target’s parameters
instead of time-domain analysis. In contrast to time-domain signals where signal
changes over time (amplitude or power) can be observed, frequency-domain anal-
ysis reveals how much of the signal lies within each given frequency band over a
range of frequencies, which also include change in phase information. The most
common frequency-domain transform methods are Fourier transform, short-time
Fourier transform (STFT) and wavelet transforms. All three transforms are inner
products of a family of basis functions with a time-domain signal. The parame-
terization and the basis functions determine the properties of the transforms.

Before delving into details, Figure 1.4 illustrates all the three transforms
pictorially. While the classical technique to represent time signals in the fre-
quency domain by calculating discrete Fourier transformation (DFT), it fails to
detect time variant frequency effects, which are important for extended targets.
As an alternative, DFT is modified by shortening the time window for each
DFT and leads to short-time Fourier transformation (STFT), which improves
resolution in time but at the cost of lower accuracy in the frequency domain, as
seen in Figure 1.4. While the DFT has no temporal resolution and STFT have fixed
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Figure 1.4 Pictorial representation of all three transforms, i.e., Fourier, STFT, and
wavelets over analog-to-digital conversion (ADC) sampled chirp sequence data.
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resolution for complete time-frequency, the wavelet transformation can adapt both
the time and frequency dimensions and result into a high-frequency resolution at
low frequencies while maintaining good time localization at high frequency.

1.2.1.1 Discrete Fourier Transform
While the Fourier series is used for oscillating or repetitive signal, Fourier trans-
form is used for nonrepetitive signals. Thus, Fourier transform can be formulated
as a special case of Fourier series when the time period T → ∞. For the stan-
dard Fourier transform, the basis functions are simply the complex sinusoidal
oscillations

b𝜔(t) = ej𝜔t (1.10)

where t is the time axis of the signal and 𝜔 is the single frequency parameter that
determines the basis function in the family. There is one basis function for every𝜔.
The Fourier transform of the signal x(t) is then simply the inner product written
as an integral

x(𝜔) = {x(t)}(𝜔) = ⟨b(𝜔, t), x(t)⟩ = ∫
∞

−∞
e−j𝜔𝜏x(𝜏)d𝜏 (1.11)

The negative sign in the exponential comes from the complex conjugation in the
general inner product definition:

⟨a(t), b(t)⟩ = ∫
∞

−∞
a(𝜏)∗b(𝜏)d𝜏 (1.12)

Since we are processing down-sampled raw radar analog-to-digital conversion
(ADC) data matrix, all signals are considered as discrete time and valued (unlike
continuous signals). Thus, discrete time Fourier transform (DTFT) is performed
as follows:

X(𝜔) =
∞∑

n=−∞
x(n)e−j𝜔n (1.13)

where x(n) is discrete time-value signal and X(𝜔) is continuous spectrum. Conse-
quently, as X(𝜔) is of continuous nature, the DTFT cannot be processed directly
on a digital machine. Therefore, a discrete spectrum response is required, which is
usually done by using the discrete Fourier transform (DFT) and denoted by X(k).
This is done by sampling over the spectrum of the DTFT. The sampling frequency
of DFT is defined as 𝜔k = 2𝜋k∕N. Here, N corresponds to the total number of sam-
ples retrieved from the DTFT:

X
(

2𝜋k
N

)
=

N−1∑
n=0

x(n)e−j2𝜋kn∕N (1.14)

X(k) =
N−1∑
n=0

x(n)e−j2𝜋kn∕N (1.15)
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The above equation shows two fundamental mathematical operations, which are
carried out for every sample of the input signal – multiplication and addition.
The DFT is an iterative operation and requires a high-computational effort. The
fast-Fourier transform (FFT) is an algorithm to compute the DFT efficiently. This
is usually done using the Cooley–Tukey algorithm; however, there exist many
other algorithms.

The FFT operation is applied over down-sampled raw radar ADC data matrix
stored along the chirp, namely fast-time dimension, with consecutive chirps stored
along the columns, referred to as slow-time dimension. Prior to the FFT opera-
tion, as seen in Figure 1.3, time-domain preprocessing can be done as an optional
step. This helps to remove Tx–Rx leakage and clutter noise from down-sampled
raw radar ADC data matrix. This is done by mean subtraction across fast-time
and slow-time, respectively. This process is commonly known as moving target
indicator (MTI) processing. Furthermore, an optional interference detection and
mitigation method could also be applied to reduce the effect of interference and
noise. By calculating the two-dimensional fast Fourier transform (FFT) on this
data matrix, fast-time is converted to range-frequency and slow-time to Doppler
frequency. This operation yields the spectrum SRD, with indexed dimensions as
range-frequency fr and Doppler-frequency f𝑣.

In principle, FFT assumes that the signal contains a continuous spectrum that
is one period of a periodic signal. However, the measured raw data matrix s[k, l]
may not contain integer number of periods. Therefore, the definiteness of the s[k, l]
may result in a discontinuity at the endpoints of the waveform in comparison to
the original continuous-time signal and could introduce sharp transition changes
into the consecutive measured signals. These artificial discontinuities lead to the
additional high-frequency components not present in the original signal. This phe-
nomenon is called spectral leakage where energy at one frequency leaks into other
frequencies. This causes the sharp frequency spectrum to spread into wider signals
and leads to ambiguity.

These effects are minimized using a technique called windowing. The win-
dowing function reduces the amplitude of the discontinuities at the boundaries
of each finite sequence acquired by the ADC. Windowing function consists of
amplitude envelope that is multiplied elementwise with the original ADC matrix.
The characteristic of windowing function is such that it varies smoothly and
gradually toward zero at the edges. This makes the endpoints of the measurement
s[k, l] similar and therefore results in a continuous waveform without sharp tran-
sitions. In addition to it, in general, zero-padding along either of dimension of the
data matrix s[k, l] is done with a factor of power of 2. This interpolates the coarse
spectrum to become more smooth but does not reveal extra information from the
spectrum. To improve the resolution of the spectrum, length of the recorded signal
needs to be increased. Additionally, it can also be interpreted as windowing, which
is time-domain multiplication of rectangular function with the original signal.
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1.2.1.2 Short-Time Fourier Transform (STFT)
Since FFT is performed over complete ADC sampled chirp matrix s[k, l], it aver-
ages out signal frequency components. This approach is good for localization and
detection of reflection from targets but fails to extract both spatial or motion infor-
mation (commonly termed as signatures) for an extended targets like humans.1
As a result, FFT is modified by adding time dimension to the base function
(b(𝜔,t0)(t)) parameters by multiplying the infinitely long complex exponential with
a window to localize it. This transform is known as STFT, whose base functions
are then

b(𝜔,t0)(t) = 𝑤
(

t − t0
)

exp(i𝜔t) (1.16)

where 𝑤(t) is the window functions that vanish outside some interval and
(
𝜔, t0
)

are the time-frequency coordinates of the base function in the family. The inner
product is formulated as follows:

{s(t)}
(
𝜔, t0
)
= ∫

∞

−∞
𝑤(𝜏)∗ exp(−i𝜔𝜏)s(𝜏)d𝜏 (1.17)

The advantage of STFT is that it can capture frequency information of target’s
signature over time, i.e., range signature or micro-Doppler signatures. This infor-
mation can be treated as unique signature for target recognition or its attribute
recognition. However, it is challenging to find a trade-off between time and fre-
quency resolution while calculating the STFT. This is determined by the choice of
the window function and sampling frequency.

1.2.1.3 Wavelets
In contrast to DFT and STFT, the wavelet transform adapts the window size
to the frequency with the constant bandwidth constraint. This is designed in a
scale invariant approach that doesn’t even need the complex modulation basis
function. The working principle of wavelet transforms can be understood with
a generic base function that is localized and oscillates with zero mean, i.e., the
integral over the complete space is zero. This basis function is referred as mother
wavelet. The advantage of such a basis function (wavelet) is that both localization
(time) and oscillation (frequency) resolution trade-off can be reduced, which is a
constraint in STFT. Therefore, the family of base functions can be summarized as

b(𝜎,t0)(t) = 𝑤

( t − t0

𝜎

)
(1.18)

where 𝑤 is the mother wavelet and 𝜎 the scale parameter. Thus, the inner product
becomes

{s(t)}
(
𝜎, t0
)
= ∫

∞

−∞
𝑤

( t − t0

𝜎

)∗

s(t) (1.19)

1 With the availability of high-resolution radar, human targets are treated as doubly extended
targets due to their multiple spatial reflections along range and along Doppler referred to as
micro-Doppler components.
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1.3 Target Detection and Clustering

As illustrated in Figure 1.3, irrespective of the target representation, i.e., images
or point clouds, the most standard target detection has two stages, involving the
detection followed by clustering. A simple approach to target detection is peak
detection by determining if the sensed bin has higher amplitude than its neigh-
boring bins.

Alternately, constant false alarm rate (CFAR) detector is used for detection of the
targets. CFAR detector calculates detection probability for each bin by estimating
varying noise power from neighboring cells as shown in Eq. (1.20). Here, T refers
to detection threshold, 𝛼 is scaling factor, Pn is estimated noise power, N counts
the total number of neighboring reference cells and Pfa is the CFAR. Equation
(1.20) represents cell averaging (CA)-CFAR. The drawback of CA-CFAR is that
it occludes the weak targets near to strong target by having higher noise thresh-
old and thus masking it out. As an alternative, ordered statistics (OS)-CFAR is
being used for detection. The kth ordered data is selected as threshold instead of
averaging over all reference cells.

T = 𝛼Pn (1.20a)

Pn = 1
N

N∑
m=1

xm (1.20b)

𝛼 = N
(

P−1∕N
fa − 1

)
(1.20c)

In contrast to rigid targets like car, truck, human as target of interest contains
micro-motions which results in different velocity component in the received
signal, commonly known as micro-Doppler components [2, 3]. This results to
a spread of detected targets across Doppler dimension. Also, with the use of
higher sweep bandwidth, the range resolution of the radar lies in the order of few
centimeters. As a result, the reflection from target are not received as point target
reflection but are spread across multiple range bins. These targets are also known
as range-Doppler extended targets or doubly spread targets. As a result, all the
detection from target needs to be clustered into one and thus necessitates cluster-
ing algorithm as the second stage. This also helps in reducing the computational
complexity for the target-tracking algorithm, which after clustering tracks a single
target parameter instead of tracking nonclustered group of target parameters.
Density-based spatial clustering of applications with noise (DBSCAN) is used
[4] as the state-of-the-art algorithm. Unlike most algorithms, DBSCAN runs
clustering in one pass without having prior knowledge on number of clusters
and is stable to the outliers (noise). The input hyperparameters required for
DBSCAN are a minimum number of points M and minimum distance d between
neighboring points to be part of cluster [5]. Given a set of target detections from
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same and multiple targets in the 2D space, DBSCAN groups detections that are
closely packed together, while at the same time removing as outliers detections
that lie alone in low-density regions. To do this, DBSCAN classifies each point as
either core point, edge point, or noise. A point is defined as core point if it has
at least M − 1 neighbors, i.e., points within the distance d. An edge point has
less than M − 1 neighbors, but at least one of its neighbors is a core point. All
points that have less than M − 1 neighbors and no core point as a neighbor do not
belong to any cluster and will be classified as outlier and ignored. The two-stage
approach has limitations in both the stages. While OS-CFAR fails to detect target
in the case of clutter, multipath reflection, or interference for a fixed Pfa, DBSCAN
fails to make cluster for sparse range-Doppler images (RDIs) and also is very
sensitive to its hyperparameters. As a result, it may either lead to false detection,
miss detections of real targets or target splits leading to multiple targets (when in
reality it is only one target) in RDIs. However, the recent advancement in deep
neural networks (DNNs) and its application in target segmentation makes DNNs
an ideal algorithm for this problem. Unlike fixed rule-based methods, DNNs are
capable of learning from low-level to high-level representations. The problem
of two-stage target detection is treated as binary image segmentation problem
in literature where target’s cluster is considered as foreground and remaining
information in range-Doppler map as background, as illustrated in Figure 1.5b.
In [6, 7], authors have successfully demonstrated single-stage target detection on
RDIs while suppressing the effect of scatterings from extended targets, multipath
reflections and ghost targets. Further, in [8] single-stage target detection is
introduced that preserves the instance of each target to identify them uniquely
in case of a partial occlusion or overlapping of multiple targets. Additionally,
[8] gives an alternative approach to combine interference mitigation and target
detection by selectively looking into regions of interest.

However, the performance of target detection using image-based maps
(most commonly range-Doppler and range-angle) rely strongly on the target’s
spread distribution pattern, which further depends on the target’s aspect angle.
However, by taking advantage of strong feature points from the target distribution
and learning a relation between these feature points and values, the target
detection can be made robust. Thus, it makes sense to transform the radar images
to radar point-clouds, as shown in Figure 1.5c. Most approaches from literature
propose to process radar point-clouds using certain representation transforma-
tions in order to use convolutional neural networks (CNNs), e.g., radar data is
transformed into a grid map representation. However, [9–11] proposed a novel
neural network, PointNet, that makes it possible to directly process point clouds.
By making the representation invariant to transformation, PointNet additionally
treats neighboring points to capture local structure and is invariant to structure of
input point clouds. Although, radar data are very sparse compared to lidar data,
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Figure 1.5 A visual summary on state-of-the-art target detection algorithms using
(a) different target representation map followed by (b) convolution neural network
architecture for image processing, and (c) PointNet architecture for processing of
point-clouds.

radar data contains other attributes in the form of Doppler component or target
radar cross section (RCS) information. As a result, multiple frameworks for target
detection using radar point clouds were proposed [12–19]. The richness of data
points for sparse radar point-clouds is improved either by accumulating the data
over multiple frames or by augmenting data by repetition of target samples from
available measurement by random sampling.
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1.4 Target Tracking

Conventional radar signal processing usually applies a tracking algorithm after
the clustering to filter measurements over time and track individual targets.
False detections arising from ghost targets are usually also eliminated during
the tracking. In order to avoid decreasing the measurement accuracy as well
as the introduction of inherent noise, the usage of recursive filters is preferred
in literature [20–27]. The most widely used tracking algorithms are Kalman
filters. The performance of Kalman filters relies on the state vector (i.e., the
parameters to be tracked), measurement noise, process noise, and the transition
from measurement to the input state space. In the case of target detection, the
tracker’s state vector can be described as x =

[
px py 𝑣 𝜃

]T , where px, py, 𝑣,
and 𝜃 are the position coordinates along the x- and y-axes, the radial velocity and
the azimuth angle, respectively. Due to low variations in the spatial dimension,
azimuth information is also used as part of the state vector and improves the
robustness of the target localization. Generally, heading angle and turn-rate bring
additional information for a dynamic target with nonlinear motion.

Once the target detections are available at each frame, the next step is to asso-
ciate them with existing tracks or create or delete tracks as necessary. The detected
targets and their estimated parameters are prone to errors due to measurement
noise, missed detections due to occlusions, and false alarms due to ghost targets
and interference sources. The task of tracking is to maintain and update the
state and identity of these targets over time reducing such false positive and true
negatives. There are two important aspects to tracking, first is the track manage-
ment part, which handles track initiation, track maintenance, and measurement
to track association. The other part is the track-filtering step, which is achieved
through either alpha-beta filter, Kalman filter, or particle filter.

1.4.1 Track Management

Track management involves logic blocks that record target tracks when it needs
to be initialized or confirmed, maintains or removes a track signifying exit of a
target from the field-of-view and also handles the measurement to track associa-
tion, which decides on the assignment of a detected target or measurement to an
existing track or generation of a new track if sufficient criteria are fulfilled. The
track management block acts as a controller to handle initiation, maintenance,
and deletion of a target track.

Track initiation is the process of creating a new track from an unassociated radar
measurement. During track initialization, when a new unassociated radar mea-
surement is encountered, the measurement is assigned to a new track, but the
status of the track is kept tentative. The status of these tracks is changed to con-
firmed only when Ndet out of Nfr (Ndet ≤ Nfr) subsequent measurements have a
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positive detection/measurement of the target. This helps in reducing false posi-
tives from ghost targets or interference to spin off a target track.

Track maintenance is the process in which a decision is made if a track has to
be terminated. If a track was not associated with a measurement during the asso-
ciation phase for consecutive Nfr frames, there is a high likelihood that the target
no longer exists in the radar’s field of view and thus such tracks are terminated.
Alternately, due to missed detection, there are chances that the radar did not detect
that target for few measurements within the Nfr frame window but would appear
at future frame time. In this case, the tracks are retained, and only the prediction
is updated.

The task of the measurement to track association is to assign the current mea-
surement to an existing track. This step is also referred to as gating in literature.
At time step n + 1, there are N tracks, i.e.,

X = {(𝜇1, 𝜙1), (𝜇2, 𝜙2),… , (𝜇N , 𝜙N )} (1.21)

where {𝜇i, 𝜙i}N
i=1 are the state mean and state error covariance matrices of the

tracks. Additionally, the M measurements coming from target detections at time
step n + 1 are

Z = {z1, z2,… , zM} (1.22)

A measurement of track association function Φ∶ Z → X maps the uncertain
measurements to certain tracks. The measurement to track association is a
difficult problem due to multiple targets and the associated false positives and
true negatives of the target detections. One of the simplest measurements to
track association algorithm is suboptimal nearest neighbor (SNN), whereby each
measurement is assigned to a track closest to it in Euclidean or Mahalanobis
distance sense, and the assignment starts with the strongest detected target and
thus is referred to as SNN. The alternate approach includes probabilistic data
association filter or joint probabilistic data association filter.

1.4.2 Track Filtering

The Kalman filter is the most well-known track-filtering algorithm and utilizes a
series of noisy measurements observed over time to estimate the internal state of a
linear dynamic system. The estimated state variables are more accurate since the
algorithm estimates a joint probability distribution over the variables for each time
frame. The algorithm has two steps – prediction step and the measurement step.
In the prediction step, the filter predicts the next internal state based on the process
model accounting for the model uncertainties. While in the measurement step,
the measurement is combined with the predicted state in an adaptive weighted
average referred to as “Kalman gain” to update the internal state estimate and
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its uncertainty. The Kalman filter operates under Bayesian principle, so when the
measurement data are observed with less uncertainty compared to the predicted
data, the Kalman gain is high, which means it relies more on the measured data
to update the state. On the other hand, when the predicted data have less uncer-
tainty compared to that of the measurement data, the Kalman gain is low, meaning
it weighs the predicted data more for its state update. Kalman filters are a generic
algorithm which finds use in several signal processing to control theoretic appli-
cations and is not limited to only radar signal processing. The process model used
by the Kalman filter is similar to that of a hidden Markov model except that the
state space is rather continuous and assumes the state and observed variables to
follow a normal distribution.

One of the most standard used process model or state transition function
is a linear constant velocity (CV) motion model. Let the state variable be
𝜓 =
[
px py 𝑣x 𝑣y]T , where px and py denote the position coordinates in x

and y coordinates, whereas 𝑣x and 𝑣y denote the velocity in the x- and y-axes,
respectively. The CV process model can be expressed as follows:⎧⎪⎪⎨⎪⎪⎩

px(k) = px(k − 1) + 𝑣x(k − 1)𝛿t
py(k) = py(k − 1) + 𝑣y(k − 1)𝛿t
𝑣x(k) = 𝑣x(k − 1) + np

𝑣x

𝑣y(k) = 𝑣y(k − 1) + np
𝑣y

(1.23)

where k is the time step, 𝛿t represents the frame time, i.e., the radar refresh rate. np

denotes the Gaussian process noise and captures the kinematic changes which are
not considered in the linear process update model. In the compact matrix–vector
form, the process model can be expressed as follows:⎡⎢⎢⎢⎢⎢⎣

px(k)
py(k)
𝑣x(k)
𝑣y(k)

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

1 0 𝛿t 0
0 1 0 𝛿t
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

px(k − 1)
py(k − 1)
𝑣x(k − 1)
𝑣y(k − 1)

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎣

0
0

np
𝑣x

np
𝑣y

⎤⎥⎥⎥⎥⎥⎦
(1.24)

or 𝜓(k + 1) = F𝜓(k) + np. Now, since the state variables are assumed to be Gaus-
sian distributed, the process noise is modeled as zero mean Gaussian noise, and
thus the mean and covariance of the state variables can be expressed as follows:

xk|k−1 = E{𝜓k|k−1} = Fxk|k−1

Pk|k−1 = E{𝜙k|k−1𝜙
T
k|k−1} = FPk−1|k−1FT + Q (1.25)

where the state variables with suffix k − 1|k − 1 denotes the posterior probability
and k|k − 1 denotes the prior probability, and E{.} is the expectation operator and
Q denotes the process noise covariance matrix. In the case of CV model, the process
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noise would include kinematic changes due to jerks and acceleration of the target.
Considering the acceleration component, the noise process can be expressed as
follows:

np =

⎡⎢⎢⎢⎢⎢⎣

1
2

ax𝛿t2

1
2

ay𝛿t2

ax𝛿t

ay𝛿t

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

1
2
𝛿t2 0
0 1

2
𝛿t2

𝛿t 0
0 𝛿t

⎤⎥⎥⎥⎥⎥⎦
[

ax
ay

]
= Ga (1.26)

Thus, the process noise covariance matrix is defined as follows:

Q = E{npnpT} = G
[

a2
x 0

0 a2
y

]
GT (1.27)

where a2
x and a2

y represent the variance of acceleration noise in x- and y-axes, and
the covariance acceleration noise in x- and y-axes are 0. Thus, the process noise
covariance Q is initialized based on the maximum target’s acceleration expected
in the system.

At the next step, the measurement model needs to account for the transforma-
tion of the internal state to the radar measurements, i.e., the radial distance 𝜌, the
azimuth angle or bearing angle 𝜃, and the radial velocity or range rate 𝑣.⎧⎪⎪⎨⎪⎪⎩

𝜌 =
√

px2 + py2

𝑣 = px𝑣x+py𝑣y√
px2+py2

𝜃 = tan−1
(

py

px

) (1.28)

That is, z = H(𝜓) + nm, where nm represents the measurement zero-mean
Gaussian noise with covariance matrix R = E{nmnmT}. This indicates that unlike
the process model, the measurement model which maps the predicted state[
px py 𝑣x 𝑣y]T to the measurement space z =

[
𝜌 𝑣 𝜃

]T is a nonlinear trans-
formation, which implies that the simple Kalman filter cannot be applied in this
case. The two common approaches to handle such a nonlinear transformation
issue are namely extended Kalman filter (EKF) and the unscented Kalman filter
(UKF). While in EKF, the nonlinear equation is approximated through first-order
Taylor’s expansion. It approximates and propagates the state distribution through
the first-order Taylor series linearization, which expands the nonlinear state
around a single-point. As a result, the EKF is not able to capture the uncertainty
of the distribution, introducing large errors in the estimation of the true posterior
mean and covariance, respectively. Alternately, UKFs are used, which uses deter-
ministic sampling filters, i.e., a sigma-point Kalman filter (SPKF), to approximate
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Figure 1.6 Graphical representation of predict and update stage for an UKF where mean
and variance are estimated at each stage by approximation over sigma points.

the measurement model by a minimal set of sample points. These sample points
can capture the true mean and covariance of the Gaussian random variable
(GRV). Figure 1.6 gives a visual overview on the prediction and update operation
of the UKF to track mean (x̂k−1) and covariance (Px

k−1) of the input state vector at
a time instance k − 1, while Algorithm 1.1 gives a mathematical understanding
on the implementation of the UKF.

In the UKF, an unscented transformation (UT) is applied at both prediction and
update steps, which include a nonlinear state transformation based on f and h,
respectively. As input, the state vector xk−1 of dimension nx with mean x̂(i)k∣k−1 and
the covariance Px

k∣k−1 are provided. At prediction stage, sigma points x̂(i)k−1∣k−1 are
generated, which undergoes the UT f (.) to estimate the predicted mean x̂k∣k−1 and
the covariance Px

k∣k−1 of the state vector. Since the predicted mean and variance
changed due to the transformation, a new set of sigma points is calculated.
Afterward, the new sigma points are transformed into measurement space
using h(.) as a transformation function. A CV system is considered with the
localization state vector x. A nonlinear measurement model h(.) accounts for the
transformation of the state vector into the measurement domain. Mapping part
of the localization parameters (radial range and azimuth angle) from the tracker’s
state vector to the measurement domain follows a nonlinearity (Cartesian to
spherical), whereas mapping the radial velocity and augmented parameters
(appearance embedding) corresponds to an identity mapping between state
vector and measurement domain. However, the overall nonlinear transformation
in the process model xP = g(xa) and the measurement model zP = h(xP

a ) can be
achieved through the UT, using the so-called “sigma points.” These are generated
to approximate the statistical properties of the state distribution [28].
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Algorithm 1.1 Unscented Kalman filter.

Prediction: Generate sigma points x̂(i)k−1∣k−1, i = 0, 1,… , 2nx

x̂(i)k∣k−1 =f
(

x̂(i)k−1∣k−1

)
, i = 0, 1,… , 2nx,

x̂k∣k−1 =
2n∑
i=0

W (m)
i x̂(i)k∣k−1,

Px
k∣k−1 =

2nx∑
i=0

W (c)
i

(
x̂(i)k∣k−1 − x̂k∣k−1

)(
x̂(i)k∣k−1 − x̂k∣k−1

)T
+ Q

Update: Generate sigma points x̂(i)k∣k−1, i = 0, 1,… , 2nx

ŷ(i)k∣k−1 = h
(

x̂(i)k∣k−1

)
, i = 0, 1,… , 2nx,

ŷk∣k−1 =
2nx∑
i=0

W (m)
i ŷ(i)k∣k−1,

Py
k∣k−1 =

2nx∑
i=0

W (c)
i

(
ŷ(i)k∣k−1 − ŷk∣k−1

)(
ŷ(i)k∣k−1 − ŷk∣k−1

)T
+ R,

Pxy
k∣k−1 =

2nx∑
i=0

W (c)
i

(
x̂(i)k∣k−1 − x̂k∣k−1

)(
ŷ(i)k∣k−1 − ŷk∣k−1

)T
,

x̂k∣k = x̂k∣k−1 + Pxy
k∣k−1

(
Py

k∣k−1

)−1 (
yk − ŷk∣k−1

)
,

Px
k∣k = Px

k∣k−1 − Pxy
k∣k−1

(
Py

k∣k−1

)−1 (
Pxy

k∣k−1

)⊤
.

1.5 Target Representation

Unlike computer vision, target recognition for radar sensors rely on the target
representation, which further depends on the choice of frequency transforms.
As discussed before in Sections 1.1.2 and 1.2.1, both signal modulation and
frequency-transform parameters are critical to specify the required resolution
for any target representation for an application. While the signal modulation
parameter defines both maximum and minimum measurable range-Doppler
quantities, the frequency transform parameters are used to find a trade-off
between time-frequency resolution of target’s spatial and motion signatures. In
broad terms, target recognition is achieved by target detection, tracking, and
feature extraction for classification. As a result, accuracy of target classification
strongly depends on accurate detection and tracking of the target.
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Unlike camera-based imaging, radar images appear dense in nature, but target
information is very low compared to background or noise distribution. Similarly,
in comparison to LiDAR point-clouds, where density of target point-clouds are
richer, radar point-clouds are very sparse for a single frame which makes it hard
for target detection and thus more complex for target classification. In case of
radar-point clouds, as a most common practice, multiple frames are accumulated
over time to make target representation richer. The overview on state-of-the-art
target representations in the context of target recognition is summarized in the
following sections.

1.5.1 Image Representation

Radar feature images are 2D representations of the target that can be used to
extract additional information about the target. Based on the radar images, the
type of the target, e.g., if the target is a pedestrian, a car, or an animal, or the
currently executed activity such as standing idle, walking, or riding a bike, can
be recognized. The relevant 2D radar features that can be extracted for target
classification are Doppler spectrograms, range angle images, and video of RDIs,
which are presented in the sequel.

1.5.1.1 Doppler Spectrogram
The Doppler spectrogram is generated by first detecting the target along the range
bins, followed by FFT along slow-time for the detected range bin. The Doppler
spectra from consecutive frames are stacked one after another to generate a 2D
image. In the case of a single target, the Doppler spectrum can be achieved by
marginalization of the RDI across the range axis. The Doppler spectrum contains
both the macro-Doppler component as well as micro-Doppler components due to
hand and leg movements while performing an activity. The stacked Doppler spec-
trum across consecutive frames is referred to as Doppler spectrogram that captures
information about the instantaneous Doppler spectral content and the variation of
the Doppler spectral content over time. The Doppler spectra of the slow-time data
from kth radar frame on the selected range bins can be expressed as follows:

S(p, k)n =
||||||

Nst∑
m=1

𝑤(m)s(m, k)n exp
(
−

j2𝜋mp
Nst

)||||||
S(p, k) =

N∑
n=1

S(p, k)n (1.29)

where 𝑤(m) is the window function along slow-time indexed by m, s(m, k)n is the
slow-time data across Nc chirps in the kth frame for the nth range bin, and p is the
FFT points along slow-time. S(p, k)n represents the Doppler spectrogram along
the nth range bin, and N represents the range bins along which the Doppler FFT
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Figure 1.7 Target classification using (a) Doppler signature image and (b) spatial
point-cloud maps.

is summed to generate the Doppler spectra for that frame. Figure 1.7 illustrates an
example of typical motion signature of a cyclist which is generated using STFT, as
described in Section 1.2.1.

1.5.1.2 Range Angle Images
Two receive antennas separated by a distance of d and receiving reflections from
angle 𝜃 implies the second antenna receives the reflected signal with an additional
path length of d sin(𝜃) as shown in Figure 1.8 leading to phase difference of

𝛿𝜙 =
(2𝜋

λ

)
d sin(𝜃) (1.30)

Thus, the angle of arrival 𝜃 can be estimated as follows:

�̂� = sin−1
(
λ𝛿𝜙
2𝜋d

)
(1.31)

This angle of arrival estimation is referred to as phase monopulse technique.
Using the same concept, digital beamforming generates the weights for prede-

fined angles sweeping across the entire angular field of view to create range-angle
image, where the peak in the spectrum denotes the angle of arrival of the target
at that particular range. Similarly, there are several other approaches to obtain the
range angle image. A simplest approach takes an FFT along the virtual channel
after applying a window function and zero-padding.
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Figure 1.8 Two receive
antennas with the angle of
arrival 𝜃 and the path length
difference between the two.
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The other approach is referred to as Capon beamforming or minimum variance
unbiased estimator. The Nt × Nr de-ramped beat signal can be stacked into a vec-
tor and the Kronecker product of the steering vector of the Tx array aTx(𝜃) and the
steering vector of the Rx array aRx(𝜃), i.e., aTx(𝜃)⊗ aRx(𝜃) can be used to resolve
the relative angle 𝜃 of the scatterer, where ⊗ represents the Kronecker product.
Subsequently beamforming of the MIMO array signals can be regarded as syn-
thesizing the received signals with the Tx and Rx steering vectors. The azimuth
imaging profile for a range bin l can be generated using the Capon spectrum from
the beamformer. The Capon beamformer is computed by minimizing the vari-
ance/power of noise while maintaining a distortion-less response toward a desired
angle. The corresponding quadratic optimization problem is

min
𝑤

𝑤HC𝑤

s.t. 𝑤H(aTx(𝜃)⊗ aRx(𝜃)) = 1 (1.32)

where C is the covariance matrix of noise, and the above optimization has a closed
form expression given as𝑤capon = C−1a(𝜃)

aH(𝜃)C−1a(𝜃)
, with 𝜃 being a desired angle. On sub-

stituting 𝑤capon in the objective function, the spatial spectrum is given as follows:

Pl(𝜃) =
1(

aTx(𝜃)⊗ aRx(𝜃)
)HC−1

l

(
aTx(𝜃)⊗ aRx(𝜃)

) (1.33)

with l = 0, ...,L

However, estimation of noise covariance at each range bin l is difficult in prac-
tice; hence, Ĉl is estimated which contains the signal component as well and can
be estimated using sample matrix inversion technique Ĉl =

1
N

∑K
k=1 sIF

l (k)sIF
l (k)H,

where K denotes the number of snapshot used for signal plus noise covariance
estimation and sIF

l (k) is the de-ramped IF signal at range bin l with k being the
frame index.
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1.5.1.3 Video of Range-Doppler Images
The video of RDIs computed at frame time k can be expressed as follows:

vRDI(p, l, k) =
||||||

Nst∑
m=1

Nft∑
n=1

𝑤(m,n)s(m,n, k) exp
(
−j2𝜋

(
mp
Nst

+ nl
Nft

))|||||| (1.34)

where 𝑤(m,n) is the 2D weighting function along the fast-time and slow-time,
while s(m,n, k) is the ADC data on kth frame. The indices n,m sweep along the
fast-time and slow-time axis, respectively, while l, p sweep along the range and
Doppler axes, respectively. Nst and Nft are the FFT size along the slow-time and
fast-time, respectively.

1.5.2 Point-Cloud Maps

In comparison to images, the radar point-cloud representation enables a target
classification framework, as shown in Figure 1.7b. The processing of point-cloud
target classification follows a principle similar to image-based target classification
where first neighborhood selection of all points is done using a clustering tech-
nique. The most common techniques used are DBSCAN. Thereafter, hand-crafted
feature extraction and selection are performed, which is passed to linear or
nonlinear supervised classifier. The hand-crafted feature engineering is mainly
based on point-cloud distribution within the target cluster along each dimension.
This includes mean value, maximum–minimum value within the cluster, and
eigenvalues of the covariance matrix of x–y coordinates of clustered target points.
Additionally, concepts like mean-shift estimation for each point or entire cluster
also help to make point cloud features more robust. Additionally, with availability
of deep learning frameworks [9–11] to process point-clouds directly, enable
an end-to-end framework for feature engineering and classification. The most
common practices are as follows:

● Processing point-cloud maps directly by PointNet to generate a class score for
each point which can be clustered into one class.

● Processing point-cloud clusters separately instead of maps directly.
● Mapping point-clouds to a global coordinate grid map and using vision-based

detector network architectures like you-only look once (YOLO) [29], single shot
detector (SSD) [30], and region-based fully convolutional network (RFCN) [31].

● Combining PointNet features with a recurrent neural network (RNN) for tem-
poral smoothening.

Similar to images, target classification using radar point-clouds is very chal-
lenging due to inherent nature of data distribution. Although the point-cloud
maps contain information such as angle, range, velocity, RCS, orientation, and
dimension for each detected target point, the point distribution is very sparse in
nature. Further, the number of data points for weak targets such as pedestrian
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Figure 1.9 Illustration of a 3D radar point cloud where coordinate axis are x, y
positional coordinates and Doppler velocity; (a) and (b) show how data aggregation
changes the form and information content of a point cloud.

and cyclist are in the range of 0–10 within a single frame, depending on the
target’s viewing angle and distance to radar sensor. Further, this also creates a
data imbalance within the data distribution of targets despite of having the same
number of examples for each target of interest. Additionally, radar point-cloud
maps are very prone to viewpoint and temporal variations across consecutive
measurements of the same object even during a static scenario. As an alternative
to this problem, multiple frames are accumulated. These variations occur due to
the radar sensors statistical nature and due to the use of the classical radar pro-
cessing, which uses handcrafted features (e.g., detector thresholds) to detect and
localize radar detections. As an alternative to it, multiple frames are accumulated
to generate dense point-cloud maps. Figure 1.9 illustrates how the point cloud
changes due to aggregation of multiple point-clouds over time.

1.6 Target Recognition

After accurate target localization using detection and tracking along either of
two dimensions, i.e., range, Doppler, and angle, detected target is classified into
desired class. Similar to detection, multiple frameworks are proposed for target
classification using both images and point-clouds. The most common approach
for target classification using images is done by extracting hand-engineered
features from detected target characteristic along range-angle and range-Doppler
dimensions [32–34]. The most common characteristics are mean value of range,
Doppler, direction of arrival, and normalized reflected power for all detected
peaks from unique target cluster. Additionally, addition of variance and deviation
in range, radial Doppler, and object size in x,y-dimension in feature set increase
the richness of target features. Alternative to hand-crafted features, feature
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descriptors such as speed up robust features (SURFs) or scale-invariant feature
transform (SIFT) can be used over the detected target region for a fixed grid size.
Later, these feature set can be passed to a linear or nonlinear classifiers such as
decision tree, support vector machine (SVM), or K-nearest neighbor (KNN). Such
methods are very specific to sensor measurement and are prone to noise, and thus
often, struggle to generalize over different measurements for sensor at diverse
location or with different gain pattern. The alternate state-of-the-art approaches
involve deep learning algorithms. The notable deep learning architecture is
presented in the sequel.

1.6.1 Feedforward Network

Feedforward neural networks or multilayer perceptrons (MLPs) approximate
some function f that does the mapping y = f (x;𝑤) and learns the weights 𝑤 of
the network that results in the function approximation given a certain objective.
These models are called feedforward because information flows through the
function being evaluated from x, through the intermediate computations used to
define f , and finally to the output y. There are no feedback connections in which
outputs of the model are fed back into itself. Figure 1.10 presents a feedforward
network with one hidden layer.

1.6.2 Convolutional Neural Networks (CNN)

In deep learning literature, the most widely used networks are CNNs [35–37]
for tasks such as object detection, face recognition, image segmentation, or
super-resolution. In CNNs, the image classification is performed by incorporating
various layers namely convolution layers, pooling layers, and dense layers with
cross-entropy (CE) loss. The network sees an image as a multidimensional array of
pixels with the dimensions h ×𝑤 × c (h = height, 𝑤 = width, c = color channel).

Input layer ∊ R7 Hidden layer ∊ R4 Output layer ∊ R2

Figure 1.10 Example of a
feedforward neural network
with one hidden layer.
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As an example, an image of size 32 × 32 × 3 represents an RGB image (three-color
channels), while an image of size 32 × 32 × 1 represents a grayscale image.

The initial spatial feature extraction in a CNN is done by convolution layers.
In a convolution layer, a filter or a kernel (weight matrix) is sliding through the
entire image. The output of the convolution layer is defined as the dot product of
the sliding kernel and the underlying input image in each sliding step. One must
note that the filter must have the same number of channels as in the input image.

The output dimension of the convolution layers are calculated as follows:

𝑤out =
𝑤in − f𝑤 + 2p

s
+ 1

hout =
hin − fh + 2p

s
+ 1 (1.35)

where 𝑤in, hin are the width and the height of the input image, f𝑤 and fh are the
width and height of the filter or kernel, p, s are the padding and the stride factors
and are set ≥ 1. The weights of the filters are learned by the network through back
propagation. The components of the convolution layers are described as follows:

1. Strides: While applying convolution, shifts are made to move the filter across
the entire image. The stride defines the step size of the shift, e.g., if the stride
is one, then the filter is shifted by a single pixel, and if the stride is two, then it
is shifted by two pixels, and so on.

2. Padding: When a filter does not fit the input image properly, there are two
options:
● Zero-padding – Pad the image with zeros so that the filter fits perfectly.
● Valid-padding – Dropping the part of images that did not fit the filter

perfectly.
3. Activation Function: Some of the standard activation functions used in a CNN

are as follows:
● Sigmoid (Logistic Activation): This activation function is originally inspired

from the “real neuron.” The output of this activation function is between
[0,1]. Its major drawbacks are that a saturated neuron will not learn and the
activation is computationally expensive.

f (x) = 1
1 + exp (−x)

f ′(x) = f (x)(1 − f (x)) (1.36)

● Hyperbolic Tangent Activation: The output range of hyperbolic tangent
activation is between [−1,1] and is zero centered. Similarly like sigmoid
activation, this activation also does not train saturated neurons.

f (x) = tan h(x) =
1 − exp (−x)
1 + exp (−x)

f ′(x) = 1 − tan h2(x) (1.37)
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● Rectified Linear Unit (ReLu): In ReLu activation, there is no saturation if
x > 0 and is more computationally efficient and leads to faster convergence.
In such an activation, the output is always positive and the inactive neurons
are not optimized:

f (x) = max (0, x)

f ′(x) =
{

1 if x > 0
0 if x < 0

(1.38)

● Leaky Rectified Linear Unit and Parametric ReLu: These activation func-
tions are an improvement over the normal ReLu which overcomes the prob-
lem of dead neurons. In case of leaky Relu, 𝛼 is a small constant, such as
0.01. In case of parametric ReLu, 𝛼 is a hyperparameter learned through back
propagation.

f (x) =
{

x if x > 0
𝛼x if x < 0

f ′(x) =
{

1 if x > 0
𝛼 if x < 0

(1.39)

Figure 1.11 presents the commonly used activation functions described above
namely sigmoid function, hyperbolic function, rectified linear unit (ReLu), and
leaky rectified linear unit.

One of the other standard activation function typically used in the output
layer for classification problems is the softmax layer. Since the squared error is
not suitable for cases where classes are mutually exclusive, a better approach is
to assign probabilities to each class with the constraint that the outputs should
sum up to 1. The softmax function forces the output to represent a probability
distribution across the possible classes L. Its function and its derivatives are
given as follows:

pk =
exp
(

xk
)∑L

j=1 exp
(

xj
)

p′
k = f (xk)(1 − f (xk)) (1.40)

The cost function typically associated with the softmax layer is the negative log
likelihood of the correct prediction called CE or log loss cost function and is
defined as follows:

E(t, p) = −
L∑

k=1
tk log

(
exp
(

uk
)∑L

j=1 exp
(

uj
)) (1.41)

4. Pooling/Subsample Layers: Pooling layers or more specifically spatial pooling
layers perform subsampling or down sampling of the input image while retain-
ing the most relevant information. This process helps in the reduction of param-
eters when the images are too large.
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(c)

(a)

(d)
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1.0

0.0

0.0–2.5–5.0

0.0

0.5

1.0

–2.5–5.0

5.02.5

–1

0

1

0.0–2.5–5.0

5.02.5

–1

0

1

0.0–2.5–5.0

Figure 1.11 Illustration of various activation functions: (a) sigmoid function,
(b) hyperbolic function, (c) ReLu function, and (d) leaky ReLu.

Three majorly used pooling layers are as follows:
● Max pooling – Taking the largest element within the defined nonparametric

filter size.
● Average pooling – Taking the average of all the elements within the defined

nonparametric filter size.
● Sum pooling – Taking the sum of all the elements within the defined non-

parametric filter size.
5. Dense/Fully Connected Layers: At the end of the CNN, a single or multiple

dense layers are used to which the flattened (1D array) output of the previous
convolution and pooling layers is fed. In a CNN used for classification the last
activation function is typically a sigmoid or a softmax activation.

Figure 1.12 illustrates an example of a CNN architecture that includes convo-
lution layers, pooling layers, or subsample layers followed by dense or fully con-
nected layers at the later stage.

1.6.3 Recurrent Neural Network (RNN)

MLPs and CNNs cannot directly address the problem of information propagation
through time. Several applications such as gesture sensing and tracking require
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Input image Conv1

Convolution Convolution Flatten

Fully

connected

dense layer

Pooling/

sub-sampling

Pooling/

sub-sampling

Conv2Pool1 Pool2 Hidden output

Figure 1.12 Example of a CNN architecture.

the neural network to keep a history of the past events to make a decision.
RNN addresses this issue, by having self-loop structures, allowing information
to persist over time. Using these self-loops, RNNs are able to link previous
information to the current task and make a decision based on the previous
events. One of the biggest hindrance toward wide adoption of RNNs in 1990s
was the problem of vanishing gradient. Not only does the information flows
through time but also the error has to be backpropageted through time. To do
so, the self-loops are unfolded over time, which leads to a very deep network,
where the gradient has to propagate through many layers. However, if the
weights are less than one, further multiplication by gradient that is also less
than one would result in a very small number after a few multiplications.
Thus, the gradient flows over time through the RNNs would easily become
zero, which means no further propagation of information. As a result, the
RNNs were unable to retain information or learn information from quite
distant past.

RNNs can be described as follows: a RNN maps a given temporal input sequence
x(k) = (x1(k), x2(k), x3(k)) to a sequence of hidden values h(k) = (h1(k),… , hT(k))
and outputs a sequence of activations a(k + 1) = (a1(k + 1),… , aT(k + 1)) by iter-
ating the following recursive equation:

h(k) = 𝜎(Whxx(k) + h(k − 1)Whh + bh) (1.42)

where 𝜎 is the nonlinear activation function, bh is the hidden bias vector, Whx is
the input-hidden weight matrix and Whh is the hidden-hidden weight matrix.

The activation for these recurrent units is defined as follows:

a(k + 1) = h(k)Wha + ba (1.43)

where Wha denotes the hidden-activation weight matrix and ba denotes the acti-
vation bias vector.

RNNs have the problem of vanishing or exploding gradient, which is solved
through a long-short term memory (LSTM) [38] or a gated recurrent unit (GRU)
[39]. LSTMs extend RNNs with memory cells using the concept of gating: a mech-
anism based on componentwise multiplication of the input, which defines the
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behavior of each individual memory cell. The LSTM updates its cell state, accord-
ing to the activation of the gates. The input provided to an LSTM is fed into dif-
ferent gates that control which operation is performed on the cell memory: write
(input gate), read (output gate), or reset (forget gate). These gates act on the signals
they receive and block or pass information based on its strength and importance,
by virtue of their own learned filter weights. These weights are learned during
backpropagation, which means the weights of the cells decide when to allow data
to be entered, to be retained, or to be deleted.

The vectorial representation (vectors denoting all units in a layer) of the update
of an LSTM layer is as follows:⎧⎪⎪⎨⎪⎪⎩

i(k) = 𝜎i(Waia(k) + Whih(k − 1) + Wcic(k − 1) + bi)
f(k) = 𝜎f (Waf a(k) + Whf h(k − 1 + Wcf c(k − 1) + bf )
c(k) = f(k)c(k − 1) + i(k)𝜎c(Waca(k) + Whch(k − 1) + bc)
o(k) = 𝜎o(Waoa(k) + Whoh(k − 1) + Wcoc(k) + bo)
h(k) = o(k)𝜎h(c(k))

(1.44)

where i, f, o, and c are the input gate, forget gate, output gate, and cell activation
vectors, respectively, all of which are of the same size as vector h defining
the hidden value. Terms 𝜎 represent nonlinear activation functions. The term
{x(1), x(2), · · · , x(K)} is the input to the memory cell layer at time k. Wai, Whi,Wci,
Waf, Whf, Wcf, Wac, Whc, Wao, Who, and Wco are weight matrices, with subscripts
representing from-to relationships bi, bf , bc, and bo are bias vectors.

Figure 1.13 illustrates one unit of a LSTM block. Depending on the application,
there are different configurations how the RNN models can be used. RNNs are
not only able to map one input to one output but can also map one input to multi-
ple outputs, multiple inputs to one output or multiple inputs to multiple outputs.

c(k – 1)

h(k – 1) h(k)

c(k)

tanh

tanh

×

×σ

σσ

x(k)

+×

h(k)

Figure 1.13 Example of a LSTM cell.
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(a) (b) (c) (d)

Figure 1.14 Different types of RNN models: (a) one-to-one, (b) one-to-many,
(c) many-to-one, and (d) many-to-many.

These four configurations are illustrated in Figure 1.14. The many-to-one config-
uration is used in radar-gesture sensing and many-to-many configuration is used
in human activity classification.

1.6.4 Autoencoder and Variational Autoencoder

Autoencoders comprise an encoder neural network followed by a decoder neural
network with the aim of reconstructing the input data at the output. The design
of the autoencoder imposes a bottleneck in the network that encourages a
compressed representation of the original input. In general, autoencoders aim to
leverage the key structure in the data to compress the input into the network’s
bottleneck or latent space representation, which is enough to reconstruct the orig-
inal input data. It is thus used in dimension reduction and denoising applications
among others.

The model involves an encoder function g parameterized by 𝜃 and a decoder
function f parameterized by 𝜙. The bottleneck layer is given as follows:

z = g(x; 𝜃) (1.45)

where x is the input data and z the encoded latent vector. The reconstructed input
at the output of the decoder can be expressed as follows:

x̂ = f (g(x; 𝜃);𝜙) (1.46)

The autoencoder network is then iteratively optimized using the reconstruction
loss such as mean squared error (MSE):

L(𝜃, 𝜙) = 1
N

N∑
i=1
|xi − x̂i|2 (1.47)
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Compared to autoencoders that aim to project the input data onto a single latent
vector, variational autoencoders [40–42] instead aim to learn or encode the input
data onto a distribution in the latent space. Variational autoencoders can be viewed
as applying a regularization during training that prevents the network from over-
fitting. The input data x is encoded as a distribution over the latent space, i.e.,
p𝜃(z|x), then a point is sampled from that latent distribution z ∼ p𝜃(z|x), which is
then fed into the decoder to reconstruct the input data as x̂ = g𝜙(z). The reconstruc-
tion loss such as the mean-square error is used along with the Kullback–Leibler
(KL) divergence of p𝜃(z|x) to a Gaussian distribution with mean 0 and variance 1,
i.e.,  (0,1), to back propagate and learn the weights of the network.

In practice, the encoded distributions are chosen to be normal so that the
encoder can be trained to return the mean and the covariance matrix that
describes these Gaussians. The reason why an input is encoded as a distribution
with some variance instead of a single point is that it allows to express very nat-
urally the latent space regularization: the distributions returned by the encoder
are enforced to be close to a standard normal distribution such that the entire
feature space is close to a standard normal distribution. We can notice that the
KL divergence between two Gaussian distributions has a closed form that can
be directly expressed in terms of the means and the covariance matrices of the
two distributions. The loss function of a variational auto-encoder (VAE) can be
written as follows:

L(𝜃, 𝜙) = 1
N

N∑
i=1
|xi − x̂i|2 + KL

(
p𝜃(z|x), (0,1)

)
(1.48)

where N is the number of examples.
The KL divergence is the expectation of the log difference between the probabil-

ity of data sampled from the approximating distribution and the target distribution
and thus is defined as follows:

DKL(p||q) = N∑
i=1

p(xi) log
(p(xi)

q(xi)

)
(1.49)

The KL divergence has the following properties:

1. KL divergence is 0 when both distributions are approximately the same:

DKL(p||q) = 0 iff p ∼ q (1.50)

2. KL divergence is always positive for any two distributions:

DKL(p||q) > 0 if p ≠ q (1.51)

3. To ensure DKL(p||q) is finite, the support of p needs to be contained in q else if
by Eq. (1.49) q(x) → 0, then DKL(p||q) → ∞.
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4. The KL divergence is an asymmetric metric, i.e.,

DKL(p||q) ≠ DKL(q||p) (1.52)

which means that DKL(p||q) is not a distance metric

Conceptually, the VAE architecture of learning a distribution in the latent space
makes the space continuous, meaning two closely spaced points in the latent
space generate more similar content than two far spaced points, and complete,
meaning any point sampled from the latent space generates a meaningful output
at the decoder of the VAE. Since during backpropagation the gradient cannot flow
through a probabilistic layer, the sampling process of extracting z ∼ p(z|x) requires
a special technique, referred to as “reparameterization trick.” The reparamer-
ization trick suggests to randomly sample 𝜖 from a zero mean and unit variance
Gaussian, and then shift 𝜖 by the latent distribution’s mean 𝜇 and scale it by
the latent distribution’s variance 𝜎. Figure 1.15 presents the reparameterization
trick used to sample the random variable from the latent distribution making it
deterministic. The reparameterization trick allows to optimize the parameters of
the distribution while still maintaining the ability to randomly sample from that
distribution.

1.6.5 Generative Adversarial Network

Generative adversarial networks (GANs) introduced by Goodfellow in 2014
[43] are a breakthrough in the field of unsupervised learning using neural

Figure 1.15 Illustration of variational autoencoder architecture depicting: (a) original
form highlighting the issue during backpropagation, and (b) reparameterization trick.
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networks. The technique is one of the most promising unsupervised learning
approaches due to its capability of modeling high-dimensional distributions
and less computationally expensive training process when compared with
previous unsupervised learning methods such as VAEs, Boltzmann machines,
and others. The working principle of GANs is a two-player minmax game,
where two neural networks called the generator and discriminator are playing
against each other. The generator tries to fool the discriminator by generating
real-looking data, while the discriminator’s task is to classify real and fake data.
During training, the generator progressively becomes better at creating images
that look real, while the discriminator becomes better at telling them apart.
The minmax game has a global (and unique) optimum for pg = pr , where pg
is the generative distribution and pr is the real data distribution. The process
reaches equilibrium when the discriminator can no longer distinguish real from
fake images. Once trained, only the generator is used to generate new realistic
data similar to the real data distribution. Figure 1.16 illustrates the operating
principle of a generator and discriminator that are used in training a vanilla GAN
network.

During training, the discriminator classifies both real data and fake data from
the generator and penalizes the discriminator weights for misclassifying a real
instance as fake or a fake instance as real. Thus, incrementally getting better at
classifying real and fake data. The generator part of a GAN learns to create fake
data by incorporating feedback from the discriminator, in the sense that the gen-
erator loss penalizes the generator for failing to fool the discriminator. If the gen-
erator succeeds perfectly, then the discriminator has a 50% accuracy meaning it
is unable to tell real from fake data anymore. If the GAN continues training past
this point, then the generator starts to train on completely random feedback, and
its own quality may collapse.

Sample
Generator

G

Generator

loss

Discriminator

loss

Discriminator

D

Sample
Real data

x

z

Figure 1.16 Illustration of a vanilla GAN architecture outlining the principle of a
generator and a discriminator.
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1.6.5.1 Minmax Loss
In the case of minmax loss, the objective of the discriminator is to maximize the
expectation of the log likelihood of data drawn from the real distribution, i.e.,
maxD𝔼x∼ℙr

log(D(x)), while minimizing the expectation of the log likelihood of
data generated from the generator which samples from the random distribution
ℙz, i.e., minD𝔼z∼ℙz

log (D(G(z))) or equivalently maxD𝔼z∼ℙz
log (1 − D(G(z))). Thus,

the objective of the discriminator function is

max
D

𝔼x∼ℙr
log (D(x)) + max

D
𝔼z∼ℙz

log (1 − D(G(z))) (1.53)

On the other hand, the objective of the generator is to minG𝔼z∼ℙz
log (1 − D(G(z)))

such that the fake examples produced by the generator resemble the real data at
the output of the discriminator. Thus, combining the two aspects and competing
objective can be formulated as D and G are playing minmax game with the com-
bined loss function:

min
G

max
D

[𝔼x∼ℙr
log (D(x)) + 𝔼z∼ℙz

log (1 − D(G(z)))] (1.54)

This is fine since 𝔼x∼ℙr
log (D(x)) is independent of the generator optimization.

It can be shown that the generator is trying to minimize the Jensen–Shannon (JS)
divergence between ℙr and ℙg. The JS divergence is bounded between 0 and 1 and
is defined as follows:

DJS(p||q) = 1
2

DKL

(
p||p + q

2

)
+ 1

2
DKL

(
q||p + q

2

)
(1.55)

It is worth noting that unlike the KL divergence used in VAEs, the JS divergence
is symmetric and in case of two distributions being disjoint would result in a max-
imum value of log(2), irrespective of the two distributions. In comparison, the KL
divergence would be ∞ in such a scenario. From Eq. (1.55), it is easy to see that the
minimum value of DJS(p||q) is obtained when p ∼ q. Consequently, the generator
is trying to achieve ℙg ∼ ℙr , which means that the generator generates data that
resemble the real data. The discriminator maximizes the loss by trying to approach
D(x) to 1 and D(G(z)) to 0, thus attaining the optimal value of D∗(x) = 1

2
, which is

the Nash equilibrium.
The minmax loss for GAN suffers from vanishing gradients and mode collapse.

If the discriminator is too good, then the generator training can fail due to vanish-
ing gradients. Furthermore, the generator in a random input GAN is expected to
generate a variety of outputs. However, if a generator produces an especially plau-
sible output, the generator may learn to produce only that output. If the generator
starts producing the same output over several iterations, then the discriminator’s
best strategy is to reject that output always. But if the next iteration of discrimi-
nator gets stuck in a local minimum and does not find the best strategy, then it is
too easy for the next generator iteration to find the most plausible output for the
current discriminator. As a result, the generator gets trapped in a local minimum
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and generates limited set of outputs, and this phenomenon is referred as mode
collapse.

1.6.5.2 Wasserstein Loss
In the Wasserstein generative adversarial networks (WGANs), the discrimina-
tor does not classify input data as real or fake, but rather outputs a number.
Discriminator training just tries to make the output bigger for real instances than
for fake instances. Therefore, the discriminator in a WGAN is usually referred to
as a critic rather than a discriminator. The discriminator tries to maximize the
critic loss D(x) − D(G(z)), where D(x) is the critic’s output for a real instance, G(z)
is the generator’s output for given z. D(G(z)) is the critic’s output for fake data.
Thus, it tries to maximize the difference between its output on real data and its
output on fake data. The generator tries to maximize the generator loss D(G(z)).
Thus, it tries to maximize the discriminator’s output for its fake data. WGANs
are less vulnerable to suffering model collapse and can avoid vanishing gradients
issues.

1.6.6 Transformer

Transformer has been one of the most popular deep learning architectures
recently due to its usability in a wide range of applications from natural language
processing tasks to visual tasks and its state-of-the-art results in multiple public
datasets. However, it is important to note that transformers come with high
computational and memory requirements that might not be ideal for embedded
solutions. Some works like Attention Is All You Need [44] focus on tackling
the mentioned bottlenecks while mimicking the functions of a transformer.
In the following paragraph, we provide an explanation of different blocks in a
transformer which might ease readers to understand related works.

In [44] is introduced the idea of a transformer which is made of six encoders, six
decoders, and uses machine translation as an application. A machine translation
task takes a sentence or a phrase (sequence of words) as input and outputs
the phrase translated into the target language. Each encoder is identical in
architecture while having their own set of learnable weights and consists of a
self-attention and a feedforward layer. The self-attention layer can be regarded as
a context-aware encoding mechanism where it uses information from other words
to encode it better. In a technical implementation perspective, the self-attention
mechanism involves for each word three vectors namely Attention Is All You
Need [44] query (Q), key (K), and value (V) which are generated by three different
fully connected layers having output dimension smaller than that of the input
embedding vector. In order to compute a score for each word against all other
words in the phrase, a dot product is taken between the query vector of the word
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and key vector of all the words in the phrase. The score is further divided by
the square root of the dimension of the key vector dK to stabilize the training
by normalizing the gradients. Next, all the scores are passed through a softmax
function to generate a normalized distribution. Finally, as shown in Eq. (1.56), the
softmax output is multiplied with the value vector matrix to generate the output
Z of the self-attention layer for the given position. This output is then simply fed
to the following fully connected layer:

Z = softmax

(
Q × KT√

dK

)
V (1.56)

Transformers also introduce the idea of multihead attention that involves
having multiple self-attention layers initialized randomly in order to have differ-
ent encodings to cover multiple subspaces. The multihead attention generates
multiple outputs Z which are concatenated together and multiplied with a jointly
trained weight vector W that projects them into a single vector which is fed to the
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Figure 1.17 Transformer network architecture. Source: adapted from [44].
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fully connected layer. In order to capture the order of words in a given sequence,
a positional encoding is generated where each element in the encoding represent
a sinusoid. This is then added to the word-embedding vector which results in
the input vector to the encoder. Additionally, each encoder consists of a residual
connection with a normalization layer. In the decoder, the incoming key and
value vectors coming from the top encoder act as input which is used by the
encoder–decoder attention layer. After each time step, the output of the decoder
is fed back to the decoder along with a positional encoding which becomes the
input for the self-attention layer in the decoder. The decoder self-attention layer
is prevented from attending positions in future by masking all remaining places
which are yet to be predicted to −∞ and only the predicted output sequence
goes as input to the self-attention layer in the decoder. The final layer of the
decoder consists of a logit layer which has the dimension of all the possible words,
and softmax is applied on it to select the one with highest probability as the
predicted word.

The overall architecture of a transformer is depicted in Figure 1.17.

1.7 Training a Neural Network

For training a neural network, there are two steps namely forward pass and error
backpropagation.

1.7.1 Forward Pass and Backpropagation

In the forward pass, the input is fed to the model and multiplied with weight
vectors, and bias is added for each layer to compute the output of the model. The
input xl

i , activation ul
j, and output ol

j at lth layer of dense or fully connected layer
is represented as follows:

x(l)i = oj(l − 1)

u(l)
j =

N∑
i=1

𝑤(l)
ij x(l)i

o(l)j = 𝜎(u(l)
j ) (1.57)

where N denotes the number of neurons at the lth layer, 𝑤l
ij are the weights that

need to be learned for a task at the lth layer and 𝜎() is the activation function.
The backpropagation is described below. Considering one sample for which

inputs (x1, x2,… , xn) and expected outputs (t1, t2,… tk,… , tm) and real outputs
(y1, y2,… yk,… , ym), the error for one sample is therefore E = 1

2

∑m
k=1 (yk − tk)2,
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where yk is a function of the weights 𝑤(l)
ij . The weights are updated to mini-

mize the error using the gradient descent algorithm and can be expressed as
follows:

𝑤(l)
ij ← 𝑤(l)

ij − λ 𝜕E
𝜕𝑤(l)

ij

(1.58)

In Eq. (1.58), 𝜕E
𝜕𝑤(l)

ij
can be computed as follows:

𝜕E
𝜕𝑤(l)

ij

= 1
2
∑

k

𝜕E
𝜕yk

𝜕yk

𝜕𝑤(l)
ij

(1.59)

where 𝜕E
𝜕yk

= (yk − tk).

Since yk is a function of u(l)
j , it can be derived that

𝜕yk

𝜕𝑤(l)
ij

=
𝜕yk

𝜕u(l)
j

𝜕u(l)
j

𝜕𝑤(l)
ij

(1.60)

𝜕u(l)
j

𝜕𝑤(l)
ij

= o(l−1)
i (1.61)

which is computed during the feed forward step.
Thus, putting it all together gives us

𝜕E
𝜕𝑤(l)

ij

= (yj − tj)
𝜕yk

𝜕u(l)
j

o(l−1)
i = 𝜕E

𝜕u(l)
j

o(l−1)
i (1.62)

Some of the important aspects during training of a neural network are the
following:

1. Learning Rate: Each weight update is controlled by parameter λ known as the
learning rate parameter. If the learning rate is too small, then it may result in
very slow learning, can get trapped in local minima easily, and can keep running
for many iterations. On the other hand, if the learning rate is large, then it may
step over the minima, can fail to converge, and potentially diverge. So it is really
important to choose a good learning rate based on the architecture, dataset,
transfer function, etc. Figure 1.18 illustrates the effects of choosing small and
large learning rates on the gradient descent.

2. Weight Initialization: It is important to randomize the weights during initializa-
tion; otherwise, symmetry in weights would prevent the network from learning.
Usually, small random values are used which is highly important when the
number of neurons in a layer grows, as the weighted sum may saturate the
optimization function.

3. Overfitting and Underfitting: In machine learning, the objective is not only to
minimize cost function on in-sample data, i.e., data available or seen, but also
generalize on out-sample data, i.e., data not available or unseen during training.
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E(w)

(a) (b)

E(w)

ww

Figure 1.18 Illustration of the gradient descent when (a) the learning rate is small, and
(b) the learning rate is large.

During training, the available dataset is divided into a training set, a validation
set, and a test set. The training dataset is used to train the model, the validation
dataset is used to set the hyperparameters of the model, and the test dataset is
used for estimating the out-sample or generalization accuracy.

When the performance is poor on the training data, then it can be regarded
as underfitting and is often due to poor choice of learning rate or if the neural
network is under-dimensional. This error is referred to as “bias.” The issue of
underfitting is illustrated in the left column of Figure 1.19. The issue of overfit-
ting arises when the performance is good on the training data, i.e., good approx-
imation accuracy, but poor on the test or validation data, i.e., poor generaliza-
tion accuracy. This phenomenon is also referred as “variance” and is illustrated
in the right column of Figure 1.19. If the training set size is insufficient or the
model complexity is too high for the data, the model memorizes or approxi-
mates the training data well but does not generalize well on test data, i.e., it

Underfitting

Regression

Classification

Optimal fitting Overfitting

Figure 1.19 Illustration of underfitting and overfitting of a model.
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overfits. The purpose of training a machine-learning model is to find a model
as shown in the middle column of Figure 1.19, where the training error (bias)
as well as the generalization error (variance) is minimized. Typically, training
finds a model such that a balance between bias and variance can be achieved
and often is referred as “bias-variance” trade-off. In case of deep learning, the
“bias-variance” trade-off is not applicable since there are separate mechanisms
to reduce bias and variance, thus the trade-off is not readily applicable.

4. Curse of Dimensionality: The other critical aspect in machine learning in gen-
eral is the curse of dimensionality. Curse of dimensionality is closely related to
overfitting. In high-dimensional spaces, most of the training data resides in the
corners of the hypercube defining the feature space. Instances in the corners of
the feature space are much more difficult to classify than instances around the
centroid of the hyperactive sphere. Thus, as the number of features or dimen-
sions grows, the amount of data we need to generalize accurately also grows
exponentially.

1.7.2 Optimizers

Optimizers are methods that help to change weights and bias of the model such
that a loss function is minimized. There are several modifications that have
been proposed to the standard stochastic gradient descent (SGD) algorithm
that 𝑤t+1 = 𝑤t − λ𝜕𝑤E(𝑤), where E(𝑤), 𝜕E(𝑤) denotes the loss function and its
derivative, respectively. 𝑤t+1 and 𝑤t represents the weights after and before the
update step and λ represents the learning rate. Following are list of optimizers
that have been proposed in the that improves the standard SGD:

1. Momentum: It accelerates the SGD toward the relevant direction while reduc-
ing the oscillations. It basically adds a part of the previous weight updates to
the current update vector ensuring that the direction of the previous update is
retained to some extent while the current update gradient is used to fine-tune
the final update direction. Momentum introduces another variable 𝑣t and can
be expressed as follows:

𝑣t = 𝛾𝑣t−1 + λ𝜕𝑤E(𝑤)

𝑤t+1 = 𝑤t − 𝑣t (1.63)

2. Nesterov Accelerated Gradient [45]: While momentum helps to reduce noise
and also accelerates the convergence, it also introduces error. This is resolved in
Nesterov accelerated gradient by including part of the previous weight updates
to the current update vector to perform the weight update that is expressed as
follows:

𝑣t = 𝛾𝑣t−1 + λ𝜕𝑤E(𝑤 − 𝛾𝑣t−1)

𝑤t+1 = 𝑤t − 𝑣t (1.64)

A typical value of 𝛾 = 0.9.
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3. Adagrad [46]: The motivation of Adagrad is to have an adaptive learning rate
for each parameter; however, earlier approaches have fixed learning rate. Ada-
grad ensures that different neurons of the hidden layer dependent on iterations
have different learning rates. The intuition behind it is that large updates should
occur for infrequent parameters and smaller for frequent parameters.

For each weight updates, the learning rate is adapted as follows:

𝑤t+1ti = 𝑤i
t −

λ√
Gi

t + 𝜖

𝜕𝑤E(𝑤i
t)

Gi
t =

t∑
tt=0

(
𝜕𝑤E(𝑤i

tt)
)2 (1.65)

since the sum of squared gradients grows continuously, it would lead to a
smaller learning rates adaptively. The parameter 𝜖 helps in avoiding divide by
zero issues.

4. RMSprop [47]: An issue of Adagrad is that after several iterations in DNNs, the
learning rate becomes very small leading to the issue of dead neuron problems
and results in no updates for these neurons. This issue is fixed by RMSprop,
where learning can continue even after many parameter updates. In RMSprop,
the learning rate is an exponential average of the gradients instead of the cumu-
lative sum of squared gradients as in Adagrad. A moving average of a squared
gradient for each weight is computed by limiting the gradient accumulation to
a certain past and can be expressed as follows:

𝑤i
t+1 = 𝑤i

t −
λ√

Gi
t + 𝜖

𝜕𝑤E(𝑤i
t)

Gi
t = 𝛾Gi

t−1 + (1 − 𝛾)
(
𝜕𝑤E(𝑤i

t)
)2 (1.66)

5. Adadelta [48]: Adadelta is another improvement over the Adagrad to continue
learning after many parameter updates. But Adadelta is computationally
expensive. Here the gradient accumulation is limited to a certain past update
by computing a moving average of both the squared gradient and parameter
updates for each weight parameter as follows:

𝑤i
t+1 = 𝑤i

t − λt𝜕𝑤E(𝑤i
t) = 𝑤i

t + 𝑣i
t

Gi
t+1 = 𝛾Gi

t + (1 − 𝛾)
(
𝜕𝑤E(𝑤i

t−1)
)2

Δ𝑤i
t+1 = 𝛾Δ𝑤i

t + (1 − 𝛾)
(
𝑣i

t−1
)2

λt =

√
Δ𝑤i

t + 𝜖√
Gi

t + 𝜖

(1.67)

6. Adaptive Moment Estimation (ADAM) [49]: Adam optimizer is one of the most
popular and widely used one today. It stores both the decaying average of the
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past gradients similar to momentum and also the decaying average of the past
squared gradients, similar to RMSprop and Adadelta. ADAM can be expressed
as in the following equation, where momentum is added to RMSprop by using
first and second moments, i.e., mean mi

t+1 and variance 𝑣i
t+1 of the gradient:

mi
t+1 = 𝛽1mi

t + (1 − 𝛽1)𝜕𝑤E(𝑤i
t)

𝑣i
t+1 = 𝛽2𝑣

i
t + (1 − 𝛽2)

(
𝜕𝑤E(𝑤i

t)
)2

𝑤i
t = 𝑤i

t−1 −
λ√
𝑣i

t + 𝜖

mi
t (1.68)

where 𝛽1 and 𝛽2 are the forgetting factor in the moving average implementation
of the mean and variance of the gradient. Adam is easy to implement and com-
putationally efficient and requires less memory owing to the moving average
implementation.

1.7.3 Loss Functions

A neural network is formulated as an optimization problem. The candidate
solution, which means the weights of the network, should minimize or maximize
the score of the given objective function.

In the case of a regression problem, the objective is to predict a real-value quan-
tity. In this case, linear activation unit is used at the output layer, and MSE is used
as the loss function. The mean-square loss for regression is given as follows:

MSE(y, ŷ) = |y − ŷ|2 (1.69)

where y and ŷ are the true value and predicted value of the neural network,
respectively.

For modeling a classification problem, the idea is to map the input variable to a
class label implying that the objective is to predict the probability of an example for
belonging to a particular class. Under maximum likelihood estimation, the train-
ing of the network is seeking to find a set of model weights that minimizes the
difference between the model’s predicted probability distribution given the dataset
and the distribution of probabilities in the training dataset. This is called the CE
loss, and in the case of binary classification is configured as a sigmoid activation
at the output, while for multiclass classification, the softmax activation is used at
the output. In both cases, the problem is formulated as predicting the maximum
likelihood for a given input belonging to a particular class.

The binary CE loss for binary classification is given as follows:

CE(p, ŷ) = −ŷ log(p) − (1 − ŷ) log(1 − p) (1.70)

where p is the probability of class 1, 1 − p is the probability of class 0, and ŷ is the
predicted probability from the neural network.
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1.8 Questions to the Reader

● Explain the processing pipeline of 2D angle-Doppler image-based detection.
Explain a use-case where 2D image-Doppler image is preferred over range-
Doppler or range-angle images.

● What are the adaptation in processing pipeline for sensing extended targets com-
pared to point target processing?

● What are the advantages of OS-CFAR detector over CA-CFAR detector for
extended targets? What is the need for guard cells in CA-CFAR? And why are
they not absolutely necessary for OS-CFAR?

● What are the advantages and disadvantages of DBSCAN and Euclidean
clustering?

● What does Cramer–Rao bound for estimating a radar parameter indicate? Derive
the Cramer–Rao bound for angle estimation.

● What is the purpose of introducing nonlinearities in neural networks? How is it
achieved in convolutional neural network or LSTM?

● Why is initializing all the weights of a neural network with the same value
(e.g., 0.1) not a good idea?

● How does 2D CNN ensure invariance toward spatial translation? How can you
extend 2D CNN to 3D CNN and which application can you think of?

● Explain the different configuration LSTM that can be used in a radar task,
e.g., people counting or gesture sensing.

● Explain the reparameterization trick in VAE. Explain the advantage of GAN loss
over VAE loss.

● What is mode collapse in GAN? How to identify a stable GAN training?
● What are the improvements proposed by Wasserstein GAN? How is the

Lipschutz continuity implemented in practical Wasserstein GAN.
● What is bias–variance trade-off? What are the means of dealing with bias and

variance in a neural network?
● What is global receptive field in deep CNN (DCNN)?
● What is the issue of Adagrad optimizer that RMSprop solves? What is the prob-

lem of dead neurons?
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2

Deep Metric Learning

After reading this chapter, you should be able to

● Understand the basic concept of deep metric learning.
● Have an overview of the state-of-the-art deep metric learning techniques.
● Understand how deep metric learning helps to improve real-world radar

applications.

There are several radar applications that aim to classify between a set of pre-
defined classes such as different human activities or hand gestures. However, in
real-world environments, more than the predefined classes exist, which turns the
problem into an open-set classification task. An open-set classification means that
the network should be able to detect if an input belongs to one of the predefined
or known classes or not. For radar-based hand gesture recognition, this might be a
random body movement or a hand movement not intended to be a gesture such as
scratching the nose or reaching for a glass of water. Conventional deep-learning
classifiers use a fully connected layer with softmax activation as final layer and
train the network using the cross-entropy loss. The softmax activation maps the
class scores to a probability distribution over the known classes. Consequently, the
probabilities of the known classes sum up to one. A probability for being none of
the predefined classes is not considered, which shows the closed-set assumption of
softmax. This results in a good classification accuracy on the set of known classes
but performs very poorly in detecting an unknown motion input.

An approach to tackle this issue is to introduce a garbage class. This requires
training samples of motions that should not be classified as one of the known
classes. However, it is almost infeasible or at least connected with a very large effort
to record a garbage data set that represents all possible motions that might appear
in real-world environments. It is much more desirable to train the network only
with the known classes in a way that it is additionally able to detect when an input
is not within the set of known classes. To achieve this, the network has to learn

Methods and Techniques in Deep Learning: Advancements in mmWave Radar Solutions, First Edition.
Avik Santra, Souvik Hazra, Lorenzo Servadei, Thomas Stadelmayer, Michael Stephan, and Anand Dubey.
© 2023 The Institute of Electrical and Electronics Engineers, Inc. Published 2023 by John Wiley & Sons, Inc.
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very class-specific and discriminative class features. One well-known approach
to achieve this is metric learning. Deep metric learning aims to learn a relation or
similarity between the training samples. Similar samples, which are samples of the
same class, are pulled together, whereas dissimilar samples, which are samples of
two different classes, are pushed apart. By this learning concept, the features are
clustered per class in the feature space. After training the class clusters are com-
pact and far apart. Therefore, it arises as a gap between the class clusters. If an
input sample is projected into this gap, it can be detected as an outlier and thus as
an unknown input class.

The remaining chapter is structured as follows: first an introduction to metric
learning is given, and then a general understanding and overview of the most
important metric learning techniques is provided. The taxonomy as proposed
in Figure 2.1 is used throughout this chapter. We divide the metric learning
approaches into three main categories, which are the pairwise methods, the proxy
methods, and the end-to-end methods. Pairwise methods learn a metric based
on similarities between different training samples and require postprocessing for
final classification. In the proxy methods, the metric is learned by evaluating the
similarity between a training sample and the corresponding class-representative
proxy vector, and in the end-to-end methods, the learning of the metric is inte-
grated into the neural network and the classification results are output directly.
Each of the three main approaches can work with different concepts, that are

Deep metric learning

Absolute class scores

Relative class scores
(Softmax normalization)

Distance metric

Similarity score

End-to-endPairwise

Random training

Structured training

Intra- and inter-class
optimization

Margin-based optimization

Proxy

Figure 2.1 Taxonomy of the deep metric learning approaches.
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depicted in Figure 2.1, such as using a margin-based optimization or an intra- and
interclass optimization. The used terms in Figure 2.1 are introduced and explained
throughout the chapter. At the end of the chapter, a radar-based gesture sensing
application and the positive impact of metric learning is presented.

2.1 Introduction

The aim of metric learning is to learn a relation or similarity between samples
in a data set. A very common metric to learn is the Mahalanobis distance,
because it has, unlike many other metrics such as the Euclidean distance, tunable
parameters. The Mahalanobis distance is defined as follows:

dM(x1, x2) =
√
(x1 − x2)TM(x1 − x2) (2.1)

where M is a positive definite matrix. The entries of the matrix M can be optimized
according to a specific objective. Since M is symmetric and positive definite, it can
be split up into M = LTL, and the Mahalanobis distance reformulated as follows:

dM(x1, x2) =
√

(x1 − x2)TM(x1 − x2)

=
√

(x1 − x2)TLTL(x1 − x2)

=
√

(Lx1 − Lx2)T(Lx1 − Lx2)

= ||Lx1 − Lx2||2
(2.2)

which means that it is equal to the Euclidean distance of the linearly transformed
input vectors x1 and x2. For deep metric learning, this linear transformation is
replaced by a nonlinear mapping f (x) performed by the neural network as stated
in Eq. (2.3). Thus, for deep metric learning, the goal is to tune the parameter of the
entire neural network in a way that a simple distance metric such as the Euclidean
distance describes the similarity of the data well.

ddeep(x1, x2) = ||f (x1) − f (x2)||2 (2.3)

In this book, we are focusing on supervised deep metric learning for classification
tasks. Hence, the similarity gets discrete. Similar samples are samples of the same
class, and dissimilar samples are ones of different classes. Thus, the objective in
the discrete world of a supervised classification problem is that the distance of
samples to their true class center should be significantly smaller than to other class
centers. Ideally, there should be a margin between the classes. In a wide sense, any
approach whose loss function is given by constraints on distances or similarities
can be considered as metric learning [1].
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2.2 Pairwise Methods

The pairwise metric learning approaches are learning similarities between the
samples itself. Therefore, the respective loss functions always take two or more
samples into account (Figure 2.2).

2.2.1 Contrastive Loss

One of the first deep metric learning approaches was presented in 2005 by Chopra
et al. [2]. The loss is calculated on a pair of samples. The samples within a pair
are either from the same class or from different classes. If the samples are from
the same class, then the objective is to minimize the distance between both fea-
ture vectors; however, if the samples are from different classes, the objective is to
maximize the distance between their respective feature vectors. The contrastive
loss function is defined as follows:

Lcont(xi, xj) =
{||f (xi) − f (xj)||22, if yi = yj

max (0,m − ||f (xi) − f (xj)||22), otherwise
(2.4)

where m is a hyperparameter introducing a minimal required margin between two
dissimilar samples.

Margin 1

(a) (b)

(c) (d)

Margin

Margin 2

Figure 2.2 Overview of metric learning losses between samples. (a) Contrastive loss,
(b) triplet loss, (c) quadruplet loss, and (d) N-pair loss.
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2.2.2 Triplet Loss

The triplet loss is very related to the aforementioned contrastive loss. The idea
of triplet learning was first published by Schroff et al. in 2015 [3]. The objective
remains the same. Minimize the distance between samples of the same class and
push away samples of other classes more than a certain threshold. The difference
is that the loss function is evaluated on a triplet instead of a pair of samples. The
triplet is composed of an anchor, a positive, and a negative sample. The anchor is
the actual training sample, the positive one is another sample of the same class,
and the negative one is a sample from any other class. The loss function is defined
as follows:

Ltriplet(xa, xp, xn) = max (||f (xa) − f (xp)||22 + m − ||f (xa) − f (xn)||22) (2.5)

where m is the margin that is at least required between the anchor and negative
samples. The triplet learning approach is highly dependent on the choice of good
positive and negative examples.

2.2.3 Quadruplet Loss

The quadruple loss [4] extends the triplet loss by another negative sample.
The additional negative sample is not only from another class as the anchor but
also from another class as the negative sample. The quadruplet loss uses the
distance between anchor and positive d(xa, xp), anchor and negative d(xa, xn), and
negative and negative d(xn, xm). The first part of the quadruplet loss is exactly
the same as the triplet loss using d(xa, xp) and d(xa, xn). However, the idea of the
quadruplet loss is to add an auxiliary task, which is that the distance between
the two negative samples has to be also larger than the distance between anchor
and positive. The distance between anchor and positive d(xa, xp) represent an
intraclass distance, whereas the distance between negative pairs, either d(xa, xn)
or d(xa, xm), represent an interclass distance. By the additional loss term, it is
not only ensured that the intraclass distance between the positive pair is smaller
than the distance to a negative sample, but also that the intraclass distance is
smaller than the interclass distance between any arbitrary pair of classes. The loss
objective is formulated as follows:

Lquad(xa, xp, xn, xm) = max (||f (xa) − f (xp)||22 + m1 − ||f (xa) − f (xn)||22)
+ max (||f (xa) − f (xp)||22 + m2 − ||f (xn) − f (xm)||22)

(2.6)

where m1 and m1 are two independent margin parameters. The authors of [4]
point out that the right order of the samples is still obtained by the triplet part in
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the loss function. The additional term is an auxiliary task that can help to further
increase the interclass distances and increase the performance on the test data.
Therefore, the auxiliary loss term should not have the same impact on the train-
ing as the triplet loss part. Thus, the authors propose to choose margins so that
m2⟨m1.

2.2.4 N-Pair Loss

The N-pair loss [5] goes even one step further than the quadruplet loss and takes
multiple negative pairs into account. The reasoning behind this is that in the triplet
loss, where only one positive and one negative pair is used, the single negative
pair insufficiently represents all negative classes. In other words, there is only one
intraclass distance, that is represented in each triplet, but many possible interclass
distances, since there are many different classes, where only one out of many pos-
sibilities is represented. If by chance the randomly selected interclass distance is
large, then the triplet loss is satisfied, although there might be many examples from
other negative classes that are much too close. The hope of triplet loss is that over a
large number of triplets, all classes are finally represented. However, this requires
a very large number of triplets and still the imbalance of intraclass distance com-
pared to each time a different interclass distance consists. The loss objective of the
N-pair loss is given as follows:

LN−pair(xa, xp, x1, x2, ..., xN−1) = log

(
1 +

N−1∑
i=1

exp(xT
a xi − xT

a xp)

)

= − log

(
exp(xaxp)

exp(xaxp) +
∑N−1

i=1 exp(xT
a xi)

) (2.7)

Please note that this is the softmax loss for multiclass classification that is intro-
duced in Section 2.3 in Eq. (2.13).

2.2.5 Summary

Additionally to the presented basic pairwise metric learning methods, there exist
many extensions and variations in literature such as the magnet loss [6], the struc-
tured loss [7], the clustering loss [8], the mixed loss [9], or the multisimilarity loss
[10] to name some of them. A detailed overview of these methods can be found in
[11]. The pairwise methods show very good results and have attracted a lot of atten-
tion. However, they also encounter some problems. A single pair or triplet repre-
sents the data very poorly, which is why over time, it was proposed to take more
and more samples into account. The first approach was working on pairs, then
Schroff et al. introduced the triplets, after that quadruplets where proposed, and
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finally, the N-pair loss proposes to take even N samples into account. With more
samples, the data are better represented; however, it opens another problem. The
combinatorial possibilities are exploding by increasing number of samples. Addi-
tionally, many combinations are poor training pairs or triplets. This is why even
strategies for triplet generation and finding hard negative triplets were proposed.

Furthermore, the pairwise approaches do not learn a classification per se, but a
similarity within the data. Of course, the definition of similarity is predefined as
a supervised information. If we define similarity with respect to a classification
task, then the similarity gets discrete according to the classes. Samples belonging
to the same class are similar, and samples from different classes are dissimilar.
There is nothing in between. Due to this discrete similarity, the network learns
to project the embedded features to well separated and compact class clusters.
However, no class scores are predicted by the network, and therefore, a postpro-
cessing is required. The network was trained in a way that the Euclidean distance
represents well the similarity of the data samples. Therefore, a very common
method to extend the trained network to a classifier is the K-nearest neighbor
(K-NN) classifier. It assigns the test sample to the dominant class within its
K-nearest neighbors.

Please note that we are in this book discussing the pairwise metric learning
approaches from a classification perspective. However, we would like to point out
that there are also different applications where these methods show great results
such as image-retrieval tasks [12–14].

2.3 End-to-End Learning

The pairwise methods learn a similarity between the samples. Since for the classi-
fication use case the similarity is defined by the discrete class labels, the samples
are implicitly grouped in the embedding space by classes. However, the network
does not output class probabilities as it is the case for conventional deep learning
classifiers using a softmax layer; therefore, an additional clustering algorithm such
as K-NN is needed to do the class assignment.

As already mentioned conventional deep neural network classifiers use a
softmax activation as an output layer. The network is then trained based on the
cross-entropy between the output vector of the neural network and an one-hot
encoded label vector. This approach provides directly class scores and simplifies
the class assignment. However, the problem is that the closed-set assumption of
the softmax maps the class scores to a probability distribution of only the known
classes, and no unknown class is considered. To solve this issue, a thresholding
can be applied on the class scores. If there is no class with a probability higher than
a certain threshold, then the input is rejected. However, also unknown samples
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are often assigned to one of the known classes with a very high probability, which
leads to bad rejection accuracy using simple thresholding [15]. Another naive
approach to solve this problem is to introduce a garbage class and record a training
data set including alien motions to better reflect the real world. However, there
are infinite different motions and disturbances that can show up in real-world
scenarios so that it is practically infeasible to record a realistic training data set.

The approaches presented in this section try to combine deep metric learning
and the end-to-end classifiers to have on the one hand the advantages of metric
learning and on the other hand to directly get the class scores from the network
without any postprocessing. There exist several end-to-end learning approaches
that follow the aforementioned idea. Most of the ideas were developed for face
verification task. For face verification, the objective is very similar to an open-set
classification. Imagine a verification system at the entrance of an office. Then the
employees are the set of known classes and an intruder is a sample of an unknown
class, which has to be identified as such. As you notice, it is infeasible to train
the network with faces of all existing people; therefore, one promising option is
to use metric learning. In the following text, several end-to-end metric learning
approaches based on the cosine similarity followed by several approaches based
on the Euclidean distance are presented.

2.3.1 Cosine Similarity

The cosine similarity is the natural metric in a conventional classification network
where the last layer is a fully connected layer with softmax activation. The softmax
activation is a normalized exponential function that normalizes its input to a
probability distribution. The output of the fully connected layer is defined as
follows:

xout = Wxin + b (2.8)

where xin ∈ is the input vector, b is the bias vector, and W is the weight matrix.
The score of class i is defined as follows:

xi = wixin + bi

xi = ||wi||||xin|| cos(𝜃i) + bi
(2.9)

where wi is the ith column vector of the weight matrix W and the decision bound-
ary between two classes is defined as follows:||wi||||xin|| cos(𝜃i) + bi = ||Wj||||xin|| cos(𝜃j) + bj (2.10)

In [16], the normalization of the classifier layer was proposed. The biases are
removed, and the weight vectors are L2 normalized, so that the embedded features
lie on a hypershpere. By doing this normalization, the class score is directly given
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as the cosine similarity between input vector x and the respective class weight
vector. The decision boundary therefore reduces to||xin|| cos(𝜃i) = ||xin|| cos(𝜃j)

cos(𝜃i) = cos(𝜃j)
(2.11)

which is the cosine similarity between the embedded feature vector x and the
weight vector of the respective class. In [16], the superior classification perfor-
mance compared to the conventional softmax is demonstrated. Thus, all of the
presented metric learning approaches in this section are based on the normal-
ized softmax. It does not only improve the classification accuracy but additionally
makes the classification more interpretable since the classification score is directly
given by the angle. The softmax activation is given by

fsoftmax =
exp(zi)∑|Y |

j=0 exp(zj)
(2.12)

and the resulting default softmax cross entropy loss is given by

Lsoftmax = − log
⎛⎜⎜⎝

exp(cos(𝜃i))∑|Y |
j=0 exp(cos(𝜃j))

⎞⎟⎟⎠ (2.13)

where zi is the class score, which in this case is the cosine similarity.

2.3.1.1 Multiplicative Margin – SphereFace
The first paper that aims to add a margin to the softmax classification in order to
make the class features more discriminative was published in 2017 [17]. A margin
was introduced in a multiplicative way. The angle to the true class has to be m
times smaller than to all the other negative classes. The resulting loss is therefore
given as follows:

Lsphere = − log
⎛⎜⎜⎝

exp(cos(m𝜃i))

exp(cos(m𝜃i)) +
∑|Y |

j=0,j≠i exp(cos(𝜃j))

⎞⎟⎟⎠ (2.14)

where i indicates the true class label. The loss defined in Eq. (2.14) is only valid
for 𝜃i ∈ [0, 2𝜋

m
] due to the periodical behavior of the cosine function. The authors

of SphereFace generalize the loss to

Lsphere = − log
⎛⎜⎜⎝

exp(𝜙(𝜃i))

exp(𝜙(𝜃i)) +
∑|Y |

j=0,j≠i exp(cos(𝜃j))

⎞⎟⎟⎠ (2.15)

where 𝜙(𝜃i) = (−1)k cos(m𝜃i) − 2k, 𝜃i ∈
[

k𝜋
m
, (k+1)𝜋

m

]
and k ∈ [0,m − 1]. 𝜙(𝜃) is a

monotonically decreasing function.
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2.3.1.2 Additive Margin – CosFace
The approach called CosFace follows a similar idea. Instead of adding a margin as
a multiplicative factor, the authors of [18] propose to add a margin directly onto
the cosine similarity between the embedded feature vector of the input and the
corresponding weight vector. The resulting loss can therefore be written as follows:

Lcos = − log
⎛⎜⎜⎝

exp(cos(𝜃i) + m)

exp(cos(𝜃i + m)) +
∑|Y |

j=0,j≠i exp(cos(𝜃j))

⎞⎟⎟⎠ (2.16)

2.3.1.3 ArcFace
A third approach adding a margin to normalized softmax classification was pub-
lished in 2019 and is called ArcFace [19]. The idea is to add a margin directly to
the angle instead of the cosine similarity between the input feature vector and the
respective class weight vector. Therefore, the additive margin is within the cosine
term and thus the loss is given by

Larc = − log
⎛⎜⎜⎝

exp(cos(𝜃i + m))

exp(cos(𝜃i + m)) +
∑|Y |

j=0,j≠i exp(cos(𝜃j))

⎞⎟⎟⎠ (2.17)

Further in the ArcFace paper, a combination of the margin terms proposed in
SphereFace, CosFace, and ArcFace can be used. The loss function therefore is
given as follows:

Larc = − log
⎛⎜⎜⎝

exp(m1 cos(𝜃i + m2)) + m3

exp(m1 cos(𝜃i + m2)) + m3 +
∑|Y |

j=0,j≠i exp(cos(𝜃j))

⎞⎟⎟⎠ (2.18)

It was shown in the paper that this multimargin loss term can also lead to very
performative results.

2.3.1.4 Summary of Faces
The SphereFace, CosFace, and ArcFace approaches were published shortly after
each other and are very related. All losses were proposed in the field of face
verification, and all of them are basing on the normalized softmax and try to
introduce a margin between the classes. For all approaches, the objective of
adding a margin is to separate the classes well in order to be able to detect an
outlier or more application-specific verify if a face is one of the known ones or not.
The first row of images in Figure 2.3 provides an overview of the different angle or
cosine similarity-based approaches introducing a margin. The second row shows
the corresponding margins when using an Euclidean distance. These methods are
discussed in the next section. Please note that in the first row, the x- and y-axes are
the angles between an input sample and the class weight vectors of class one and
two, whereas in the second row, the coordinate axes are the Euclidean distances.
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Figure 2.3 Different types of margins with regards to angular distances and Euclidean
distances. The filled areas indicate where a test sample is assigned to class 1 whereas the
shaded areas indicate where a test sample is assigned to class 2. If a test sample has
certain distances to class 1 and class 2, so that it is in the white area, it is not assigned to
any class, but detected as an outlier. (a) Softmax, (b) SphereFace, (c) ArcFace, (d) CosFace,
(e) nearest cluster, (f) multiplicative margin, and (g) additive margin.

Figure 2.3a shows the separation between two classes in the normalized softmax
case. Both classes are directly next to each other. If 𝜃1 is larger than 𝜃2, then the
sample is assigned to class 1 and the other way round. There is no undefined space
between these classes, which would make it possible to decide that a sample does
not belong to either class. In Figure 2.3b, the multiplicative margin of SphereFace
is illustrated. The larger the angle gets to the corresponding class, the larger
the required margin gets between the classes. The ArcFace loss is depicted in
Figure 2.3c. It is an additive margin to the angle and thus has a constant width.
Figure 2.3d shows the CosFace loss. Please note, that unlike in the previous
subplots, the x- and y-axis is not 𝜃1 and 𝜃2, but cos(𝜃1) and cos(𝜃2), which leads to
a nonlinear dependency on the angular distance. Furthermore, as mentioned in
the previous subsection, any combinations of the margin are also possible.

2.3.1.5 D-Softmax
The D-Softmax [20] differs from the previous approaches in that it does not use
any margin. Instead, the authors of the D-Softmax loss disentangle the softmax
loss function into an explicit intraclass loss part and interclass loss part. Both loss
terms are minimized during training which means that the spread of the embed-
ded feature vectors of the same class is minimized, whereas the distance between
the classes is maximized. While the margin-based loss functions are satisfied if the
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Maximize

Maximize
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Optimization

Figure 2.4 Visualization of the explicit intra- and interclass optimization of softmax
dissection.

classes are more far away then a certain margin, the D-Softmax continuously tries
to further separate the classes and to reduce the intraclass spread as visualized in
Figure 2.4. This in the first place is a good characteristic; however, in practice, it is
prone to overfitting.

The loss is composed of two components: First, there is the intraclass part zi
that denotes the score of the true class of the training sample; and second, there
is the interclass part given as the sum of all other class scores

∑|Y |
j=0,j≠i exp(cos(𝜃j)).

The authors of [20] propose to set the interclass loss part to a fixed value 𝜖. There-
fore, the intraclass loss part can be described as follows:

Ld, intra = − log
( exp(cos(𝜃i))

exp(cos(𝜃i)) + 𝜖

)
= log

(exp(cos(𝜃i)) + 𝜖

exp(cos(𝜃i))

)
= log

(
1 + 𝜖

exp(cos(𝜃i))

) (2.19)

and on the other hand, the positive class score is set to one for the explicit interclass
loss, that is given as follows:

Ld, inter = − log
⎛⎜⎜⎝ 1

1 +
∑|Y |

j=0,j≠i exp(cos(𝜃j))

⎞⎟⎟⎠
= log

(
1 +

|Y |∑
j=0,j≠i

exp(cos(𝜃j))

) (2.20)

The overall D-Softmax loss is therefore given as follows:

Ld = Ld, intra + Ld, inter = log
(

1 + 𝜖

exp(cos(𝜃i))

)
+ log

(
1 +

|Y |∑
j=0,j≠i

exp(cos(𝜃j))

) (2.21)
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2.3.1.6 Softmax Center-Loss
Similar to the D-Softmax, the softmax center-loss [21] tries to optimize the
interclass separability and intraclass compactness explicitly. It is composed of a
softmax and cross-entropy loss term that causes the classes to be separated in the
embedded feature space and the center-loss that aims to minimize the Euclidean
spread within the classes. The loss function of the softmax center loss is given as
follows:

Ls, center = − log
⎛⎜⎜⎝

exp(cos(𝜃i))∑|Y |
j=0 exp(cos(𝜃j))

⎞⎟⎟⎠ + λ||xi − ci||22 (2.22)

where ci is the mean feature vector of the corresponding class. The mean feature
vectors of all classes are recalculated after every epoch using the embedded
feature vectors of all training samples of the corresponding class. The effect of the
center-loss training depending on the temperature factor λ is shown in Figure 2.5.
The data set used in this experiment is the Modified National Institute of
Standards and Technology (MNIST) data set. Using a deep convolutional neural
network (CNN), the images were projected to a two-dimensional feature space
and visualized after training the network with center loss using different values
of λ which is basically controlling the impact of the center-loss term. The circular
distribution of the class clusters is caused by the final fully connected layer, which
outputs cosine similarity scores, in addition with softmax. However, when increas-
ing the impact of the center-loss term, the clusters become more compact with
respect to the Euclidean distance to their class clusters. Further, it is worth noting
that the spread in radial direction is much more reduced than in the angular
direction.

Both loss parts act on different metrics. The class scores are based on the cosine
similarity whereas the center loss optimizes the Euclidean spread of the clusters.
This does not necessarily mean that the class clusters are more compact in the
angular way that finally does the classification.

2.3.2 Euclidean Distance

The earlier discussed end-to-end metric learning approaches are based on the
cosine similarity since it is the natural score when doing the vector matrix
multiplication in a fully connected layer. However, in theory, every other metric
could also be used. The Euclidean distance is for example a very prominent
one. In low-dimensional spaces, it is our intuitive distance metric; however, in
high-dimensional spaces, it suffers from the curse of dimensionality. Loosely
speaking, the curse of dimensionality says that for different kind of randomly
distributed data sets, the maximum distance and the minimum distance
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Figure 2.5 Visualization of the feature space after training with the center with
(a) λ = 0.01 and (b) λ = 1.0.
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within points in the data set get closer, the higher the dimensionality gets.
In mathematically terms, it can be written as follows:

lim
d→inf

=
distmax − distmin

distmin
→ 0 (2.23)

where d is the dimensionality. This fact makes it difficult for algorithms that
heavily base on the Euclidean distances between vectors to work reliably in high-
dimensional spaces. First of all this is obviously a bad prerequisite for using the
Euclidean distance for metric learning. However, in recent research, it was shown
that this is only the case for uncorrelated data, when attributes are correlated on
the other side it even gets easier to separate data points [22, 23]. Dimensions that
contain information will improve the clustering, whereas irrelevant dimensions
will decrease the performance. Thus, as long as the signal-to-noise ratio of the
feature vectors, where signal is represented by the dimensions holding informa-
tion and noise refers to dimensions that do not contain relevant information for
classification, the Euclidean distance works reliable for clustering tasks. From
a practical perspective, methods like the triplet loss also work on the Euclidean
distance and achieved very good results in high-dimensional spaces. Additionally,
for a short-range radar application, we are aiming for small and efficient network
architectures since there are a lot of applications in resource-constraint environ-
ments such as in wearable devices, in light switches, or as a small device attached
to the ceiling for people counting. Therefore, the curse of dimensionality gets an
even minor problem.

In order to enable an end-to-end Euclidean distance-based architecture, the
conventionally used fully connected layer as the last layer has to be adapted.
In [24], an Euclidean distance layer is proposed. Instead of doing a matrix multipli-
cation, the input feature vector is columnwise subtracted from the weight matrix
and subsequently, the Euclidean norm of each difference vector is provided as the
output. Therefore, the output of the Euclidean distance layer is given as follows:

pi = ||x − wi||2 (2.24)

where i is the class index. The weight vector wi can be interpreted as the center
vector of class i. During training, the weights are optimized, and thus, the class
centers shift to optimal positions in the Euclidean space.

2.3.2.1 Direct Optimization
For end-to-end learning approaches, usually the softmax is applied that turns
the classification in a closed-set classification as previously discussed. However,
the classifier can also be optimized directly on the Euclidean distances without
mapping the scores to a probability distribution between the known classes. The
objective is then to minimize the Euclidean distance to the positive class center
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Figure 2.6 Visualization of the direct optimization of Euclidean distances to the
different class cluster centers. Distance to the label class is minimized, whereas the
distance to all other classes is maximized.

and to maximize the Euclidean distance to all negative class centers. The working
principle is visualized in Figure 2.6. A possible loss function can be describe as
follows:

Leucl = Leucl, intra + Leucl, inter = ||x −𝑤1||2 + |Y |∑
j=0

1∕||x −𝑤2||2 (2.25)

The presented loss function tries to continuously reduce the intraclass spread,
which can easily lead to overfitting. Another approach, similar to triplet learn-
ing and the SphereFace, ArcFace, and CosFace, is to introduce a margin. When
the margin condition is fulfilled, then the loss is zero. Therefore, the optimization
stops when the clusters are sufficiently separated and does not force the clusters
to be inappropriate small.

There are two possible ways to add a margin. First, the margin can be added to
the Euclidean distance to the positive class center. The loss is minimized if the
Euclidean distance plus a margin m is smaller than the distance to the closest
negative class center. The loss can therefore be formulated as follows:

Leucl, add = max (0, ||x −𝑤p||2 + m − ||x −𝑤n, min||2) (2.26)

where 𝑤n, min is the closest negative class center. Another possibility is to use a
multiplicative margin, then the loss is minimized if the closest negative class cen-
ter is further away than m times the positive class center. The resulting loss is given
as follows:

Leucl, mul = max (0,m||x −𝑤p||2 − ||x −𝑤n, min||2) (2.27)

where 𝑤n, min is the closest negative class center. Alternatively, both margins can
be used in combination as shown in Eq. (2.28). The additive and multiplicative
Euclidean margins are depicted in Figure 2.3b and c below their respective angular
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margin counterparts. In Figure 2.3a, the decision boundary for assigning a test
sample simply to the closest class cluster center is shown.

Leucl, com = max (0,m1||x −𝑤1||2 + m2 − ||x −𝑤n, min||2) (2.28)

2.3.2.2 Euclidean Softmax
The cosine similarity describes a similarity between two vectors, and therefore,
is high if two vectors are similar, and low, if they are dissimilar. The Euclidean
distance on the contrary works the other way round. Low distances mean a
high-classification confidence. Thus, the scores have to be inverted first to use
the same softmax and cross-entropy learning as with cosine similarity. To achieve
this, the authors of [24] propose to map the Euclidean distance to a similarity
measure similar as the cosine similarity. Unlike for the cosine similarity, where
the angle has a value range from 0 to 2𝜋 and is therefore nicely mapped by
the cosine to values between 1 and −1, the value range of the Euclidean distance
reaches from 0 to infinity. Therefore, the Euclidean distance has to be mapped to
a value range of 0 to 2𝜋 first. The mapping proposed in [24] is done as follows:

feucl(deucl) =
𝜋

1 + deucl
(2.29)

The result of function feucl(deucl) is already a similarity score. High distances are
mapped to small values, whereas small distances are mapped to high scores.
However, to make the Euclidean distance-based similarity score as similar as the
cosine similarity, a cosine is applied to map the scores also to a value range from
−1 to 1, where 1 is the highest similarity and −1 the lowest similarity. This is done
as described in Eq. (2.30).

zeucl(deucl) = cos(feucl(deucl) + 𝜋) (2.30)

The Euclidean softmax loss is then defined as follows:

Leucl soft = − log
⎛⎜⎜⎝

exp(zeucl,i)∑|Y |
j=0 exp(zeucl,i)

⎞⎟⎟⎠ (2.31)

Further, in [24], it is proposed to use the Euclidean softmax in combination with
the center-loss. The final loss function is given as follows:

Leucl soft, center = − log
⎛⎜⎜⎝

exp(zeucl,i)∑|Y |
j=0 exp(zeucl,i)

⎞⎟⎟⎠ + λ||x − wi||22 (2.32)

where λ is a temperature value controlling the impact of the center-loss part. This
loss is quite similar as the softmax center loss from Section 2.3.1.6 except of the
important difference, that both loss parts, softmax, and center loss are now based
on the same metric, namely the Euclidean distance.
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Another variant of the Euclidean softmax is to add margins similar to the
Sphere-, Arc-, and CosFace approaches. The Euclidean softmax loss including the
margins can be written as follows:

Leucl soft, margin =

− log
⎛⎜⎜⎝

exp(m1 cos(||x − wi||2 + m2)) + m3

exp(m1 cos(||x − wi||2 + m2)) + m3 +
∑|Y |

j=0,j≠i exp(cos(||x − wj||2))
⎞⎟⎟⎠

(2.33)

2.3.3 Summary

In Section 2.3.1, metric learning using a normalized fully connected layer and
therefore, using the cosine similarity is discussed, whereas in Section 2.3.2,
a Euclidean distance layer is used as last layer which results in Euclidean
distance-based class scores. It is important to understand that the cosine simi-
larity is a similarity score, whereas the Euclidean distance is a distance metric.
Similarity and distance behave inversely to each other. If the similarity of a test
sample to a certain class is small, then the test sample belongs with a high proba-
bility to this class, whereas when the Euclidean distance is large, it belongs with a
small probability to this class. The ideal output using the cosine similarity is there-
fore a one-hot encoded vector with maximum value for the predicted class and
minimum values for all other classes. Thus, conventionally a softmax normaliza-
tion in addition to evaluating the cross-entropy between the softmax normalized
output vector and the one-hot encoded label vector is also used as a loss function.

Contrary to this, the classifiers using an Euclidean distance layer outputs a
distance which works inversely to the cosine similarity score. Thus, softmax
normalization and cross-entropy are not directly applicable. Therefore, the
natural approach is to optimize the Euclidean distances directly as it is presented
in Section 2.3.2.1. Optimizing the Euclidean distances directly was already
successfully used for pairwise methods. However, it is worth mentioning that in
both cases, the respective conversion from distance metric to similarity score and
the other way round can be done.

Cosine Similarity to Distance: For the cosine similarity, the conversion to dis-
tance is rather simple. It was actually already done, albeit indirectly, in the ArcFace
work. The margin is not applied on the cosine similarity, but on the angle, which
is a distance. The conversion to angle is simply done by applying the inverse func-
tion of cos(), namely arccos(), to the similarity score. Thus, the angle is given as
𝜃 = arccos(cos(𝜃)).

Euclidean Distance to Similarity: The conversion from Euclidean distance
to a similarity score is a little bit more challenging. There are multiple ways to do
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this conversion. One way of doing the conversion to a similar similarity score as
the cosine similarity was already presented in Section 2.3.2.2.

The output of both the layers, a conventional fully connected layer and an
Euclidean distance classification layer, can be interpreted as a similarity score or
a distance score. For using a similarity score, the conventional way is to apply
softmax normalization along with cross-entropy loss. When using a distance
metric, the conventional approach is to directly optimize the distance.

The softmax activation (2.33) normalizes the class scores to a probability
distribution. The sum of all class probabilities sum up to one. Even though a
test sample has a much lower similarity to every class as the average absolute
similarity of samples within this class – and therefore is an outlier – after softmax
normalization, it might happen that the class probability of one class is very high,
when the similarity to the other classes is even lower. This issues is visualized in
Figure 2.7. Although the distance to class 1 is in both cases the same, the scores
after softmax normalization highly differ due to the larger distances of classes 2
and 3. The relative class score makes perfect sense for a closed-set classification;
however, the question arises if a softmax normalization is the right tool for an
open-set classification task or if it would be better to optimize the absolute dis-
tances, that are not normalized, directly. Unfortunately, no such experiments have
been presented in the literature so far. Most metric learning approaches using
a fully connected layer are using the similarity score and normalized softmax.

x

x

x

x

x

x

dist. prob.score

Softmax

dist. prob.score

Softmax

1 1

3 3

2 2

Figure 2.7 Visualization of the normalization issue when considering an open-set
classification problem in the Euclidean space. Although the distance to class 1 is the
same in both the scenarios, the relative class scores after softmax might highly vary due
to the much larger distances to classes 2 and 3 in the right sketch.
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For the Euclidean distance, there are methods to optimize the distance directly
and convert it to a similarity score and apply it to softmax activation; however,
also here no direct comparison in terms of open-set classification was done
until now.

2.4 Proxy Methods

The proxy methods [25–27] are rather new deep metric learning approaches and
originate from the pairwise metric learning branch. The idea is to learn similarities
or distances to representative proxy vectors of the classes instead of learning sim-
ilarities of distances between the single samples. The motivation is to mitigate the
issues of the pairwise methods such as the exponential combinatorial possibilities
to form pairs, triplets, quadruplets, and the mining of hard negatives. In general, it
can be seen that over time, the pairwise methods try to incorporate more and more
samples, starting from the contrastive loss over triplet loss, quadruplet loss up to
N-pair loss. The logical consequences are the proxy methods where the proxies
are representative feature vectors of an entire class. Therefore, in a wide sense, all
samples of the respective class are regarded. For supervised classification, a proxy
vector has exactly the same meaning as the class weight vectors in the last layer
of the end-to-end learning approaches. This trend over multiple years of research
let us strongly assume the superiority of end-to-end metric learning methods
for supervised classification tasks. This is also underlined by the experiments in
[19], where a direct comparison between Sphere-, Cos-, ArcFace, and triplet loss
was done.

2.5 Advanced Methods

So far the basic deep metric learning concepts were introduced and discussed. Of
course, there exist many variants building on top of these concepts. Presenting all
of them would be beyond the scope of this book. However, we would like to give a
glimpse of advances in deep metric learning by presenting selected approaches.

2.5.1 Statistical Distance

In the end-to-end learning approaches, the distances to the class weight vectors
or class centers are used. However, the class cluster is not a single point but actu-
ally a distribution of feature vectors. From this fact, there arise two issues. The
first one regards the intraclass distance. The metric learning approaches do not
guarantee that the class clusters have equal dispersion in all feature directions.
The clusters are typically not ideally hyperspherical which is actually assumed
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for the Euclidean distance. The second issue relates to the interclass distances.
Typically, a test sample is detected as outlier when it is too far away to each of the
classes. However, the data of some classes might have a higher variance than other
class clusters, and thus it is hard to choose a good distance threshold for rejection
for all classes.

To overcome these issues, some approaches propose to evaluate the class score
by using a statistical distance between test sample and class clusters. The easiest
approach is to use the Mahalanobis distance as defined in Eq. (2.1) and define M
as the inverse class covariance matrix for each class. A covariance matrix for each
class is estimated, and thus, there exists an individual distance metric. The usage
of the described Mahalanobis distances solves the two discussed drawbacks,
because the scaling with the inverse covariance matrices normalize the class
clusters. It compensates the different dispersion in the different dimensions of
each class clusters and additionally normalizes the variance of the different class
clusters. Thus, a common rejection distance threshold can be defined without
making compromises for any class.

2.5.1.1 Gaussian Classifier
In [28], a large margin Gaussian mixture loss is proposed. The fundamental
assumption of this work is that the class clusters are Gaussian distributed.
A multivariate Gaussian distribution is defined by the covariance matrix and the
mean vector. Both are estimated after each epoch, and the class scores are then
defined as follows:

fc(x) =
1√

(2𝜋)ddet(Σc)
e−

1
2
(x−𝜇)TΣ−1

c (x−𝜇)

= pce−
1
2

dc

(2.34)

where pc is a class-specific prefactor and dc is the Mahalanobis distance from input
sample x to the class distribution of class c. To better separate the classes, a margin
is added to the Mahalanobis distance. Similar to the softmax, the authors propose
to normalize the output scores to a probability distribution. The classification loss
is similar to the softmax loss and given as follows:

Lcls = − log
pie

− 1
2
(di+m)

pie
− 1

2
(di+m) +

∑|Y |
j=0,j≠i pje

− 1
2

dj
(2.35)

Llkd = − log (x, 𝜇i,Σi) (2.36)

Further a second loss term, Eq. (2.36) is used that optimizes the log-likelihood of
input sample x to its assigned class distribution. It is pointed out in the research
that this is closely related to the center loss formulation and thus optimizing the
intraclass distance. The final large Gaussian mixture loss is a combination of Lcls
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and Llkd, where the impact of Llkd is weighted by a temperature factor λ. The total
loss is thus given as follows:

LLGM = Lcls + λLlkd (2.37)

For the Mahalanobis distance, the covariance matrix has to be inverted. This is
only possible if the covariance matrix is nonsingular, which is not always valid.
Thus, the authors of [28] approximate the covariance matrix as diagonal matrix,
and then the inversion is simply the inverted diagonal elements. However, this
is a quite strong assumption especially when the training does not aim for a
diagonalization of the covariance matrices.

2.5.1.2 Statistical Triplets
In the large margin Gaussian mixture loss, the covariance matrices are explicitly
estimated after each epoch. Another way to approximate the shape of the clusters
is to use a variational auto-encoder (VAE) in combination with metric learning.
A simple auto-encoder architecture projects the input to an embedding space and
thus encodes the data as a feature vector in the first part of the network, which
is also called the encoder. In the second part of the network, which is basically
the decoder, the original input is tried to be reconstructed. Therefore, the network
learns to compress the input data in a way that the reconstruction error is minimal
and thus the most important information of the input is preserved. A drawback
of this approach is that the latent space might be badly conditioned. The data set
consists of a finite set of samples that are projected to a finite set of embedding vec-
tors. Therefore, it is only ensured that outgoing from these embedding vectors, the
decoder can reconstruct something reasonable. However, it might happen that the
network drastically overfits and an embedded feature vector in the close neighbor-
hood is reconstructed to something completely different. In other words, since the
latent space is defined by a finite set of discrete vectors, no continuity is ensured.

A VAE is basically doing the same as an auto-encoder, except the fact that
the input is not compressed to a single feature vector, but to a feature distribution.
The vector that is used for reconstruction is sampled from this feature distribution.
Therefore, each time a slightly different feature vector is used for reconstruction.
Since the reconstruction label stays the same, it is ensured that all feature vectors
in the near neighborhood are reconstructed to the same data. This makes the
embedding space smooth and continuous. Since also for metric learning, the
goal is to learn a continuous metric space, and the VAE architecture is well
suited. In addition to the fact that the embedding space gets more continuous,
there comes an additional favorable property with the VAE. The embedded
feature distributions can be seen as independent, since for example the execution
of one gesture does not depend on how the previous gesture was performed
and identically distributed. Due to the independent and identically distributed
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(iid) assumption, the class distribution can easily be estimated as the mean of the
means and the mean of the variances of all sample feature distributions of the
class of interest.

The application at the end of this chapter is based on this method. Therefore,
further details about implementation and loss function are discussed in the appli-
cation section.

2.5.2 Structured Metric Learning

Label-Aware Ranked Loss: The label-aware ranked (LAR) loss is a novel metric
loss function. The state-of-the-art deep metric learning losses we discussed so far
have only two possible similarity scores. If either of the two samples are from the
same class, then they are similar, or from different classes, then they are equally
dissimilar. However, there are classification tasks where the classes are not equally
dissimilar. A very good example is radar-based people counting. It is a classifi-
cation task where the predicted class equals the number of people in the scene.
Obviously mis-classifying by one person is better than mis-classifying by two or
more persons. Therefore, the LAR loss takes advantage of the ranked ordering of
the labels in regression problems. In [29], it is shown that the loss minimizes when
data points of different labels are ranked and laid at uniform angles between each
other in the embedding space. The loss function is defined as follows:

LLAR = 1
N

N∑
i=1

log

(
1 +

∑
j≠i

exp
(

log(Δl)f aT
i , f n

j − f aT
i f p

j

))
(2.38)

where

Δl = min
(|ta − tn|, |L − |ta − tn||) (2.39)

The loss uses the multiplier log(Δl) to regulate the ranking of the labels. Here, ta is
the label of the anchor, tn is the label of the current negative sample, and L is the
number of different labels.

The minimizer of the LAR loss for six labels is shown in Figure 2.8 with the
respective label in the circle as well as the Δl multiplier assignments, with respect
to the first label, on the edges. Experimental results show that LAR loss is supe-
rior to other metric learning losses, when the data have an implicit ranking, e.g.,
counting people.

Hierarchical Approaches: Another group of approaches that try to improve
the metric learning by structuring the embedding space are the hierarchical
methods. Especially for classification tasks with many classes, there are a huge
number of very distinct classes, and thus there exist many easy triplets where
the triplet margin condition is fulfilled leading to a vanishing loss. As a result,
the learning speed drastically decays. Therefore, the authors of the hierarchical
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Figure 2.8 Optimal 2D LAR loss
label positions (circles) and
multiplier assignments (edges) for
six labels.

triplet loss [30] propose to structure the classes in a hierarchical way and adapt the
margin value depending on which level two classes are related. In [31], the usage
of hierarchical proxies is proposed. On the lowest level, a proxy represents a single
class. Higher-level proxies represent a number of lower-level proxies. A training
sample aims to reduce the distance on each level to the proxy it is assigned to and
to increase the distance on each level to all proxies it is not assigned to. By this the
authors intend to better represent semantic similarities in the learned distances.

2.6 Application: Gesture Sensing

Gesture sensing is one of the applications that profit a lot from metric learning.
It is desired to have a high-recognition rate on the valid and predefined gestures,
while being robust against alien motions. In other words, motions that are not
intended to be a gesture should be detected as such and not misclassified as one
of the valid gestures. The gestures that should be recognized by the system can be
predefined and multiple repetitions from multiple user can be recorded. However,
the alien motions can literally be anything. Therefore, it is almost infeasible to
record a good representative data set for alien motions. Metric learning helps to
identify alien motions even by training the network solely with samples from valid
gestures.

The presented application was also published in [32] and follows the idea out-
lined in Section 2.5.1.2 and, therefore, uses a VAE architecture that is trained with
a novel metric learning technique. The section is structured as follows: first, the
radar system and its configuration is introduced. Second, the data set including the
preprocessing of the radar data, and the used reconstruction labels is discussed.
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Third, the architecture is presented in more detail, and the loss function and the
training procedure are described. As a last point, the training results are presented.

2.6.1 Radar System Design

The 60-GHz BGT60TR13C frequency modulated continuous wave (FMCW) radar
chipset from Infineon is used for the gesture recognition system presented in this
section. The radar is configured with the values given in Table 2.1. With this radar
configuration, the radar is able to resolve targets up to a range of 0.96 m with a res-
olution of 3.0 cm, and from the chirp timing results, a maximum resolvable radial
velocity range of 3.205 m/s. This includes positive as well as negative velocities.
Using 32 chirps per frame, the velocity can be resolved by a fast-Fourier transform
(FFT) up to 0.1 m/s.

2.6.2 Data Set and Preparation

Before the training of the network can be started, a data set is needed. Further,
for deep learning based on radar data, the data is conventionally preprocessed.
Therefore, in this chapter, we will first introduce the set of gestures that our system
should be able to recognize and then explain the preprocessing of the radar data
and the generation of the reconstruction labels.

2.6.2.1 Gesture Set
The set of gestures includes the 10 different hand gestures depicted in Figure 2.9.
The radar is placed on the table with its antennas facing upward. The gestures are

Table 2.1 Operating parameters of the used radar chipset BGT60TR13C.

Parameters Symbol Value

Ramp start frequency fmin 58 GHz
Ramp stop frequency fmax 63 GHz
Bandwidth B 5 GHz
Range resolution 𝛿r 3.0 cm
Number of samples per chirp Ns 64
Maximum range Rmax 0.96 m
Chirp repetition time TPRT 0.39 ms
Maximum Doppler 𝑣max 3.205 ms−1

Number of chirps per frame Nc 32
Doppler resolution 𝛿𝑣 0.2 ms−1

Number of Tx antennas NTx 1
Number of Rx antennas NRx 3

PRT, pulse repetition time.
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Figure 2.9 Overview of performed gestures.

performed in a short-range up to 30 cm above the radar in the total eight people
volunteered to record data for training and testing purposes. For data recording,
a small tool was used that randomly displays a gesture to be performed by a user.
Once the user confirms its readiness, a green light shows up, and the next two
seconds are recorded and saved. Within this time, the user has to perform the
gesture in short-range above the radar. The recording was performed under super-
vision. The supervisor rejected the recording, if a wrong gesture was executed.

2.6.2.2 Data Preparation
Many gestures such as the swipes require much less time than two seconds. There-
fore, after recording, a start and end of gesture is detected based on a simple energy
thresholding on the raw data. Only the signal where a hand motion is detected has
to be preprocessed. The remaining signal is set to zero.

The data preparation depends on the gesture set. The data set used in this work
contains some gestures that are only distinguishable in range and Doppler such
as the top-down and down-top gestures. Additionally, the set contains swipes in
all possible directions. Since the swipes are symmetric motions, they look exactly
the same in the range and Doppler spectrum no matter in which direction they
are executed. Thus, to be able to distinguish all 10 gestures, an azimuth and an
elevation estimation is additionally needed. Consequently, to uniquely distinguish
the 10 different gestures, the range, Doppler, azimuth, and elevation information
over time are required. Therefore, the data are preprocessed as range-, Doppler,
azimuth-, and elevation-spectrograms to implement the presented gesture-sensing
solution. The equations for generating the spectrograms from the raw data can
be found in Chapter 1. An exemplary set of spectrograms is visualized for each
macrogesture in Figure 2.10 and for each microgesture in Figure 2.11.
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Figure 2.10 Exemplary set of spectrograms for each macrogesture in the data set.
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Figure 2.11 Exemplary set of spectrograms for each microgesture in the data set.

Since an auto-encoder architecture is used, we also need reconstruction labels,
which are spectrograms in our case. Only the signal of the hand has to be preserved
and therefore reconstructed. All other artifacts like noise or other reflections
should actually even be removed. Therefore, the aim is to reconstruct the input
spectrograms to filtered spectrograms where the hand signal is preserved, but
everything else mitigated. For short-range gesture sensing, we can assume that the
hand is the only target in the field of view. Therefore, the peak in each time step in
the spectrograms is used as the signal reflected from the hand. Extracting the peak
position in each timestep from the spectrograms results in a 1D signal. This signal
is smoothened by a moving average filter to remove outliers. The spectrograms
are then reconstructed by creating a Gaussian distribution in each time step.
The Gaussian is centered around the filtered 1D signal of the peak positions and
created so that the 95% confidence interval stretches over ±3 bins. The resulting
filtered spectrograms or reconstruction labels are exemplarily shown for each
macrohand gesture in Figure 2.12 and for each microhand gesture in Figure 2.13.

2.6.3 Architecture and Metric Learning Procedure

As discussed in the previous section each recording is represented by a set of spec-
trograms. A spectrogram is a 2D matrix or it can also be seen as grayscale image.
Due to the image like representation of the data, we are using a 2D convolutional
neural network architecture. The encoder-network consists of three convolutional
layers using filter sizes of (5× 5), (3× 3), and (3× 3) and 32, 32, and 64 channels
followed by Dropout layers with rate 0.5. To reduce the data size, two max-pooling
layers with pooling sizes (2,2) are added after the first two convolutional layers.
Afterward the tensor is flattened and two parallel fully connected layers output a
32-dimensional mean vector and a 32-dimensional variance vector. The mean and
the variance vector represent the embedded Gaussian distribution to which each
input sample is projected. From this distribution, an embedded feature vector is
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Figure 2.12 Exemplary set of filtered spectrograms for each macrogesture in the data
set. A set of filtered spectrograms are used as reconstruction labels during training.
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Figure 2.13 Exemplary set of filtered spectrograms for each microgesture in the
data set.

sampled that is used for reconstruction and therefore is the input to the decoder
network. The decoder is the inverse part to the encoder, i.e., the max-pooling layers
are replaced by up-sampling layers, and the convolutional layers are replaced by
transposed convolutional layers. The entire architecture is depicted in Figure 2.14.

Due to the VAE architecture, the input images are projected to a multidi-
mensional Gaussian distribution instead of a single-embedded feature vector.
During training, a feature vector is sampled from this distribution and used for
reconstructing the filtered spectrogram images. Due to this generative behavior,
the embedding vector used for reconstruction is different every time, although the
input sample as well as the reconstruction image label remain the same. Thus,
the VAE learns the mapping of embedded features generated by a continuous
distribution to the same filtered image label. As a result, the embedding feature
space is forced to be continuous and close-by embedded features are reconstructed
to the same filtered spectrogam images. Therefore, the VAE architecture already
indirectly enforces close-knit class-clusters in the embedding space. Additionally,

Figure 2.14 Architecture of the used VAE model.
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due to triplet learning, the class clusters are pushed apart in the embedding
space. Due to the generative aspect of the architecture, smooth and compact
class clusters are obtained, whereas the triplet learning approach increases the
distance between the class clusters. Therefore, a VAE architecture combined with
triplet loss, which is referred to as triplet variational auto-encoder (TVAE) in this
book, is well suited for detecting embedded features generated by background
motion.

To train the TVAE, we propose the weighted sum of multiple objectives which
are introduced in the following.

2.6.3.1 Statistical Distance Triplet Loss
The idea of the triplet loss is to feed three samples into the neural network. The first
is the anchor, the second is a random sample of the same class, and the third is a
random sample of any other class. The distance between anchor and either positive
or negative sample is defined as follows:

d(x1, x2) = (x1 − x2)⊺(x1 − x2) (2.40)

where x1 is the anchor and x2 is either the positive or negative sample. When
using the VAE architecture, the embedding is modeled as Gaussian distribution.
Thus, the Mahalanobis distance between the embedded anchor distribution and
the mean of either the positive or negative sample and evaluated. Also, other sta-
tistical distance metrics between a point and a distribution or between two distri-
butions like the Wasserstein metric can be used. The statistical distance based on
the Mahalanobis distance is defined as follows:

dstat(𝜇a,Σa, 𝜇2) = (𝜇a − 𝜇2)⊺Σ−1
a (𝜇a − 𝜇2) (2.41)

where 𝜇a and Σa are the mean and covariance matrix of the anchor distribution
Xa and 𝜇2 is either the mean of the positive or negative sample distribution. The
triplet and statistical distance triplet losses are finally defined as follows:

Ltriplet = max (d(xa, xp) − d(xa, xn) + 𝛼, 0) (2.42)

or

Lstat
triplet = max (dstat(𝜇a,Σa, 𝜇p) − dstat(𝜇a,Σa, 𝜇n) + 𝛼, 0) (2.43)

respectively, where 𝜇a and Σa define the anchor distribution Xa, 𝜇p, and 𝜇n are
the mean feature vectors of positive and negative sample, respectively, and 𝛼 is a
hyperparameter. As a result, the triplet loss evaluates the distance between single
embedded feature vectors of anchor, positive, and negative, whereas the statistical
distance triplet loss evaluates the distance between the anchor distribution and
the mean vector of positive and negative sample.
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2.6.3.2 Reconstruction Loss
The reconstruction loss aims to minimize the difference between the recon-
structed images and the label images. As metric, the mean squared error defined
as follows:

LMSE =
C−1∑
c=0

N−1∑
n=0

M−1∑
m=0

(Yrec − Ylab)2 (2.44)

where C is the number of channels, N and M are the dimensions of the images,
Yrec are the reconstructed images, and Ylab are the reconstruction labels, is used.

2.6.3.3 KL-Divergence Loss
For the VAE, the embedding of an input sample is modeled as a multivariate
Gaussian distributed random variable X . The underlying and unknown distri-
bution is approximated by a multivariate standard Gaussian distribution. The
difference between the underlying distribution of the embedding and the multi-
variate standard Gaussian distribution is evaluated using the Kullback–Leibler
divergence defined as follows:

LKL =DKL[N(𝜇(X),Σ(X))||N(0,1)] = 1
2

K−1∑
k=0

(Σ(X)k + 𝜇(X)2
k − 1 − logΣ(X)k)

(2.45)

where K is the dimension of a random variable X and 𝜇(X)k and Σ(X)k is the
mean and variance value of its k dimension. The resulting divergence defines
the Kullback–Leibler (KL)-divergence loss. By optimizing the KL-divergence, the
maximization of the variational lower bound is achieved.

2.6.3.4 Center Loss
The center loss minimizes the Euclidean intraclass distances, and therefore, leads
to more discriminative classes. The center loss is defined as follows:

Lcenter = (𝜇c − 𝜇c,i)⊺(𝜇c − 𝜇c,i) (2.46)

where 𝜇c is the estimated mean of class c, and 𝜇c,i is the mean of the embedded
feature distribution of a sample associated to class c. By minimizing the center loss,
the intraclass spread is minimized and thus the class cluster gets more compact.
If all samples of the same gesture are projected to a very compact area, then it gets
easier to detect alien motions which are outliers.

2.6.3.5 TVAE Loss
The overall loss that is minimized during training the TVAE is defined as follows:

LTVAE = 𝛼1Lstat
triplet + 𝛼2LMSE + 𝛼3LKL + 𝛼4Lcenter (2.47)

where 𝛼1 to 𝛼4 are hyperparameters.
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2.6.3.6 Class Scores
As already discussed in Section 2.5.1, the class clusters can have very different
dispersion in different dimensions and, therefore, it is difficult to define a com-
mon rejection threshold for all classes. By estimating the covariance matrix of each
class and using a class-dependent Mahalanobis distance, the distances and there-
fore class scores can be normalized. Under the assumption that each recording
or sample is independent of each other and that the embedded distributions are
identically distributed, the class distributions can be estimated by the mean of the
embedded distribution of all samples associated with the same class. As a result,
the mean of a class distribution is defined as follows: �̂�c =

1|Xc|∑x∈Xc
𝜇x and the

variance is defined as follows: �̂�2
c = 1|Xc|2 ∑x∈Xc

𝜎2
x where Xc is the set of embedded

feature distributions belonging to class c. The covariance matrix Σ̂c is defined as a
diagonal matrix with 𝜎2

c as entries. Based on the estimated class distribution, the
Mahalanobis distance can be used to evaluate the statistical distance defined as
follows:

sc,i = (𝜇c − 𝜇c,i)⊺Σ̂
−1
c (𝜇c − 𝜇c,i) (2.48)

where 𝜇c is the estimated mean of class c, Σ̂c is the estimated covariance matrix of
class c and 𝜇c is the embedded mean of a sample i belonging to class c. Due to the
VAE architecture and the embedding to feature distributions it becomes especially
simple to estimate the class distribution as shown above. This is another advantage
of the VAE architecture.

2.6.4 Results

The proposed architecture is evaluated using the recorded test data set and com-
pared to other state-of-art models. The state-of-art models we use for evaluation
are the softmax classifier and a triplet-based model. Both models share the same
architecture, which is the encoder of the TVAE. For the softmax model, a softmax
layer was added which outputs the class scores. The class scores for the triplet
model are determined by the Euclidean distance of the embedded feature vector
of a test sample and the class cluster centers, which are estimated after each epoch
using all training samples of the respective class.

For offline evaluation, a data set of 10 different gestures, as introduced in
Section 2.6.2.1, from eight different individuals was recorded. In total, the data
set contains 300 repetitions per gesture. Moreover, 575 samples of random move-
ments or background noise for testing the robustness against false alarms were
captured. The random movement data set contains on the one hand very different
motions to the gestures but on the other hand also contains very similar samples
like a diagonal hand movement or the circle gesture performed in the elevation
angle direction instead of azimuth angle direction. Hence, those samples contain
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very similar features as the known gestures and are therefore especially hard to
identify as alien motions.

2.6.4.1 Training
To preserve comparability of the different architecture, all networks are trained
under the same conditions. All layers are initialized using tensorflow’s default
initializer “glorot uniform.” Moreover, Adam optimizer with a learning rate of
0.001 is used. All networks, except of the softmax model which is trained using
categorical cross entropy as defined in Eq. (2.13), are based on triplet loss and
therefore, an anchor sample and randomly chosen positive and negative samples
are fed into the network at a time. Each sample in a batch is once used as anchor.
Due to the random selection of samples, the performance of the network may
slightly differ from training to training. However, an epoch consists of 40 batches
containing 60 samples. The networks are trained for 60 epochs. The data set was
initially randomly shuffled and afterward split into five blocks, which are used to
perform a fivefold cross validation. The samples within each block are the same
in all training runs of the different networks.

The state-of-art triplet model is trained using the triplet loss as described in
Section 2.2.2. The TVAE architecture is trained in a two-step procedure. For the
first 50 epochs, the network is optimized using the loss LTVAE with 𝛼1 = 𝛼2 =
𝛼3 = 1 and 𝛼4 = 0. Afterward for additional 10 epochs, 𝛼1 to 𝛼3 are set to 0 and 𝛼4
is set to 1. Thus, the intraclass spread is additionally minimized to obtain even
more compact class clusters.

2.6.4.2 Accuracy and F1-Score
The networks are trained with samples of only known gestures. However, to
evaluate the rejection capability, unseen samples from known gestures as well
as samples of nongestures were interpreted by the neural network. Afterward
a threshold or distance in the embedding space determines whether a sample
is accepted or rejected. The F1-score is used to evaluate the rejection capability,
which is the harmonic mean of precision and recall. The rejection threshold is
chosen as the one that maximizes the F1-score in the training set. In Table 2.2,
the accuracy and F1-score of the different approaches is given. In column two and
three, the accuracy and F1-score based on the test set including the background
noise samples are shown. In the last column, the accuracy of the test set only
including known gesture samples is given. The numbers show that all approaches
perform very well in classifying explicitly known gestures. However, including
the background or random samples, and therefore simulating a real-world
situation, unveil the benefit of metric learning. Compared to the state-of-art
softmax or triplet approaches, an increase up to about 13% in the F1-score was
achieved.
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Table 2.2 Accuracy and F1-scores.

Approach Accuracy (%) F1-score (%) Accuracy (only known) (%)

Softmax 82.8 77.7 95.6
Triplet 82.9 76.8 95.0
TVAE center 90.3 90.8 97.6

2.6.4.3 Confusion Matrix
The confusion matrix (CM) shows the true label and the predicted class of all
test samples. Therefore, it allows a detailed insight into the class-dependent clas-
sification performance. It can, e.g., unveil if there is a large confusion between
some certain classes. In Figures 2.15 and 2.16, the confusion matrices of triplet
and TVAE are shown. First of all, only very little confusion between the known
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Figure 2.15 Confusion matrix of the triplet model.
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Figure 2.16 Confusion matrix of the TVAE model.

gestures is shown in both cases. That means, if a sample is recognized as a known
gesture, then it is very likely classified as the right gestures. This is reasonable
since a gesture is only accepted and predicted when its confidence score is high.
Moreover, the last column shows how many samples of known classes are rejected.
Therefore, the lower confusion values in the TVAE center CM shown the improved
rejection capability of the network.

2.6.4.4 Clustering Score
The random samples recorded for the experiments in the paper are only a small
extract of possible background movements that can appear in real-world scenarios.
By assuming that the embedded features of background movements are uniformly
distributed over the embedding space, cluster score metrics can be used to esti-
mate the performance in real-world environments. Therefore, the silhouette score
and the Davies–Bouldin score are evaluated for the embedded class clusters. The
silhouette score is optimized at 1, whereas the Davies–Bouldin score reaches its
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Table 2.3 Clustering scores of the class clusters in the embedding
space after training.

Approach Silhouette score Davis–Bouldin score

Softmax 0.34 (±0.01) 1.06 (±0.03)
Triplet 0.34 (±0.02) 1.05 (±0.05)
TVAE center 0.91 (±0.01) 0.13 (±0.01)

(a) (b) (c)

Figure 2.17 t-SNE plots of the embedded features resulting from the different models.
(a) Softmax, (b) triplet, and (c) TVAE center.

best score at 0. The clustering scores of all evaluated approaches are stated in
Table 2.3. Similar to the F1-scores, a static improvement of the different models can
be observed. In order to illustrate the clustering results graphically, the embedded
features, are projected down to two dimensions using t-stochastic neighborhood
embedding (SNE) and plotted in Figure 2.17 for the softmax, triplet, and TVAE
center models.

2.6.4.5 Discussion
The experiments show that assuming a closed-set environment, all approaches
yield good accuracy scores. However, when showing background noise or alien
motions to the network, current state-of-art networks show poor results. Nonethe-
less, well-considered metric learning extensions can increase the performance
in open-set environments significantly. The TVAE projects the input images to a
continuous distribution from which a new embedded feature vector is sampled.
The sampled vector serves as basis for reconstruction, which means that it is
slightly different, although it belongs to the same input image. As a result, the
embedding space gets continuous, and it is guaranteed that close-by embedded
feature vectors are reconstructed to the same or at least very similar spectrogram
images. Especially posttraining the network using a center loss function addi-
tionally increases the compactness of class clusters in the embedding space and
therefore results in an improved rejection capability.
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2.7 Questions to the Reader

● What is an open-set classification problem?
● Why is the softmax normalization inappropriate to solve an open-set classifica-

tion problem?
● What are the drawbacks of pairwise metric learning techniques?
● What is the advantage of using a margin compared to a continuous intra- and

interclass optimization?
● What is the drawback of triplet loss with respect to intra- and interclass opti-

mization and how does the N-pair loss target this issue?
● What is the curse of dimensionality?
● For which kind of classification problems can the LAR loss be used?
● What are the advantages of end-to-end learning techniques compared to pair-

wise techniques?
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3

Deep Parametric Learning

At the end of this chapter, reader will be able to learn

● How transformation-aware processing can be integrated into a neural network.
● How learned parametric layers can be customized to a specific use-case and han-

dle specific artifacts.
● How parametric layer enables faster model convergence by limiting the opti-

mization search space.

3.1 Introduction

Radar is a very powerful yet complex sensor. The radar signal is multidimensional,
and along each dimension another physical size can be measured. Along the
fast-time axis, the range is determined; along the slow-time axis, the Doppler or
radial velocity is estimated; along the spatial dimensions, i.e., multiple receiving
antennas, the azimuth as well as elevation angle of arrival can be determined.
As derived in Chapter 1, each physical size is encoded in the frequency along
the respective dimension. Thus, to extract meaningful features of the object of
interest in the field of view, it is essential to estimate the frequencies with high
accuracy.

Consequently, radar signals are typically transformed to frequency domain
using a STFT. After STFT, the frequency components are unveiled as local peaks
in the frequency domain which leads to a more image-like representation and for
humans more interpretable representation. In Figure 3.1, a comparison between
raw time domain radar data and its respective range-Doppler image (RDI) rep-
resentation is shown. On the other side, the signal is still multidimensional and
might contain complex patterns across multiple frames or RDIs. So specially for
radar-based classification tasks such as human activity recognition or hand ges-
ture recognition people proposed to use machine learning on handcrafted features

Methods and Techniques in Deep Learning: Advancements in mmWave Radar Solutions, First Edition.
Avik Santra, Souvik Hazra, Lorenzo Servadei, Thomas Stadelmayer, Michael Stephan, and Anand Dubey.
© 2023 The Institute of Electrical and Electronics Engineers, Inc. Published 2023 by John Wiley & Sons, Inc.
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Figure 3.1 Visualization of the same radar data frame in (a) raw time domain and
(b) range-Doppler domain. The radar data snapshot was taken from a finger wave hand
gesture, where up and down finger movements were performed closely in front of the
radar.

first [1–5]. As pointed out in [6], the classical machine learning approaches with
manually extracted features work well for rather simple tasks; however, when it
comes to more complex tasks, deep learning-based models show significant supe-
rior results. As a result an increasing number of papers using deep neural networks
to interpret radar data were published in recent years [7–12]. Therefore, instead
of doing a classification on manually extracted and thus eventually suboptimal
features, deep neural networks learn to extract optimal features on its own.

For deep learning networks, typically STFT-processed data is used as input.
Depending on the application, different input representations, such as range-,
Doppler-, angle-spectrograms [5, 8–11, 13, 14], range-Doppler or range-angle
maps [15–17] or range-Doppler-angle cubes [18], are used. Since the radar data
in the frequency domain have an image-like representation, advanced neural
network architectures from computer vision domain can be exploited and lead to
remarkable results. On the other side, preprocessing the radar data is a manual
and static processing step, which might lead to suboptimal representations for a
specific task and thus might limit the overall system performance. Therefore, the
question arises whether also the preprocessing can benefit from deep learning.

Naively, one can try to train the same neural network that worked well for pre-
processed data also for raw or time domain radar data. However, the network will
fail to extract meaningful features. The reason for this lies in the time-frequency
uncertainty principle, which says that the time resolution Δt and the frequency
resolution Δ𝜔 are related by

ΔtΔ𝜔 ≥ c (3.1)
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where c is a constant. Consequently, a high-frequency resolution comes at the cost
of a poor time resolution. As discussed above, the information in the radar data is
encoded in the frequencies, and thus, in order to extract meaningful features, the
filter kernels require a good frequency selectivity. To achieve a good frequency
selectivity – according to the time-frequency uncertainty principle – a wide obser-
vation window, i.e., a long filter kernel, is required.

Even when using a simple single-input, single-output radar system with only
one transmit and one receive antenna, one radar data frame is two-dimensional.
Thus, two-dimensional filter kernels are required, which means that the number
of trainable parameters scales quadratically with the filter length. As a result,
compared to preprocessed and image-like data representations, where small
filter kernels of size (3, 3) or (5, 5) can be used, raw time domain data require
filter kernels in the order of magnitude of size (16, 16), (32, 32), or (64, 64) and
thus lead to exploding number of trainable parameters. This in turn leads to
certain problems. First of all, the memory requirements of the neural network
get larger, which might be a serious concern, when it comes to embedded and
memory constrained systems. Second, networks with a large number of trainable
parameters tend to overfit and require more training data in order to converge to
a good solution. Data acquisition is a very costly and time-consuming task which
makes the data set size an important factor.

Audio signals are related to radar signals in a way that the information
is also encoded in the frequency. Therefore, a similar problem of large and
difficult-to-tune filter kernels when learning from time domain signals arises.
As a result, researchers proposed audio-signal analysis to merge the advantages
of signal processing with the power of deep learning [19–22], which showed
promising results. However, not only in audio-signal processing but also in many
other domains, it was successfully proposed that domain knowledge be merged
into deep neural networks. The reduction of computational burden to train deep
neural networks, the reduction of required data set size as well as the need for
more interpretable and reliable networks were the main driving factors for using
the so-called “model-based neural networks” [23].

Ravanelli and Bengio [19] proposed as one of the first to pre-initialize the
filter kernels to sinc filters in order to solve an audio speaker identification
task. Additionally, the training process is restricted in a way that only the filter
parameters, i.e., the center frequency and bandwidth of the sinc filters, instead
of each independent filter weight, is optimized. As a result of this constraint, the
filter kernels in the convolutional layer can be seen as parametric kernels, since
they are defined by a limited set of filter parameters. Therefore, we refer to such
a constraint layer as a parametric convolutional layer. Although this restriction
limits the search space and thus also the freedom of the neural network, it does it
in a very efficient way. Since we have prior domain knowledge that the sinc filters
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extract meaningful features, we can significantly reduce the search space while
still achieving perhaps not the optimal but close-to-optimal solution.

In recent years, also researchers in radar signal processing started to explore the
advantages of hybrid architectures. Inspired by the SincNet [19] from 1D audio
signal processing, a similar approach using parametric convolutional layers for
two-dimensional input data were proposed for the first time in the radar domain
in 2021 [24]. Similarly a parametric complex frequency extraction layer (CFEL)
was proposed in [25]. The CFEL mimicks a DFT and allows the network only to
optimize the frequencies at which the signal is sampled in frequency domain and
thus can be seen as trainable nonuniform DFT layer. Similar to this, Zhao et al.
proposed to introduce prior knowledge into the neural network by preinitializing
the filter kernels in the first convolutional layer by the harmonic frequencies and
hence mimicking a DFT [26]. However, the difference to the CFEL is that the
training process is not restricted, but each filter weight is optimized indepen-
dently. This simplifies the training in a way that the training starts at a reasonable
level; however, it does not restrict the search space in an efficient way as the
parametric layers do. Therefore, the number of trainable weights is not reduced,
and after training, the filter kernels are very likely to diverge from the initial filter
type, which makes them less interpretable.

In Section 3.2, we present several parametric neural network approaches specif-
ically proposed for the radar domain. First, we introduce the radar parameteric
kernels comprising of 2D sinc filters, 2D wavelet filters, and adaptive sinc filters,
and then the CFEL is presented that is equivalent to a nonuniform discrete Fourier
transform. In Section 3.3, a multilevel wavelet decomposition network is presented
that approximates a multilevel wavelet decomposition in a neural network for time
series data classification or forecasting. In Section 3.4, we present the application
of activity classification using a parametric neural network namely 2D sinc filters
or 2D wavelet filters and present the advantages of a parametric neural network
under different situations. We then conclude the chapter summarizing the key
points from the chapter followed by questions to the readers.

3.2 Radar Parametric Neural Network

As introduced in Section 3.1, a parametric neural network is a neural network
with at least one layer, where the weights cannot be learned independently, but
where the weights 𝑤 are constraint to a certain type of function or operation that
is defined by a set of parameters 𝜃, where 𝜃 ≪  (𝑤). In this section, we discuss dif-
ferent parametric layers used in radar signal processing. In a traditional radar pro-
cessing pipeline, an explicit feature generation, such as a range-Doppler transfor-
mation, is performed before feeding the feature images or data to a neural network
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Figure 3.2 (a) Conventional processing pipeline, involving explicit preprocessing,
feature generation, and neural network. (b) Proposed processing pipeline, involving 2D
sinc filter parametric CNN or 2D wavelet filter parametric CNN for implicit preprocessing,
feature generation, and classification.

such as a CNN or a LSTM for classification as depicted in Figure 3.2a. The 2D para-
metric neural network implicitly performs the preprocessing and feature genera-
tion in the neural network itself, thus the input to the parametric neural network
is the raw ADC data as depicted in Figure 3.2b. The parametric layer performs a
data-driven preprocessing, where the hyperparameters of a certain preprocessing
operation such as a 2D sinc or wavelet filtering or a trainable nonuniform DFT are
optimized according to the training data. The trainable hyperparameters for dif-
ferent preprocessing approaches are described in more detail later in this chapter.
In some literature, this is referred to as structure-aware or transformation-aware
neural network. The capability of the CNN to directly operate on the raw ADC data
eliminates the need for a digital signal processor (DSP) before feeding the features
into the neural network that is typically running on a specialized hardware.

3.2.1 2D Sinc Filters

Besides applying a STFT, time domain bandpass filters can be used to analyze the
frequency composition of a signal. Time domain bandpass filters yield the ability
to adjust the cut-off frequencies according to the specific needs of the task and can
therefore be trained through data-driven optimization within a parametric neural
network. Thus, extending Ravanelli and Bengio’s work [19], a 2D sinc filter can
be chosen as parametric filter function for radar time domain processing. The 1D
sinc filter is defined as follows:

hK,fs
(k, fl, b) = 2(fl + b)sinc

(
2(fl + b)

k − ⌊K
2
⌋

fs

)
− 2flsinc

(
2fl

k − ⌊K
2
⌋

fs

)
(3.2)
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where K is the filter length, fs the sampling frequency of the signal, fl the lower
cut-off frequency, b the bandwidth, and k the filter parameter index. The parame-
ters of this filter are the lower cut-off frequency fl and the bandwidth b that implic-
itly defines the higher cut-off frequency. By defining a lower cut-off frequency and
bandwidth in slow-time as well as in fast-time direction, a 2D bandpass filter that
is able to extract joint range and velocity features can be created. The 2D sinc filter
is defined as follows:

sinc2D(n,m; f st
l , bst, f ft

l , bft) = 𝑤(n,m)hN,f st
s
(n, fl,st, bst)hM,f ft

s
(m, fl,ft, bft) (3.3)

where N and M are the filter-lengths, f st
s and f ft

s the sampling frequencies, f st
l and

f ft
l the lower cut-off frequencies, bst and bft the filter bandwidths, respectively, in

slow-time and in fast-time directions. Furthermore, 𝑤(n,m) is a 2D cosine weight-
ing function, n is sweeping along slow-time, and m along fast-time. An exemplary
2D sinc filter is shown in Figure 3.3 in time as well as in frequency domain. In fre-
quency domain, the rectangular shape with clear cut-off frequencies can be seen.
The first layer of a CNN is initialized according to the definition of 2D sinc filters
and only the filter parameters are allowed to be learned during training.

3.2.2 2D Morlet Wavelets

The range-velocity profile is not only defined by its composed frequencies but also
by the change of frequencies over time. When transforming a signal-to-frequency
domain, the time information is lost. This can be overcome by segmenting the
time domain signal into smaller chunks. However, smaller segment sizes mean
higher time resolution but at the cost of frequency resolution and vice versa.
Especially for time-varying signals, wavelets have the advantage over Fourier
transformations, that they have different levels of time frequency resolution. Due
to the fact that radar signals are highly time-varying, 2D Morlet wavelets function
as parameterized kernel functions are a suitable candidate. The 2D Morlet wavelet
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Figure 3.3 Exemplary 2D sinc filter in (a) time and (b) frequency domains.
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is composed of a 2D Gaussian window and a 2D frequency and is defined as
follows:

gN,M(n,m; 𝜎st, 𝜎ft)

= 1
2𝜋𝜎st𝜎ft

exp

(
−
(n∕N − ⌊N∕2⌋)2

2𝜎2
st

−
(m∕M − ⌊M∕2⌋)2

2𝜎2
ft

)
(3.4)

𝜙[n,m; fst, 𝜎st, fft, 𝜎ft]

= gN,M(n,m; 𝜎st, 𝜎ft) cos
(

2𝜋f st
c

n − ⌊N∕2⌋
f st
s

)
cos

(
2𝜋f ft

c
m − ⌊M∕2⌋

f ft
s

)
(3.5)

where N and M are the filter-lengths, 𝜎st and 𝜎ft the standard deviations, f st
c and

f ft
c the center frequencies, f st

s and f ft
s the sampling frequencies, respectively, in

slow-time and fast-time directions. The filter parameters that can be optimized
during the training process are the center frequencies and the standard deviations
of the 2D wavelet. Similar to the 2D sinc filters, the frequency area of interest can
be adjusted by the center frequency, but additionally, also the time-frequency res-
olution can be optimized by changing the standard deviation of the Gaussian part
of the wavelet function. Due to the fact that the defined wavelet is the product of a
cosine and a Gaussian window function also the frequency response has the shape
of a Gaussian. This results in the fact that there are no clear cut-off frequencies as
it can also be seen in Figure 3.4 where an exemplary 2D Morlet wavelet in time
and frequency domains is depicted. The standard deviations of the Gaussian in
time domain and in frequency domain are indirectly proportional. Consequently,
decreasing the width of the Gaussian in time domain will lead to an increased
width of the frequency response, which illustrates the trade-off in time-frequency
resolution.
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Figure 3.4 Exemplary 2D Morlet wavelet in (a) time and (b) frequency domains.
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3.2.3 Adaptive 2D Sinc Filters

In the case of human target sensing in a room, there are specific range bins, which
are perturbed by clutter from blinds or curtains, also based on the installation
in the range-frequency, there are interference from the 60 Hz line frequencies,
which can manifest as spurious targets in the radar data. Furthermore, the
walking speed might change when stopping, turning around, and moving into
the opposite direction and walking in an angle to radar sensor. Therefore, instead
of fixed sinc filters learned once during offline training, it is often advantageous to
design adaptive 2D sinc filters that follow target’s movement and/or is tailored to
the room it is deployed in. In order to achieve adaptive sinc filtering to faithfully
extract target features and suppress interference, the fast-time center frequency
and the slow-time center frequency are adapted according to the current observed
signal. This can be done for each dimension independently with a similar working
mechanism.

First, a complex-valued 2D sinc filter is defined with an filter length of Ns in
range direction, which is equal to the number of samples per chirp and a filter
length of Nc in Doppler direction, which is smaller than the number of chirps Ncc
within a data frame. The raw signal of a data frame is convolved with this filter in
range direction and also along slow-time dimension. Consequently, the 2D convo-
lution results in a one-dimensional slow-time signal within the range frequency
region that is defined by the 2D sinc filter. The same procedure is done by using a
2D sinc filter with filter length of Nc in range direction and Ns in Doppler direction.

For a data frame at time t, the average angular velocity for each complex-valued
1D signal st obtained after sinc filtering is determined as follows:

𝜔avg, t = 1
N − 1

N−1∑
n=1

[
𝜙(st[n]) − 𝜙(st[n − 1])

]
(3.6)

where 𝜙(.) denotes the phase. Based on the average angular velocity, the center
frequency for the new time step can be updated by

fc, t + 1 =
𝜔avg, t

2𝜋
(3.7)

for slow-time and fast-time independently in the same manner. By this, the 2D
sinc filter is basically scanning the target in range-Doppler domain by completely
operating on the raw time domain data. In Figure 3.5, the adaptive sinc filtering
approach is visualized. The RDI at three different time steps from a recording of
a single person approaching the radar and walking away from it along with the
frequency response of the adaptive tracking sinc filter is presented.

3.2.4 Complex Frequency Extraction Layer

Processing the data using a 2D FFT directly unveils range and Doppler informa-
tion but in turn is compute intense and the number of sampling points limits its
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(a) (b) (c)

Figure 3.5 Target tracking visualized. A person is approaching the radar and moves
away again. The images show the RDM together with the frequency response of the
tracking sinc filter at three different time steps. (a) RDM 1, (b) RDM 2, and (c) RDM 3.

accuracy. Instead, a CFEL for range and Doppler transformation can be used. The
CFEL is a parametric layer, where the weight matrix is initialized by the 2D DFT
matrix and where only the sampling frequencies of the DFT can be optimized.
Therefore, in the proposed CFEL, the weight matrices are defined as follows:

fM,N (fft, fst;m,n) = ej2𝜋(mfft∕f ft
s +nfst∕f st

s ) (3.8)

where m and n are the sample indices, M and N the filter lengths, and f ft
s and f st

s
are the sampling frequencies in fast-time and slow-time, respectively. Moreover, fft
and fst are the trainable hyperparameters that define the weights. These hyperpa-
rameters also define the frequencies that are extracted from the signal by the CFEL.
Additionally, to create a set of filter kernels, the number of filters in fast-time Nft, as
well as in slow-time Nst, has to be given. Although each filter is applied and trained
independently, the output channels are reshaped to a two-dimensional matrix of
size Nft × Nst to obtain a similar representation as a RDI.

Learning the filter frequencies enables the possibility, unlike in an FFT, to ana-
lyze the signal composition in some frequency areas in more detail than in others.
In order to enable equal training, the hyperparameters are normalized. When the
filters are created using the set of harmonic frequencies, the output of the CFEL
equals a 2D DFT, and alternately, the CFEL implements a nonuniform DFT.

The real and imaginary parts, as well as the frequency response of an exemplary
filter kernel, are shown in Figure 3.6. It can be seen that the frequency response is
a single sharp peak. Thus, applying a set of these filter kernels can be seen as sam-
pling the underlying signal in frequency domain at nonuniform positions dictated
by the training data and the task.

It is therefore proposed to feed raw time-domain data into the neural network
and extract meaningful features using a parametric CFEL, which is the initial layer
to the integrated neural network. As a result, the CFEL replaces the range-Doppler
processing, which typically involves a uniform 2D DFT. As a comparison, the time
domain signal, the absolute values of the preprocessed RDI, and the absolute val-
ues of the output of the already-trained CFEL of the same scene are shown in
Figure 3.7. In Figure 3.7a,b, the x-axis goes along slow-time and the y-axis along
fast-time, whereas in Figure 3.7c, the x- and y-axis goes along range and Doppler,
respectively. It can be seen that it is hardly possible to obtain information from
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Figure 3.6 (a) Real part, (b) imaginary part, and (c) frequency response of an exemplary
CFEL filter kernel.
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Figure 3.7 Comparison of (a) time domain ADC data, (b) RDI, and (c) corresponding
output of the CFEL layer.
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the time domain signal itself, but after preprocessing, the target gets unveiled as a
peak in the range-Doppler domain. After initialization, the features after the CFEL
layer look the same as the RDI, but during training, the frequencies that are ana-
lyzed or extracted are optimized. Thus, if the application requires, it is possible to
get a higher frequency resolution in more-meaningful frequency areas and less
frequency resolution in less-meaningful areas. This is an advantage, especially
in classification tasks. However, if all frequency regions are of equal interest for
the application, the analyzed frequencies are distributed over the whole domain.
In Figure 3.7, it can be seen that in the already-trained CFEL, the target informa-
tion is successfully extracted from the time domain signal. Both the preprocessed
RDI and the output of the CFEL show consistent results.

3.3 Multilevel Wavelet Decomposition Network

In [27], a wavelet-based neural network structure called multilevel Wavelet
Decomposition Network (mWDN) is proposed for time series analysis. Some
radar applications such as vital sensing or certain implementations of gesture
sensing are based on time series analysis. Therefore, the mWDN can be applied
for certain radar applications even if it was not specifically designed for radar. The
parameters in the multilevel discrete wavelet decomposition are learned under
data-driven optimization of the neural network. Utilizing the mWDN framework,
a classification framework is proposed namely the Residual Classification Flow
(RCF) and additionally a forecasting framework is proposed namely the multi-
frequecy Long Short-Term Memory (mLSTM). In the case of RCF, a pipelined
classifier stack is used to exploit hidden features in a subseries through residual
learning methods. In the case of mLSTM, the idea is to turn the hidden features in
different frequency levels into inferring future states. The wavelet decomposition
is approximated into a neural network framework that can be optimized via
backpropogation algorithm as depicted in Figure 3.8.

The multilevel discrete wavelet decomposition (MDWD) extracts time-
frequency features at multiple levels by decomposing the time series into a low-
and a high-frequency subseries up to several levels. The input time series is
denoted as x = [x1,… , xt,… , xT], and the low and high subseries generated in
the ith level are denoted as xl(i) and xh(i). In the (i + 1)th level, the MDWD uses a
low-pass filter l = [l1,… , lk] and a high-pass filter h = [h1,… , hk], with k < T, to
convolute the low-frequency subseries of the upper level as follows:

al
n(i + 1) =

K∑
k=1

xl
n+k−1(i) − lk

ah
n(i + 1) =

K∑
k=1

xl
n+k−1(i) − hk (3.9)
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Figure 3.8 Illustration of (a) mWDN framework and (b) approximate wavelet discrete
transformation. Source: Adapted from Wang et al. [27].

where xl
n(i) is the nth element of the low-frequency subseries in the ith level.

The low- and high-frequency subseries xl(i) and xh(i) in the level i are gen-
erated from the 1

2
down-sampling of the intermediate variable sequences

al(i) = [al
1(i), al

2(i),…] and ah(i) = [ah
1 (i), ah

2 (i),…]. As the level increases, the
frequency resolution is increasing, and the time resolution (for the low-frequency
sub-series) is decreasing. The decomposed subseries of low and high frequencies
can be fed into analogous wavelet synthesis block to reconstruct the original time
series x, thus MDWD is regarded as a time-frequency decomposition.

In mWDN, the function is implemented as a neural network by approximating
the MDWD transform, thus, the parameters of the low-pass filter and high-pass
filter can be optimized using back-propagation. As presented in Figure 3.8, the
mWDN model hierarchically decomposes a time series using the following two
functions:

al(i) = 𝜎(W l(i)xl(i−)+bl(i))

ah(i) = 𝜎(Wh(i)xl(i−)+bh(i)) (3.10)
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where 𝜎(⋅) is a sigmoid activation function, and bl(i) and bh(i) are trainable bias
vectors, while l(i) or h(i) are trainable filter parameters that determine W l(i)
and Wh(i), respectively. The low-pass filter and high-pass filter l(i) and h(i)
are initialized with known Wavelet filters. xl(i) and xh(i) denote the low- and
high-frequency subseries of original time series x generated in the ith level, which
are down-sampled using average pooling from the intermediate variables al(i)
and ah(i).

3.4 Application: Activity Classification

We use the application of activity recognition for recognizing six daily activities
using FMCW radar sensor to demonstrate the advantages of using parametric
neural networks. An activity dataset was recorded in a real-world environment
with the radar sensor BGT60TR13C mounted on a tripod at a height of 1.20 m
placed in the corner of the room. The room has about 20 m2 with a table and
chairs inside. The six daily activities are chosen in a way that it covers fast-moving
activities such as walking, as well as slow-moving activities like standing idle or
working on the laptop. Thus, the challenge is to cover a large Doppler velocity
range and simultaneously yield a high Doppler resolution in certain regions in
order to differentiate similar-looking activities in Doppler dimension. The dataset
contains five different human activities plus additionally a recording of an empty
room. To record the class “walking,” a single human was allowed to randomly
walk around. The class “idle” is split up in two recordings, including person
standing in front of the radar and also person sitting idle with minor movements.
The third activity is random arm movements while standing and were recorded
and is referred as “arm movements.” The fourth activity class is waving where the
person is waving at different positions in the room facing the radar to indicate a
“wake-up” kind of gesture/activity. And the fifth class, is person “working” from
of the laptop-making subtle finger movements to work on the laptop. The sixth
activity is “empty” denoting no person in the room. The data were acquired in a
clean environment without another person or interference mainly to demonstrate
the fact that parametric neural networks can differentiate activities with a wide
Doppler variation while simultaneously requiring high-Doppler resolution in
certain frequency bands. Each activity was performed by the same person and
recorded for about 18 minutes in total.

Samples containing 2048 chirps with an overlap of 512 chirps were extracted
from the recordings. Given the fact that the chirp repetition time is 1 ms each sam-
ple captures 2.048 seconds. For each sample, a Doppler spectrogram and video of
RDI as described in Sections 1.5.1.1 and 1.5.1.3 is generated. Therefore, a dataset
with raw ADC data, Doppler spectrograms, and video of RDI based on exactly
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Table 3.1 Samples per class.

Empty room Walking Idle Arm movements Waving Working

579 695 834 694 687 686

the same chirps per sample is obtained. For each activity, about 700 samples are
available. Due to slightly different recording times for each activity, the number
of samples per class varies. In Table 3.1, the exact number of samples per class is
stated.

Two parametric neural networks one with 2D sinc filter kernel and 2D Morlet
filter kernel are proposed to feed in raw ADC radar data as input. The paramet-
ric neural networks are compared with different the state-of-art CNN approaches.
In one case, Doppler spectrogram is fed in to a 2D CNN, in second case, video of
RDI is fed into a 3D CNN, and in the third case, raw ADC data are directly fed into
a 2D CNN. All the network architectures have a softmax as the output layer for
classifying six activities, which is trained using categorical cross-entropy loss and
RMSprop is used as optimizer with a learning rate lr = 0.0001 and discount factor
for history gradient 𝜌 = 0.9 and batch size of 128. All unconstrained convolutional
and dense layers are initialized using the “Glorot” initialization scheme with an
uniform weight distribution. And after every common convolutional and dense
layer, a dropout with a rate of 0.2 is used during training to prevent the problem of
over-fitting.

3.4.1 Proposed Parametric Networks

In this section, we describe the architecture of two parametric neural networks we
proposed to be used for activity classification problem.

3.4.1.1 2D SincNet
The 2D SincNet uses 2D sinc filter convolutions in the first convolutional layer as
described in Section 3.2.1. As a parameter, this layer takes the filter lengths, the
number of filters, the sampling frequencies, the padding mode, and the stride for
the slow- as well as fast-time direction, respectively. Although there are no sepa-
rated filters for slow- and fast-time, it is required to explicitly provide the number
of filters in slow-time Nst and the number of filters in fast-time Nft. According to
this, 2D sinc filters are generated in a way that they form an equal grid of size
Nst × Nft covering the complete observable range Doppler domain. The trainable
weights in this layer are the lower cut-off frequencies and the bandwidths in slow-
and fast-time direction. In order to ensure equal significance applied to both filter
dimensions, the bandwidths and cut-off frequencies are normalized.
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Figure 3.9 Proposed parametric
CNN learning the filter
parameters of 2D sinc filters or
wavelets.

Raw 2D ADC radar data

Softmax (6)

Dense (32)

Maxpool (4,2)

Maxpool (8,2)

2D
 sinc filters/w

avelets

Conv2D (50, 3 × 3)

The 2D sinc filter layer is followed by a MaxPool layer with a pooling size of
8 × 2, subsequently, a common two-dimensional convolutional layers using 50 fil-
ters of size 3 × 3 is implemented. After the dropout, a MaxPooling of size of 4 × 2 is
applied. Then the tensor is flattened and fed into a dense layer of size 32 followed
by the softmax classifier layer. The proposed network is depicted in Figure 3.9.

3.4.1.2 The 2D WaveConvNet
The 2D WaveConvNet (WCN) is designed similar to the 2D SincNet. Only the
first convolutional layer is initialized by 2D Morlet wavelets as described in
Section 3.2.2 instead of using 2D sinc filters. The parameters required to define
this layer are the filter lengths, number of filters, sampling frequencies, padding
mode, and stride for the slow- and fast-time direction, respectively. Similar to the
2D sinc filters, the number of filters in slow-time direction Nst and the number of
filters in fast-time direction Nft have to be explicitly provided in order to distribute
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the frequency response of the wavelets equally as a grid in the 2D frequency
domain. Both time axis were normalized as in the case of 2D SincNet to ensure
equal significance during training. Thus, the standard deviations is chosen to be
0.06 in both filter dimensions. In a total Nst times Nft, 2D wavelets are defined
and used in the first layer of the network. Trainable weights of this layer are the
center frequencies and standard deviations in slow- and in fast-time dimension.
Also, in the 2D WCN, the learnable weights are normalized.

3.4.2 The State-of-Art Networks

In this section, we describe three state-of-art neural networks, namely DSNet that
takes preprocessed Doppler spectrogram as input feature, RDCNet that takes in
video of RDIs as input, and 2D ConvNet that takes in raw ADC data as input;
however, they do not have parametric kernels in their first layer but are rather
randomly trained.

3.4.2.1 DSNet
The DSNet is a typical state-of-art 2D CNN architecture followed by a dense and
softmax layers. It contains three common 2D convolutions with 4, 8, and 16 filters,
respectively, and each filter uses a kernel size of 3 × 3. After each convolution, a
dropout layer with dropout rate of 0.2 is used during training. Subsequent to the
first two convolutional layers, a MaxPooling of size 2 × 2 is used. Afterward the
tensor is flattened and fed into a dense layer of size 64 followed by the softmax
classifier. The DSNet architecture is shown in Figure 3.10a.

3.4.2.2 RDCNet
The RDCNet has a temporal sequence of RDI in the form of a three-dimensional
radar data cube as input. Therefore, three 3D convolutional layers are used
to extract information from the radar data cube. They all have a kernel size of
3 × 3 × 3 and use 4, 8, and 16 filter kernels, respectively. After the first two dropout
layers, a MaxPooling of size 2 × 2 × 4 is applied. Afterward the tensor is flattened
and further processed by a dense layer of size 64 before it is classified by the final
softmax layer. The RDCNet architecture is presented in Figure 3.10b.

3.4.2.3 The 2D ConvNet
The 2D ConvNet uses the same architecture as the 2D SincNet and 2D WCN for
fair comparison. Only the first layer is substituted by a unconstrained 2D convo-
lutional layer with “Glorot” weight initialization and no restrictions, i.e., param-
eterizations are applied for its kernel. Thus, each filter parameter can be learned
individually dictated by the training data without any constraints.
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Figure 3.10 The state-of-art CNN architectures: (a) DSNet with Doppler spectrograms as
input and (b) RDCNet with video of RDI as input.

The composition of parameters per layer is shown in Table 3.2 for the DSNet
and the RDCNet and in Table 3.3 for the 2D SincNet, 2D WCN, and 2D ConvNet.
It can be noted that the first layer of the 2D SincNet and 2D WCN have significantly
less parameters compared to corresponding unconstrained convolutional layer of
the 2D ConvNet. This results from the fact that only the four-filter parameter per
kernel are trained in the parametric convolutional layer instead of the full ker-
nel weight. Since 64 2D sinc filters or wavelets are used, the parametric layer has
just 64 ⋅ 4 = 256 parameters to optimize. The unconstrained convolutional layer
in the 2D ConvNet in contrast has to learn each single filter weight, resulting in
the reduction of the network size by more than 50%.

3.4.3 Results and Discussion

The proposed approach is a data-driven preprocessing optimization. Hence,
besides the evaluation on the clean dataset, the proposed approach is also
evaluated regarding the impact of limited amount of training data and the impact
of preknown disturbances, such as a static 50 Hz frequency of a power line, which
can be considered during training.
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Table 3.2 Model sizes of DSNet and RDCNet.

Layer DSNet Layer RDCNet

2D Conv (4, 3 × 3) 40 3D Conv (4, 3 × 3 × 3) 112
2D Conv (8, 3 × 3) 296 3D Conv (8, 3 × 3 × 3) 872
2D Conv (16, 3 × 3) 1168 3D Conv (16, 3 × 3 × 3) 3472
Dense (32) 65 569 Dense (64) 102 432
Softmax (6) 198 Softmax (6) 198
Total 67 270 Total 107 086

Table 3.3 Model sizes of 2D SincNet, 2D WCN, and 2D ConvNet.

Layer 2D SincNet 2D WCN 2D ConvNet

2D Sinc (64, 65 × 33) 256 — —
2D Wave (64, 129 × 33) — 256 —
2D Conv (64, 65 × 33) — — 137 344
2D Conv (50, 3 × 3) 28 850 28 850 28 850
Dense (32) 102 432 102 432 102 432
Softmax (6) 198 198 198
Total 131 736 131 736 268 824

3.4.3.1 Clean Dataset
For evaluation, a fivefold cross-validation is performed. Thus, the model is trained
five times and leaving out a different test set each time. Finally, the results of the
five runs are averaged. In this way, variations in the results due to unfortunate
tra7in and test data splits are reduced. All models are trained long enough to reach
their saturation in training. Accordingly, the DSNet is trained for 100 epochs, the
RDCNet is trained for 50 epochs, the 2D ConvNet is trained for 40 epochs, and
the proposed 2D SincNet and 2D WCN are trained for 20 epochs. Afterward, the
accuracy as well as the F1 score are evaluated on the test dataset. The obtained
accuracies and F1 scores are averaged over all runs. Additionally, the standard
deviation is calculated for both metrics.

The results are shown in Table 3.4, while the state-of-art approaches achieve
an accuracy of about 90.7% and 95.6%, and 98.2%, respectively, the proposed
approaches show an improved accuracy of 99.2% and 99.5%, respectively. In order
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Table 3.4 Accuracies (in %) and F1-scores (in %) for
the evaluated approaches on the clean dataset.

Model Accuracy (deviation) F1-score

DSNet 90.7 (±3.2) 90.8 (±3.0)
RDCNet 95.6 (±0.7) 95.9 (±0.6)
2D ConvNet 98.2 (±2.2) 98.2 (±2.3)
2D SincNet 99.2 (±0.6) 99.2 (±0.6)
2D WCN 99.5 (±0.3) 99.5 (±0.3)

to analyze the classification results in more detail, the confusion matrices of
RDCNet representing the state-of-art approaches and the confusion matrix of
2D WCN representing the novel architectures are shown in Figure 3.11. The
limitation of the state-of-art approaches is clearly observed in the fact that the
state-of-art approaches are unable to differentiate between similar activities such
as “idle” and “working.” However, the proposed parametric NN approach is
capable of distinguishing between these activities, therefore, achieving better
accuracy scores.

In Figure 3.12, the validation accuracy over training epochs for the 2D ConvNet
in comparison with the 2D WCN is plotted. Both models were trained five times.
The vertical lines visualize the lowest as well as highest accuracy achieved by the
different training runs at a certain epoch and thus represent the dispersion of the
accuracies in a certain epoch. As seen in the plot for the 2D ConvNet, the mean
accuracy as well as the dispersion does not improve anymore from about epoch
30 onward, which indicates that the training has already converged. On the other
hand, nonparametric ConvNet approach exhibits high variation and low stability
during training. This is due to the fact that the optimization problem is very
high dimensional and thus has many local minima toward which the solution
could be stuck. Furthermore, the learned kernel in unconstrained ConvNet
can have very specific frequency selectivity, thus small changes in these filters
during training induce a totally different frequency selectivity causing a large
impact on the classification score. However, the proposed parametric kernels
are chosen to have a controlled and continuous frequency selectivity resulting
in very stable training. This can be attributed to the fact that the search space is
a much lower-dimensional space parameterized by the sinc or wavelet functions
and also the tractable mathematical function dictated by the sinc or wavelet
function.
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(a)

(b)

Figure 3.11 Confusion matrix of (a) RDCNet and (b) 2D WCN. The values are rounded to
three decimals.

The sinc filters as well as the wavelets are initialized as described in
Sections 3.4.1.1 and 3.4.1.2, while the unconstrained convolutional layer of
the 2D ConvNet is initialized using “Glorot” scheme. For each approach,
cumulating the initial filters leads to an approximately uniform range and veloc-
ity gain over the whole space. During training, the filter parameters are iteratively
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Figure 3.12 Validation accuracy over training epochs of five training runs of the 2D
ConvNet and 2D WCN. Vertical lines indicate the lowest and highest achieved accuracy in
a certain epoch.
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(c) unconstrained filters.



�

� �

�

110 3 Deep Parametric Learning

optimized. As a result, the initial grid structure is dissolved by individual shifts
and shape changes of the filters.

The cumulative gain of all filters after training is depicted in Figure 3.13. The
2D sinc filters as well as the 2D wavelets have a bandpass characteristic and
also leads to an interpretable model. Therefore, the resulting gain of cumu-
lative filters look similar except the fact that the 2D wavelet gain is smoother
caused by its smooth filter shape in frequency domain. However, the resulting
weights of unconstrained convolutional layer are quite different and cannot be
interpreted.

3.4.3.2 Fixed Disturbance
If there are fixed disturbances depending on the system installation such as
50 Hz interference from main power grid or a Wi-Fi signal, they can be better
accounted for in the parametric neural network by creating specific nulls at those
interfering frequencies. To illustrate the effect, a static 50 Hz sinusoidal signal
with −12 dB with respect to the maximum detectable signal power of the sensor
was added to the dataset. The networks were then retrained using the modified
dataset.

In Table 3.5, the final accuracies and F1-scores are shown. The models using
fixed preprocessing are effected by the disturbance. Since the 50 Hz interference is
almost static within a chirp, its influence is reduced when subtracting the mean of
the signal before calculating the Doppler spectrogram. The architectures operating
directly on the raw ADC data have to learn to suppress the disturbing frequency.
The results show that the constrained networks, namely 2D WCN and 2D Sinc-
Net, perform better in suppressing the disturbance. In Figure 3.14, the adaption
of the sinc filters and wavelets, respectively, to suppress the 50 Hz interference,
which corresponds to a velocity of 0.25 m/s, are depicted. The learned filters of
the unconstrained 2D ConvNet aren’t interpretable, while the 2D SincNet and 2D
WCN are interpretable.

Table 3.5 Accuracies (in %) and F1-scores (in %)
under the presence of a static 50 Hz interference.

Model Accuracy F1-score

DSNet 88.3 (±2.7) 88.3 (±3.7)
RDCNet 95.5 (±0.6) 95.7 (±0.6)
2D ConvNet 93.2 (±4.2) 93.5 (±3.8)
2D SincNet 98.8 (±0.5) 99.5 (±0.5)
2D WCN 98.8 (±1.3) 98.9 (±1.3)
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Figure 3.14 Cumulative gain of learned (a) 2D SincNet, (b) 2D WCN, and
(c) unconstrained kernel in 2D CNN in the presence of a static 50 Hz interference.

3.5 Conclusion

Parametric neural networks not only help in making the neural network inter-
pretable but also helps in improving classification accuracy in difficult cases, such
as not enough separability in input features among classes or under interference.
The limitation of the state-of-art approaches has its origin in preprocessing using
Fourier transform for generating RDIs equally discretizes the range as well as
velocity dimension. While unconstrained CNNs with raw ADC data as input are
capable of learning the weights of the network, they are usually intractable and
the high-dimension optimization leads to poor convergence and often overfitting.
On the other hand, using parametric functions to define the kernels in a para-
metric neural network help in model interpretability while also rejecting inter-
ference in the data and can distinguish between similar classes via data-driven
optimization.
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3.6 Question to Readers

● What are the different transformation-aware processing that can be integrated
into a neural network model for radar data?

● What are the specific advantages of parametric neural networks?
● How can the CFEL be compared to standard FFT?
● How does parametric neural networks help in model interpretability?
● How is the search space in case of parametric neural network limited compared

to unconstrained neural network?
● What are the problems that the adaptive parametric neural network can alleviate

compared to nonadaptive parametric neural network design?
● Why does parametric neural networks converge faster during training?
● Define any other parametric function that can be integrated into a neural

network and specify a use-case.
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4

Deep Reinforcement Learning

After reading this chapter, you should be able to

● Understand the basics of reinforcement learning.
● Obtain an overview of different typologies of reinforcement learning algorithms.
● Acknowledge that continuous deep reinforcement learning can improve the

tracking-parameters selection in radar sensors.

4.1 Useful Notation and Equations

In this section, we collect a set of notation and useful equations, which support
the reader in understanding the concepts and use-cases presented in this chapter.

4.1.1 Markov Decision Process

St state at time t
At action at time t
Rt reward at time t
𝛾 discount rate (where 0 ≤ 𝛾 ≤ 1)
Gt discounted return at time t (

∑∞
k=0 𝛾

kRt+k+1)
 set of all nonterminal states
+ set of all states (including terminal states)
 set of all actions
(s) set of all actions available in state s
 set of all rewards
p(s′, r|s, a) probability of next state s′ and reward r, given current state s and

current action a (ℙ(St+1 = s′,Rt+1 = r|St = s,At = a))

Methods and Techniques in Deep Learning: Advancements in mmWave Radar Solutions, First Edition.
Avik Santra, Souvik Hazra, Lorenzo Servadei, Thomas Stadelmayer, Michael Stephan, and Anand Dubey.
© 2023 The Institute of Electrical and Electronics Engineers, Inc. Published 2023 by John Wiley & Sons, Inc.
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4.1.2 Solving the Markov Decision Process

𝜋 policy
if deterministic: 𝜋(s) ∈ (s) for all s ∈ 
if stochastic: 𝜋(a|s) = ℙ(At = a|St = s) for all s ∈  and a ∈ (s)

𝑣𝜋 state-value function for policy 𝜋 (𝑣𝜋(s)
.
= 𝔼[Gt|St = s] for all s ∈ )

q𝜋 action-value function for policy 𝜋 (q𝜋(s, a)
.
= 𝔼[Gt|St = s,At = a] for all

s ∈  and a ∈ (s))
𝑣∗ optimal state-value function (𝑣∗(s)

.
= max𝜋𝑣𝜋(s) for all s ∈ )

q∗ optimal action-value function (q∗(s, a)
.
= max𝜋q𝜋(s, a) for all s ∈  and

a ∈ (s))

4.1.3 Bellman Equations

4.1.3.1 Expectation Equations

𝑣𝜋(s) =
∑

a∈(s)
𝜋(a|s) ∑

s′∈ ,r∈
p(s′, r|s, a)(r + 𝛾𝑣𝜋(s′))

q𝜋(s, a) =
∑

s′∈ ,r∈
p(s′, r|s, a)(r + 𝛾

∑
a′∈(s′)

𝜋(a′|s′)q𝜋(s′, a′))

4.1.3.2 Optimality Equations

𝑣∗(s) = max
a∈(s)

∑
s′∈ ,r∈

p(s′, r|s, a)(r + 𝛾𝑣∗(s′))

q∗(s, a) =
∑

s′∈ ,r∈
p(s′, r|s, a)(r + 𝛾 max

a′∈(s′)
q∗(s′, a′))

4.2 Introduction

Reinforcement learning (RL) is a machine learning (ML) paradigm where the
learning signal is not fixed. Instead, it depends on the sum of rewards produced by
a policy interacting with an environment [1]. A policy interacts with an environ-
ment by choosing actions given a state, and the environment reacts by producing
a new state and a reward. The objective is to find a policy which maximizes the
sum of rewards over an episode, the return. Deep reinforcement learning (DRL)
uses modern neural networks and deep learning (DL) techniques to generalize
over states and actions. Recently, DRL has gained significant attention due to
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its remarkable success, mostly in game problems [2]. Deep Q-networks (DQNs)
was one of the first DRL successes and instantly became one of the milestones
in the area [3]. Two of the key ingredients were the usage of a target network to
stabilize learning and avoid oscillations in the updates and the replay buffer to
store past experiences to learn from. Many other improvements followed these
two ideas. Double Q-learning [4] and dueling networks [5] are examples of how
to boost learning by reducing overestimation and promoting generalization.
Learning from demonstrations and imitation learning [6] was already known
in robotics and the RL fields but got revisited and pushed forward in recent
years. Nonetheless, when dealing with real-world problems, DRL still faces
many challenges. Very often, actions in real-world problems are not discrete but
continuous. Additionally, actions may be composed of many parameters making
the action space combinatorial. To this end, actor-critic DRL methods as well
as Q-learning methods, originally applied to discrete action spaces, have been
readapted to continuous action spaces.

In order to show how the deep reinforcement learning (DRL) can help in
real-life problems related to short-range radar sensors, in this chapter, we review
first fundamentals of RL. Afterward, the difference between different typologies of
RL algorithms is explained (e.g., On-Policy/Off-Policy, Model-based/Model-free).
Finally, a real-life use-case is presented, which includes a continuous RL-based
optimization for tracking-parameters of short-range radars.

RL [1] is an important branch of ML. RL is used to learn a decision policy
from interactions with a given environment. RL algorithms learn to regulate
the decision policy through trial and error, where the feedback is given by the
environment in form of reward signals. The policy learning process is subdivided
into episodes, which end once the terminal state of the simulation is reached. RL
problems can be formulated as Markov decision processes (MDPs) [1]. A MDP is
a tuple <  ,,P,R, 𝛾 >, where

●  is a finite set of states,
●  is a finite set of actions,
● P is a state transition probability matrix, i.e.,

Pa
ss′ = ℙ[St+1 = s′|St = s,At = a]

where Pa
ss′ is the probability that action a in state s at time t will lead to state s′

at time t + 1,
● R is a reward function,

Ra
s = 𝔼[Rt+1|St = s,At = a]

where Ra
s is the expectation of the immediate reward, by taking action a in state

s at time t, and
● 𝛾 is a discount factor for future rewards, 𝛾 ∈ [0, 1],



�

� �

�

118 4 Deep Reinforcement Learning

A policy 𝜋 is a measurable mapping 𝜋 ∶  →  and defines the learning agent’s
way of behaving at a given timestep. At every timestep, the agent experiences a
reward Rt+1 after executing an action At in a state St. The sum of all rewards col-
lected in an episode G0 =

∑∞
t=0 𝛾

tRt+1 is called the return. The goal of RL is to find
an optimal policy 𝜋∗ which maximizes the future expected return, i.e.,

𝜋∗ = argmax
𝜋

𝔼𝜋[G0]

The defining property of MDPs is the Markov property, which says that the value
of the next state St+1 and reward Rt+1 of the process only depends on the actual state
St and action At and not on the sequence of past events (S0∶t,A0∶t), i.e.,

ℙ[St+1 = s′,Rt+1 = r ∣ S0∶t = s0∶t,A0∶t = a0∶t]

= ℙ[St+1 = s′,Rt+1 = r ∣ St = st,At = at] (4.1)

Moreover, in order to strengthen the RL approach with powerful function
approximation capabilities, researchers investigated the combination of RL with
DL [7] algorithms. This combination takes the name of DRL. DL is a class of ML
algorithms which is based on artificial neural networks (ANNs). As explained in
[7], DL is capable of processing complex and high-dimensional data for many
tasks such as image classification and object detection. This capability turns
out to be extremely useful, in general, once the relationship between input and

Reinforcement
learning

Policy-based

Value-based

Discrete actions

Continuous actions

Off-PolicyOn-Policy

Offline

Online

Model-free

Model-based

Figure 4.1 Taxonomy of the RL algorithms.
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output of the task considered is highly complex. This is the case for many real-life
scenarios such as applications in robotics, chip design, and autonomous driving.

Given the characteristics of the algorithms, and for the purpose of the chapter,
DRL algorithms can be distinguished in the following:

● On-Policy/Off-Policy,
● Model-based/Model-free,
● Value-based/Policy-based,
● Online/Offline,
● Discrete actions-based/continuous actions-based.

The proposed taxonomy is visualized in Figure 4.1
In the next sections, we will first review these main categories and, successively,

we are going to present a real-life application of DRL for short-range radars.

4.3 On-Policy Reinforcement Learning

On-Policy RL algorithms are the algorithms that evaluate and improve the same
policy which is being used to select actions. In the common flow of On-Policy
algorithms, a simple/soft policy is initialized. Afterward, the state-space is sam-
pled with that policy. Finally, the policy is improved. Some examples of On-Policy
algorithms are policy iteration, value iteration, Monte Carlo for On-Policy,
state–action–reward–state–action SARSA, as explained in [8].

4.4 Off-Policy Reinforcement Learning

In Off-Policy learning, the agent can learn about many policies that are different
from the policy being executed. Methods capable of Off-Policy learning have sev-
eral important advantages over On-Policy methods. Most importantly, Off-Policy
methods allow an agent to learn about many different policies at once, forming the
basis for a predictive understanding of an agent’s environment and enabling the
learning of options [1]. Some examples of Off-Policy algorithms are Q-learning,
deep deterministic policy gradient (DDPG), as described in [8].

4.5 Model-Based Reinforcement Learning

The term model identifies the transition probability distribution and reward func-
tion which helps define the whole environment.
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Model-based RL does estimate the MDP from data. In this way, given sufficient
data, the whole tuple (S,A, R̂, Ŝ′, 𝛾) can be estimated, by inferring R̂, Ŝ′ from
enough data.

In this setting, the MDP will converge given enough data sample. In this case,
once the MDP is constructed, it can be used for solving for the optimal policy.
If the state space is large, nevertheless, oftenwise the model-based approach would
not converge and would not help to find the optimal policy.

4.6 Model-Free Reinforcement Learning

Model-free RL, differently from model-based approaches, does not consider to
solve the MDP and so have an explicit estimation of the state transition probabil-
ity, as well as the reward. To this end, the approach followed is a trial-and-error
mechanism, where the feedback is given by the environment as reward signals.
Being model-free RL more effective for large, complex, and highly nonlinear
problems, it has been adopted more and more in the scientific literature and
real-world applications.

4.7 Value-Based Reinforcement Learning

Value-based DRL is taking into account the optimization of the value (or the
Q-value) function. Following the Bellman equation, which breaks down a
dynamic optimization problem into a sequence of simpler subproblems, typically
the value function and Q-value function are optimized by iterative RL algorithms.

The value function identifies how good is a state, which is the expected cumu-
lative reward from a state, following the policy 𝜋. Eq. (4.4) shows how the value
function is computed.

𝑣𝜋(s) =
∑

a∈(s)
𝜋(a|s) ∑

s′∈ ,r∈
p(s′, r|s, a)(r + 𝛾𝑣𝜋(s′)) (4.2)

RL algorithms which compute a Bellman optimality equation on the value func-
tion, pointed out as 𝑣∗(s), are iteratively computing the optimal expected cumula-
tive reward from a specific state. This formulation is shown in Eq. (4.3).

𝑣∗(s) = max
a∈(s)

∑
s′∈ ,r∈

p(s′, r|s, a)(r + 𝛾𝑣∗(s′)) (4.3)

Once the value function is computed for both state and action, namely a
state–action pair, it takes the name of Q-value function. Similarly to the value
function, this expresses the expected cumulative reward, following a certain
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policy 𝜋 from a certain state and action pair. The Q-value function is computed as
follows:

q𝜋(s, a) =
∑

s′∈ ,r∈
p(s′, r|s, a)(r + 𝛾

∑
a′∈(s′)

𝜋(a′|s′)q𝜋(s′, a′)) (4.4)

Algorithms which propose iterations toward the optimal Q-value function,
namely finding the optimal state–action pair at each time step, aim to converge
toward the Bellman optimality equation expressed in Eq. (4.5):

q∗(s, a) =
∑

s′∈ ,r∈
p(s′, r|s, a)(r + 𝛾 max

a′∈(s′)
q∗(s′, a′)) (4.5)

Methods that iterate toward the optimal Q-value function q∗(s, a) are obtaining
the optimal policy 𝜋∗ as shown in Eq. (4.6):

𝜋∗ = argmax
a∈A

Q̂(s, a) (4.6)

4.8 Policy-based Reinforcement Learning

An alternative to learning the value (or the Q-value function) function and iterate
over it is policy-based algorithms. Here, the policy is learned directly from trajec-
tories (usually stored in form of 𝜏t∶t+1 = (st, at, rt, st+1)) and out of a set of policies.
In case of neural networks-based algorithms, the policy is generally expressed by
the parameters 𝜃 of a neural network, and it is used for determining the value
(Q-value) of a state (state-action pair). The case of the value function is shown in
Eq. (4.7).

V𝜃(s) = 𝔼𝜋𝜃

[ ∞∑
t=1

𝛾 trt|s′ ∼ p(s′|st, 𝜋𝜃(st)), s1 = s

]
(4.7)

Therefore, the optimal policy parameters are identified from Eq. (4.8):

J𝜃 = 𝔼𝜋𝜃

∑
[𝛾r]

𝜃∗(s) = argmax
𝜃

J𝜃
(4.8)

Those RL methods which search directly for the optimal policy are called
policy-based.

4.9 Online Reinforcement Learning

Online and offline learning methods are not specific of the RL area. Nevertheless,
similar to other ML methods, RL algorithms also can be trained in an online or
offline fashion.
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To this end, online learning RL works with data in an incremental way. In fact,
while the algorithm is deployed, data are collected continuously and the perfor-
mance of the RL algorithm is improved constantly. What is usually wished in this
setting is to avoid catastrophic forgetting and accumulating new knowledge with-
out loss of previous tasks performance.

4.10 Offline Reinforcement Learning

On the other hand, offline RL is the commonly used setting, where data are col-
lected in datasets, and the training is performed on previously gathered instances.
This framework helps the reproducibility of results, as well as the learning from
samples of the entire distribution of data. As a consequence, offline RL is less prone
to suffering from catastrophically forgetting issues, as in online RL.

4.11 Reinforcement Learning with Discrete Actions

A set of problems which can be solved with RL entail discrete actions spaces.
Having a finite set of actions usually helps in the computation and faster conver-
gence of the problem. Additionally, many discrete action spaces problems (even
with a large set of actions) are to be found in many real-life applications. These go
from recommender systems, industrial plants, and language models.

4.12 Reinforcement Learning with Continuous Actions

Nevertheless, particularly in the field of robotics, autonomous driving, navigation,
the actions space (and, oftentimes, the state space) is continuous. Here, usually
the convergence is more difficult as the choice of actions is not finite. This gener-
ally increases the computation overhead of the RL methods, when solving for the
optimal action.

4.13 Reinforcement Learning Algorithms for Radar
Applications

Different typologies of RL algorithms have been applied to radar-based tasks.
Using the taxonomy explained in the current section, we analyze how those
algorithms have been utilized in the literature.
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Figure 4.2 Taxonomy of the reinforcement learning algorithms.

Figure 4.2 shows the category assignment for some of the most renowned
model-free RL algorithms, based on On-Policy/Off-Policy, and value-based/policy-
based coordinates.

SARSA is an On-Policy, value-based method in which the Q-value is updated by
using, for evaluating the action, the same policy that determined the action itself
(Algorithm 4.1) [9]. The algorithm pseudocode has been shown in Algorithm 4.2.
This method has been used in radar applications, for obtaining waveform opti-
mization for multiple-input multiple-output (MIMO) radar multitarget detection,
as shown in this work [10].1 Here, a MIMO radar synthesizes and optimizes a set
of transmitted waveforms, using RL, for a different number of targets and angle
positions.

DQN is an Off-Policy, value-based method that combines deep Q-learning
with deep neural networks. In DQN, differently from SARSA, the estimate of
the optimal Q-value is obtained utilizing the maximum of the reward a the next
time step st+1 (and estimated by a neural network), as explained in this work [11].
The algorithm is visualized in Algorithm 4.3.2 The algorithm is used, for instance,
in this contribution [12]. Here, DQN has been used for radar-based detection
and tracking in congested spectral environments. Using the DQN algorithm
indeed, the radar learns to vary the bandwidth and center frequency of its

1 Algorithm taken from https://github.com/MartinThoma/LaTeX-examples/tree/master/
source-code/Pseudocode
2 Algorithm adapted from https://github.com/MartinThoma/LaTeX-examples/tree/master/
source-code/Pseudocode/q-learning

https://github.com/MartinThoma/LaTeX-examples/tree/master/source-code/Pseudocode
https://github.com/MartinThoma/LaTeX-examples/tree/master/source-code/Pseudocode
https://github.com/MartinThoma/LaTeX-examples/tree/master/source-code/Pseudocode/q-learning
https://github.com/MartinThoma/LaTeX-examples/tree/master/source-code/Pseudocode/q-learning
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Algorithm 4.1 SARSA: Learn function Q ∶  × → ℝ.
Require:

Sates  = {1,… ,nx}
Actions  = {1,… ,na}, A ∶  ⇒ 
Reward function R ∶  × → ℝ
Black-box (probabilistic) transition function T ∶  × → 
Learning rate 𝛼 ∈ [0, 1], typically 𝛼 = 0.1
Discounting factor 𝛾 ∈ [0, 1]
𝜆 ∈ [0, 1]: Trade-off between TD and MC

1: procedure SARSA( , A, R, T, 𝛼, 𝛾 , 𝜆)
2: Initialize Q ∶  × → ℝ arbitrarily
3: while Q is not converged do
4: Select (s, a) ∈  × arbitrarily
5: while s is not terminal do
6: r ← R(s, a) ⊳ Receive the reward
7: s′ ← T(s, a) ⊳ Receive the new state
8: Calculate 𝜋 based on Q (e.g., epsilon-greedy)
9: a′ ← 𝜋(s′)

10: Q(s, a) ← (1 − 𝛼) ⋅ Q(s, a) + 𝛼 ⋅ (r + 𝛾Q(s′, a′))
11: s ← s′
12: a ← a′

return Q

linear frequency modulated (LFM) waveform and improving the signal-to-noise
ratio (SINR).

Trust region policy optimization (TRPO) is an On-Policy, policy-based method.
TRPO is a policy gradient method which avoids parameter updates that change
the policy too much (with regards to the Kullback–Leibler divergence) at each
policy update iteration, as explained in this contribution [13]. This method has
been used in this work [14], where new strategies of solving main lobe jamming
have been elaborated in frequency-agile radars. The robustness of the strategies
has been benchmarked against different forms of jamming perturbations.

Finally, DDPG is an Off-Policy, policy-based method, explained in this paper
[15]. DDPG is an algorithm which concurrently learns a Q-function and a policy.
It first learns the Q-function using Off-Policy data and the Bellman equation;
afterward, it uses the Q-function to learn the policy. The algorithm is shown in
Algorithm 4.4.3 In this work [16], DDPG is used for solving a radar waveform
design problem. The problem consists in selecting phases for a phase-coded

3 Algorithm taken from https://github.com/harryzhangOG/Deep-RL-Notes/blob/master/ddpg
.tex

.

https://github.com/harryzhangOG/Deep-RL-Notes/blob/master/ddpg.tex
https://github.com/harryzhangOG/Deep-RL-Notes/blob/master/ddpg.tex
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Algorithm 4.2 Q-learning: learn function Q ∶  × → ℝ.
Require:

States  = {1,… ,nx}
Actions  = {1,… ,na}, A ∶  ⇒ 
Reward function R ∶  × → ℝ
Black-box (probabilistic) transition function T ∶  × → 
Learning rate 𝛼 ∈ [0, 1], typically 𝛼 = 0.1
Discounting factor 𝛾 ∈ [0, 1]

1: procedure QLEARNING( , A, R, T, 𝛼, 𝛾)
2: Initialize Q ∶  × → ℝ arbitrarily
3: while Q is not converged do
4: Start in state s ∈ 
5: while s is not terminal do
6: Calculate 𝜋 according to Q and exploration strategy (e.g., 𝜋(x) ←

arg maxaQ(x, a))
7: a ← 𝜋(s)
8: r ← R(s, a) ⊳ Receive the reward
9: s′ ← T(s, a) ⊳ Receive the new state

10: Q(s′, a) ← (1 − 𝛼) ⋅ Q(s, a) + 𝛼 ⋅ (r + 𝛾 ⋅ maxa′ Q(s′, a′))
11: s ← s′

return Q

Algorithm 4.3 Deep deterministic policy gradient (DDPG).
1: while true do
2: Take some action ai and observe (si, ai, s′i , ri) and add it to 
3: Sample mini-batch {sj, aj, s′j , rj}
4: Compute yj = rj + 𝛾Q𝜙′ (s′j , a′

j ) using target networks Q𝜙′ and 𝜇𝜃′

5: 𝜙 ← 𝜙 − 𝛼Σj
dQ𝜙

d𝜙
(sj, aj)(Q𝜙(sj, aj) − yJ)

6: 𝜃 ← 𝜃 + 𝛽
∑

j
d𝜇
d𝜃
(sj)

dQ𝜙

da
(sj, a)

7: update 𝜙′ and 𝜃′

waveform with a power spectrum (PS) containing a low-power notch to support
spectrum sharing. To this end, DDPG supports a robust algorithm for optimal
phases selection.

4.14 Application: Tracker’s Parameter Optimization

In order to further exemplify the taxonomy proposed above, in this section
an Off-Policy, offline, model-free, value-based DRL algorithm for continuous
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state-actions spaces is presented. This is utilized for solving a real-life use-case,
namely a people-tracking task on short-range radar data.

Multitarget tracking with radars is a highly challenging problem due to
detection artifacts, sensor noise, and interference sources. The traditional signal
processing chain is, therefore, a complex combination of various algorithms
with several tunable tracking-parameters. Usually, these are initially set by
engineers and are independent of the scene tracked. For this reason, they are
often nonoptimal and generate poorly performing tracking.

In this context, scene-adaptive radar processing refers to algorithms that can
sense, understand, and learn information related to detected targets as well as
the environment, and adapt its tracking-parameters to optimize the desired goal.
In this use-case, we propose a DRL framework which guides the scene-adaptive
choice of radar tracking-parameters toward an improved performance on multi-
target tracking.

4.14.1 Motivation

In the modern semiconductor industry, radar sensors are gaining momentum. In
fact, for common tasks such as people detection and object tracking, they allow
for privacy, weather condition independence, and speed detection, as shown
in [17, 18]. These factors, combined with the low-cost of the sensors, are the
major causes for the market penetration of radar-based devices. In this context,
customers steadily require improved features and capabilities. One of the main
application fields of radar sensors is multitarget tracking (i.e., when multiple
detection instances are generated for multiple targets), particularly in the domain
of autonomous vehicles or human–machine interfaces, as described in [17, 19].

Multitarget tracking refers to the problem of maintaining the states of tra-
jectories over time from unlabeled data sequences. Compared to single-target
tracking, multitarget tracking has several challenges arising: detection errors,
occlusions, and artifacts due to measurement noise, etc. For multitarget tracking,
track filtering is usually achieved with a Kalman filter that allows exact inference
using recursive equations estimating the state of the target under a dynamic
model.

As the tracking performance highly depends on the underlying dynamic model,
tracking-parameters (e.g., process angle variance, model acceleration) are usually
set once by engineers to roughly fit the overall dynamics of the expected scenes.
Nonetheless, as radar scenes are highly complicated due to factors like the sheer-
ing angle/orientation of the radar and arbitrary dynamics of the tracked target, the
chosen tracking-parameters are often suboptimal for multiple scenes, resulting in
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poor tracking performance. To tackle this problem, approaches that consider an
optimal combination of tracking-parameters for each scene (i.e., scene-adaptive)
are required. As the parameters describe the underlying dynamic model in a con-
tinuous space, this leads to a continuous combinatorial optimization problem.

In the literature, several approximation approaches have been used to tackle the
complexity of high-dimensional optimization problems. In particular, late contri-
butions focused on the use of RL, such as in [15, 20–22].

Using RL, the reward signal directs the correct tracking behavior and guides the
tuning of the tracking-parameters, for each of the scenes. Nevertheless, setting up
such an RL framework for tracking-parameter optimization is not straightforward,
in particular, if the following challenges are considered:

1. How to preprocess the radar signal so that it can be used as input to an RL
framework for tracking-parameter optimization?

2. How to formalize a reward which encourages an optimal choice of the
tracking-parameters in the RL framework?

3. How to improve the RL training by using additional tasks, which are not expen-
sive in terms of labeling and equipment?

In this use-case, we address these questions. In particular, we first describe the
preprocessing steps for adapting radar data to the RL framework. Afterward, we
propose two different types of reward formulations, which adapt to the dynamic of
the unscented Kalman-filter tracking. These guide the system toward the choice
of the optimal scene-adaptive tracking parameters. Finally, we propose auxiliary
tasks, which involve little manual effort but significantly contribute to the perfor-
mance of the RL framework. Results show that, utilizing the proposed approaches,
we can get 226% and 93% closer to the optimal return on the two reward formu-
lations, when compared to the baseline tracking-parameters. Furthermore, the
miss-prediction rate is decreased by a factor of 6×.

The remainder of this use-case is structured as follows: in Section 4.14.2, we
present the background related to signal processing and RL; in Section 4.14.3, we
describe the proposed methods; while in Section 4.14.4, we evaluate them. Finally,
Section 4.14.5 concludes the section.

4.14.2 Background

In this section, we describe the background and motivation for our contribution.
To this end, we first describe the traditional signal-processing pipeline for
multitarget tracking, and then we explain concepts of RL that extend it toward
scene-adaptive tracking parameters. Finally, we give an overview of RL on related
work of multitarget tracking.
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4.14.2.1 Traditional Signal Processing Tracking for Radar
Human target tracking with radars as a research topic has now been studied
for multiple decades. Typical approaches for frequency modulated continuous
wave (FMCW) radar sensors include target detection, range, angle, and velocity
estimation, target association, and track filtering. The authors in [23] describe a
tracking method based on fusing camera and radar data. They first extract range
and Doppler information from the radar signal via a 2D fast Fourier transform
(FFT), then identify potential targets with a constant false alarm rate (CFAR)
detector and estimate the associated angles before combining these results with
the camera detections for track filtering. For the purpose of adaptive driver
assistance systems, the authors in [24] use a similar radar processing chain.
They add another clustering block after the CFAR detection to reduce the false
alarms and to get the center locations. Instead of tracking, they then use this
processed information as an input for a neural network for target detection and
classification. In [25], the authors add a coherent pulse integration block after
the range FFT and estimate the angle and velocity only after peak detection with
adaptive thresholding to save processing power. In the same vein, they then use
an alpha–beta filter as a light-weight tracking solution. We use a similar radar
processing chain for target tracking as shown in Figure 4.3, at each timestep, we
receive one 2D radar data frame from each receiving antenna, containing 128 fast
time samples and 64 chirps each. Within these 2D data frames, we first need to
detect potential target returns and extract their range angle and velocity values,
before feeding those measurements into our tracker.

4.14.2.2 Potential Target Detection and Parameter Estimation
We transform the 2D time-domain data to range-Doppler images (RDI) via a 2D
FFT and then remove any completely static targets with a 2D moving target indi-
cation (MTI) filter. To get rid of spectral leakage from peaks into adjutant range- or
Doppler bins, we use a Blackman window for the fast-time data and a Chebyshev
window for the slow-time data before doing the respective FFTs, as shown in [26].
The MTI filter is an exponential moving average low-pass filter, whose output,

Raw ADC
data

2D
FFT

Parameter
estimation

Data
asso-
ciation &
UKF filter

Tracking

MTI DBF DBSCAN
Centroid
Est.

OS-CFAR

ClusteringDetectionAngle estimation

Range
Doppler
image

Tracking parameters

Figure 4.3 Traditional and proposed processing pipeline for radar target tracking.
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containing mainly completely static targets, is subtracted from the current frame.
Afterward, we use digital beamforming (DBF) to transform the RDIs from the
two receiving antennas to a range angle image (RAI). The ordered statistics con-
stant false alarm rate (OS-CFAR detector block, as described in [27], then detects
potential target returns based on the estimated local noise level in the RAI. These
detections are then clustered based on their distances using the density-based spa-
tial clustering of applications with noise (DBSCAN) algorithm [28]. The inputs to
the tracker, an unscented Kalman filter (UKF), as described in [29], in this case,
are then the estimated parameters, namely, range, azimuth angle, and velocity, of
each cluster centroid.

4.14.2.3 Kalman Filter
Kalman filtering [30] consists of two main steps, the predict-step and the
update-step. In the predict-step, the state and its uncertainty after the measure-
ment from the next frame is predicted from the current state and its uncertainty,
a potential correction based on known influences, a state transition matrix, and
another covariance matrix modeling the uncertainty in the state transition matrix.
In the update step, the predicted state and its uncertainty are used along with the
new measurement and its measurement uncertainty, to update the current state
and its uncertainty. The Kalman filter assumes that the mappings xk+1 = F(xk, 𝑣k)
and zk+1 = H(xk,nk) describe a linear relation between the current state xk, some
process noise 𝑣k and the next state xk+1, and the current state, some measurement
noise nk and the measurement zk+1, respectively.

4.14.2.4 Unscented Kalman Filter
If the mapping functions F(xk, 𝑣k) or H(xk,nk) are nonlinear, the issue lies in calcu-
lating the nonlinear transformations of the predicted Gaussians. To solve this prob-
lem, the UKF uses an approximation for the probability mapping via the unscented
transform [31], which is then used in the processing chain to realize the overall
process and measurement model. The basic idea of the unscented transform is to
apply the nonlinear transform to sampled points from the original Gaussian and to
use the transformed points to find a new Gaussian to approximate the transformed
distribution with. Specifically, one uses some carefully chosen sigma points  as
follows:

 [0] = 𝜇 (4.9)

 [i] = 𝜇 +
√

n
1 − W0

Σ0.5
i , i = 1, 2, … , n (4.10)

 [i] = 𝜇 −
√

n
1 − W0

Σ0.5
i , i = n + 1, n + 2, … , 2n (4.11)
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where Wi =
1−W0

2n
and Σ0.5

i are the ith column of Σ0.5, which is the Cholesky
decomposition of the covariance matrix Σ, 𝜇, and Σ are the mean and covariance
of the original Gaussian, and n is the dimension of the state [32].

In our radar processing chain shown in Figure 4.3, the state vector xs is given by
xs = [x, y, 𝑣, 𝜙, �̇�], where x and y are the Cartesian coordinates, 𝑣 the radial veloc-
ity, 𝜙 the azimuth angle, and �̇� the azimuth acceleration of the tracked target.
With each measurement consisting of the range 𝜌 =

√
x2 + y2, angle 𝜙 and radial

velocity 𝑣, nonlinearities appear in both F(xk, 𝑣k) and H(xk,nk). The nonlinear state
transition, as seen in [33], is given by
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One challenging part in making Kalman filters work is setting its tracking-
parameters sensibly. For the human target-tracking task at hand specifically,
we use 14 adjustable tracking-parameters in the tracker implementation. These
consist of five process noise parameters, six measurement noise parameters, two
parameters for creating and deleting tracks, and a Mahalanobis distance-based
gating parameter to decide whether a measurement should be associated with
any track. The measurement noise variances along range, Doppler, angle, and
the range-angle, range-Doppler and angle-Doppler covariances are generally
connected to the radar specifications and therefore easier to set. The process noise
parameters, however, may require more careful tuning. One way of tuning these
parameters is by using the normalized innovation squared (NIS) metric, defined
as follows:

NISk+1 = 𝜖k+1Ω
−1
k+1𝜖

H
k+1 (4.13)

NISk+1 is 𝜒2− distributed with m degrees of freedom, where m is the number of
measurement variables, 𝜖k+1 is the innovation gained with each new measure-
ment, and Ω−1

k+1 is the inverse of its covariance matrix [26, 34]. Figure 4.4 shows
the NIS for two different tracking-parameter settings. In Figure 4.4a, the NIS is
visibly above the horizontal line visualizing the 95% confidence interval. This indi-
cates that the new measurement values zn+1 are mostly far off the predicted values
ẑn+1|n, implying an underestimation of the noise values. Figure 4.4b shows the
opposite scenario, where the NIS mostly falls below the 5% confidence region, indi-
cating that the noise variances are set too high as sketched by ẑn+1|n lying close to
zn+1. In our case, the tracking-parameters are manually chosen by an engineer,
starting from a set of heuristic parameters based on the radar system parame-
ters and expected use-cases, followed by a guided grid search using the NIS score
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Figure 4.4 (a) NIS is higher than 95% confidence score and (b) NIS is lower than 5%
confidence score.

and ground-truth position data as a performance metric on a set of diverse indoor
recordings (mainly office spaces and apartment rooms).

Since depending on the scene and deployed environment and tracked tar-
gets, the optimal parameters for the tracker could vary drastically and are
always challenging to find. In fact, there may also not be one set of optimal
tracking-parameters.

This problem has been often tackled in the scientific literature, e.g., from
these contributions [35, 36]. In the first paper [35], the authors design a system
which takes into account the trade-off between the tracking precision and the
loss-of-lock condition. To this end, they elaborate a sequence of linear predictors
for determining the target motion, with a fall-back mechanism. This mechanism,
once the linear models fail (for example because of the saccadic motion of the
target), automatically gives up the precision in order to avoid loss-of-lock. In this
following work [36], different methods for tracking-parameters optimization of
visual Trackers are proposed and compared. While in both papers sophisticated
approaches for retrieving tracking-parameters are provided, none of the methods
presented elaborate long-term strategies based on the state transition, action, and
cumulative future reward. This means, the choice of the tracking-parameters
depends in their case, only on the immediate outcome of the tracking precision,
and does not exploit exploration strategies for selecting tracking-parameters
which may start as suboptimal. Additionally, in this paper [35], the focus lays on
selecting a series of linear predictors for tracking the target motion, thus limiting
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the motion prediction of the target. Finally, in this contribution [36], methods
presented start with a general model of the tracking-parameter optimization,
determined a priori. This limits the flexibility of the tracking-parameter estima-
tion model. In order to address these drawbacks, RL is introduced as an effective
and yet scalable approach to tackle the search for optimal tracking-parameters.
To this end, in Section 4.14.2.5, we analyze how DRL can be used for continuous
optimization. After it, in Section 4.14.2.6, we describe how this improved the
search for tracking-parameters for different sensors.

4.14.2.5 Deep Reinforcement Learning for Continuous Optimization
While historically DRL methods have been focusing of discrete action spaces, both
On-Policy and Off-Policy RL methods have been proven effective for continuous
optimization. While On-Policy methods attempt to evaluate or improve the policy
that is used to make decisions, Off-Policy methods evaluate or improve a policy
different from that used to generate the data. As a consequence, Off-Policy meth-
ods are often used in real-life scenarios, as they can reutilize methods collected
from a different policy. To this end, the guarantee of a major sample efficiency
and allowance to learn from experts demonstrations lead to a major adoption in
real-life scenarios.

Within the Off-Policy methods used for continuous action spaces, DDPG [15]
and normalize advantage function (NAF) [21] are the most frequently adopted.
They deal with continuous action space by learning the maximum action for a
given state. While DDPG is an actor-critics algorithm which concurrently learns a
Q-function and a policy, NAF utilizes only continuous Q-learning paradigm, thus
simplifying the optimization.

However, since in these methods a deterministic policy is learned, exploration
is hard to obtain. Yet one of the main issues when applying DRL in real-world
problems is how to design the reward function when this one is sparse, episodic
(given only at the end of the episode) or even not explicit at all. inverse reinforce-
ment learning (IRL) [37] tries to address this issue by learning a reward function
(instead of a policy) that best explains a desired behavior contained in a (large)
collection of expert demonstrations. Although IRL methods might not be suitable
when expert demonstrations are scarce, it brings an interesting result of how to
deal with suboptimality in the expert demonstrations by the principle of maximum
entropy: keeping the policy’s entropy high while maximizing the return results in
a better exploration which produces a more robust policy that is easier to transfer.
Similar results can be found in [38].

So far, several RL approaches have been applied to tasks related to radar multi-
target tracking. These have been summarized in Section 4.14.2.6.
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4.14.2.6 Multitarget Tracking via Reinforcement Learning
Methods of multitarget tracking via RL have been explored in the computer vision
(CV) field [20]. Here, a scene-adaptive tracker, trained via DRL, is proposed. While
this work paves the way to further exploration of DRL for tracking-parameters
optimization, it presents some challenges toward its implementation on radar
trackers. In fact, radar input data require a more complex preprocessing than
visual data. Additionally, the amount of tracking-parameters presented in that
contribution is considerably lower if compared to the settings of an UKF, which
in turn increase the problem space. Moreover, the proposed reward formulation
in the paper [20] is specifically related to the overlapping of the prediction position
to the ground truth and does not encourage tracking-parameters exploration
in the DRL problem. Finally, the solution does not use auxiliary tasks, which
could be potentially helpful for a better convergence of the DRL algorithm. On
the other hand, multitarget tracking via RL has been explored also within the
radar signal processing community. In [39], a long-short-term memory network
(LSTM) is proposed to learn the measurement-to-track association probability
to solve the non-deterministic polynomial-time (NP) hardness combinatorial
association problem in multitarget tracking systems. Additionally, in the systems,
tracking highly maneuvering targets requires executing several filters in paral-
lel, either in the input estimation approach or the interacting multiple model
approach. However, such approaches are not conducive for resource-constrained
implementations, thus in [40] a hybrid neural network approach is proposed to
improve tracking accuracy. Cognitive radars (CRs) can adapt their operations
based on their environment and accumulate knowledge from their interactions
with the environment. To this end, RL has been proposed in several such proposed
solutions such as in [41–43].

In [41], authors propose cognitive imaging using RL by adapting the transmitted
waveform. In [43], authors propose to solve the NP-hard problem of radar resource
management using modified Monte Carlo tree search, which is further guided by
a RL framework. In [44], authors propose a reinforcement learning-based DQN to
solve the target assignment problem in a phased-array radar network. In [45], the
problem of multitarget detection in massive MIMO cognitive radar is considered,
and a cognitive multitarget detection in the presence of unknown disturbances
using RL is proposed. Finally, in [46], the radar-communication coexistence
problem is modeled by an MDP and solved using RL. Although, as described
above, several RL approaches have been developed to improve radar multitarget
tracking, no contributions yet optimize the tracking-parameters (e.g., process
angle variance, process noise) in a scene-adaptive fashion. In the next section,
we introduce the proposed approach, which enables the choice of scene-adaptive
tracking-parameters.



�

� �

�

134 4 Deep Reinforcement Learning

4.14.3 Approach

In this section, we describe the proposed approach toward scene-adaptive
tracking-parameters. To this end, (1) we first analyze the preprocessing steps
introduced for radar data; (2) then we discuss the formulation of the RL problem
and the training phases within the proposed RL framework; (3) and finally, we
describe the suggested networks pretraining through an auxiliary task.

4.14.3.1 Data Processing
As a first step of the data preprocessing, we use the pipeline presented in Figure 4.3
for obtaining an easy-to-process and informative input for the tracking-parameters
learning process. As an input to the tracking-parameters RL framework, we use
the RAI after OS-CFAR detection. These masked RAIs contain information about
the environment, human, and nonhuman targets, as well as possible ghost targets.
To allow also the extraction of track-related information and to become less sus-
ceptible to random perturbations and occlusions, the input to the RL framework
consists of the data from eight successive frames. This is consistently used during
the training phases of the RL framework.

4.14.3.2 Training Phases
In this section, we describe the training phases for learning optimal scene-adaptive
tracking-parameters. In our settings, the action space corresponds to the set of
tracking-parameters, which are continuous values. This fact alone justifies the
use of DL techniques in our RL method. Since the action space is continuous,
complex approximation as well as generalization capabilities are needed in the
method. DL allows for such continuous space approximation and generalization,
and hence, justifies the use of deep RL methods. The state consists of the number
of tracks and the positions for the ground-truth and the number of predicted
tracks together with their corresponding information about predicted positions.
Actions change the internal state of the tracker predictor. The choice of RL
framework is justified since we aim at optimizing the set of tracking-parameters
at every timestep for the whole sequence, taking into account long-term depen-
dencies. The optimal set of tracking-parameters can be different depending
on if the future is considered or not. In the RL settings, actions are chosen to
maximize the cumulative sum of rewards in a sequence, instead of maximizing
every timestep alone. The reward function is proposed below. As the optimal
tracking-parameters are chosen within continuous sets, we follow the NAF
approach to learn a policy that selects the best tracking-parameters at every scene.
To this end, we implement three neural networks: actor network 𝜇, from where
we obtain the tracking-parameters; lower triangular network P, which recreates
the state representation through reconstructing a positive-definite matrix; and the
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value network V , which approximates the value function. Additionally, a target
network is used to stabilize the Bellman error when learning the Value Network.

Q(s, a; 𝜃Q) = A(s, a; 𝜃A) + V(s; 𝜃V ) (4.14)

A(s, a; 𝜃A) = −1
2
(a − 𝜇(s; 𝜃𝜇))TP(s; 𝜃P)(a − 𝜇(s; 𝜃𝜇)) (4.15)

This approach allows us to subdivide the training process into three phases,
involving different neural networks at a time, combining imitation learning and
RL in a coordinate fashion. By splitting the training process into phases, it is pos-
sible to monitor and encourage the improvement of each single network. Similar
to [20], Phase I applies imitation learning on a set of demonstrations to initialize
the actor network. Demonstrations contain a sequence of scenes and their fixed
tracking-parameters, manually tuned by human experts. After this phase, the actor
network learns to select the tuned tracking-parameters for a given scene.

In Phase II, the actor network is fixed, and the value network and lower triangu-
lar network are trained to minimize the Bellman squared error. The value network
is copied and fixed to serve as target network. This target network is updated
during learning using a Polyak average of the current value network entropy.

Finally, in Phase III, all the three networks are trained jointly via RL in a syn-
chronized fashion. The outcome of this phase is an improved actor network able
to output the optimized scene-adaptive tracking-parameters.

4.14.3.3 Reward Formulation and Model-Based Variance
Designing a reward function that efficiently leads to the desired behavior is one of
the most critical components when applying RL to real-world problems. In our
application, the environment provides at every time step the number of tracks
Nt ∈ ℕ and positions Pt ∈ ℝ2 for the current scene provided by the cameras. Ide-
ally, the actor should select the optimal tracking-parameters that result in the
correct number of predicted tracks N̂t and their correct position prediction P̂t along
the whole sequence. Therefore, the reward function should have two components:
one to measure how accurate the system is at predicting the number of tracks (𝜌);
and a second term to measure how far the positions are with respect to the ground
truth (d). Since the optimal behavior would lead to zero, and our policy is opti-
mized to maximize the return, we change the sign of the reward.

−Rt = 𝜌(N̂t, Nt) + d(P̂t, Pt) (4.16)

The first term 𝜌 is implemented as the relative error of the predicted and true
number of tracks. For the second term, d, we propose two variants. The first vari-
ant, (d1), implements d as the sum of Euclidean distances between the true and the
predicted track positions. For the predicted tracks, only the predicted mean of the
Gaussians is considered. The procedure is described in Algorithm 4.1. The second
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Algorithm 4.4 Ordered minimum assignment.
Input: 𝑋 ∈ RMx2: predicted track means

1: 𝑌 ∈ RNx2: position labels
Output: distvals: list of Euclidean distances between assigned tracks

2: Initialization:
3: 𝐶 = cost_matrix, where cij is the Euclidean distance between the predicted

track mean x[i, ∶], and the position label y[j, ∶], 𝐶 ∈ RMxN

4: K = max(𝐶)
5: distvals = [ ]
6: for i = 0 to (min(M,N) − 1) do
7: ro𝑤_idx, col_idx = argmin(𝐶)
8: 𝐶[ro𝑤_idx, ∶] = K
9: 𝐶[∶, col_idx] = K

10: append 𝐶(row_idx, col_idx) to distvals
return distvals

variant, (d2), also takes into account the covariance matrix Σ provided by
the UKF.

d2 (P̂t,Pt) =
1
M

M∑
k=0

1 − pk(Pk) (4.17)

where M = min (N̂,N), pk ∼ N(�̂�k, Σ̂k) and Pk is the ground truth position for the
kth track. To maintain stability, we clip the pk(⋅) value to 1. This variant com-
putes how likely it is to miss the ground truth position by evaluating the true
position Pk on the multivariate Gaussian distribution given by its mean vector �̂�k
and its covariance matrix Σ̂k. This variant is meant to encourage exploration. Since
the NAF approach results in a deterministic policy, exploration is hard to obtain
with standard procedures for value-based methods (i.e., 𝜖-greedy). Inspired by the
results of maximum entropy IRL [47], d2 injects some small reward when the
tracking-parameters result in a high variance Kalman filter output. If the mean
vectors of the predictions are off with regard to the true positions, then having
higher variances in the predicted track distributions will result in a higher reward
as seen in Figure 4.5. The intuition behind this additional reward is to achieve bet-
ter robustness by promoting exploration when the current tracking-parameters
lead to suboptimal tracking. As a last remark, it is important to note that the opti-
mum of the two reward variants is 0.

4.14.3.4 Auxiliary Tasks and Pre-training for Transfer Learning
Auxiliary tasks can often improve the performance of ML models. Auxiliary
tasks are particularly important when labeled data are limited. As formulated in
Eq. (4.16), the reward depends on some distance between predictions and the true
target labels. For this reason, the target position should be provided as a label.
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Figure 4.5 Multivariate Gaussian representing the predicted track distribution.
The reward for the predicted target also depends on its associated variance by taking into
account the value of the Gaussian at the true target position p(xtrue, ytrue).

However, the position labeling requires no small amount of manual effort, and
typically entails depth-cameras and computationally expensive preprocessing.
To reduce computational costs, we pretrain our model on radar data to predict
the number of people in each scene and additionally classify whether the target
is static or dynamic. Labels for this task are easy to obtain using only the radar
sensors and therefore, large amounts of data can be exploited. After training, the
model learns useful information that can be transferred to the main task.

4.14.4 Experimental

4.14.4.1 Implementation Settings and Dataset
In the implementation, we used TensorFlowTM - GPU v2.4.0 with CUDA® Toolkit
v11.1.0 and cuDNN v8.0.5. As processing unit, we used Nvidia® Tesla® P40
GPU, Intel® Core i7-8700K CPU and DIMM 16GB DDR4-3000 module of RAM.



�

� �

�

138 4 Deep Reinforcement Learning

For implementing the RL algorithms, we used the TF-Agents framework, v0.7.1.
In order to perform the tracking, two Infineon’s XENSIVTM 60 GHz sensors have
been utilized together with two cameras for detecting the target positioning.
The dataset used contains 30 000 frames including scenes of human activities
performed by one to three people, divided in recordings with an average length of
350 frames. The frames are recorded with a frame rate of 10 Hz. The dataset has
been split into training and test set for the training process, dividing it into 22 000
(training) and 8000 (testing) frames. We use Detectron 2,4 a toolbox of Facebook
AI for object detection, to label the radar recordings in terms of detected people
and their positions with information from two cameras.

Figure 4.6 shows examples for a one person recording and a two person record-
ing in different indoor environments. The joint positions for each human detected
with the detectron framework and used for position labeling are highlighted in
both pictures. The radar position is indicated with circles.

4.14.4.2 Hyperparameters and Training
Hyperparameters for the neural networks have been retrieved by random search.

As described in Section 4.14.3, four types of networks have been considered,
an actor network, a lower-triangular network, a value network, and a pre-trained
network, which partially share the same architecture. The common structure is
visualized in Figure 4.7 and composed as follows: first convolutional layer (128
5× 5 kernels), first batch-norm layer, second convolutional layer (64 3× 3 kernels),

Figure 4.6 Indoor recording environment example pictures, taken with one of the
cameras used for labeling purposes.

4 https://github.com/facebookresearch/detectron2

https://github.com/facebookresearch/detectron2
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Figure 4.7 Respective network architectures of the actor network, lower triangular
network, and the value network used for the NAF learning.

second batch-norm layer, max-pooling layer (2 × 2 kernel with stride 2), third
convolutional layer (64 3 × 3 kernels), third batch-norm layer, first dense layer
(256 neurons), second dense layer (128 neurons), third dense layer (64 neurons),
output. Further, additional layers are implemented onto the common structure
to form the actor network, lower-triangular network, and the value network, as
shown in Figure 4.7.

For the actor network, value network, and pretrained network, the input is
composed by eight successive frames of radar-preprocessed data (32 × 29 × 16).
For the lower-triangular network, the tracking-parameters vector (1 × 14) sourced
from the actor network is first preprocessed by two dense layers, and then
concatenated to the output of the convolutional layers. For the three networks,
we use Adam optimizer, described in [48]. Learning rates are 1e − 5, 1e − 6, and
1e − 5 for the auxiliary task initialization, for Phases I, II, and III, respectively. For
the plain initialization, 1e − 3, 1e − 4, and 1e − 3. As specified in Section 4.14.3.2,
three networks are then utilized for the three phases of the training process,
while the pretrained network has been used for learning common features from
an auxiliary task. The training phase of the pretrained network has 1k training
steps. Regarding the successive training phases, we perform 10k steps in training
Phase I, 200k steps in training Phase II, and 24k steps in training Phase III.
In order to benchmark the propositions of this contribution in terms of tracking,
in Section 4.14.4.3, we conduct experiments in the form of an ablation study.
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4.14.4.3 Ablation Study and Results
In this section, we benchmark the impact of the auxiliary task as model initial-
ization and the newly proposed reward formulation in the form of an ablation
study. For each experiment, 10 runs are executed, and the results represent the
average of the obtained evaluation. As a first step, we train the pretrained network
through a multiclass classification task on the number of people in the scene, as
well as predicting if those people are static or dynamic. In this phase, we reach
an F1-score of 92%. We then detach the three initial convolutional layers and use
them for the initialization of actor network, value network, and lower-triangular
network. After this, we first subdivide the experiments in d1 or d2 reward formu-
lation. Successively, within these categories, we use the three networks initialized
from scratch in one case, or initialized by performing auxiliary tasks in the other.
In each of the single experiments, Phase I, Phase II, and Phase III training are
performed, and then the model is evaluated on the test set. The best actor networks
models for d1 and d2 are then compared in terms of tracking prediction.

4.14.4.4 Euclidean (d1) and Variance-Aware Reward (d2)
In Figure 4.8a, results in terms of return on test data are shown for actor network
models trained with an Euclidean reward. The return obtained by utilizing a plain
initialization mode is −1.18, while when using a pretrained architecture on aux-
iliary tasks, we obtain up to −0.92. The results visualized represent the test set
outcomes, using the plain or pretrained network (i.e., using the initialization from
the auxiliary-task training).

As shown, by extracting the relevant features, the pretrained model is able to
increase its convergence limit and obtain an higher reward with regard to the
plain initialized model. For the d1 reward variant, the outcome of manually tuned
tracking-parameters is −2.08 (i.e., baseline).

In Figure 4.8b, results are shown for the models trained with variance-aware
reward. The return obtained by utilizing a plain initialization model is−0.68, while
when using a pretrained architecture on the auxiliary task, we obtain up to −0.58.
As visualized in Figure 4.8b, the pretrained model is able to outperform the plain
model.

For this type of reward, the reward outcome of the baseline is −1.06.
As it is possible to observe from Figure 4.8a and b, the convergence of the

pre-trained model is obtained only at later steps of the training process. For this
reason, in order to ensure the completion of the learning process, the model
requires the whole amount of training steps in Phase III.

4.14.4.5 Tracking Prediction
In order to benchmark the tracking prediction obtained by the proposed reward
formulations, and the baseline tracking-parameters tuned manually, we com-
pare their error on a set of evaluation recordings. To this end, we utilize the
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Figure 4.8 Reward development on the test set over the steps of the Phase III training
for plain vs. pretrained vs. baseline using variant d1 (a) and d2 (b).

best-performing models obtained by using reward variants d1 and d2. In this
benchmark, the error has been divided in terms of false alarms/miss-detection as
well as distance to ground truth.

Figures 4.9 and 4.10 show scene tracking performed using the model trained
with reward variant d2, on two test scenes with around 650 frames (Figure 4.9)
and 350 frames (Figure 4.10). The scene tracking shown in Figure 4.9 has the
highest tracking accuracy and lowest miss-prediction rate within the evaluation
recordings for the proposed reward variant. Figure 4.10 instead shows the
worst-performing scene tracking for the proposed reward variant.
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Figure 4.9 Best-performing scene position predictions, pretrained (d2) vs. Baseline on
(a) x and (b) y coordinates for a one-target scene.

In both cases, the proposed method visibly outperforms the baseline (a compa-
rable distance from the ground truth has been obtained by using the variant d1). In
those particular test, scenes the baseline tracking detects the true target trajectory
for the majority of frames, but fails to reject false targets and fails to follow sudden
changes in the true target position. For both Figures 4.9 and 4.10, the 50. and the
95. percentile for the multivariate Gaussian track prediction output of the Kalman
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Figure 4.10 Worst-performing scene position predictions, pretrained (d2) vs. baseline on
(a) x and (b) y coordinates for a one-target scene.

filter are shown for the x-position in (a), and for the y-position in (b). By using d2,
the tracker tends to increase the uncertainty of the predictions, if the true target
is further away from the prediction’s mean. Accordingly, in both figures, the
variance is larger when the target enters and exits the field of view, and when the
true target is out of the field of view, but the tracker mistakenly still detects it.
The variance is visibly smaller when the predictions are closer to the true target
between frames 100 and 400 in Figure 4.9, and between frames 270 and 350 in
Figure 4.10. Figure 4.11 shows another comparison of the proposed method to the
baseline of an office scene, where a person walk up to a chair, sits down for some
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Figure 4.11 Comparison of (a) x position prediction for pretrained (d2) vs. baseline and
of the (b) RMSE of the closest prediction to the ground truth.

time, and walks away again. Figure 4.11a shows the x-position predictions of
both chains compared to the ground truth (dotted line), while Figure 4.11b shows
the corresponding root-mean-square error (RMSE) values between the closes
predicted target to the ground truth. In this particular scene, both processing
chains manage to track the target with a short delay on accelerations. While the
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adaptive chain detects the one target throughout the scene, the baseline falsely
detects two targets for about 40 frames.

On the whole test frames of the evaluation recordings, the average Euclidean dis-
tance obtained for the best model using the reward variant d1 is 0.9 m, with an aver-
age false alarms/miss-detection error of 0.25. On the other hand, for the best model
using reward variant d2, the average Euclidean distance is 1.0 m, while the false
alarms/miss-detection error is 0.25. For the baseline, the values for the Euclidean
errors and false alarms/miss-detections are 0.93 m and 1.5, respectively.

4.14.4.6 Statistical Relevance of the Variance-Aware Reward
As a last experiment, we determine the statistical relevance of the proposed reward
variant d2. To this end, we select the best performing, pretrained models using
reward variants d1 and d2, and we evaluate them using the reward variant d2
on an subsequent interval of 4000 frames, randomly selected out of the test set.
Our objective is determining if training with reward variant d2 would lead to a sig-
nificantly different distribution of returns with regard to training with reward vari-
ant d1. For reward variant d2, we obtained a mean evaluation return of −0.50 and
variance 0.02. For the model trained with reward variant d1, the mean return was
−0.69 and the variance 0.05. Since we cannot assume that the returns are normally
distributed, we perform the Wilcoxon signed-rank test to assess significance to our
results. In our research, this test is used for assessing if reward variants d1 and d2
produce policies with the same performance. The outcome of this test shows a p =
0.00, rejecting the null hypothesis and showing that the policy trained with reward
variant d2 are significantly better than the policy trained with reward variant d1.

4.14.5 Outcomes of the Proposed Approach

In this section, we present a method for tracking-parameter optimization of radar
sensors, using RL techniques for continuous optimization. To this end,

1. We propose an ad hoc data processing pipeline, in order to obtain input data
for the RL framework.

2. We introduce two reward variant formulations. The first reward variant uses
Euclidean distances, while the second takes the variance of the Kalman filter
prediction into account.

3. We propose auxiliary tasks on the RL training, which does not use sophisticated
positional labels.

Experiments show that our approach achieves a significant improvement for
the first reward variant (i.e., −0.92, 226% closer to the optimum), and for the sec-
ond reward variant (i.e., −0.58, 93% closer to the optimum), with regards to the
manually tuned baseline parameters. Furthermore, both variants reduce the false
alarms/missed detection by a factor of 6×.
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These outcomes substantially increase the tracking performance. In turn, this
leads to more efficient real-life solutions in the field as autonomous-driving,
automated air-conditioning/heating regulation, personalized sound systems, and
video sources.

4.15 Conclusion

In this chapter, we presented an overview of (deep) reinforcement learning. To this
end, we first reviewed the general concept of RL. Afterward, we realized a taxon-
omy of RL algorithms, where different categories have been established:

● On-Policy/Off-Policy,
● Model-based/Model-free,
● Value-based/Policy-based,
● Online/Offline,
● Discrete Actions/Continuous Actions.

Finally, we describe a use-case where an Off-Policy, offline, model-free, value-
based DRL algorithm for continuous state-actions spaces has been employed for
target-tracking with radars. To this end, the proposed methods are able to over-
come the state-of-the-art on short-range radar tracking and be 226% closer to the
optimal tracking performance.

4.16 Questions to the Reader

● Which type of RL algorithms are more sample-efficient: Off-Policy or On-Policy?
● How does the size of a replay buffer affect the computational complexity of an

RL algorithm?
● What are some problems where you would apply model-based RL algorithms?
● For a MDP-based problem, where the state/action space is extremely large,

would you prefer to apply a value-based or policy-based algorithm?
● Imagine you are implementing an RL algorithm in an embedded radar sensor:

what are the limiting factors? Which type of algorithm would help you overcom-
ing them?

● Given what you read in this chapter, can RL in practice be applied, with good
results, also to non-MDP problems? Explain why.

● You have to solve a specific problem and you decide to use RL. How would you
design your reward function? What are the factors you would consider mostly,
while designing it?

● How can a normalized advantage function help in the stability and convergence
of an RL algorithm?
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5

Cross-Modal Learning

After reading this chapter, you should be able to

● Have a good overview of multimodal deep learning.
● Apply different multimodal deep learning approaches for radar use-cases.
● Design and implement cross-modal deep learning techniques in radar solutions.

5.1 Introduction

Before delving into cross-modal learning, let us take a brief look into the multi-
modal deep learning (MMDL) space of which cross-modal learning is a subclass.
A deep learning approach that involves using single-modal stream as input in the
learning process is called unimodal, whereas one that involves multimodal stream
as input is called MMDL. MMDL has gathered significant amount of traction
recently in both academic and industrial research, owing to its resemblance to
how we perceive the world around us by employing multisensory input, i.e., hear,
touch, see, smell, and taste. MMDL finds its application across various domains
and use-cases. As covered in the review paper [1] by Summaira et al. many
proposed solutions use MMDL approach to generate image description where
for a given input image the proposed model should be able to generate visual
descriptions in the form of text [2–4]. MMDL is also used for video description
task, where textual descriptions are formulated for a given input video and can
find wide range of use-cases such as video surveillance, subtitle generation,
and sign language generation [5–7]. In use-cases such as speech generation or
text-to-speech (TTS), both modalities (audio waveform and corresponding text)
are used in a MMDL approach [8–10]. Visual question answering (VQA) is prob-
ably one of the most intuitive idea in terms of multimodal input where the model
is able to comprehend questions and generate answers by amalgamating question

Methods and Techniques in Deep Learning: Advancements in mmWave Radar Solutions, First Edition.
Avik Santra, Souvik Hazra, Lorenzo Servadei, Thomas Stadelmayer, Michael Stephan, and Anand Dubey.
© 2023 The Institute of Electrical and Electronics Engineers, Inc. Published 2023 by John Wiley & Sons, Inc.
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text and input image to which the question is tied to. In the next paragraph, a
brief introduction to one such VQA [11, 12] approach is described to give readers
an idea of how such a task can be addressed by leveraging a MMDL approach.
The readers are not expected to have a complete in-depth understanding of the
underlying architecture of the model discussed in the next paragraph but rather
just have an idea of how different modalities are tackled and used, which can be
helpful in comprehending detailed examples discussed later in the chapter.

VQA machines [13] as proposed by Wang et al. uses image, question, and facts
related to the image as input to predict answer along with reasons for making the
prediction. They employ hierarchical question encoding to generate an embed-
ding for the questions where the words are represented in an one-hot encoding
scheme and further fed to 1D convolution layers with varying filter size(unigram,
bigram, and trigram) followed by pooling layers to generate phrase-level features.
Finally, a long short-term memory (LSTM) layer encodes the phrase-level features
to question-level features. The input image is resized and split into 14× 14 regions
which are extracted from last pooling layer of a VGG -19 or Res-Net-100 which
is further embedded using a learned embedding weight and represent the image
features. Inspired by the way of encoding facts in a knowledge graph, the authors
propose a triplet format (subject, relation, object) and learnable weights Wn for
each one-hot encoded element in the triplet. Different visual architectures are
used to generate encoded facts list and can be easily extended to use any visual
model which can extract facts more important for a given task. Sequential coat-
tention is used to learn weights for different features (Question, Facts, Image) and
the weighted features are fed to an multi-layer perceptron (MLP) which performs
multiclass prediction where each distinct answer is a class.

Based on different learning approaches, MDL techniques can be classified as the
following:

Self-Supervised MMDL where one modal’s discriminative features can help
other modal’s learning. A generic example for such an approach would be using
a input data stream with two modalities where one can act as a support modal S
which is fed to a parameterized or nonparameterized function f (x), e.g., clustering
algorithms that generates distinctive features si for different possible classes. These
features can be used as target prediction for the deep learning (DL) model that
takes the other modal (input modal D) as input. The learning can be performed
by maximizing the similarity between the output of the DL model di and si using
a similarity function S(x). The loss function can be formulated as follows:

LSS = − 1
N

N∑
i=1

S(di, si) (5.1)

where N is the batch size.
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Joint embedding learning where multiple modal’s embedding’s can be pro-
jected to a shared space. For example, an input data stream with two modals (D,S)
are fed to two different DL embedding models to generate embeddings di and si.
The loss function can be formulated as follows:

LJE = 1
N

N∑
i=1

Dist(di, si) (5.2)

where Dist(a, b) is a distance metric related to the space (e.g., Euclidean distance),
and N is the batch size.

Multimodal input learning where the solution involves use of two modalities
as input. One generic example would be using two input modals (D,S) and
feeding them to two different DL networks and perform fusion of features di
and si which act as input to a final prediction layer. Such an architecture can
be either trained in an end-to-end fashion or use pretrained models to generate
features, fuse them, and feed them to the prediction block which can be trained
separately.

Cross-modal learning where there is knowledge distillation from one modal
input to another. For example, a superior modal D is used to train a teacher
network TN which is supposed to have better performance for the specific task.
The other modal S is used as input to a student network SN which is trained
by using distillation loss computed from predicted features si of SN and di
generated from the pretrained TN. In inference mode, only modal S and SN is
required which already has some degree of knowledge transfer from the superior
modality.

The illustration in Figure 5.1 provides readers with an intuition of the above-
mentioned learning algorithms. The chapter covers one example of each type of
learning along with a radar use-case that uses cross-modal learning.

Figure 5.1 MMDL techniques.
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5.2 Self-Supervised Multimodal Learning

In the chapter [14], the authors propose an interesting notion on how ambient
sounds can be complementary to visual information and often relate to the same
structure in space. For example, the sound of an engine can easily help us to distin-
guish between a fast-moving car or a heavily loaded truck based on its pitch. They
present a model that can predict related audio cluster for a given input frame.

5.2.1 Generating Audio Statistics

The audio statistics are generated by splitting audio into 3.75s window and by
following the audio texture model of McDermott which involves filtering the
waveform with 32 band-pass filters lying within human cochlear frequencies and
applying a Hilbert envelope, samples of which are increased by 0.3 power, and the
envelope is resampled at 400 Hz. The averaged statistics of these subenvelopes
over time is calculated by computing the mean and standard deviation of each
frequency channel, Pearson’s correlation between two channels, and the mean
squared result of applying 10-band-pass filters on the channels with center
frequencies ranging from 0.5 to 200 Hz which is equispaced on a logarithmic
scale. In order to make the audio features(modulation power, energy, correlation,
and marginal moments) invariant to gain, they are normalized and then rescaled
inversely to the dimension of each feature. The sound texture vector for each
image has a dimension of 502.

5.2.2 Predicting Sounds from Images

The author’s motivation to predict sound from images lies in the idea of being
able to learn visual features important for scene prediction. Only one frame is
used instead of multiple as motion information that causes certain sound and may
not always appear in the images. The task is formulated as a classification task by
explicitly defining audio categories which act as labels for the images. This also
makes it easier to compare the learned representations to that of object-scene mod-
els to prove that the learned representations are meaningful for the task. Vector
quantization and binary coding scheme are used as labeling models.

5.2.3 Audio Features Clustering

The audio features are clustered by employing k-means, and the resulting clusters
act as sound categories. Each audio feature is assigned a label according to the
class of the closest centroid. Within a cluster, its seen that corresponding videos of
the audios contain similar objects, while general scenes such as outdoor or wind
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blowing appear over all the clusters. The audio features that have a higher distance
than the median distance to the centroid are removed.

5.2.4 Binary Coding Model

In binary coding model, principal component analysis (PCA) is employed on the
audio features to generate top-30 components which are then thresholded to gen-
erate binary code. In the training, the model contains a sigmoid layer to predict
the binary code, and cross entropy is used as the loss function.

5.2.5 Training

A subset of the Flickr video dataset which contains public videos was used with
random selection of 10 frames per video. In total, 1.8 million training images were
used which was fed to a CaffeNet Architecture-based model with batch normaliza-
tion, batch size of 256, and Stochastic Gradient Descent as the optimizer. Figure 5.2
(adapted from Owens et al. [14]) depicts the overall solution architecture where an
input image is fed to a convolutional neural network (CNN) that predicts the audio
cluster from a set of audio clusters formed based on different scenes.

5.2.6 Results

A qualitative study on how the convolutional units are selective of specific
objects and an analysis of their distribution are covered in the discussed literature

Input image

Images grouped by audio clusters Clustered audio stats.

CNN

Audio cluster

prediction

Figure 5.2 Proposed self-supervised learning-based architecture.
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Figure 5.3 Example of neural visualization of the trained network for different groups
(people, babies, waterfalls).

work. Furthermore, the quality of learned representations was comparable to
representation learned through training methodologies which do not involve
any human annotations. Figure 5.3 (adapted from Owens et al. [14]) represents
example learned features by the network. One can notice how specific objects
such as field, car, sea were extracted. The study contains additional material on
qualitative and quantitative evaluation of the proposed solution.

5.2.6.1 Discussion
This form of training methodology can be really useful in cases where abundant
data are available in the form of video but not annotated. Additionally, trying
out different audio representations may yield different object detection. From a
radar use-case perspective, one might use such a setup to perform crowd mon-
itoring, for example where the radar data are preprocessed to form micro- and
macro-range-Doppler image (RDI) which become inputs to a similar CNN net-
work that predicts audio clusters representing densely crowded, sparsely crowded,
or no crowd scenario.

5.3 Joint Embeddings Learning

In the chapter [15], the authors propose a novel technique to perform video-text
retrieval task by exploiting multimodal cues in the video. This involves using mul-
timodal features (visual representation, audio, and text) for a fusion methodology
to learn joint embedding by employing multiple loss functions and a modified
pairwise ranking loss. The proposed technique was evaluated on MSVD and
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MSR-VTT datasets and was found to exhibit improved performance compared to
other methodologies.

5.3.1 Feature Representations

Text: The text feature of joint embedding dimension of 1024 is generated using a
gated recurrent units (GRUs) whose inputs are word embedding vectors of size
300 and is trained in an end-to-end fashion.

Object: In order to extract object information, a pretrained res-net-152 architec-
ture trained on ImageNet dataset is employed which generates a encoded repre-
sentation obtained from the penultimate fully connected layer.

Activity: In order to capture the temporal dynamics of the videos, a pretrained
RGB -I3D is used which consists of 3D CNN architecture where the input
(frames× image height× image width× channels) consists of 16 continuous
frames and output being a 1024 dimension vector.

Audio: In order to encode corresponding audio for the given video, SoundNet
[16] is used which produces a 1024 dimension vector.

5.3.2 Joint Embedding Learning

In order to preserve the semantic similarity between the video features and text
features, the authors propose a modified pairwise ranking loss with use of semi-
hard negative mining that allows effective embedding learning. The loss function
enables a joint embedding learning characterized by Θ (Weights of the I3D model,
SoundNet, and GRU). The proposed loss function can be formulated as follows:

min
𝜃

∑
𝑣

L(r𝑣)[a − S(𝑣, t) + S(𝑣, t̂]+ +
∑

t
L(rt)[a − S(t, 𝑣) + S(t, �̂�]+ (5.3)

where L(.) is a weighting function for ranks and r𝑣 and rt are the corresponding
ranking of the matching video and matching text, respectively. S is a cosine sim-
ilarity function, and t̂ and �̂� are hardest negatives in each minibatch. Chapter 2
provides more comprehensive explanation about different forms of embedding
learning.

5.3.3 Matching and Ranking

In a video-text retrieval task and vice versa, the most important information
involves extracting the objects, actions, and scenarios which are achieved through
the proposed pipeline depicted in Figure 5.4 (adapted from Mithun et al. [15])
As the name of the embedding spaces suggests, the object-text space maps
object features with the corresponding text and the activity text space focuses



Figure 5.4 Overall architecture of the proposed solution for joint embedding learning.
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more on mapping different events and actions to the description. Both of the
embedding spaces are optimized using the proposed loss function (Eq. (5.3)).
During inference, for a given text, the sum of similarity scores in both the spaces
for all the videos in database is computed and ranked accordingly. The same can
be done for an input video and ranking possible corresponding text.

5.3.4 Training Details and Result

The model is trained using Adam optimizer. The learning rate is set to 0.0002
for first 15 epochs which are further reduced by a factor of 10 for the next 15
epochs. The gradients are clipped if the L2 norm of the entire layer exceeds 2.
In this chapter, the results of the proposed solution over other competitive
solutions are displayed. R@1, R@5, R@10 indicates if the ground truth appears
in top-1, top-5, and top-10, respectively, and the proposed solution demonstrates
superiority overall as well as in most of the metrics. This chapter includes more
detailed quantitative and qualitative results.

5.3.5 Discussion

In general, the proposal seems to very promising and provides an improved
methodology for multimodal joint embedding learning. However, in certain
cases, where the training data include very similar videos with few extreme
outliers, the hard-negatives would lead to a very unstable model and might even
collapse. One can use such a joint embedding for a radar solution, where the task
is to have a very accurate keyword or voice recognition solution. The input for
such a use case can be audio data and radar data which are fed to separate Sinc-net
architecture (discussed in Chapter 3) and projected in a shared embedding space.
During inference, just the radar data can be used to retrieve corresponding audio.

5.4 Multimodal Input

One of the biggest challenges in a multimodal input solution is defining a function
that fuses multimodal representative vectors in a meaningful way. In this chapter
[17], the authors propose a novel idea of generating an expressive function that
takes in visual embedding vector along with a textual embedding vector to gen-
erate a joint representation vector. This is achieved by using multimodal compact
bilinear (MCB) pooling. The proposed methodology is used for VQA task and
achieves state-of-the-art results in the Visual 7W dataset and the VQA challenge.
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5.4.1 Multimodal Compact Bilinear Pooling

In the task of VQA, a location in the input image or a possible answer is pre-
dicted where the inputs are an image I and a question Q. This can be formulated as
follows:

â = argmaxa∈p(a|I,Q;W) (5.4)

where A is the possible locations in an image or answers and W the parameters.
MCB pooling allows to encode an image embedding and text embedding gener-
ated, for example by a CNN and an LSTM, respectively, in a meaningful represen-
tation that captures the underlying relationship between them and makes it easier
for the classifier to learn. Bilinear models are able to linearize a matrix generated as
a result of outer product of two vectors. However, in high-dimensional input vec-
tors, this leads to very high number of learnable parameters. In order to counter the
abovementioned challenge, count sketch algorithm is employed which projects
the outer-product in a lower dimension without computing the product directly.
Two vectors are initialized, c ∈ {−1, 1}n and k ∈ {1, ..., d}n, where c contains either
−1 or 1 for each index in the input, d is the dimension of the output, and y and k
projects each index of input in index of output y. Both the vectors are initialized
randomly from a uniform distribution, and y is initialized as a zero vector. Pham
and Phag [18] demonstrated that the convolution of the count sketches expresses
the outer product of two vectors, and as per convolution theorem, convolution
in time domain can be expressed as inner product in frequency domain. This omits
the requirement to compute the outer-product directly and is employed. The over-
all architecture of MCB is depicted in Figure 5.5 (adapted from Fukui et al. [17]).
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Figure 5.5 Multimodal compact bilinear block.
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5.4.2 VQA Architecture

The goal is to be able to predict a possible answer from a large set of answers
treated as classes, from a given input image and question. The image-embedding
vector is generated by a pretrained Res-Net-152 trained on the ImageNet. The
output of the penultimate pooling layer is used as the embedding vector having a
dimension of 2048 on which L2 normalization is performed. The corresponding
2048 embedding vector for the input question is generated by concatenating the
output of two LSTM layer each with 1024 units trained with one-hot encoded
word tokens. Soft-attention is used to capture spatial information in the MCB
block. The output of the MCB pooling is fed to two convolutional layers with a
Relu activation and softmax activation, respectively. The output of the softmax
activation produces a normalized attention map which is used to compute a
weighted sum of the spatial vector (output of the image CNN) to generate the
attended representation. This allows the architecture to focus on specific location
in both representations. The generated embedding vectors are passed through an
MCB block followed by L2 normalization and fully connected layer that maps it
to a 3000 dimension classification layer. The proposed architecture is depicted in
Figure 5.6 (adapted from Fukui et al. [17]).

This chapter contains additional similar architecture for VQA with multiple
choices and visual grounding.

Figure 5.6 Overall architecture of proposed solution for VQA.
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5.4.3 Training Details and Result

This chapter uses VQA dataset which contains approximately 200K MSCOCO
images with three questions for each image and 10 answers for each question.
A 2 : 1 : 2 split is done for creating train, validation, and test dataset. Adam
optimizer is employed with 𝜖 = 0.0007, 𝛽1 = 0.9, 𝛽2 = 0.999 along with early
stopping. Dropout is used in the LSTM and FC layers. In this chapter, the results
of the proposed solution over other architectures demonstrate clearly its superior
performance. This chapter includes more detailed quantitative and qualitative
results on VQA and visual ground task.

5.4.4 Discussion

The proposed solution tactfully addresses the issue of multimodal outer-product
without requirement of a huge computation using MCB block. Such solutions are
particularly interesting for developing embedded solutions where often there is a
computation constraint. For a radar use-case, such an algorithm can be used for
a radar–camera-based solution, where the inputs can be the camera image and
radar RDI Images.

5.5 Cross-Modal Learning

In this chapter [19], the authors leverage cross-modal supervision for the purpose
of building an accurate pose estimation solution using Wi-Fi signals that can pen-
etrate through walls and reflect human body. They use state-of-the-art computer
vision model to generate skeletons and use them as ground truth for developing
the solution. As discussed earlier, in cross-modal supervision, the teacher network
(camera-based model) is only required during training.

5.5.1 Data Acquisition

The system relies on transmitting frequency modulated continuous wave
(FMCW)-based low-power RF signals (complex) using a vertical and horizontal
antenna. The setup allows for range and angular separation between the reflecting
object. A synchronized camera provides an RGB image for the corresponding
time-step. The system has an FPS of 30, with depth resolution of 10 cm, angular
resolution of 15 in each direction, and a wavelength of 5 cm which causes
reflection in a case of human body.
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5.5.2 Cross-Modal Learning for Keypoint Detection

Cross-modal learning is employed to transfer the knowledge of a vision teacher
model T, which generates the salient skeleton keypoints of human poses, each
relating to a limb to a student network S which takes in RF signals as input and
tries to reconstruct back the skeleton keypoints. This chapter uses partial affinity
field (PAF) network [20] to generate 14 keypoints and confidence maps relating
to neck, head, elbows, shoulders, knees, hip, ankles, and wrists. The vertical and
horizontal RF signals are passed through individual encoders, outputs of which
are concatenated channelwise and fed to a decoder that reconstruct the confidence
maps. The loss function is defined as the summation of binary cross entropy of
each pixel in the confidence maps and can be formulated as follows:

L = −
∑

k

∑
x,y

Sk
x,y log Tk

x,y + (1 − Sk
x,y) log(1 − Tk

x,y) (5.5)

where k is the confidence map and (x,y) the pixel location. In order to counter
the problem of missing limbs in a single frame of RF signal caused due to its
low-spatial resolution, a sequence of 100 (3.3s) frames is used. The decoder is
designed in such a fashion that its outputs equal number of confidence maps.
This enables the model to capture and aggregate information over multiple frames
while being able to output confidence maps for each input frame. The RF encod-
ing layer is built up by using 10 spatiotemporal convolution blocks to be able to
learn salient features and be invariant in both space and time. The kernel size is of
9× 5× 5 with stride of 1× 2× 2 in every alternate layer. Relu is used as the activa-
tion function for all the layers. The decoder is made of four spatiotemporal convo-
lution layers with kernel size of 3× 6× 6 and fractionally stride of 1× 0.5× 0.5 for
all the layers except in the last one which has fractionally stride of 1× 0.25× 0.25.
Parametric Relu activation function is used for all the layers except for the output
layer where sigmoid activation function is used. The complex values of RF signals
are treated as two real channels by splitting the real and imaginary values. The
overall architecture is depicted in Figure 5.7 (adapted from Zhao et al. [19]).

5.5.3 Training Details and Results

The dataset used for training and testing is composed of synchronized data of RF
signal and corresponding camera image collected in 50 different scenarios and for
a total duration of 50 hours. Different activities such as jogging, sitting, reading,
and other natural activities were performed. On average, each frame contains 1.64
person and maximum of 14 persons. In order to be able to test partially occluded
(by furniture, wall, or other static objects) scenarios, an eight camera-based 3D



Figure 5.7 Overall architecture of the proposed solution for cross-modal learning.
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pose estimation algorithm to generate the pose and project into the view of cam-
era is attached with the radio. This additional test setup data were only used for
testing. A 70%–30% train-test split was done on the fully visible dataset and the
test set additionally contained all the through-the-wall scenarios. The proposed
solution is compared with state-of-the-art vision pose model. OpenPose and aver-
age precision over the object keypoint similarity (OKS) is used as a metric for
evaluation. Furthermore, AP0.5, which is average precision when OKS is 0.5 and
is regarded as loose pose match, and AP0.75, when OKS is 0.75 and is regarded
as strict pose match, are used as additional evaluation metrics. The comparative
results between the outputs of RFPose which takes in only RF signals as input and
OpenPose which takes in RGB images as input is reported in this chapter, where
for visible scenarios, the solutions show similar results, but what is most impres-
sive is in through-walls scenarios where RF-pose is capable of performing without
significant drop in accuracy compared to that of visible scenarios. This chapter
contains further analysis of model and failed scenarios.

Camera data

Radar data

Testing/inference

(a) Cross learning training

(b) Cross learning testing

Knowledge
distillation

Classification/
regression

Training

Cross-trained
radar

DCNN

Camera
classification/

regression

Radar
classification/

regression

Camera
DCNN

Radar
DCNN

Radar data

Figure 5.8 (a) Training methodology involving knowledge distillation,
(b) inference/testing mode.
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5.5.4 Discussion

The proposed solution demonstrates a novel way of cross-modal learning in the
form of a teacher–student network. Such a solution can be used to allow an inferior
sensor in terms of resolution, for example (student) learn better features from a
superior sensor (teacher) and during inference can deliver improved performance.
The people counting solution using radar which is described in the next section
leverages a similar learning setup (Figure 5.8).

5.6 Application: People Counting

People counting has been a core research topic across various domains in both
industry and academia due to its wide range of use-cases. Accurate people
counting can contribute to reducing energy consumption when integrated to
systems such as HVACs, lights, and other consumer devices where the system’s
energy consumption can be controlled in proportion to the count of number of
people in the area. Generating people count statistics for large, open areas such
as malls, cinemas, airports can help businesses to make better planning and
optimize workforce. It also can be used as a warning solution, where the number
of people more than a defined value can pose safety issues such as in elevators,
transport vehicles. Multiple solutions have been proposed in literature that
involve using different sensors such as cameras, infrared, Lidar, radar, and other
sensors. Camera-based solutions have proven to be the most accurate and reliable
for people counting in indoor and outdoor settings and leveraging deep learning
techniques, and such solutions have shown high performance even in highly
populated scenarios where the number of people are in thousands. However, like
any other sensor, a general camera-based solution comes with its own drawbacks,
of which the most prominent ones are its limited to no performance in low-light
scenarios and privacy concerns. On the other hand, radars are immune to such
drawbacks but come with their own limitations of suffering from low-resolution
data, multipath reflections and occlusions which result in missed detections in
a conventional radar-based people counting solution. In our past work [21, 22],
we proposed two novel radar-based deep learning solution for people counting in
an indoor setup, where its able to accurately and reliably count number of people
by leveraging cross-modal learning approaches to counter limitations discussed
above. For simplicity and separation of the two proposed solutions, we represent
the works as Solution 1 and Solution 2. The overall training and testing method-
ology of cross-modal learning through knowledge distillation is depicted in
Figure 5.9.
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Figure 5.9 Micro- and macro-Doppler component-based RAI processing pipeline.

5.6.1 FMCW Radar System Design

In both the approaches, we use Infineon’s BGT60TR13C radar system in the most
common mode of having a stream of frequency chirps with short-ramp times
and short delays between the chirps to make it power and computation efficient.
The analog-to-digital converter (ADC) has 12-bit resolution that digitizes the data
which are sent to PC via USB. The operating parameters of the radar for both the
solutions are presented in Table 5.1.

5.6.2 Data Acquisition

For both the use-cases, we used our in-house data acquisition setup that includes
synchronized radar-camera data collection which facilitates the cross-modal
learning approach. The setup involves four synchronized cameras placed at the
four corners of a room and at a height of 2 m. Each camera has a radar attached
just below them.

5.6.3 Solution 1

5.6.3.1 Data Processing
Range-Angle Image Each raw ADC data frame is reshaped into a 2D matrix with
a shape of number of chirps×number of samples. First, in order to get the range
transformation, a 1D fast-Fourier transform (FFT) is taken across the samples for
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Table 5.1 Operating parameters.

Parameters, symbol Value

Ramp start frequency, fmin 60.5 GHz
Ramp stop frequency, fmax 61.5 GHz
Bandwidth, B 1 GHz
Range resolution, 𝛿r 15 cm
Number of samples per chirp, NTS 128
Maximum range, Rmax 9.6 m
Sampling frequency, fs 2 MHz
Chirp time, Tc 64 μs
Chirp repetition time, TPRT 400 μs
Maximum Doppler, 𝑣max 3.125 m/s
Number of chirps, PN 64
Doppler resolution, 𝛿𝑣 0.0977 m/s
Number of Tx antennas, NTx 1
Number of Rx antennas, NRx 3
Elevation 𝜃elev per radar 90∘

Azimuth 𝜃azim per radar 130∘

all the chirps. Another 1D FFT is taken for all the range bins to obtain Doppler
information after performing mean subtraction across the chirps. The RDI maps
formed as a result of these processing is further fed to a moving target indicator
(MTI) filter that suppresses reflections from static objects in the room. In a simi-
lar fashion, we compute a micro-Doppler representation of the scene by forming
a virtual frame made by concatenating first chirp from each frame for 32 consecu-
tive frames and passing it through the same processing discussed above. The first
RDI map allows us to capture major body motions, whereas the micro-RDI maps
capture static person having micromotions due to breathing or small movements.
Both RDI maps are further processed to form range angle images (RAIs) by using
output of two antennas and feeding them to a digital beam-forming algorithm that
uses weighted angle model that is formulated as follows:

zRAI(r, 𝜃) =
𝜈max∑

𝜈=−𝜈max

NRx∑
j=1

zj
RDI(r, 𝜈)e

−j 2𝜋dj sin(𝜃)
λ

∀ −
𝜃azim

2
< 𝜃 <

𝜃azim

2
(5.6)
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Figure 5.10 (a) Macro-Doppler RAI and (b) micro-Doppler RAI.

where 𝜃azim represents the half-power bandwith, zj
RDI is the complex RDO from the

jth receive channel, NRx is the number of receiver channels, and the outer summa-
tion is taken across the Doppler bins. Figures 5.9 and 5.10 represent the proposed
radar data processing pipeline and sample macro–micro Doppler RAI generated
for a static person, respectively.

Camera Data Processing The camera data are processed by using CSR-Net as pro-
posed in paper [23]. The CSR-Net is able to perform accurate and robust people
counting even in highly dense scenarios and can form a heat density map for a
given input image. The proposed architecture reuses VGG-16 architecture’s first
10 layers with three pooling layers. In order to have the same output dimension
as of the input, bilinear interpolation is performed with a factor of 8 and is fed to
an additional architecture consisting of 6 dilation convolution layers with dilation
of 2 and number of feature maps being 512 for the first three and 256, 128, 64
for the last layers, respectively. The heat density maps are generated by employ-
ing a Gaussian kernel to blur each annotated heat in the input image and can be
formulated as follows for a target object x:

F(x) =
N∑

i=1
𝛿(x − xi) × G𝜎i

(x); 𝜎i = 𝛽di (5.7)

where the average Euclidean distance of three nearest neighbor multiplied with a
factor 𝛽 = 0.3 represented by 𝛽di and is the standard deviation of the Gaussian ker-
nel and 𝛿(.) is the ground truth. The count of number of people can be performed
by counting pixels above a defined threshold in a heat density map. In order to
adapt and make CSR-Net robust for our indoor room scenarios, the last two layers
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(a) (b)

(c) (d)

Figure 5.11 (a, c) Two and three person scenario camera images and (b, d) CSR-Net
outputs, respectively.

of a pretrained CSR-Net is trained in supervised learning fashion with some anno-
tated examples from our recordings. Sample results from the CSR-Net is displayed
in Figure 5.11.

5.6.3.2 Learning Methodology
Inspired by the recent success of teacher–student networks for cross-modal
learning, we build a DCNN -based autoencoder that takes in RAI images, both
micro- and macro-RAIs fed as different channels, to reconstruct back heat density
maps which are the output of the CSR-Net for the corresponding camera image.
The learnt embedding should be representative enough to capture semantics
derived from both radar and camera image which is superior in this case in terms
of resolution and accuracy. In order to ensure a successful knowledge distillation
from the camera network (teacher) to the radar DCNN (student), we propose a
novel loss function that uses a combination of focal mean squared error (MSE)
and cross-entropy. On successful training of the auto-encoder, the embedding
layer output is passed to a fully connected layer with softmax activation and
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trained with ground truth people counting using binary cross-entropy loss. This
allows us to have a cascaded networks which once trained can predict the number
of people in a scenario by just taking RAI images as input. The two learning stages
is depicted in Figure 5.12 The proposed radar DCNN network is detailed beneath.

Radar DCNN The radar DCNN follows an auto-encoder architecture and consists
of three convolutional layers with Relu activation followed by pooling layer of fac-
tor 2 after each convolution layer in the encoder side. The decoder comprises of
a similar architecture where pooling layers are replaced with upsampling layers
with the same factor. In addition, the decoder part houses a convolution layer
in the end with kernel size of 1× 1 with sigmoid activation and 1 feature map.
Remaining all convolution layers has a kernel size of 3× 3 and 32 feature maps.
Residual connection within the network is established by using add layers between
the first two pooling and upsampling layers.

Classification First, the radar DCNN network is trained with RAI images as input
and heat density maps from camera modality as reconstruction target. One key
challenge for such a reconstruction is that most values in the density heat maps
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are near zero and very few really close to 1 which represents heads. We use the
following proposed loss function to address this imbalance:

lMSE = 1
N0

𝑤0||X0 − X0
r ||2 + 1

N1
𝑤1||X1 − X1

r ||2 (5.8)

lCCE = −
∑
k∉Ω

(Xk)𝛾0 log(Xk
r ) +

∑
k∈Ω

(1 − Xk)𝛾1 log(1 − Xk
r ) (5.9)

ltotal = lCCE + λ ∗ lMSE (5.10)

where for input X and output Xr, the lMSE involves using weighted summation
parameterized by 𝑤0 and 𝑤1 for pixel values less and more than adaptive mean.
The 𝛾0 and 𝛾1 controls the emphasizes of the same in the cross-entropy loss. The
Ω includes pixels with value more than 0.4. The contribution of MSE in the total
loss is limited by hyperparameter λ computed through cross-validation. Since we
would want to emphasize more on learning the more critical but less-in-number
pixel value, we choose values 𝑤1, 𝛾1 more than their counter factor. The classi-
fication is done by using the output of trained encoder as input to a fully con-
nected layer as described before. The classifier has five classes (1–4 scenarios and
4+ scenario).

5.6.3.3 Results
The dataset comprises of 59 720 frames with roughly 5000 frames per class. In the
setup, 10 volunteers performed regular activities within the room and entered
and left randomly. At any given time, there was not more than seven people in
the room. The labeling involved using prediction from the CSR-Net followed by a
manual verification. A 80%–20% train-test split was performed, and the test dataset
only contained radar data. Two samples from the training dataset from displaying
the reconstructed heatmap is shown in Figure 5.13. For the purpose of compar-
ison with a unimodal approach, an exact same architecture was used where the
auto-encoder had the same input and reconstruction target. In Figure 5.14, we dis-
play the confusion matrices for both the models. Clearly, the multimodal approach

(b)

(a)

Figure 5.13 Order:
ground-truth heatmap,
macro-Doppler RAI,
reconstructed heatmap.
(a) Two-person scenario.
(b) Three-person scenario.
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Figure 5.14 (a) Unimodal learning confusion matrix. (b) Cross-modal learning confusion
matrix.

outperforms the unimodal approach and has an accuracy of 0.955 over 0.86. The
encoder model along with the classification layer which is needed for inference
has a size of 44 kb which makes it very feasible for an embedded deployment.

5.6.4 Solution 2

5.6.4.1 Data Processing
Range-Doppler Representation The raw ADC data is reshaped as a 2D matrix in a
similar way as in solution 1, i.e., number of chirps×number of samples, and exact
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same steps are followed to generate macro and micro range-Doppler representa-
tion. However, as in learning from our previous solution, we found that instead
of using first chirp of every frame to form the virtual frame for micro-Doppler
processing, using a summation across all the chirps for every frame yields better
results.

Camera Data Representation We employ a pretrained OpenPose model [20], which
is a multiperson pose estimation solution for processing our camera data. It
comprises three-stage network where the input is fed to a CNN model that is
made of first 10 layers of VGG-16, followed by partial affinity field network
(PAF) which allows to relate different detected limbs with different persons and
a confidence map refinement network. Greedy-matching algorithm is a used
map of the PAFs and the confidence maps. Each generated confidence map
represents the pixels where a particular limb might be present. We choose 13 such
confidence maps representing 13 critical limbs and taken a mean of it to use it
as an input to a triplet network with a 32 D linear embedding output. The triplet
network is trained with all the people count classes and is used upon training to
generate embedding for a given mean confidence map. The overall accuracy of
the network with 70–30% train-test split was 98.75%.

5.6.4.2 Learning Methodology
In this solution, we try to perform knowledge distillation between the camera
model (teacher) and radar model (student) by trying to enforce a similar embed-
ding space that is learnt by the triplet network using the camera data to the radar
encoder’s embedding layer that takes in radar data as input.

Radar Encoder The radar encoder comprises of five Res-blocks which has residual
connections involving a input-convolution layer followed by an output-
convolution layer with kernel size of 3 times 3, a 1 times 1 convolution layer
which helps in matching the input convolution layer dimension to that of output-
convolution layer dimension for addition. The Res-blocks are followed by three
fully connected layers with 128, 32 (same dimension as of the embedding layer
in triplet network), and 7 (number of classes) hidden units. Relu activation is
used for all the layers except the last two fully connected layers for which softmax
activation is used.

Classification The input to the radar encoder have 12 channels representing real
and imaginary value of micro- and macro-Doppler images for all three channels.
The encoder is trained using softmax output of embeddings Cemb generated by
the camera model for corresponding mean confidence maps which are used to
compute Kullback–Leibler (KL)-divergence LKL between it and the embedding
layer Eemb of the radar encoder which is the second last layer. Also, the
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ground-truth class count is one-hot encoded to compute the categorical
cross-entropy LCCE with the output of penultimate layer. Both of the losses are
jointly optimized and can be formulated as follows:

LKL(Eemb ∥ Cemb) =
∑
x∈

Eemb log
(

Eemb

Cemb

)
(5.11)

where C is the number of classes = 7. During inference, index of the highest value
in the last layer is predicted as people count. The overall proposed architecture is
depicted in Figure 5.15.

5.6.4.3 Results
The dataset used for the evaluation of the proposed solution consists of 65 000
frames in the training set where people moved or stood still in a room and test
set of 2600 frames recorded by a different radar sensor with a different placement
to test the solution’s generalization capability to different FOV. The classes are
0–6 people, and the results for a encoder model with knowledge distillation and
without are depicted by the confusion matrices in Figure 5.16. We see a test
accuracy of 71% and 58% with knowledge distillation and without, respectively.
The most interesting learning is that while both models underperform in 2+
persons scenarios, the proposed solution exhibits a much more stable and
close result. This difference is more clear when we look into the 2D uniform
manifold approximation and projection (UMAP) of the embedding outputs from
both the models and clearly see a better and more meaningful separation for
the first.
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5.7 Conclusion

In this chapter, we went through the overall idea of multimodal learning and the
value it brings in unimodal learning approaches. The multiple examples of mul-
timodal learning that is covered can be stretched as a guidance and starting point
for using different modalities for radar use-cases. The cross–learning-based radar
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solutions introduced for people counting use-case show the immense value such
an approach brings for developing a stable and generalized solution while having
the same computation and power cost in inference mode as that of a traditional
approach.

5.8 Questions to the Reader

● What are the different types of modal present in a video recording?
● What are the key differences between multimodal and cross-modal learning

approach?
● Define a radar-based use case for each type of MMDL learning approach dis-

cussed in the chapter?
● In a cross-modal learning approach, explain different approaches that can be

followed for knowledge distillation?
● Describe a detailed framework for the following use-cases: The goal is to build a

speaker verification solution where a radar device attached with a microphone
facing the throat of the subject. Explain in terms of preprocessing, learning
methodology, and bottlenecks if any.

● What are the key factors to be taken care of in the discussed people counting
use-case to ensure a well-generalized model.

● In general, explain the different bottlenecks that may arise in MMDL approach.
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6

Signal Processing with Deep Learning

After reading this chapter, you should

● Have an overview of different model-based approaches to incorporate expert
knowledge in deep learning methodologies.

● Understand the advantages of including knowledge from signal processing
methods in deep learning models and when to do so.

● Acknowledge the advantage of combining signal processing with deep learning
for radar target segmentation.

6.1 Introduction

Machine learning and especially deep learning have proven to achieve
state-of-the-art results on a wide range of different tasks. Breakthroughs in com-
puter vision (CV), with convolutional architectures such as AlexNet [1] topping
the ImageNet challenge, architectures such as Yolo enabling accurate real-time
object-detection [2], and in natural language processing, with long short-term
memories (LSTMs), and later transformers [3], enabling the use of context
information over longer texts, have accelerated research in machine learning
and deep learning. In many of these highly complex problems, machine-learning
methods manage to exceed the performance of signal processing-based methods
that require expert knowledge and typically rely on assumptions and approxi-
mations to reduce the complexity of the problem. Machine learning (ML)-based
methods have also found their entrance in radar signal processing tasks, such
as human target segmentation [4], people counting [5], gesture recognition
[6], and hyperparameter estimation [7]. While showing promising results in
most of these tasks, the data-driven nature of ML introduces some new issues.

Methods and Techniques in Deep Learning: Advancements in mmWave Radar Solutions, First Edition.
Avik Santra, Souvik Hazra, Lorenzo Servadei, Thomas Stadelmayer, Michael Stephan, and Anand Dubey.
© 2023 The Institute of Electrical and Electronics Engineers, Inc. Published 2023 by John Wiley & Sons, Inc.
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Labeled data requirements that may not be given, overfitting on the training
data distribution, failure or unpredictable behavior in unseen cases, data and
computation requirements, and the issue of explainability due to the mostly
black-box nature of modern neural networks. This chapter will focus on different
approaches of combining expert or domain knowledge from signal processing
with the flexibility and power of deep learning.

6.2 Algorithm Unrolling

Algorithm unrolling describes the technique of taking an iterative algorithm to
solve a specific problem and then unrolling this algorithm for a specific number
of iterations, whereby a neural network layer captures each step. This method
was first proposed in [8] for sparse coding, demonstrating a better performance
in fewer iteration steps. Since then, research interest in the possible applications
of algorithm unrolling has led to publications in various fields of interest, such
as super-resolution [9], image denoising [10], scene-flow estimation [11], and
communications [12]. An overview of some different use cases of algorithm
unrolling is given in [13]. Figure 6.1 shows the unrolling of a general algorithm
as proposed in [8]. Here, x0 is the initial state, representing raw data or some
initial guess. The initial state x0 is then fed to some algorithm h, which outputs
an approximate solution y0 for the first step. In an iterative algorithm, this
approximate is then the input to h in the next step to achieve a better approximate
solution. This is repeated for t times until we arrive at a satisfactory solution based
on predefined criteria or for a specified number of steps t. We will better under-
stand the concept of algorithm unrolling after going through the paper [8] as an
example.

yT

yT

x0

x0
y0 y1yt

h
h h h

Unrolling

Figure 6.1 Visualization of an unrolled general algorithm as block diagram.
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6.2.1 Learning Fast Approximations of Sparse Coding

The sparse coding problem is given by Eq. (6.3). The goal here is to find a latent
representation ri for each xi, such that xi is mostly recoverable from ri, i.e., the
mean squared error between xi and Dri is small, while being sparse.

argmin
D,ri

K∑
i=1

||xi − Dri||22 + λ||ri||0 (6.1)

The sparsity of ri is ensured by the l0-norm term in the optimization problem.
The hyperparameter λ defines the weighting of the sparsity regularization term.
D ∈ n×m is an application-specific codebook, with the norm of its columns
constrained to ||di||22 ≤ 1, to avoid the values in ri becoming too small, that may
either be defined or also part of the optimization problem. Solving Eq. (6.3) is
NP-hard due to the l0-norm [14]. Therefore, the l0-norm is typically replaced with
the l1-norm as a convex relaxation:

argmin
D,ri

K∑
i=1

||xi − Dri||22 + λ||ri||1 (6.2)

The l1-norm ||ri||1 of a vector ri returns the sum of the absolute values of all its
elements, and it was shown to exactly approximate the l0-norm solution under
certain conditions [15] while still achieving good results even if these conditions
are not met [16]. If we assume that the codebook D is known, which is often given
in the overcomplete case, where m > n, then we can write Eq. (6.2) for a single
measurement vector xi as follows:

argmin
r

||x − Dr||22 + λ||r||1 (6.3)

A popular iterative way of solving the optimization problem of the above type is
the iterative shrinkage-thresholding algorithm (ISTA). ISTA is a gradient-based
method. The gradient of the quadratic part of Eq. (6.2) is −2DT(x − Dr). ISTA is
then a simple algorithm with the following update step:

rk+1 = S𝛼(rk + 2tkDT(x − Drk)) (6.4)

where tk is the step-size for the gradient update step, and S𝛼 = (|rj| − 𝛼)+ sign(rj)
is a shrinkage function. S𝛼(r) shrinks any element rj in r by a step-size of 𝛼 toward
0 if |rj| > 𝛼, and sets |rj| = 0, otherwise. With each step in the form of Eq. (6.4), the
quadratic term is further minimized by following its negative gradient, while the
regularizing l1-norm term is kept small with the shrinkage operator S𝛼 . In [8], they
first reformulate the iterative update equation to

rk+1 = S𝛼(rk(I − 𝜇kDTD) + 𝜇kDTx) (6.5)
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+
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r0 Dt
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Dt rLSα Sα+

Figure 6.2 ISTA algorithm unrolled for L iterations.

where 𝜇k = 2tk. Then they substitute Dt = (I − 𝜇kDTD), and De = 𝜇kDT to arrive
at following expression:

rk+1 = S𝛼(rkDt + Dex) (6.6)

Figure 6.2 shows the diagram of the unrolled learned ISTA algorithm over L steps.
In each step, the algorithm consists of two matrix-vector-multiplications, followed
by a nonlinearity in S𝛼 . Each such step can be directly realized by a neural net-
work block consisting of two fully connected layers with linear activations and an
addition of their outputs followed by a nonlinearity.

The full network consists of L concatenated ISTA-layers, as shown in Figure 6.3,
where fully connected layers replace the mutual inhibition matrix Dt and DeT.
The fully connected layers can now be trained in a supervised manner. For this, an
optimal latent representation, or coded version for the input examples, is required.
If given, the ISTA-layers in the network can be trained to approximate the desired
code by minimizing the loss function shown in Eq. (6.7).

L(D,𝛍) = 1
N

N∑
i=1

||r∗i − rLi(D, 𝜇)||22 (6.7)

Here, N is the size of one training-batch, r∗i is the optimal code for the ith input
example, and rLi is the output code of the network for the ith example, produced
after going through L ISTA-layers. The trainable parameters of the ISTA-layers
can then be updated by minimizing the loss function in Eq. (6.7) via stochastic
gradient descent and by backpropagating the gradients through the ISTA-layers.
In practice, the codebook D may be fully trainable, or assumed to be partly
known/parametric. Also, the weights representing the codebook D may be
shared among the ISTA-layers, or can be different, Dk, for each ISTA-layer, which
generalizes the ISTA-algorithm.

+r0 rL

x

Sα + Sα

Figure 6.3 Learned ISTA algorithm L for multiple iterations.
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6.2.2 Learned ISTA in Radar Processing

In radar signal processing, iterative gradient-based methods can be used to accu-
rately estimate various parameters such as range, angle, or velocity of a target.
Specifically, those methods, like ISTA, may be used for frequency estimation tasks
when the received signal is somewhat sparse in its frequency representation.
The overcomplete dictionary then consists of some M complex exponential
monotones, as seen in Eq. (6.8).

D = ej2𝜋n∕M , with n = 0, ...,M − 1 (6.8)

In [17], they investigate the usage of learned ISTA for direction of arrival (DoA)
estimation with radar antenna arrays while leveraging the special Toeplitz struc-
ture of the Gram matrix DHD in this specific case to reduce the computational
complexity.

Estimating the DoA with radar antenna arrays is a frequency estimation prob-
lem. With a point-target reflecting the radar signal, under the far-field assumption,
the angle information is encoded in the phase difference of the received target sig-
nal among the Rx antennas. Equation (6.9) shows the steering vector for a uniform
linear array with N antenna elements.

a(𝜙) = ej2𝜋fcn sin(𝜙)d
c , n = 0, ...,N − 1 (6.9)

Here, fc is the carrier frequency, 𝜙 is the DoA of the signal, and d is the distance
between the receiving antenna elements. The phase difference is given by fcn sin(𝜙)d

c
and caused by the different propagation distance,Δd, among the antennas, as visu-
alized in Figure 6.4.

The received radar signal can then be described as follows:

y(t) = As(t) +𝑤(t) (6.10)

where s(t) = [s1(t), s2(t), ..., sN (t)]T is the reflected signal originating from N targets
at timestep t, A = [a1(𝜙1), a2(𝜙2), ..., aN (𝜙N )] is a matrix of steering vectors for each

Figure 6.4 Sketch of a uniform linear array
(ULA) with three receivers, showing the different
signal propagation paths.

ϕ ϕ
dd

∆d ∆d
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reflected signal, and 𝑤(t) is some additive noise. The task of the DoA estimation
may now be formulated as an optimization problem according to Eq. (6.2), where
the codebook D consists of steering vectors, sampled over a discretized angle space,
as seen in Eq. (6.9), and the objective is to find a combination of elements an(𝜙n)
within the codebook, that best describes the received signal. Therefore, the DoA
estimation problem may be tackled with sparse recovery methods, like ISTA, or
learned ISTA, as described in Section 6.2.1. To reduce the computational complex-
ity, the authors in [17] use the special Toeplitz structure of the Gram-matrix DTD
and the mutual inhibition matrix I − DTD, built from the steering vectors. A com-
plex Toeplitz matrix with a real diagonal has only 2M − 1 degrees of freedom, as
is visible in Eq. (6.11), compared to a normal square matrix with M × M degrees
of freedom; therefore, the number of parameters for the layer representing the
mutual inhibition matrix can be drastically reduced.

T =

⎡⎢⎢⎢⎢⎣
x0 x1 … x(M−1)
x1 x0 … x(M−2)
⋮ ⋮ ⋱ ⋮

xM−1 xM−2 … x0

⎤⎥⎥⎥⎥⎦
(6.11)

Also, by making use of the assumed Toeplitz structure, they can replace the
matrix multiplication implemented by a fully connected layer representing the
mutual inhibition matrix by a convolutional layer according to the relation shown
in Eq. (6.12) and claim that this increases the learning efficiency and also the per-
formance.

Tv = x ⊛ v, where x = [x0, x1,… , x(M−1)] (6.12)

Additionally, since their input radar data is complex-valued, and the DoA
information is encoded in the phase of the input signal, they use network
operations that preserve the link between the real and imaginary part of the
input and, therefore, the phase information. They then evaluate their proposed
method with simulated data by training the learned ISTA-Toeplitz network on
data created from five simulated, independent target sources at different angles,
different noise levels, and the corresponding labeled angles. They show in their
results that the learned ISTA and their learned ISTA-Toeplitz both perform better
in terms of normalized mean squared error in fewer iterations. Additionally, they
show that the complex learned ISTA-Toeplitz outperforms the complex learned
ISTA even though it has fewer parameters.

6.3 Physics-Inspired Deep Learning

Deep learning methods are typically data-based. Therefore, supervised methods
typically require a large amount of training data and corresponding labels
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depending on the methods used. Especially for many radar tasks, acquiring
the necessary datasets may be infeasible or at least cost- or time-prohibitive.
This section looks at different ways of simulating radar data with physics-based
simulations and replacing these simulations with general adversarial networks.
In [18], the authors compare various radar simulation methods and their fea-
sibility for automotive radar target classification with convolutional networks.
Typical targets that need to be classified in automotive radar applications are
vehicles, cyclists, pedestrians, and animals. The usual features used for classifying
these types of moving targets are micro-Doppler images [19], which can capture
movement details such as arm-movement, or leg-movement, on top of the macro-
movements of the target. Three different types of physics-based simulations are
as follows:

1. Primitive-based simulations.
2. Ray tracing simulations.
3. Full electromagnetic wave simulations.

Primitive-based simulations split the simulated target into independent shapes,
whereby the total target return is given by the superposition of the individual
shape returns. The received signal is then analytical calculated, typically under
the far-field approximation and neglecting other effects like multi-path reflections
or occlusions. Compared to full electromagnetic wave simulations, which are
accurate but prohibitively expensive in terms of computational resources, ray
tracing methods are still reasonably accurate but of potentially manageable
complexity. Ray tracing methods simulate the wave propagation via multiple
rays, originating from the radar sensor into different directions, and rebouncing
upon hitting the first target. A trade-off between the accuracy of the simulation
and computation time is managed by setting the number of emitted rays and
the number of simulated bounces for each ray. The authors in [18] then use an
adjusted ray-tracing-based method to simulate pedestrians, cyclists, dogs, and
cars. They show that the simulated micro-Doppler data looks visually similar to
measured data and then use it to train a convolutional neural network (CNN)
on the classification task. While the trained network obtains an accuracy close
to 100% on the simulated validation data, testing with real measured data was
not done. The authors of [20] argue that any model-based simulation will not be
able to cover all real effects like different noise levels, nonlinearities in the radar
hardware, coupling, and signal dispersion. They, therefore, propose a data-driven
simulation method by using generative adversarial networks and conditional
variational autoencoders to create new training examples. Figure 6.5 shows a
sketch of a general adversarial network.

The basic idea of a generative adversarial network is that the generator improves
in creating samples from the training data distribution by competing with the
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Encoder

Generator

DiscriminatorDecoder

Figure 6.5 Sketch of a
generative adversarial
network.

discriminator. The discriminator gets real data samples (light gray in Figure 6.5)
or generated data samples (dark gray in Figure 6.5) and tries to predict whether
or not the sample was real or generated. In [20], they use a modified version of
a generative adversarial network, namely an auxiliary classifier general adversar-
ial network, which allows for conditioning on external labels for improved image
quality. However, the authors in [20] find that some of the generated images con-
tain unreasonable or physically impossible data points, which would degrade the
training performance. To that end, they devise a way to filter out a number of these
impossible data points and then use the other generated examples to help in the
training of a human motion classification network. The results show that while
real data are superior to those data points generated by the generator, if only a few
data are available, then pretraining the network with synthetic data can boost the
validation accuracy significantly.

6.4 Processing-Specific Network Architectures

Another way to inject domain knowledge into the neural network training
process is to adjust the network architecture according to some known properties
of the input features. Some well-known general architectures take advantage of
some domain-specific input information, such as convolutional neural networks,
recurrent neural networks, and graph neural networks. Deep convolutional
neural networks are often used to extract local patterns of image-like inputs and
preserve their spatial information. Recurrent neural networks were specifically
designed to extract time information from the input data. Further, gated recurrent
units and long short-term memory networks are evolutions of recurrent neural
networks to better handle and keep valuable state information over longer time
sequences. Graph neural networks work well with point-cloud-like input data,
with nodes, or verticles, with their corresponding features, and edges, or links,
that describe the (e.g., spatial) relation between some nodes. Other possibilities
of adding domain knowledge to the network architecture include the usage of
parametric layers [21] or separate network paths for different input features,
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whose information may be fused at some point in the network [21]. This section
will go into some exemplary research where radar-specific domain knowledge was
used to arrive at better-suited network architectures.

As the main example, this paper [22] takes advantage of ad hoc deep learning
layers for processing the Doppler spectrograms. To this end, using deformable
convolutions, the network can adapt to the highly deformed Doppler spectro-
grams. This has been particularly relevant in fields such as elderly fall detection
in terms of application. Figure 6.6 presents an example of deformed spectrograms
in a trip-and-fall backward scenario.

To process those spectrograms, in this contribution [22], not only deformable
convolutions are applied but also a new loss formulation, the effective loss. The
effective loss is expressed as shown in Eq. (6.13):

L(p, y) = −(1 − y)p𝛾 log(1 − p) − y𝛼(1 − p)𝛾 log(p)

+ y(1 − 𝛼) 1
nk

n∑
i=1

(xi − m)T(xi − m)
(6.13)

Here, n is the number of samples in a minibatch, k is the number of frames, m is
the mean of the fall-motion class, xi is the single input frame, p is the probability of
a class probability in a binary classification, and 𝛾 is a parameter which smoothly
adjusts the rate at which easy examples are down-weighted. The effective loss
combines the focal loss [23] and 1-class contrastive loss [24] for the fall motion class
and helps in not only creating a hyperplane to classify the binary classes but also
projecting the data into an embedding space wherein all fall motion data appear
close together in a cluster. This encourages the model to generalize to unseen fall
motions as they would be projected very close to the fall cluster in the embed-
ding space, and the classification hyperplane would correctly classify the fall
motion.

Figure 6.6 Doppler spectrogram
of trip-and-fall forward of an
elderly person.

40

35

25

15

30

20

10

5

–2

0

2

4

6

–4

–6

0.0 0.5 1.0 1.5
Time (s)

V
el

oc
ity

 (
m

/s
)

2.0 2.5



�

� �

�

190 6 Signal Processing with Deep Learning

Radar
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(a) (b)

Figure 6.7 Applications of gesture recognition algorithms: (a) micro- and
(b) macro-gesture application.

An additional contribution exploits the temporal dimension of the radar data
in order to perform a gesture recognition operation [6]. The application of this
method can be seen in Figure 6.7.

Here, the temporal sequence modeling is done by using an LSTM [25] layer that
accepts a flattened output from the All-CNN [26] of sequence length of 100 frames.
This model merges an intense hierarchical optical feature extractor (All-CNN)
with a model which can absorb the knowledge of temporal dynamics for tasks
involving sequential data. Additionally, a new data augmentation method has
been proposed, which enhances the model’s performance. Here indeed, the
range-Doppler input images are augmented. Since the data are collected by a
limited number of users, some variance is added in the range-Doppler images
(RDIs) for training. The data augmentation technique proposed increases of the
dataset size by creating synthetic images with variance to the original RDIs to
address the generalization concerns. Initially, for each gesture class and for each
time step, a mean range-Doppler image is formed from all channels. Next, for
each original record, a synthetic record is formed by generating values for each
pixel in time step t RDI by drawing values from a normal distribution with mean
equal to the original Range-Doppler map at that time step and variance drawn
from gesture class variation. This accounts for the time variations with which
different individuals make the same gesture.

6.5 Deep Learning-aided Signal Processing

Typically, a lot of signal processing tasks may be split into different subtasks,
which, put together, accomplish the overall goal. A good example of this in radar
signal processing is the tracking of multiple static and moving targets within
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Figure 6.8 Traditional processing pipeline for radar target tracking.

the field of view of the radar. Figure 6.8 shows a potential signal processing
chain, similar to that described in [27], for the task of multitarget-tracking with
a radar sensor in the form of a block diagram. In the displayed processing chain,
the raw digitized input data, containing information about potential targets, is
first transformed to frequency domain, specifically, to an RDI. Then potential
targets are detected within the RDI by a peak-finding and a clustering algorithm.
Here, those blocks are realized with ordered statistics-constant false alarm rate
(OS-CFAR) for peak-finding and density-based spatial clustering of applications
with noise (DBSCAN) as clustering algorithm. After clustering, the cluster
centers have to be estimated, which will then be used over multiple timesteps
as inputs for some track association and track filtering block. For every single
block in the whole tracking chain, a multitude of different signal processing
algorithms, based on different assumptions and with various trade-offs, exist.
Here, we look at the detection part of the chain, consisting of peak-finding and
clustering, as an example. There has been extensive research for implementing
both of these signal processing blocks. Some peak-finding methods commonly
used in radar signal processing are simple thresholding based on the average
receiver noise level, constant false alarm rate detectors (CFARs), which have
adaptive thresholds based on the local noise levels, like cell averaging CFAR, and
ordered statistics CFAR (OS-CFAR), or other methods that use additional domain
knowledge, such as minimum peak prominence, minimum peak separation, or
a predefined number of peaks. There are also various clustering methods, such
as hierarchical-based methods, distribution-based methods, and density-based
methods. A good overview of different clustering algorithms is given in [28].

To illustrate the method and the advantages of substituting these signal pro-
cessing blocks, we take a closer look at the research in [4] in this section. Here,
the authors propose a deep neural network-based method of segmenting multiple
human targets in RDIs created from a frequency-modulated continuous-wave
(FMCW) radar sensor. The chirp settings for the radar sensor are shown in
Table 6.1.
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Table 6.1 Operating parameters.

Parameters, symbol Value

Ramp start frequency, fmin 58 GHz
Ramp stop frequency, fmax 62 GHz
Bandwidth, B 4 GHz
Range resolution, 𝛿r 3.75 cm
Number of samples per chirp, NTS 256
Maximum range, Rmax 4.8 m
Sampling frequency, f s 2 MHz
Chirp time, Tc 261 μs
Chirp repetition time, TPRT 520 μs
Maximum Doppler, 𝑣max 4.8 m/s
Number of chirps, PN 32
Doppler resolution, 𝛿𝑣 0.3 m/s
Number of Tx antennas, NTx 1
Number of used Rx antennas, NRx 3
Elevation 𝜃elev per radar 70∘

Azimuth 𝜃azim per radar 70∘

With these parameters, the size of one raw radar data frame is 3 × 256 × 32, given
by the number of antennas, the number of analog-to-digital conversion (ADC)
samples per chirp, and the number of chirps. The input to the detection block
is then of size 128 × 32 after two 1D fast-Fourier transforms (FFTs) along the sam-
ple and the chirp axis, with the respective mean subtractions before each FFT
to remove static targets and the Tx-Rx-leakage, and maximum ratio combining
over the antenna dimension to increase the signal-to-noise ratio. The objective
of the work was then to replace the detection block, consisting of OS-CFAR and
DBSCAN, with a Deep Residual U-Net, and show that the neural network has mul-
tiple advantages in terms of detecting partly occluded targets and rejecting ghost
targets caused by multipath reflections.

Figure 6.9 shows the signal processing chain, going from RDIs after mean-
subtraction to segmented RDIs, where the clusters represent the detected targets.
The two blocks in the presented detection chain, OS-CFAR, and DBSCAN are
widely used algorithms for these tasks. OS-CFAR is a sort of peak finding method
that utilizes a sliding window and some noise statistics to adaptively threshold
the RDIs. Figure 6.10 visualizes the 2D OS-CFAR method. There are three main
components, the cell under test (CUT), the sliding window, with its size being
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Figure 6.9 Traditional signal processing chain for target detection.

Figure 6.10 Visualization for th OS-CFAR process,
with the cell under test, the guard window, the
reference window, and the reference cell.
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determined by the reference window size and the guard size, and the parameter
k, which determines which cell in the reference window is used to estimate the
noise level and calculate the threshold for the CUT.

After identifying potential targets via OS-CFAR, the detections need to be clus-
tered, as human targets are spread across range and Doppler, and to reject outliers.
The density-based algorithm DBSCAN is described in Figure 6.11. In DBSCAN,
there are two free hyperparameters, namely the minimum number of neighbors N
and the maximum neighbor distance d. As visualized in different colors, the
algorithm clusters the available points into three different groups, core points
(circles), edge points (crosses), and noise points (squares). In order to classify each
available point, a distance metric to calculate the maximum neighbor distance
for each point first has to be defined. In [4], the distance used is a Euclidean
distance based on the range- and velocity-bins in the RDIs. A point is then
classified as

1. a core point, if it has at least N − 1 neighbors (points within the maximum
neighbor distance)

2. an edge point, if it has less than N − 1 neighbors, but at least one edge point as
neighbor

3. noise otherwise.

The performance of this processing chain, consisting of OS-CFAR detection and
DBSCAN clustering, depends on the correct setting of the hyperparameters of
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Figure 6.11 Visualization of core (circles), edge (crosses), and noise-points (squares) in
DBSCAN for N = 4.

the single processing blocks. Even if well adjusted, optimal hyperparameters
may still vary with the input data, potentially resulting in ghost targets or missed
detections. In the output of the signal processing chain in Figure 6.11, some of
these issues are highlighted with boxes. Figure 6.12 shows a detection chain for
the same segmentation task but with a neural network replacing the traditional
signal processing blocks.

The internal structure of the neural network is shown in Figure 6.13. It has
a U-Net-like [29] convolutional autoencoder structure with skip connections
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Figure 6.12 Deep learning processing chain for target detection.
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Figure 6.13 Deep learning processing chain for target segmentation.
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between the encoder part of the network and the decoder. One idea of these skip
connections is to better preserve spatial information of the clusters in the RDIs to
help the segmentation task. The training dataset for the deep residual U-Net used
in [4] consists of real one-target measurements, where radar recordings were
taken with one human target walking around in an office space and multitarget
measurements with the corresponding ground-truth data. The multitarget mea-
surements and the multitarget label data were created by superimposing the raw
RDIs of different real one-target measurements with some restrictions to avoid
overlaps of clusters. The loss function used to learn the segmentation task is a
weighted combination of focal loss and hinge loss:

HL(p) = 1 − y(2p − 1)

FL(pt) = (1 − pt)𝛾 log(pt)

L(pt) = 𝛼[FL(pt) + 𝜇HL(p)]

(6.14)

Here, HL, FL, and L describe the hinge loss, the focal loss, and the combined loss
term, respectively, with y ∈ {±1} describing the class label, p ∈ [0,1] the estimated
probability of y = 1, and pt ∈ [0,1] the probability of the correct classification of
each pixel.

Table 6.2 shows the performance of the deep learning-based U-Net approaches
compared to the traditional method with OS-CFAR and DBSCAN clustering in
terms of F1-score on a test set. Both different network sizes show a large per-
formance gain over the traditional method, with the deeper network achieving
slightly higher accuracy.

Figure 6.14 shows an example for a four people human target scene, with the
raw radar data after moving target indicator (MTI) and FFTs in Figure 6.14a, and
the segmented versions with OS-CFAR plus DBSCAN in Figure 6.14b, and with
the neural network approach in Figure 6.14c.

While the neural network manages to correctly identify and segment the four
clusters belonging to the four human targets, the signal processing-based pro-
cessing chain has some missed detections and false alarms, marked with boxes
in Figure 6.14b.

Table 6.2 Comparison of the detection performance of the traditional pipeline with the
proposed U-Net architecture with a depth of 3 and depth of 5 for people counting.

Approach Description F-score Model size

Traditional OS-CFAR with DBSCAN 0.71 —
Proposed U-Net depth 3 Proposed loss 0.89 616 kB
Proposed U-Net depth 5 Proposed loss 0.91 2.8 MB
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Figure 6.14 (a) Raw RDI image with four human targets, (b) processed RDI using the
traditional approach wherein one target is split and two targets are occluded,
(c) processed RDI using the neural network approach wherein all targets are detected
accurately.

6.6 Questions to the Reader

● What are some different methods to inject domain knowledge into deep learning
problems?

● Why do you sometimes want to restrict the expressiveness of the network by
injecting domain knowledge?

● How can the dictionary be represented in the learned ISTA for DoA estimation
with radar?

● After reading about algorithm unrolling in the sense of learned ISTA for radar,
how do you think that the network might achieve superior results to the base
algorithm?

● When does it make sense to use the focal loss and deformable convolutions?
● Given what you have read in the last section, what may allow the neural network

to outperform traditional signal processing in radar target segmentation?
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7

Domain Adaptation

After reading this chapter, you should be able to

● Understand the basic concept of domain adaptation.
● Have an overview of different types and methods of domain adaptation.
● Understand how domain adaptation can help to improve real-world radar

applications.

7.1 Introduction

In this chapter, we review how domain adaptation (DA), a field of machine learn-
ing (ML) where an algorithm learns from a source data distribution to perform
on a related target data distribution, works on radar signal processing. To this
end, we first define DA and position it in the parent category of transfer learn-
ing (TL). Successively, we explore different subcategories of DA and common data
shifts between source and target domain. We then present an overview of DA algo-
rithms as well as the background work of DA in radar signal processing. Finally,
we present an application of Domain Adaptation as well as the conclusion of the
chapter.

7.2 Transfer Learning and Domain Adaptation

Domain adaptation is a subcategory of TL. TL is a research problem in ML that
focuses on storing knowledge gained while solving one problem and applying it to
a different but related problem [1]. As shown in Figure 7.1, while this definition
applies to differences in the target domain’s feature space and source feature space,

Methods and Techniques in Deep Learning: Advancements in mmWave Radar Solutions, First Edition.
Avik Santra, Souvik Hazra, Lorenzo Servadei, Thomas Stadelmayer, Michael Stephan, and Anand Dubey.
© 2023 The Institute of Electrical and Electronics Engineers, Inc. Published 2023 by John Wiley & Sons, Inc.
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Figure 7.1 Transfer learning and domain adaptation.

DA assumes that the task in source and target domain is the same. Even if, there
is a change in distributions.

In order to thoroughly define domain adaptation, we focus on its formalization
and the relationship with TL, similarly as done in [2].

As a start, we consider a d-dimensional feature space X ⊂ Rd in a domain D.
The marginal probability of the random variable X is identified as P(X) and a

task T is identified by a label space Y , another random variable, and the condi-
tional probability P(Y |X).

In order to learn in a supervised fashion, we consider two sample sets of size n,
namely X = {x1, x2,… , xn} from the X and Y = {y1, y2,… , yn} from the Y space.
Using the feature-label pairs {xi, yi}, we can learn the conditional distribution
P(Y |X).

Once the number of domains and tasks increases, i.e., two domains and two
different tasks, things become more challenging.

We then call the first domain, the source domain, and identify it by
DS = {XS,P(X)S}. The second domain is called target domain and is identi-
fied by DT = {XT,P(X)T}. Accordingly, the two tasks, namely source and target
tasks, are denoted as TS = {Y S,P(Y S|XS)} and TT = {Y T,P(Y T|XT)}.

In case DS = DT and TS = TT, we have a standard ML framework where DS is
the training set, and DT corresponds to the test set. If one of the two conditions
is missing, we could have a poor performance by using a model trained on the
source domain, for the target task. In fact, standard learning theory and model
guarantees do not hold if the two domains are different (i.e., DS ≠ DT) or the two
tasks for which the model is trained to differ (i.e., TS ≠ TT).

Nevertheless, in case we have some relatedness between the two domains, we
could exploit the source domain and its task, namely DS,TS, to learn P(Y T,XT).
This process is defined as TL.
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To this end, homogeneous TL is the case where XT = XS, but the marginal prob-
abilities are different, such as P(XT) ≠ P(XS), due to domain shift. Heterogeneous
TL instead takes place if the source and target data present significant differences
either in terms of representation or even structure, such that XT ≠ XS.

Considering those cases, TL is generally categorized by the relation between
source and target domain, as well as the corresponding tasks.

These are inductive TL, transductive TL, and unsupervised TL.

● Inductive TL is the case where the target task is related to the source task, with no
further assumption on the relatedness of the source and target domains. In order
to apply TL in this case, at least a small set of labels needs to be available, to
induce the model on the target task.

● Transductive TL is the category that concerns the same source and target task.
In this case, if source and target domain differ, we have domain adaptation.

● Unsupervised TL identifies instead the category where both the domains and the
tasks are different but are somehow related. Typically, labels are not provided
for any of the domains, and the scope is extracting useful characteristics in the
source domain, which can be used for approaching a task in the target domain
(e.g., clustering, density estimation).

As presented in these categories, DA methods belong to transductive TL, where
TT = TS. This entails that both the set of labels and the conditional distributions
are assumed to be shared between the two domains, i.e., Y S = Y T and P(Y |XT) =
P(Y |XS). While this is formally correct, often in real life, the second assumption is
not fulfilled. For this reason, the first condition is generally enough to define DA.

In further cases, domain adaptation can be found where labels are provided
for both source and target domain (i.e., supervised), only on the source domain
(i.e., unsupervised), or partially to the target and fully to the source domain (i.e.,
semi-supervised).

7.3 Categories of Domain Adaptation

Domain adaptation is usually divided into three categories, as shown in Figure 7.2,
namely:

● Unsupervised domain adaptation, where the learning sample contains a set of
labeled source examples and a set of unlabeled target examples.

● Semisupervised domain adaptation we also consider a ‘small’ set of labeled target
examples.

● Supervised domain adaptation where all the examples considered are
labeled.
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Figure 7.2 Categories of domain adaptation.

7.3.1 Common Data Shifts

Data shifts are common mismatches that can be found on different datasets,
dataset, such as for the training dataset and data in the inference process or source
domain distribution and target domain distribution.

Overcoming this shift is a subject of research, and traditional ML algorithm per-
forms poorly than the original and shifted distribution.

7.3.1.1 Prior Shift
In the prior shift, while the probabilities for labels differ (i.e., PS(Y ) ≠ PT(Y )), the
conditional probabilities stay the same, PS(Y |X) = PT(Y |X).

This can happen, for example, while predicting the sales of a shopping
mall given the income of the customers, while it is in a poorer or wealthier
neighborhood.

7.3.1.2 Covariate Shift
Covariate shift happens instead when the distribution of the input data (or inde-
pendent variables) has a shift. In this case, PS(Y |X) = PT(Y |X) but PS(X) ≠ PT(X).
A case for it might be the risk of diseases per age two cities. While the conditional
on the risk remains the same, the number of older people in one city can be higher
than the other one.

7.3.1.3 Concept Shift
Finally, concept shift refers to the case where conditional probabilities are
changed, but not the marginals: PS(Y |X) ≠ PT(Y |X) but PS(X) = PT(X). An
example of it is the difference in housing prices given the number the same
number of rooms in two different datasets.

7.3.2 Methods of Domain Adaptation

Deep domain adaptation utilizes deep neural network architectures to enhance
the performance of DA algorithms. To this end, similarly as in other ML categories
(e.g., reinforcement learning), using deep networks enhances the approximation
capability of the methods and leads to surpassing the state of the art. In the
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particular case of domain adaptation, the capacity of deep networks for extracting
more expressive features is a clear enhancement toward reaching transferable
and readaptable distributions from the source to the target domain.

Methods of Domain Adaptation can be further subcategorized as follows:

● Discrepancy-based
● Adversarial-based
● Reconstruction-based

7.3.2.1 Discrepancy-based Domain Adaptation
The category of discrepancy-based methods encourages the fine-tuning of deep
network models in order to diminish the shift between the source and target
domain. Therefore, different approaches can be used to perform the fine-tuning.
In the next paragraphs, we are going to review a selection of them, similarly to
the classification done in [3].

Using class label information, knowledge can be transferred between source and
target domain. For supervised DA, soft labels and metric learning can be used for
enhancing the transfer process to the target domain. For unsupervised DA cases,
instead, pseudolabels and attribute representation techniques can substitute the
missing labels in the fine-tuning process, as shown in [4, 5].

Other methods use statistics to reduce the shift between domains: a popular
method for reducing the distribution shift is the maximum mean discrepancy.
There it is defined by the idea of representing distances between distributions as
distances between mean embeddings of features [6]. This distance is minimized
in order to bridge the two domains feature representation.

Another approach to improve DA using discrepancy-based techniques focuses
on improving network architectures for a better capturing and transferring of fea-
tures. The most popular method used in this category is the adaptive batch nor-
malization [7]. This allows the training to be optimized to locate features which
can be easily transferred to a following task. Other methods make use of weight
regularization terms between layers of the source and target networks to punish
large deviations in layer weights and therefore force the networks to extract similar
features. This weight regularization loss term is typically based on some layerwise
distance between the parameters of the source network, after training with data
and labels from the source domain to the parameters of the target network.

LDA =
∑
i∈K

λif (Θ
T
i ,Θ

S
i ) (7.1)

Equation (7.1) shows a general form of such a loss term which can be added to
the overall loss function. Here, K is some set of layers in the networks, f describes
some distance function, λi are some weighting factors, ΘT

i are the current para-
meters of the target network, and ΘS

i are the parameters of the source networks
after training.
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Figure 7.3 Elastic weight consolidation helps in finding a common low-error region for
both domains. A simple L2-error may restrict the network weights too much, so that the
performance suffers and a low-error region in the target domain is not reached. Using no
weight penalty may result in forgetting the source domain task, which is often not
desired.

While a simple normalized distance function for the weights and biases in each
layer, as in [8], has been used, more sophisticated approaches, such as elastic
weight consolidation [9], have shown promising results. The main idea of elastic
weight consolidation is to use a weight regularization term which punishes devia-
tions for parameters that were important for the predictions in the source domain
harsher than for those that were less important. This can help in better preventing
catastrophic forgetting on the source domain task, as visualized in Figure 7.3. The
necessary information is contained in the posterior probability P(ΘT|DS), which
describes the influence of the source domain data on the network parameters ΘT.
As calculating this posterior distribution is intractable, the diagonal elements of
the Fisher information in matrix form are used instead, as shown in Eq. (7.2).

LDA =
∑

i

λ
2

Fi(Θ
T
i ,Θ

S
i )

2 (7.2)

The Fisher information can be used as an approximation to measure the impor-
tance of the parameters for the source-domain task. It can easily be calculated
directly from the parameter gradients near the optimum for those trained on the
source domain.

Finally, a set of methods is used in the literature which exploits geometrical
properties of source and target domains to reduce the domain shift, as shown
in [10].

7.3.2.2 Adversarial-based Domain Adaptation
Another major category of DA methods is called adversarial-based deep DA. This
concentrates on adversarial training for a better task transferability between source
and target domains.
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Target
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Figure 7.4 Illustration of a GAN architecture for domain adaptation. The discriminator
tries to classify from which domain its input came from. The generator tries to fool the
discriminator by mapping source-domain samples to the target domain.

In this case, an adversarial objective, as seen in Eq. (7.3), is used to minimize the
distance between the source and target distribution.

minDmaxG Ex∼pdata(x)[log(D(x))] + Ez∼pz(z)[log(1 − D(G(z)))] (7.3)

The core idea of the loss equation for generative adversarial networks is the com-
petition between the generator network G and the discriminator network D. Given
the generator output and some real label, the discriminator tries to minimize the
objective in Eq. (7.3) – it tries to detect whether or not its input comes from the
generator. The generator instead tries to maximize the same objective, so its goal
is to fool the generator into classifying the generator outputs as real labels.

For the domain adaptation task, the input to the generator could be a sample
from the source distribution, whereas the label input to the discriminator could be
a sample from the target distribution, as seen in Figure 7.4. On successful training,
the generator then transforms samples from the source domain to target domain
samples. A common application would be the transformation of synthetically gen-
erated to data samples that are indistinguishable from real ones.

Another option uses another encoder network instead of the generator,
according to [11], as seen in Figure 7.5. Here, input samples from either the
source domain or the target domain are fed into the encoder which produces
some feature vector as output. This feature vector is then further processed
in a classifier network to predict the correct label, whereas a discriminator or
domain classifier network tries to predict whether the produced feature vector
stems from the source or the target domain. The overall loss function is then
a weighted combination of the discriminator loss and the class label loss. As
indicated by the circled and crossed arrows in Figure 7.5, the sign of the gradients
of the discriminator loss function with respect to the encoder parameters Θe is
reversed. By minimizing the overall loss function, the encoder will then partly try
to maximize the loss of the discriminator with respect to the encoder parameters.
In other words, it will try to fool the discriminator in a generative adversarial
network (GAN)-fashion and therefore produce similar feature vectors for source
and target domain samples.
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Figure 7.5 Adversarial DA architecture without the generator. Source: Adapted from
Ganin and Lempitsky [11]. The discriminator has to detect whether the encoded input
feature vector stems from the source or the target domain. The same classifier works on
both domains.

7.3.2.3 Reconstruction-based Domain Adaptation
The third main category of DA approaches is called reconstruction-based.
Reconstructing the initial data, in fact, we can preserve information and be
able, at the same time, to capture essential features for each of the domains, as
presented in [12].

Two main approaches used are encoder–decoder reconstruction, which uses
the traditional autoencoders or similar approaches as sketched in Figure 7.6, or
the adversarial reconstruction, utilizing GAN models or slight variations of it
(e.g., Cycle GAN).

Encoder Decoder

Classifier
Class
label

Reconstructed
target sample

Source
sample
input

Feature vector

Figure 7.6 Sketch for a reconstruction-based domain adaptation using an autoencoder.
The decoder tries to reconstruct the target sample, given an encoded source sample.
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7.4 Domain Adaptation in Radar Processing

While the use of deep learning methods for radar applications has become
more popular in recent times, the lack of usable public datasets and training
data remains an issue. Using available training data from a different source
domain can potentially alleviate that problem. For radar processing tasks, one can
typically further split the domain adaptation approaches by the choice of the
source domain. The source domain data can either come from

1. a different type of sensor
2. or another radar sensor with different settings.

In the following subsections, we will look at some different examples from litera-
ture for both of these cases.

7.4.1 Domain Adaptation with a Different Sensor Type

For the first case, a common choice for the source domain sensor is either light
detection and ranging (LiDAR) or camera, both of which are often used in similar
tasks or in combination with each other, as is often the case in autonomous driving.
Especially camera data can be very attractive due to the large amount of publicly
available training data for all kinds of different applications.

In [13], LiDAR, camera, or radar data are used as source-domain data, and radar
or LiDAR as the target domain. Here, two autoencoders, one for the source domain
and one for the target domain, try to reconstruct their respective input data. A max-
imum mean discrepancy loss function, given by Eq. (7.4), between the embeddings
of the autoencoders is used during their training to ensure the extraction of similar
features.

LMMD(X̂
S
, X̂T) = ‖‖‖ 1

NS

NS∑
i=1

X̂S
i −

1
NT

NT∑
i=1

X̂T
i
‖‖‖2

(7.4)

In Eq. (7.4), NT and NS are the number of samples of the target domain and the
source domain, respectively. X̂S and X̂T describe the embeddings of the respec-
tive domains. After training both autoencoders in this manner, they achieve an
embedding space that is less variant to the input feature domain. In the next step,
they freeze the encoder weights, take the source encoder, and append a classi-
fier network to it. After supervised training of the classifier network they take,
they cascade the target encoder network and the source classifier network to do
another training round on the target domain data. The training procedure is visu-
ally described in Figure 7.7.
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Figure 7.7 Autoencoder and classifier training method according to Rahman et al.
Source: Rahman et al. (2021) [13]. IEEE.

With experiments, they demonstrate the improved performance compared to
training only on the radar or LiDAR target domain data.

The other possibility is making use of data recorded with radar but under
different settings. These different settings can include different hardware (dif-
ferent number of antennas/antenna configuration/hardware noise…), varying
waveform settings (number of samples, chirps, bandwidth, pulse repetition time,
observation interval, …), or changes in the environment in which the training
data is recorded (indoors, outdoors, open spaces, spaces with a lot of potential
reflectors, synthetic data, …). Due to the limited amount of labeled radar data
available, in [8], domain adaptation, with synthetic-generated radar-data as
source domain for the task of human segmentation in radar images is used.
While the synthetic data here stems from simple point-target simulations and
does not represent real human targets, it can still be used to learn the extraction
of high-level information like the direction of arrival of targets. Here, they use a
discrepancy-based method, by first training a network with the synthetic data,
and then adding another loss term to the training with real data, to ensure that
similar features are extracted.

LDA =
∑
i∈K

‖‖𝑤i −𝑤i0
‖‖2 + ‖‖bi − bi0

‖‖2

‖‖𝑤i0
‖‖2 + ‖‖bi0

‖‖2 (7.5)

Equation 7.5 describes said additional loss term LDA. Here,𝑤 and b are the target
network weights and biases, while 𝑤0 and b0 are the source network weights and
biases. The equation then describes the sum over normalized difference between
weights and biases for the set of convolutional layers K. It is demonstrated in the
study that adding this loss term keeps the target network from deviating too far
from the source network without affecting the performance on the target domain.
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7.4.2 Domain Adaptation with Different Radar Settings

7.4.2.1 Introduction
Radar, a well-established technology for several industrial areas, has recently
gained attention for other commercial applications, such as human monitoring,
presence detection, or gesture sensing [14–16] due to the production of small and
compact radar sensors [17]. Here, radar offers some advantages in comparison
with computer vision approaches, such as good performance under poor-lighting
conditions or privacy protection (due to the difficulty in identifying individuals
from radar images).

Similarly as in the realm of computer vision, the use of radar often comes hand
in hand with ML techniques, including deep learning, to overcome the burden of
handcrafted feature engineering [18]. Due to the variety of system design param-
eters at hand, such as modulation techniques or bandwidth, these ML algorithms
are required to generalize well under different radar setups. This need for interdo-
main generalization is common to several ML problems, and it has been studied
in recent years under the paradigm of domain adaptation [19, 20].

Considered as a special case of TL, domain adaptation involves modifying an
ML estimator that can be trained with enough data from a source domain, so that
its performance increases when evaluated with data originating from a different
target domain. Unlike other TL approaches, here, the mismatch between source
and target domains lies merely in a distinct probability measure over data rather
than in different input or output spaces [20].

The reasons for domain adaptation are usually related to insufficient or incom-
plete data in the target domain, which can be overcome with the help of data
from the source domain. In ML classification, the missing information is often
the labels; this case is referred to as unsupervised domain adaptation. If target data
are labeled, we can apply supervised domain adaptation techniques instead [19].

Both supervised and unsupervised domain adaptation methods have already
been investigated in the Radar–ML community to overcome several problems,
including individual patient differences [21], aspect angle variations [22],
synthetic-to-real adaptation [23] or environmental differences [8]. In the case of
cross-configuration adaptation, Khodabakhshandeh et al. [24] use supervised
techniques such as few-shot adversarial domain adaptation (FADA) [25] or
DSNE [26] to adapt their trained human activity classifier to new FCMW radar
setups using few data.

We build on the work in [24] by applying margin disparity discrepancy
(MDD) [27]. In that way, we confirm that this unsupervised technique, which
delivers state-of-the-art results for computer vision datasets, also works for
radar data and thus enables cross-configuration radar-based human activity
classification based on unlabeled data.
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7.4.2.2 Problem Statement
Radar-ML classification deals with the evaluation of a group of radar features
x ∈  obtained from a target to find the underlying class y ∈  that best describes
some property of the said target. The input space  ⊂ ℝm is characterized by a
dimension m that depends on the radar technology and preprocessing steps, while
the label space is defined as  = {1,… , k}, with k being the number of classes.

In order to achieve this classification, one has first to find a classifier h that maps
x into y. The ML approach assumes a sufficiently large amount of data available
conveying information both about the inputs and the class so that it can be used to
train h among a restricted hypothesis class . This dataset consists of a sequence
of pairs of features and labels, i.e.,

{(
xi, yi

)}n
i=1, that have been previously sampled

from a certain domain , defined to be

 =
( , , p

)
, (7.6)

with an associated probability measure p over  ×  . Here and hereafter, we
write x and y in their upright form whenever we refer to the random variables
related to p, and not to its realizations.

By choosing an objective loss function

𝓁 ∶  ×  ×  → ℝ0+ (7.7)

and minimizing it over the hypothesis class  with a suitable optimization
method, we can train an h that performs well for the available data. The perfor-
mance of h can thus be measured by the risk associated with the loss for a domain
. This risk  represents the expected value of the loss of h for p:

 (h) = 𝔼𝓁 (h, (x, y)) . (7.8)

By assuming the indicator function 𝟙h(x)≠y to be the loss, we obtain the 0-1 error
err (h) ≜ 𝔼𝟙h(x)≠y. In practice, we do not have access to p, so we resort to its
empirical approximation ̂ (h) ≜ ∑n

i=1 𝓁
(

h,
(

xi, yi
))

∕n for a dataset ̂ with n
samples drawn from .

If generalization is achieved, h will also behave well for unseen data as long as it
is drawn from the same domain. Unfortunately, this assumption cannot always be
guaranteed. It is often the case that training data have been drawn from a source
domain  , but we would like to leverage the trained classifier for a different target
domain  . Depending on how dissimilar  and  are, the performance of the
trained classifier can degrade significantly. In our specific problem, this domain
shift is given by the choice of different FCMW settings and presents an additional
challenge in the lack of the labels for the training data from  . The absence of
labeled target data makes it necessary to apply unsupervised domain adaptation.
We explore this possibility by using MDD [27].
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7.4.2.3 MDD
In order to use MDD, we assume a hypothesis class induced by a space  of scoring
functions f ∶  → ℝk. We also introduce the shorthand fy (x) to refer to the yth
component of f (x). The hypothesis class is given by

 ≜
{

hf ∶ x → arg max
y∈

fy (x) ∣ f ∈ 
}

(7.9)

MDD has been developed by Zhang et al. [27] as a practical algorithm based on
the concept of discrepancy distance by Mansour et al. [28]. For that, they define
the margin error err(𝜌) (f ) as

err(𝜌) (f ) ≜ 𝔼Φ(𝜌) ∘𝜙f (x, y) (7.10)

𝜙f (x, y) ≜ 1
2

(
fy (x) − max

y′≠y
fy′ (x)

)
(7.11)

Φ(𝜌) (x) ≜
⎧⎪⎨⎪⎩

0 𝜌 ≤ x
1 − x∕𝜌 0 ≤ x ≤ 𝜌

1 x ≤ 0
(7.12)

and the true and empirical margin disparity between two scoring functions f ′ and
f as follows:

disp(𝜌)


(
f ′, f

) ≜ 𝔼Φ(𝜌) ∘𝜙f ′
(
x, hf (x)

)
(7.13)

disp(𝜌)
̂

(
f ′, f

) ≜ 1
n

n∑
i=1

Φ(𝜌) ∘𝜙f ′
(

xi, hf
(

xi
))

(7.14)

to finally formulate the following minimax optimization problem:

min
f∈ err(𝜌)̂ (f ) + d(𝜌)

f ,
(̂ , ̂ )

d(𝜌)
f , ( ,  ) ≜ sup

f ′∈
(

disp(𝜌)


(
f ′, f

)
− disp(𝜌)


(

f ′, f
)) (7.15)

Following the principles of unsupervised domain adaptation, the MDD term d(𝜌)
f ,

does not make use of any labels yi. Furthermore, the solution to (7.15) minimizes
the 0–1 error of hf in the target domain, as it is [27] proved with the following
theoretical bound:

err
(

hf
) ≤ err(𝜌) (f ) + d(𝜌)

f , ( ,  ) + λ (7.16)

where λ is the ideal combined margin loss:

λ = min
f ∗∈

{
err(𝜌) (f ∗) + err(𝜌) (f ∗)

}
. (7.17)
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The bound in (7.16) can also be expressed in terms of empirical measures
rather than true probability measures by the addition of Rademacher complexity
terms [29].

Despite the interesting properties of MDD, Zhang et al. [27] ultimately resort to
the cross-entropy loss instead of the margin loss in order to avoid vanishing and
exploding gradients during training. Prior to that, they map f (x) to the k-simplex
via the softmax function 𝜎, as it is customary in deep learning, where the elements
of 𝜎 (z) are given by

𝜎j (z) ≜
exp zj∑k

i=1 exp zi

, for j = 1,… , k (7.18)

The composition of the cross-entropy loss with the softmax yields the least square
error (LSE) loss £f :

£f (x, y) ≜ − log 𝜎y (f (x))

= log
∑
y′∈

exp
(

fy′ (x) − fy (x)
) (7.19)

[27] propose to use £f instead ofΦ(𝜌) ∘𝜙f for err(𝜌)̂ and disp(𝜌)
̂ in (7.15). As for disp(𝜌)

̂ ,
they use the adversarial loss £̃f proposed by [30], i.e.,

£̃f (x, y) ≜ log
(
1 − 𝜎y (f (x))

)
(7.20)

so that their MDD ultimately becomes

d̃(𝛾)
f ,𝜓,

(̂ , ̂ ) ≜ max
f ′∈ 𝔼xt∼̂ £̃f ′

(
𝜓
(

xt) , hf
(
𝜓
(

xt)))
− 𝛾𝔼xs∼̂£f ′

(
𝜓
(

xs) , hf
(
𝜓
(

xs))) (7.21)

for a margin factor 𝛾 > 0 and a feature extractor 𝜓 that levels the min-player to the
max-player [27] (A concrete example of 𝜓 is given in (7.32)). It is explained that
this is equivalent to the use of the margin loss with a margin 𝜌 = log 𝛾 and that the
problem is still solved for  =  [27].

In addition to the results in [27], we observe that the use of the recently proposed
soft-margin softmax 𝜎(𝜌) [31] instead of 𝜎 in (7.19) provides an upper bound for
err(𝜌) . The entries of 𝜎(𝜌) (z) are defined as follows:

𝜎(𝜌)
j (z) ≜ exp

(
zj − 𝜌

)
exp

(
zj − 𝜌

)
+
∑
i≠j

exp zi
,

for j = 1,… , k; 𝜌 ∈ ℝ+

(7.22)

and this induces the soft-margin cross-entropy loss £(𝜌)
f :

£(𝜌)
f (x, y) ≜ − log 𝜎(𝜌)

y (f (x))

= log
∑
y′∈

exp
(

fy′ (x) − fy (x) + 𝜌 ⋅ 𝟙y′≠y
) (7.23)
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Likewise, a soft-max adversarial loss can also be defined as follows:

£̃(𝜌)
f (x, y) ≜ log

(
1 − 𝜎(𝜌)

y (f (x))
)

(7.24)

We prove this soft-margin-based bound with the help of the following lemma,
which motivates us to investigate £(𝜌)

f further in Section 7.4.2.4.

Lemma 7.1 The soft-max cross entropy bounds the margin loss as follows:

Φ(𝜌) ∘𝜙f (x, y) ≤ 1
2𝜌

£(2𝜌)
f (x, y) (7.25)

Proof: First, let us recall the generalized hinge loss [32, Section 17.2]:

ℏ(𝜃)
f (x, y) ≜ max

y′∈
(

fy′ (x) − fy (x) + 𝜃 ⋅ 𝟙y′≠y
)

(7.26)

Noting that the argument of the max function always equals 0 for y′ = y, we can
write

ℏ(2𝜌)
f (x, y) = max

{
0,max

y′≠y
fy′ (x) − fy (x) + 2𝜌

}
= max

{
0, 2𝜌 − 2𝜙f (x, y)

}
= 2𝜌max

{
0, 1 − 𝜙f (x, y) ∕𝜌

}
(7.27)

The last max expression in (7.27) can be derived from the margin loss if the
output of Φ(𝜌) for x ≤ 0 is set to 1 − x∕𝜌 instead of 1; hence,

Φ(𝜌) ∘𝜙f (x, y) ≤ 1
2𝜌

ℏ(2𝜌)
f (x, y) (7.28)

and the proof is concluded using the fact that

log
∑
a∈

exp a ≥ max
a∈ a (7.29)

for any finite set .

Taking the expectation with regards to p in (7.25), we finally obtain

err(𝜌) (f ) ≤ 1
2𝜌

𝔼£(2𝜌)
f (x, y) (7.30)

7.4.2.4 Setup
Similarly as in [24], we focus on human activity recognition using data that have
been measured simultaneously with four different 60-GHz frequency modulated
continuous wave (FMCW) radar sensors. For these measurements, two male
subjects were recorded separately while performing five different activities:
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Table 7.1 Radar configuration parameters.

Configuration name I II III IV

Chirps per frame nc 64 64 64 64
Samples per chirp ns 256 256 128 256
Bandwidth (GHz) 2 1 2 2
Frame period (ms) 50 32 32 32
Chirp to chirp time (μs) 250 250 250 250
Range resolution (cm) 7.5 15 7.5 7.5
Max. range (m) 6.2 12.5 4.8 6.2
Max. speed (m/s) 5.0 5.0 5.0 5.0
Speed resolution (m/s) 0.15 0.15 0.15 0.15

standing, waving, walking, boxing or boxing while walking. Each one of the radar
sensors was configured with a different set of radar parameters, presented in
Table 7.1 as I to IV. Here, the divergent parameters of the different configurations
(marked in bold) affect the temporal and range resolution of the RDM sequences,
as well as the maximum observable scope of the latter. From these configurations,
I has been taken over from [24].

The input features x in Figure 7.8 comprise both range (xr) and Doppler (xd)
information, i.e.,:

x =
(

xr, xd
)
, xr, xd ∈ ℝ64×128 (7.31)

The radar preprocessing to produce x is also based on [24], with the notable addi-
tion of cropping and resampling of the spectrograms to ensure the dimensions
in (7.31) and the scopes of 0–2 seconds 0.0–4.8 m, and−5–5 m/s for the time, range,
and Doppler dimensions, respectively.

Despite all the preprocessing, the differences on resolution still yield a domain
shift across configurations that we try to tackle with MDD. For that, we take both
spectrograms as an input to our feature extractor 𝜓 . Here we choose the same
topology as in [24]; that is, a pair of twin branches 𝜓r and 𝜓d, each one consisting
of three convolutional layers for which we concatenate the outputs:

𝜓 (x) ≡ (
𝜓r

(
xr
)
, 𝜓d

(
xd
))

(7.32)

Furthermore, we employ a bottleneck layer of 512 nodes and choose our
hypothesis space  to be consistent with the structure of the fully connected
layers from [24].
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Figure 7.8 Range and Doppler spectrogram for boxing while walking.

Motivated by Lemma 7.1, we replace the vanilla loss terms in (7.21) by the
soft-margin losses £(𝜌) and £̃(𝜌) with

𝜌 = 2 log 2 ≃ 1.386 (7.33)

and we set the margin factor 𝛾 = 1 since the margin 𝜌 is already included in the
loss. Our version of MDD becomes thus

d̂(𝜌)
f ,𝜓,

(̂ , ̂ ) ≜ max
f ′∈ 𝔼xt∼̂ £̃(𝜌)

f ′
(
𝜓
(

xt) , hf
(
𝜓
(

xt)))
− 𝔼xs∼̂£(𝜌)

f ′
(
𝜓
(

xs) , hf
(
𝜓
(

xs))) (7.34)

Other than that, we leave all hyperparameters to the same values as in [27] and
adapt their implementation as in Figure 7.9. This has been written in Pytorch as
an instance of adversarial training, where a GRL is used to minimize the MDD loss
term on𝜓 while maximizing on f ′ as the minimax formulation in (7.15) mandates.

The number of samples per dataset lies over 1150 samples for the train sets and
over 350 samples for the test sets.

7.4.2.5 Results
We have run unsupervised training experiments for all possible domain pairs
within configurations I–IV and summarized the resulting test accuracies on the
test sets in Table 7.2.

The figures follow the same trend as the results of MDD in computer vision
datasets as reported by Zhang et al. [27] and presented in Table 7.3. Here one can
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Figure 7.9 MDD adversarial network. Source: Adapted from Zhang et al. [27].

Table 7.2 Test accuracy (%) of MDD for FMCW data.

Target configuration

So
ur

ce
co

nfi
gu

ra
tio

n

I II III IV
I — 91.4 90.6 88.3
II 90.9 — 89.8 89.4
III 89.4 90.4 — 89.4
IV 92.5 85.8 90.9 —

Table 7.3 Minimum and maximum accuracy (%) of MDD for different
datasets.

Office-31 Office-Home VisDa FMCW

72.2–100.0 53.6–82.3 74.6 (single value) 85.8–92.5

compare, for instance, the results using MDD for our FMCW data with the mini-
mum and maximum accuracies obtained for Office-31, a dataset containing 4652
images from three domains [33]. It is also noteworthy that the highest accuracy
for FMCW exceeds both that of the Office-Home dataset (15 500 images from four
domains) [34] and the VisDA dataset (280k real and synthetic images) [35].

Our results are also comparable with the FADA method for FMCW-based
human activity recognition in [24], which increases the baseline accuracy of
50–60% without domain adaptation to 88–92%. Here it is important to note that
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Table 7.4 Average accuracy comparison (%) of the original MDD
implementation and the soft-margin version.

Office-31 Office-Home FMCW

Original MDD 88.9 68.1 89.525
Soft-margin MDD 88.3 67.6 89.9

MDD is, in contrast to FADA, an unsupervised technique, and thus, it presents
the advantage of working with unlabeled target data.

We have also compared the average accuracy across domain combinations for
the original implementation of MDD in (7.21) with the average accuracy for our
soft-margin version in (7.34), taking the Office-31 and Office-Home datasets as
well as our FMCW radar data. The results, which can be seen in Table 7.4, show
little difference between both implementations.

7.4.2.6 Conclusion
In this work, we confirm that the MDD algorithm, which has already shown
promising results for unsupervised domain adaptation in the area of computer
vision, is also suitable for radar data across different FMCW parameters. The
obtained accuracy can become as high as for some supervised techniques [24]
while using a much more limited dataset, paving thus the way for a prompt deploy-
ment of radar-based deep learning applications with custom configurations.

In our experiments, we observe that the use of the soft-margin cross entropy
loss provides similar results as the original implementation by Zhang et al. [27].
Since the motivation of MDD is to bring the algorithms closer to the analytical
performance bounds of domain adaptation, we see potential in this alternative
loss function to bridge the gap between theory and practice.

7.5 Summary

In this chapter, we have learned about the basics and more advanced methods
of domain adaptation, as well as some practical examples in radar-based applica-
tions. We have seen that domain adaptation is often useful if we want to improve
generalization or have only a limited amount of training data for the target domain.
We have seen that there are a lot of different approaches to domain adaptation, all
of which try to map the source domain and the target domain to some common
space. The last part of this chapter contains some questions for the reader to check
on their understanding of the content.
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7.6 Questions to the Reader

● What is Domain Adaptation used for?
● What are some common data shifts?
● Why do we generally want to map samples from source domain and samples

from the target domain to similar feature vectors?
● Why is there a gradient reversal step in Figure 7.5 between the encoder and the

discriminator?
● For DA in radar: which other sensors are typically used for source domain data?
● What is the curse of dimensionality?
● How can MDD be used to better generalize to different FMCW radar settings?
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Bayesian Deep Learning

After reading this chapter, the reader will have an understanding on

● An overview of the principle of learning theory for both deterministic and
Bayesian neural networks.

● Different elemental blocks required to formulate Bayesian deep learning and
different optimization techniques.

● Application on Bayesian deep learning with its advantage for both seen and
unseen data.

Deep learning has led to a revolution in machine learning by providing solution
to highly nonlinear and complex problems. The concept of deep learning can be
seen in two different senses. First, as a toolbox or a toolkit of methods for solving
challenging problems using lots of data, i.e., by utilizing available data into one of
many possible methods such as k-means, random forest, neural networks (NNs)
such as convolution neural networks (CNNs), long short-term memory (LSTM),
and recurrent neural network (RNN), Q-learning. The choice of method is done
either from literature or by having good theoretical or empirical performance over
subsampled (validation) data, whereas in another paradigm with its own limita-
tions, deep learning is the science of learning methods or model from data. Here,
model is meant as a description of all possible data one could observe from a given
target system or environment but not the data which we use during training. The
data used during the training are sampled information about target environment.
As long as measured data are univariant and uniform, the mean value of the mea-
sured data can be approximated as data population. But in real world, measured
data are multivariant and multimode. As a result, the mean value of the measured
data won’t give all the information about data population distribution. Thus, the
learned models have limited knowledge on the environment. Additionally, often
the measured data are noisy which also leads to the loss of information. Because
of such situation, learned model is tied to the concept of uncertainty, i.e., to make

Methods and Techniques in Deep Learning: Advancements in mmWave Radar Solutions, First Edition.
Avik Santra, Souvik Hazra, Lorenzo Servadei, Thomas Stadelmayer, Michael Stephan, and Anand Dubey.
© 2023 The Institute of Electrical and Electronics Engineers, Inc. Published 2023 by John Wiley & Sons, Inc.
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prediction about the data which model haven’t seen yet, the learned model needs
to take uncertainty into account. The need for model uncertainty is most critical
for user–safety-based applications like self-driving cars and medical fields. This
gives importance to statistical models such as Bayesian neural networks (BNNs)
which help to quantify uncertainty over its estimates for a given input data which
model has not been seen before.

The literature is rich about Bayesian deep learning (BDL). In order to show how
BDL can help in real-life problem of short-range radar sensors, in this chapter, first
we review and navigate through fundamentals of learning theory behind deter-
ministic and statistical model.1 Afterward, the different optimization techniques
from literature are reviewed as practitioners for building BDL. Finally, a real-life
use case is presented, which includes approaches of an integrated Bayesian tracker
for the tracking and classification of road users, such as pedestrian and cyclist.

8.1 Learning Theory

The goal of the NN is to learn model for given measured data
 =

{{(
x(n), y(n)

)}N
n=1 = (X , y)

}
, sampled from independent and identically

distributed (i.i.d.).2 Here, x(n), y(n) represents input data to the model and ground
truth label of dimension n with N number of training samples. The learning is
done in two stages: (i) by mapping input pattern  to hidden representation  (x),
known as representation learning or encoder, and (ii) decoding hidden features
to the best optimal label ̂ . This process is termed as learning theory of model
and can be summarized as follows:

XStart T (x) Ŷ

p(Y‚ |T )p(T |X )

The goal of the model is to predict the best optimal output ̂ from represen-
tation  (x) which is close to label (ground truth). Thus, model tries to minimize
the empirical error between estimated and label output during the training.
The minimization function could be a distance-based (for deterministic model)
or a density-based (for statistical model) error function e, depending on model

1 For ease of synchronization to this chapter and narrow down our focus, NNs are considered as
choice of model.
2 In probability theory and statistics, a collection of random variables is i.i.d. if each random
variable has the same probability distribution as the others, and all are mutually independent.
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definition. While minimizing the empirical (training) error during the training,
the global goal is to minimize generalization gap too, i.e., to let model predict
with bounded error for samples outside of training data, as described by Eq. (8.1).

Generalization Gap = Empirical Error − Expected Error

= 1
N

N∑
i=1

(e(h, xi) − Ex(e(h, x)))
(8.1)

The expected error (also known as generalization error) is the divergence in
prediction for a given hypothesis h (i.e., 𝜃𝜇, 𝜃𝜎,) when optimized over all
possible data. This gets trivial to be optimized for a limited training data .

On the other hand, for a large scale of training data, the generalization gap is
minimized asymptotically. Let xi be i.i.d from  with a probability p(xi) greater
than zero, i.e., xi ∼ p(x) > 0. As a result, for N sample of measurement data , the
joint probability P

(
x1,… , xn

)
is equal to the product of their individual probability∏N

i=1 P
(

xi
)
. To make a product of probabilistic distribution computationally inex-

pensive, logarithm can be taken which makes product equivalent to summation
for i.i.d, and is equal to

∑N
i=1 log p(x). As a result, with large number of measured

data (asymptotically) with N → ∞, the summation of probability distribution of
all sampled data will concentrate around the mean of the population distribution.
The mean value, in this case, is simply the expectation value ⟨− log p(x)⟩x for all
possible x which can be written as

∑
xp(x) lg p(x) and known as entropy of x. This

indicates that the entropy measure of x can approximate the system for very large
measured data. This further shows that the probability of finding sequences which
are further away from mean (entropy of x) is equivalent to zero, as N is very large.

With the asymptotic approximation over large-scale and high-dimensional
training data, the model is optimized around mean. As a result, maximum
likelihood is considered as choice of error function. After optimization of model,
the estimation by model over new unseen data is done using extrapolation of
learned function, i.e., around mean value instead of true distribution. Although in
real-world scenario, despite large-scale training data, the subclass target samples
fall into smaller subspace of global input space and thus making limitations on
asymptotic approximation over measured data. Additionally, this also leads to
multimode optimization problem which causes large generalization error for
unseen data as model fails to extrapolate due to multiple local minima. This brings
the requirement to quantify uncertainty over both model and its estimation.

8.2 Bayesian Learning

To address the problem with limited training data and model, its stochastic nature
in statistics provides a framework to use mathematics of probability theory to
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Table 8.1 Different parametric and nonparametric models with possible algorithms to
optimize them.

Parametric Nonparametric Algorithm Application

Polynomial regression Gaussian processes MCMC Function
approximation

Logistic regression Gaussian process
classifiers

Variational Bayes Classification

Mixture models,
k-means

Dirichlet process
mixtures

Stochastic gradient
descent

Clustering

Hidden Markov
models

Infinite HMMs Conjugate-gradient Time series

Factor analysis/
pPCA/PMF infinite

Latent factor
models

Belief propagation Feature discovery

express all forms of uncertainty associated with model and data. In a broad
view, statistical framework can be grouped into two models – nonparametric and
parametric Bayesian models. While both the approaches try to find optimum
model parameter 𝜃 which can estimate true label for new input data, parametric
model assumes finite set of parameters, i.e., the complexity of model is bounded
even if data  is unbounded. In contrast to this, nonparametric model assumes
that the data distribution cannot be defined by predefined finite set of parameters
but can be learned from data by assuming an infinite dimension over 𝜃. This is
done by assuming 𝜃 as a function. Table 8.1 shows different known parametric
and nonparametric models together with possible applications. It is important to
note that, all the algorithm mentioned in Table 8.1 are independent of the model
and are useful for model optimization/learning. In this chapter, we will have more
focus on the parametric model using Bayesian algorithm as our topic of interest
is deep neural networks (DNNs), whereas a small overview on nonparametric
Bayesian models will be given at the end of this section.

8.2.1 Parametric Bayesian Models

In the statistical modeling of the parametric model, the stochastic nature of
measured data is assumed to be sampled from a population of i.i.d. In literature,
the statistical methods to learn about distribution can be grouped into two
schools of thought, Bayesian (also known as inverse-probability) paradigm and
frequentist paradigm. In contrast to frequentist view, the Bayesian framework
considers model and its associated parameters as random (uncertain) variables
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which follow a probability distribution. As a result, Bayesian framework is based
on two basic principles: (i) probability is a measure of belief in the occurrence
of measured sampled data, rather than the limiting of it by the frequency of
occurrence where the number of measured sampled data goes toward infinity for
consensus, as assumed in the frequentist paradigm, and (ii) Bayesian framework
allows to infer and update the hypothesis, i.e., belief of unknown quantities from
measured data (evidence) using Bayes’ theorem, as follows:

P(hypothesis ∣ data) =
P(hypothesis)P(data ∣ hypothesis)∑

hP(h)P(data ∣ h)
(8.2)

Fundamentally, a point estimate-based NN model can be summarized as
illustrated in Figure 8.1a. The output at any layer is a nonlinear function of dot
product between input and parameter weights, i.e., y(n)i = 𝜎

(∑
i𝜃ix

(n)
i

)
+ 𝜖(n).

Here, 𝜖 is a stochastic error function with order of number of hidden units
n. As stated before, both functional model  and its associated parameters 𝜃

(stochastic model) are considered as random variables and brought uncertainty
over functional definition (choice of architecture, number of hidden layers and
units, type of nonlinearity, etc.) and optimized parameters (weights, bias). Under
Bayesian framework paradigm of NN, as illustrated in Figure 8.1b, both can
be treated as hypothesis p(𝜃𝜇 ∣ 𝜃𝜎,) and thus, holds some prior belief in the
form of probability distribution. These distributions are often defined using two
parameters, mean 𝜃𝜇 and width of distribution, i.e., variance 𝜃𝜎 , if assumed
as Gaussian.

The hypothesis is updated in the form of posterior p(𝜃𝜇 ∣ , 𝜃𝜎,) using
sampled data () and encodes epistemic uncertainty, i.e., uncertainty due to
limited data [1]. The update of hypothesis is known as training of the network and
can be summarized by Eq. (8.3) in accordance with Bayes’ Theorem. The major

(a) (b)

Figure 8.1 A comparative illustration of (a) deterministic and (b) Bayesian
neural network.
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mathematical advantage of BNN, as described by Eq. (8.3), is that it gives
possibilities and probabilities in the design-structure of space

{
𝜃𝜇, 𝜃𝜎,}

.

Posterior
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

p(𝜃𝜇 ∣ , 𝜃𝜎,) =

Likelihood
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

p( ∣ 𝜃𝜇, 𝜃𝜎,)

Prior
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

p(𝜃𝜇 ∣ 𝜃𝜎,)

∫ p( ∣ 𝜃𝜎,)p(𝜃𝜇 ∣ 𝜃𝜎,)d𝜃d
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Model evidence

∝ p(y ∣ x, 𝜃𝜇, 𝜃𝜎,)p(𝜃𝜇 ∣ 𝜃𝜎,)

(8.3)

The likelihood function (p( ∣ 𝜃𝜇, 𝜃𝜎,)) is a probability mass function which
describes distribution over hypothesis and thus, encodes the aleatoric uncer-
tainty, i.e., uncertainty associated with the noise in the data or model and its
parameters [1]. Further, depending on the nature of noise model, aleatoric
uncertainty can be categorized into heteroscedastic if noise is data-dependent
and homoscedastic uncertainty where noise is data independent and uniform
throughout observation. Figure 8.2 illustrates the effect of different noise observa-
tion on aleatoric uncertainty. This shows that due to inherent noise in measured
data, aleatoric uncertainty cannot be reduced with more data. The likelihood
function doesn’t follow a probability distribution. Thus posterior, which is the
multiple of likelihood and belief of the model, wouldn’t follow probability

No training
data

Predictive mean
Ground truth mean

Uncertainty

Noisy training
data

(c) (a) (b)

No training
data

Figure 8.2 Model estimation plot on the effect of different noise observation on
aleatoric uncertainty where (a) represents heteroscedastic model with data-dependent
observation, (b) and (c) show homoscedastic model with small and large observation
noise, respectively.
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distribution. To make posterior follow nature of probability distribution, it is
normalized over model evidence (p( ∣ 𝜃𝜎,)).

After training, BNN uses marginal probability distribution p
(

y ∣ x,Xtr,Ytr
)

for
the prediction over new unseen data and quantifies model uncertainty on its pre-
diction. Given p(𝜃 ∣ ) and p(y ∣ x,), the prediction can be computed as follows:

p
(

y ∣ x,Xtr,Ytr
)
= ∫ p(y ∣ x, 𝜃)p

(
𝜃 ∣ Xtr,Ytr

)
d𝜃 (8.4)

Additionally, marginal likelihood prevents the model from over fitting on
sampled training data in contrast to maximum likelihood-based optimization
and inference of the model. This is due to the reason that maximum likelihood
has more preference for data fitting around mean value of data distribution and
may lead to over fitting. In contrast to this, marginal likelihood is an ensemble
method over the possible model and its parameter which helps to estimate
and to follow true distribution of data and avoid over or under fitting. For a
simpler understanding, if one draws random sample from the learned posterior
of the model parameter, and if model is over fitted, the maximum likelihood
will give high accuracy but marginal likelihood would be very minimal. The
similar approach can be used for model selection known as Bayesian razor model
selection as formulated in Eq. (8.5).

p( ∣ ) =
p( ∣ )p()

p()
, p( ∣ ) = ∫ p( ∣ 𝜽,)p(𝜽 ∣ )d𝜽

(8.5)

8.2.2 Nonparametric Bayesian Models

For given training points, there could be infinitely many functions that could
describe the data under bounded error gap. As a result, it is not optimal to
make assumption over dimensions and number of parameters required to
model the training points. With this thought, in contrast to parametric statistics,
nonparametric statistics provides Bayesian framework with no assumption on
the distribution of sampled data and is treated unknown by not fixing number
of parameters over models. Gaussian process (GP), as nonparametric Bayesian
model, provides an elegant approach toward such problem for both classification
and regression. This is done by learning the probability distribution over function.
The most common examples of GP are support vector machine (SVM) and kernel
density estimation.

While the multivariate Gaussian captures a finite number of jointly distributed
Gaussian, the GP does not have this limitation. Its mean and covariance are
defined by a function. Each input to this function is a variable correlated with
the other variables in the input domain, as defined by the covariance function.
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Since functions can have an infinite input domain, the GP can be interpreted as
an infinite dimensional Gaussian random variable (GRV). Functions from the
GP require initial mean and covariance definition as prior, similar to BNNs. This
shows a possible approximate relation between BNN and GP. Asymptotically, if
number of hidden layers and corresponding units go to infinity with Gaussian
prior, the BNN can be approximated as GP. In such situation, the nonlinearity
inside BNN will be treated as kernel of GP. As a result, it is assumed that DNNs
are GP. Thus, the remaining section talk about parametric Bayesian framework
for DNNs.

While both Eqs. (8.3) and (8.4) show possibility to realize BNN, whereas
framework has its own challenge during both training and inference stage. These
challenges can be categorized into two groups: (i) initial definition of hypothesis
(priors), and (ii) computational complexity to solve intractable integrals for model
parameter estimation by Eq. (8.3), model estimation by Eq. (8.4), and model
selection by Eq. (8.5).

8.2.3 Priors

The Bayesian framework helps to update the initial belief of the model and its
parameter in the form of posterior over training data. The choice of prior controls
the convergence rate to update the belief to true posterior. If the choice of prior
is too strong, then update of posterior will be biased toward prior and likelihood
samples will not have any effect on its update, unless the training samples are
rendered independently. However, if choice of prior is very week (e.g., uniform),
the posterior will predominately depend on the likelihood and one needs large
training samples to reach conclusive result. The size of training samples is not
well-defined in literature. As a result, a model might end up in having different
posterior when initialized with different prior for limited training samples, unless
they follow asymptotic consensus, i.e., optimizing Bayesian model over very large
sampled training data. This shows importance on choice of prior. Based on the
different set up and knowledge on experiment and data, the choice of prior can
be categorized into different school of thoughts:

1. Objective Priors:
Noninformative prior: Prior definition under this category does not attempt to
capture any information about data. For example, if we have data which follow
Gaussian distribution with mean 𝜇 and variance 𝜎 and parameter 𝜇 informs
about location of the data. As a result, the choice of prior would be a distribu-
tion which doesn’t capture any location information, i.e., p(𝜇) = p(𝜇 − a) ∀ a.
This implies a uniform distribution which could be improper prior as it is
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hard (impossible) to generalize over all parameters for a complicated model
(multivariant and multimode model). Further, a similar limitation is reached
when prior is picked over 𝜎 which is scaling parameter for data.
Reference prior: Prior of this kind captures the notion of noninformativeness
about model parameter 𝜃. Given a model p(x ∣ 𝜃), we wish to find the prior on 𝜃

such that an experiment involving observing x is expected to provide the most
information about 𝜃. This means most of the information about 𝜃 will come
from the data rather than the prior. The information about 𝜃 can be formulated
as difference between entropy of parameters 𝜃 before observing the data and
entropy of parameters 𝜃 before observing the data averaged over all possible
observable data:

I(𝜃 ∣ x) = −∫ p(𝜃) log p(𝜃)d𝜃 −
(
−∫ p(𝜃, x) log p(𝜃 ∣ x)d𝜃dx

)
(8.6)

This can be generalized to experiments with n observations whereas prior
depends on the size of data to be observed. As a result, one must know
beforehand the size of data before observation which is impossible.

2. Subjective Priors
These prior captures the initial belief over data and environment (e.g., tasks)
which makes it very popular among Bayesian framework. To test our belief, one
could generate data or task decision from the prior and can calculate expecta-
tion error. Whereas with an asymptotic assumption for a Bayesian framework,
even as a vague prior belief can be useful since data will concentrate the poste-
rior around true distribution by averaging over all possibilities. As a result, for
Bayesian framework in statistical modeling, prior is not the key ingredient.

3. Conjugate Priors
The conjugate priors have two advantages in a Bayesian framework: (i) it
helps posterior to follow and have the same type as prior and (ii) is also useful
to reduce intractable integral in Bayesian update or inference to parameter
update of the prior distribution. The conjugate priors can be defined as a
prior p(𝜃) that belongs to some distribution family A parameterized by 𝛼

and likelihood function p( ∣ 𝜃) that belongs to some distribution family B
parameterized by y. Thus, if posterior p(𝜃 ∣ ) also belongs to same parametric
family as prior parameterized by different parameter, then prior and likelihood
are conjugate pairs.

p(y) ∈ (𝛼), p(x ∣ y) ∈ (y) → p(y ∣ x) ∈  (
𝛼′) (8.7)

As a result, such priors solve the problem of intractability of full Bayesian
framework in the closed form. The most common choice for conjugate pairs
of distributions are the following:
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Likelihood p(x ∣ y) y Conjugate prior p(y)

Gaussian 𝜇 Gaussian
Gaussian 𝜎−2 Gamma
Gaussian

(
𝜇, 𝜎−2) Gaussian–Gamma

Multivariate Gaussian Σ−1 Wishart
Bernoulli p Beta
Multinomial

(
p1,… , pm

)
Dirichlet

Poisson λ Gamma
Uniform 𝜃 Pareto

However, these conjugate prior are not suitable for multivariant and multimode
model like DNNs. Additionally, to define conjugate priors, one has to know
about data distribution and environment in advance which is not possible in
real-world scenario.

8.3 Bayesian Approximations

In addition to choice of prior for model learning in Bayesian formulation, the key
problem is the bottleneck to realize full Bayesian formulation, as defined by Eqs.
(8.3) and (8.4). This is due to the computation of posterior (marginal likelihood or
model evidence) and model prediction which is averaged over model parameters.

MarginalLikelihood: P( ∣ m) = ∫ P( ∣ 𝜃,m)P(𝜃 ∣ m)d𝜃

Prediction: P(y ∣ ,m) = ∫ P(y ∣ 𝜃,,m)P(𝜃 ∣ ,m)dm d𝜃

The integrals are intractable here due to high-order interaction terms. This implies
that the high-dimensional integrals required averaging over all parameters and
hidden variables, making integral intractable in nature. In literature, there are
multiple numerical approximation proposed to solve these integrals.

8.3.1 Laplace’s Approximation

In the literature of approximation theories for intractable integrals, Laplace theory
of approximation works on first-order moments, i.e., mean and variance of the true
distribution. As a result, this effectively operates on an identifiable model with
single mode or provides local approximation when distribution has multimode.
Before looking into complex approximation for Bayesian inference, an asymptotic
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result for one-dimensional case will be formulated using Laplace approximation
theory. For this, an intractable integral is considered in the form of

I(t) = ∫K
h(x)e−tf (x)dx (8.8)

where K is compact (bounded and closed) subset of ℝd, and h and f are two
real-valued distribution functions defined on K such that the integral is well
defined for large enough t ∈ ℝ. The goal is to obtain an asymptotic equivalent of
integral when t tends to infinity. In the Bayesian framework, t will be the number
of observations from i.i.d. The approximation of above integral is possible iff
following conditions are met:

● Continuous function: h is a continuous function on K and that f is second-
order continuously differentiable function on K.

● Global minima (single mode): f has a strict global minima x∗ on K, which is
within the set of K, where the gradient f ′(x∗) is thus equal to zero, and where
the Hessian3 f ′′(x∗) is a positive definite matrix (it is always positive semidefinite
because x∗ is a local minimizer of f ); moreover, h(x∗) ≠ 0.

Then as t tends to infinity, the asymptotic equivalent of integrals is as follows:

I(t) ∼
h(x∗)√

det f ′′(x∗)

(2𝜋
t

)d∕2
e−tf (x∗) (8.9)

The idea behind the above equation is quite intuitive: for t > 0, the exponential
term e−tf (x) is largest when x is equal to the minima i.e., x∗. Hence, contributions
that are close to x∗ will only be countable in the integral. Then we can do Taylor
expansions of the two functions around x∗. This results in h(x) ≈ h(x∗) and
f (x) ≈ f (x∗) +

1
2
(x − x∗)⊤f ′′(x∗(x − x∗). Thus, approximate integral I(t) as

I(t) ≈ ∫K
h(x∗) exp

[
−tf (x∗) −

t
2
(x − x∗)⊤f ′′(x∗)(x − x∗)

]
dx (8.10)

We can then make a change of variable y =
√

tf ′′(x∗)1∕2(x − x∗) (where f ′′(x∗)1∕2

is the positive square root of f ′′(x∗)), to get, with the Jacobean4 of the transforma-
tion leading to the term (det f ′′(x∗))1∕2td∕2:

I(t) ≈
h(x∗)e−tf (x∗)

(det f ′′(x∗))1∕2td∕2 ∫√
tf ′′(x∗)1∕2(K−x∗)

exp
[
−1

2
y⊤y

]
dy (8.11)

We can write the integral part of the expression above as follows:

J(t) = ∫ℝd
a(y, t)dy (8.12)

3 Hessian matrix is defined as second-order derivative matrix for respective function.
4 Gradient: Vector of first-order derivatives of a scalar field Jacobian: Matrix of gradients for
components of a vector field Hessian: Matrix of second-order mixed partials of a scalar field.
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with

a(y, t) = 1y∈
√

tK h
(

1√
t
y
)

exp
[
− 1

2
y⊤y ⋅ g

(
1√

t
y
)]

(8.13)

where for all t > 0 and y ∈ ℝd, |a(y, t)| ⩽ max z∈K |h(z)| exp
[
−||y||2 ⋅ min z∈K g(z)

]
,

which is integral because h is continuous on the compact set K and thus bounded,
and g is strictly positive on K (since f is strictly positive except at zero as 0 is a strict
global minimum), and by continuity, its minimal value is strictly positive. Thus by
the dominated convergence theorem:

lim
t→+∞

J(t) = ∫ℝd

(
lim

t→+∞
a(y, t)

)
dy = ∫ℝd

exp
[
−1

2
y⊤y

]
dy = (2𝜋)d∕2 (8.14)

These results of the Gaussian integrals tend to a normalization constant of Gaus-
sian distribution which is equal to (2𝜋)d∕2. This leads to the desired result since
I(t) = J(t)∕td∕2.

8.3.1.1 Laplace Approximation for Bayesian Inference
Considering the Laplace approximation for intractable integrals, as described in
Eq. (8.9), both marginal likelihood during parameter update and model estimates
during inference can be approximated. In this part, we have only discussed
approximation for Bayesian inference, whereas a similar approach can be used
for approximation of marginal likelihood. Thus, considering the integral form of
Bayesian inference is as described as follows:

∫Θ
h(𝜃)p(𝜃)

n∏
i=1

p
(

xi ∣ 𝜃
)

d𝜃 (8.15)

for some function h ∶ Θ → ℝ, are needed. For example, computing the marginal
likelihood corresponds to h = 1. By taking logarithms over and above the formu-
lation, we can write

∫Θ
h(𝜃)p(𝜃)

n∏
i=1

p
(

xi ∣ 𝜃
)

d𝜃 = ∫Θ
h(𝜃) exp

(
log p(𝜃) +

n∑
i=1

log p
(

xi ∣ 𝜃
))

d𝜃

(8.16)

and with fn(𝜃) = − 1
n

log p(𝜃) − 1
n

∑n
i=1 log p

(
xi ∣ 𝜃

)
, we have an integral in the

Laplace form, that is,

∫Θ
h(𝜃) exp

(
−nfn(𝜃)

)
d𝜃 (8.17)

with a function fn that now varies with n. This simple variation does not mat-
ter because of the law of large numbers, when n is large, fn(𝜃) tends to a fixed
function 𝔼[log p(x ∣ 𝜃)]. The Laplace approximation thus requires to compute the
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minimizer of fn(𝜃), which is exactly the maximum of a posteriori estimate �̂�MAP,
and uses the approximation:

∫Θ
h(𝜃) exp

(
−nfn(𝜃)

)
d𝜃 ≈ (2𝜋∕n)d∕2 h

(
�̂�MAP

)(
det f ′′n

(
�̂�MAP

))1∕2 exp
(
−nfn

(
�̂�MAP

))
(8.18)

8.3.1.2 Limitation and Extension
Although Laplace approximation helps to approximate integral of any order, it
brings two major limitations. First, the approximation is done to the first order of
nonlinearity which means it assumes distribution to follow single model Gaussian
distribution. As a result, for a multimodel Gaussian distribution, method fails to
find good approximation and leads to under-fitting. Second, as the approximation
is done around the mean of the distribution considering it as a Global minima. For
use case with single-mode, non-Gaussian distribution (e.g., rectangular) will result
in over-fitting. Additionally, the calculation of Hessian matrix gets computation-
ally very expensive for large model parameters. Both the limitations, high-order
expansion and Hessian approximation for large model parameters are addressed
in literature by following methodologies.

● The high-order expansion: The approximation is based on Taylor expansions of
the functions h (order 0) and f (order 2). In order to obtain extra terms of the
form td∕2+𝜈 , for 𝜈 a positive integer, we need higher-order derivatives of h and f .
In more than one dimension, that quickly gets complicated (see, e.g., [2, 3]).

● The Hessian approximation: In Laplace approximation, the log of posterior is
equal to summation of log of prior and log of likelihood. As number of training
sample points increases, the log of likelihood increases (linearly for most model)
and prior remains unaffected. As a result, the Laplace approximation can be
further approximated using Bayesian information criteria (BIC) as follows:

ln p(y ∣ m) ≈ ln p(�̂� ∣ m) + ln p(y ∣ �̂�,m) + d
2

ln 2𝜋 − 1
2

ln |A| (8.19)

by taking the large sample limit (n → ∞) where n is the number of data points:

ln p(y ∣ m) ≈ ln p(y ∣ �̂�,m) − d
2

ln n (8.20)

8.3.2 Markov Chain Monte Carlo (MCMC)

In statistics, Markov Chain Monte Carlo (MCMC) method is used for generating
samples from a given probability distribution [4]. In contrast to Laplace approxi-
mation which is limited to unimodel Gaussian distribution, sampling method can
be very useful for approximation of multimodel distribution. The basic principle
behind this approach is to draw samples from a probability distribution defined
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Sampling based on
unnormalized distribution

Statistics estimation
from samples

Unnormalized distribution
(With intractable

normalization factor)

Samples
(Obtained with MCMC
without normalization)

Statistics or
estimations

(Calculated based
on the generated

samples)

μ, σ, ...

Figure 8.3 Illustration of the sampling approach.

by a factor or a rule. Later, these samples are computed to get statistical model
parameters like mean and variance or approximate the distribution, as illustrated
in Figure 9.20. Additionally, sampling approach also removes the assumption on
modeling the true distribution using another model, in contrast to Laplace approx-
imation and variational inference (VI) (discussed in variational approximation)
(Figure 8.3). As a consequence, sampling methods result in an approximate dis-
tribution having low bias effect but at the cost of high variance. To reduce the
effect of variance and more accurate approximate models, this approach is often
computationally expensive.

MCMC method consists of two components: (i) the Monte Carlo part which
defines sampling probability and (ii) Markov chain which defines the rule to tra-
verse in the distribution space. Thus, MCMC builds a Markov chain whose sta-
tionary distribution is the one from where we want to sample.

● Markov Chains: It is defined as a random process over a state space E with tran-
sition probability between different substates.

● Monte Carlo methods: It is a class of algorithm that uses random sampling for
computation of result. For example, an expected value of a random variable
without knowing its true distribution can be evaluated empirically using a set
of independent random samples.

In the context of Bayesian inference approximation, the MCMC methods are
simply a class of algorithms that use Markov Chains to sample (the Monte Carlo
part) from a particular probability distribution. They work by creating a Markov
Chain where the limiting distribution (also known as stationary distribution) is
simply the distribution we want to sample. However, not every Markov Chain has
a stationary distribution or even a unique one, whereas this can be guaranteed two
additional constraints to the Markov Chain:

● Irreducible: We must be able to reach any one state from any other state even-
tually (i.e., the expected number of steps is finite).

● Aperiodic: The system never returns to the same state with a fixed period.
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Together, these two properties are known as ergodic. Another property which
helps to validate if Markov Chains have stationary distribution 𝜋 is known as
detailed balance and reversible (also known as the detailed balance condition)
Markov Chains when it satisfies below condition:

𝜋iP
(

Xn+1 = j ∣ Xn = i
)
= 𝜋jP

(
Xn+1 = i ∣ Xn = j

)
(8.21)

In other words, in the long run, the proportion of times that you transition from
state i to state j is the same as the proportion of times you transition from state j to
state i.

The Metropolis–Hastings (MH) algorithm is an MCMC technique that draws
samples from a probability distribution where direct sampling is difficult. For a
given target probability density function p(x), the condition on MH is defined as
to have a Markov chain where steady-state distribution function f (x) that is pro-
portional to p(x). This gives extreme benefit in the context of Bayesian framework
where marginal likelihood needs to be approximated.

Thus, to end up with steady-state distribution, Markov chain transition proba-
bilities needs to be defined using balance condition, i.e.,

p(x)P
(

x → x′
)
= p

(
x′
)

P
(

x′ → x
)

(8.22)

Here p(x) is our target distribution, and P
(

x → x′
)

is the transition probability
going from point x to point x′; so our goal is to determine the form of P

(
x → x′

)
.

Since we get to construct the Markov Chain, let us start off by using Eq. (8.22)
as the basis for that construction. As discussed before, considering the detailed
balance condition guarantees that our Markov Chain has a stationary distribution
and follows ergodicity (not repeating states at fixed intervals and every state much
be able to reach any other state eventually), we will have built a Markov Chain that
has a unique stationary distribution, p(x). We can rearrange Eq. (8.22) as follows:

P
(

x → x′
)

P (x′ → x)
=

p
(

x′
)

p(x)
=

f
(

x′
)

f (x)
(8.23)

Here we use f (x) to represent a function that is proportional to p(x). This is
to emphasize that we don’t explicitly need p(x), just something proportional to
it such that the ratios work out to the same thing. Now, the “trick” here is that we
are going to break up P

(
x → x′

)
into two independent steps: a proposal distribu-

tion g
(

x → x′
)

and an acceptance distribution A
(

x → x′
)

(similar to how rejection
sampling works [2]). Since they are independent, our transition probability is just
the multiplication of the two:

P
(

x → x′
)
= g

(
x → x′

)
A
(

x → x′
)

(8.24)

At this point, we have to figure out what an appropriate choice for g(x) and A(x)
will be. Since g(x) is the “proposal distribution,” it decides the next point we will
potentially be sampling. Thus, it is important that it have the same support as
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our target distribution p(x) (ergodicity condition). A typical choice here would be
the normal distribution centered on the current state. Now, given a fixed proposal
distribution g(x), we wish to find an A(x) that matches. Rewriting Eq. (8.23) and
substituting in Eq. (8.24):

A
(

x → x′
)

A (x′ → x)
=

f
(

x′
)

f (x)
g
(

x′ → x
)

g (x → x′)
(8.25)

A typical choice for A(x) that satisfies Eq. (8.25) is

A
(

x → x′
)
= min

(
1,

f
(

x′
)

g
(

x′ → x
)

f (x)g (x → x′)

)
(8.26)

We can see that by considering the cases where f (x′)g(x′→x)
f (x)g(x→x′)

is less than or equal
to 1 and the cases when it is greater than 1. When it is less than or equal to 1,
its inverse is greater than 1, thus, the denominator of the LHS, A

(
x → x′

)
, of

Eq. (8.25) is 1, while the numerator is equal to the RHS. Alternatively, when
f (x′)g(x′→x)
f (x)g(x→x′)

is greater than one, the LHS numerator is 1, while the denominator
is just the reciprocal of the RHS, resulting in the LHS equaling the RHS. So the
overall algorithm would be the following:

(a) Initialize the initial state by picking a random x
(b) Find new x′ according to g

(
x → x′

)
(c) Accept x′ with uniform probability according to A

(
x → x′

)
. If accepted, tran-

sition to x′; otherwise, stay in state x
(d) Go to step (b), T times
(e) Save state x as a sample, go to step (b) to sample another point

After the definition of Markov chain, the obtained sample to follow target dis-
tribution being independent needs to follow two conditions:

● Burn-in time: In order to have samples that (almost) follow the targeted
distribution, we need to only consider states that are distant enough from
the initialization of the generated sequence in order to reach the steady state
of the Markov Chain, whereas in theory, the steady state is reached only
asymptotically. Thus, the first simulated states are not usable as samples. This
phase is required to reach stationary the burn-in time. Notice that, in practice,
it is pretty difficult to know how long this burn-in time has to be.

● Lag sample: In order to have (almost) independent samples, we can’t keep all
the successive states of the sequence after the burn-in time as by definition,
Markov Chain implies a strong correlation between two successive states, and
thus, states that are far enough from each other to be considered as almost
independent samples. In practice, the lag required between two states to be
considered as almost independent can be estimated through the analysis of the
auto-correlation function.
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8.3.3 Variational Approximations

The major shortcoming of sampling method is the absence of objective function to
measure distance between true distribution and estimation. As a result, another
method called VI is proposed in the literature [3]. This method treats intractable
integral approximation problem as optimization problem by defining a parame-
terized family of distributions and optimize it over the parameters to obtain the
closest element to the target with respect to a well-defined error measure.

To ease and simplify the representation of true integrals, marginal likelihood
ln ∫ p(y, x,𝜽 ∣ m)dx d𝜽 is denoted by 𝜋(.) function. Similarly, the parameterized
distribution q(x,𝜽) is denoted by Ω. Thus, in more mathematical forms, the true
probability distribution normalization factor C and parameterized family of distri-
bution can be written as follows:

𝜋(.) = C × g(.) ∝ g(.) (8.27)

Ω =
{

f𝜔;𝜔 ∈ Ω
}

Ω ≡ set of possible parameters (8.28)

As mentioned earlier, to make approximation as optimization problem, VI uses
an error measure E() between two distributions and search for the best parameter
such that

𝜔∗ = argmin
𝜔∈Ω

E
(

f𝜔, 𝜋
)

(8.29)

This helps to find parameterized distribution f𝜔∗ as an approximation to true
distribution 𝜋. This avoids problems such as intractable normalization integral
(marginal likelihood) and combinatorics. Although VI is much simpler in com-
parison to MCMC, VI assumes a model in the form of parameterized family. This
implies not only a bias but also a lower variance which makes VI less accurate com-
pared to MCMC (when reached its stationary distribution), but VI produces results
much faster. A visual understanding of VI is illustrated in Figure 8.4. Similar to

Unnormalized distribution
(With intractable

normalization factor)

Best approximation (f )
(Among parametrized family,

obtained by optimizing
over the family parameters

and without proceeding
to the normalization)

Approximate computations
(Obtained by replacing the

exact distribution by
the approximate one)

Optimization to find
an approximation

Use of the approximate
distribution

∫x.π(x) dx
≈
∫x.f(x) dx

Figure 8.4 Illustration of the variational inference approximation method.
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MCMC, there are three key components for VI approximation method, which
are as follows: (i) family of parameterized distribution, (ii) error function, and
(iii) optimization process.

● Family of parameterized distribution: The first and the most important for VI
method is to set up the parameterized family of distribution which defines the
search space for best approximation. The choice of the distribution family is
very critical as it defines a model that controls both the bias and the complex-
ity of the model toward approximation. If a model is very simple or have hard
restriction, then it brings high bias, but the optimization process becomes very
simple. In the contrast, if the model is from a complex family or have lots of free
parameters, then the bias is much lower, but at the cost of complexity during
its optimization. As a result, there is always a trade-off between the choice of a
model to be complex enough that have less bias but also simple enough to make
optimization process tractable. Additionally, if no distribution in the family is
close to the target distribution, then even best optimization will result into poor
approximation.
To address this, the mean-field variational family as a choice for the family of
probability distribution that is considered in [5]. The typical characteristics
are that all components of the considered random vector are independent.
The distributions from this family have product densities such that each
independent component is governed by a distinct factor of the product. Thus, a
distribution that belongs to the mean-field variational family has a density with
m-dimensional random variable z that can be written as follows:

f (z) =
m∏

j=1
fj
(

zj
)

(8.30)

Taking above equation as an example, if each density function fj is Gaussian hav-
ing mean and variance as parameters, the global density function f (z) would be
defined by a set of parameters from all independent Gaussian and the optimiza-
tion is done over the entire set of parameters. This is visualized in Figure 8.5.

Family of Gaussian
distribution (F1)
with parameters:

mean and variance

Family of mixture of two
Gaussian distribution (F2)

with their parameters:
mean and variance

Blue – distribution for approximation,
Orange – best aprroximation among F1,
Green – best approximation among F2

Best approximation
among the family

Best approximation
among the family

Figure 8.5 The choice of the family in variational inference sets both the difficulty of
the optimization process and the quality of the final approximation.
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● KL-divergence: After finding the choice of family of distribution, the way to
find the best approximation of a given probability distribution raises the ques-
tion as best approximation depends on the choice of error measure between
approximated and true distribution. The choice of the error function should be
such that the minimization problem should be sensitive to normalization fac-
tor (marginal likelihood in Bayesian inference) as the goal is to compare masses
of distributions more than masses. To do so, Kullback–Leibler (KL) divergence
is considered as an error function as it makes the measure insensitive to the
normalization factors [6]. The KL-divergenece between two distribution (q as
parameterized distribution for f𝜔 and p as true distribution for 𝜋) can be defined
as follows:

DKL(p||q) = N∑
i=1

p
(

xi
)
⋅
(
log p

(
xi
)
− log q

(
xi
))

(8.31)

Before getting into math formulation of the KL-divergence between two
distribution, it is important to understand its interpretation and properties.
Essentially, Eq. (8.31) is the expectation of the log difference between the true
distribution and the probability of data in the approximating distribution, i.e.,
Eq. (8.31) can be rewritten as E[log p

(
xi
)
− log q

(
xi
)
]. Despite KL(p, q) matches

the expectation of p better, for Bayesian approximation inverse KL-divergence
(KL(q, p)) is estimated. This is due to the reason that KL-divergence is a
moment projection (m-projection), i.e., tries to match q distribution with all
the moment parameters5 of the p distribution. To do so, one need to know p
which is hard. In contrast to this, the reverse KL-divergence is information
projection (i-projection) which might not yield right moments from the true
distribution p but captures most information. Figure 8.6 illustrates the effect
of KL-divergence and reverse KL-divergence using subplots (a–c), respectively.
While the outer ring with two local optima represents true distribution, the

(a) (b) (c)

Figure 8.6 Visual understanding on optimization process of the variational inference
approach.

5 Moments are model parameters which describes properties for a model distribution,
e.g., mean and variance.
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oval-shaped concentric circle shows approximated distribution around either
side of the local optima. It is important to note that the KL-divergence is not
symmetrical, thus KL(p, q) is not same as KL(q, p) unless q is the optimal
approximate solution of p distribution.

● Optimization: Equation (8.31) can be rewritten in terms of parameterized dis-
tribution and true distribution as follows:

KL
(

f𝜔,Cg
)
= 𝔼z∼f𝜔

[
log f𝜔(z)

]
− 𝔼z∼f𝜔 [log(Cg(z))]

= 𝔼z∼f𝜔

[
log f𝜔(z)

]
− 𝔼z∼f𝜔 [log g(z)] − log C (8.32)

This implies following the equality for error minimization problem.

𝜔∗ = argmin
𝜔∈Ω

KL
(

f𝜔, 𝜋
)
= argmin

𝜔∈Ω
KL

(
f𝜔,Cg

)
= argmin

𝜔∈Ω
KL

(
f𝜔, g

)
(8.33)

Thus, having KL-divergence as a choice for an error function makes it nonsen-
sitive to multiplicative coefficient and eases the job to estimate the best approx-
imation from parameterized family of distribution without having to compute
the normalization factor of the target distribution.
Once both the parameterized family and the error measure have been defined,
we can initialize the parameters (randomly or according to a well-defined strat-
egy) and proceed to the optimization. Several classical optimization techniques
can be used, such as gradient descent or coordinate descent, that will lead, in
practice, to a local optimum. In order to better understand this optimization
process, let us take an example and go back to the specific case of the Bayesian
inference problem where we assume a posterior such that

p(z ∣ x) ∝ p(x ∣ z)p(z) = p(x, z) (8.34)

In this case, if we want to get an approximation of this posterior using VI, we
have to solve the following optimization process (assuming the parameterized
family defined and KL divergence as error measure)

𝜔∗ = argmin
𝜔∈Ω

KL
(

f𝜔(z), p(z ∣ x)
)

= argmin
𝜔∈Ω

KL
(

f𝜔(z), p(x, z)
)

= argmax
𝜔∈Ω

(
−KL

(
f𝜔(z), p(x, z)

))
= argmax

𝜔∈Ω
− 𝔼z∼f𝜔

[
log

f𝜔(z)
p(z ∣ x)

]

= argmax
𝜔∈Ω

⎛⎜⎜⎜⎜⎝
𝔼z∼f𝜔 [log p(z)] + 𝔼z∼f𝜔 [log p(x ∣ z)] − 𝔼z∼f𝜔

[
log f𝜔(z)

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

evidence lower bound

⎞⎟⎟⎟⎟⎠
= argmax

𝜔∈Ω

(
𝔼z∼f𝜔 [log p(x ∣ z)] − KL

(
f𝜔, p(z)

))
(8.35)
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The best approximation among the
choosen familty is then obtained

(Based on efficiency of the
optimization process and

local minima)

Initialization of the family parameters
and computation of KL divergence

between corresponding
approximation and raw targets

Iteratively compute derivate of KL
divergence with respect to

parameters to update and make
a step in the opposite direction for

these parameters

(same for μ2, σ1, σ2)

Not normalized distribution (known) Normalized distribution (unknown) Approximation (computed)

Iterations

μ*1, μ*2, σ*1, σ*2μ1, μ2, σ1, σ2 μ1    ⃪  μ1– h. 𝜕KL
𝜕μ1

Figure 8.7 Optimization process of the variational inference approach.

The last equality helps us to better understand how the approximation is encour-
aged to distribute its mass. The first term is the expected log – likelihood that
tends to adjust parameters so that to place the mass of the approximation on
values of the latent variables z that explain the best the observed data. The sec-
ond term is the negative KL divergence between the approximation and the prior
that tends to adjust the parameters in order to make the approximation be close
to the prior distribution. Thus, this objective function expresses pretty well the
usual prior/likelihood balance (Figure 8.7).
Variational Bayesian learning: Using the variational approximation (as
described above), Bayesian inference for latent variable x, observed data y, and
parameter 𝜃 can be approximated using lower bound on marginal likelihood as
follows:

ln p(y ∣ m) = ln∫ p(y, x,𝜽 ∣ m)dx d𝜽

= ln∫ q(x,𝜽)
p(y, x,𝜽 ∣ m)

q(x, 𝜃)
dx d𝜽

≥ ∫ q(x,𝜽) ln
p(y, x,𝜽 ∣ m)

q(x,𝜽)
dx d𝜽. (8.36)

Here, q(x,𝜽) is the parameterized approximated distribution. The inequality
sign holds true using Jensen’s inequality, which states, for a convex function f :

f (ln[X]) ≤ ln[f (X)] (8.37)

i.e., log of weighted avg of any two points is greater than or equal to weighted
avg of log of those two points. This holds in any number of dimensions. This
helps to find lower bound on the evidence (marginal likelihood). Further, using
factorized approximation on parameterized distribution q(x,𝜽) ≈ qx(x)q𝜽(𝜽),
Eq. (8.36) can be rewritten as follows:

ln p(y ∣ m) ≥ ∫ qx(x)q𝜃(𝜃) ln
p(y, x,𝜽 ∣ m)

qx(x)q𝜃(𝜃)
dx d𝜽

def
= m

(
qx(x), q𝜃(𝜽), y

)
(8.38)
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As a result, maximizing lower bound will make our parameterized distribu-
tion close to true distributions. Maximizing m is equivalent to minimizing
KL-divergence between the approximate posterior, q𝜃(𝜃)qx(x) and the exact
posterior, p(𝜃, x ∣ y,m), whereas it is important to note that without having
upper bound, the approximation may lead to over fitting (although very rare
situation). The maximization of lower-bound m is done in EM-alike iterative
update of hypothesis and hidden variables. This can be summarized as follows:

q(t+1)
x (x) ∝ exp

[
∫ ln p(x, y ∣ 𝜽,m)q(t)

𝜽
(𝜽)d𝜽

]
E-like step

q(t+1)
𝜽

(𝜽) ∝ p(𝜽 ∣ m) exp
[
∫ ln p(x, y ∣ 𝜽,m)q(t+1)

x (x)dx
]

M-like step

(8.39)

The E-like step updates the distribution at time t + 1 over latent variables x
which is a function of distribution over parameter 𝜃 at time t. At next step, M-like
step, the distribution of parameter 𝜃 at time t + 1 is updated which is a function
of distribution of latent variables at time t.
EM for MAP estimation Goal: maximize p(𝜽 ∣ y,m) w.r.t. 𝜽 E step: compute

q(t+1)
x (x) = p

(
x ∣ y,𝜽(t)) (8.40)

M step:

𝜽(t+1) = argmax
𝜽 ∫ q(t+1)

x (x) ln p(x, y,𝜽)dx (8.41)

Variational Bayesian EM Goal: lower-bound p(y ∣ m) VB-E step: compute

q(t+1)
x (x) = p

(
x ∣ y,𝝓

(t))
(8.42)

VB-M step:

q(t+1)
𝜃

(𝜽) ∝ exp
[
∫ q(t+1)

x (x) ln p(x, y,𝜽)dx
]

(8.43)

8.4 Application: VRU Classification

In this section, we will demonstrate BDL with an application for Automotive
radar. This will help us in understanding on approximate formulation of Bayesian
framework VI, discussed in “variational Bayesian learning”. The application
shows the advantages of Bayesian integrated classification and tracking of
vulnerable road users (VRUs) like pedestrian and cyclist. As the main focus of
this chapter is on BDL, section will discuss how variational auto-encoder (VAE)
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and tracker follows Bayesian inference framework. At the end, we show the
integration of target feature and associated noise in the form of uncertainty
inside a tracker to help in association and better classification. The details on
radar-specific signal processing can be found in [7, 8].

8.4.1 VAE as Bayesian

Before talking about VAE, an auto-encoder (AE) is defined as NN in the setting of
encoder and decoder to learn the best encoding–decoding scheme using an itera-
tive optimization process. In contrast to this, the VAE’s principle can be defined as
an auto-encoder which is trained to ensure regularity property in latent space in
such a way that it enables generative process. This is done by mapping the encoder
to a distribution over latent space instead of a single point. A high-level architec-
tural difference between AE and VAE is illustrated in Figure 8.8

For recap, we denote our data with variable x which is generated from a latent/
hidden variable z (the encoded representation) that is not directly observed. In
VAE, contrarily to deterministic AE, both encoder and decoder are defined in prob-
abilistic ways, p(x ∣ z) and p(z ∣ x), respectively. While the encoder describes the
distribution of the hidden encoded (latent) variable given input data (also termed
as posterior), decoder describes the distribution of decoded variable given hidden
variables (also referred as likelihood). Following Bayes theorem and as discussed
before, posterior is linked to prior p(z) and likelihood.

p(z ∣ x) =
p(x ∣ z)p(z)

p(x)
=

p(x ∣ z)p(z)
∫ p(x ∣ u)p(u)du

(8.44)

The VAE with only deterministic loss function will ignore the encoded distri-
bution. This makes the encoder to return either distribution with tiny variance

Encoder

x

Decoder
Sampling

N(μx, σx) z ~ N(μx, σx) x̂  = d(z)

Loss = ‖ x – x̂‖2 + KL[ N(μx, σx), N(0, l) ] = ‖ x – d(z)‖2 + KL[ N(μx, σx), N(0, l) ]

μx

σx

Figure 8.8 Illustration of difference between AE (deterministic) and VAE (probabilistic)
with its loss function.
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(similar to deterministic AE) or return distribution with varying mean which
would break the continuity in the latent space causing poor generative behavior.
In order to avoid these effects, regularization of both covariance matrix and the
mean of the distributions returned by the encoder is needed. In practice, this
regularization is done by enforcing distributions to be close to a standard normal
distribution (centered and reduced). This way we require the covariance matrices
to be close to the identity, preventing punctual distributions, and the mean to be
close to 0, preventing encoded distributions to be too far apart from each other.

With this, we make an assumption on latent prior p(z), posterior p(z ∣ x), and
likelihood p(x ∣ z). While p(z) follows standard Gaussian distribution, p(x ∣ z) is
assumed to be Gaussian distribution with mean defined by function of latent vari-
able f (z), and covariance matrix with positive multiplicative variable c to identity
matrix I. The function f is assumed to belong from family of function F.

p(z) ≡  (0, I)

p(x ∣ z) ≡  (f (z), cI) f ∈ F c > 0 (8.45)

As we have assumed, both p(z) and p(x ∣ z) follow Gaussian distribution, and
if E(x ∣ z) = f (z) = z, this would imply that p(z ∣ x) should also follow a Gaussian
distribution. As a result, in theory, one could also express p(z ∣ x) only in terms of
the mean and the covariance matrix with respect to the means and the covariance
matrices of p(z) and p(x ∣ z). However, in practice, this condition is not met and
thus, we need an approximation technique. In this chapter, we have used VI that
makes the approximation more robust to some changes in the hypothesis of the
model. As a result, to avoid intractable integral in Eq. (8.44), we approximate
p(z ∣ x) by parameterized Gaussian distribution qx(z). The mean and covariance
of parameterized distribution is defined by two functions of parameter x, g(x),
and h(x). Here, both g and h belongs to the family of parameterized function.

qx(z) ≡  (g(x), h(x)) g ∈ G h ∈ H (8.46)

Using the concept of VI approximation, the optimization is done by minimizing
KL-divergence between true p(z ∣ x) and parameterized distribution qx(z) to find
optimal parameters (i.e., mean g∗ and covariance h∗), as described below:

(g∗, h∗) = argmin
(g,h)∈G×H

KL
(

qx(z), p(z ∣ x)
)

= argmax
(g,h)∈G×H

(
𝔼z∼qx

(log p(x ∣ z)) − KL
(

qx(z), p(z)
))

(8.47)

The second last line in the above equation, is also termed as ELBO maxi-
mization, shows two trade-off when approximation posterior p(z ∣ x) – either
maximizing likelihood of the observation or being close to prior distribution.
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This Bayesian trade-off is solved asymptotically when number of input data
points is very large (infinity), whereas in a general situation, if approximation is
ruled by prior, then the performance of generative decoder depends highly on the
choice of function f which governs the decoder distribution. In other words, the
decoder function needs to optimized in such a way that the generated output is
close enough to real input when the input to function is z which is sampled from
hidden parameterized distribution q∗

x
.

f ∗ = argmax
f∈F

𝔼z∼q∗
x
(log p(x ∣ z))

= argmax
f∈F

𝔼z∼q∗
x

(
−
||x − f (z)||2

2c

)
(8.48)

Putting all equation together, optimization of VAE can be rewritten as follows:

( f ∗, g∗, h∗) = argmax
(f ,g,h)∈F×G×H

(
𝔼z∼qx

(
−
||x − f (z)||2

2c

)
− KL

(
qx(z), p(z)

))
(8.49)

where the first term measures reconstruction error and the second gives regular-
ization on latent. One can also notice the covariance matrix term c which rules the
balance between reconstruction and regularization. If the variance is high around
probabilistic decoder, optimization is more favored toward regularization term.

8.4.1.1 Re-parameterization Trick
In practice (VAE), both the mean g and the covariance h functions are not
completely but are also a function of common encoder, as illustrated in Figure 8.9.
By definition, the covariance matrix h of approximated distribution qx() is
supposed to be square, whereas for ease of computation by reducing the number
of parameters, the qx() is assumed to be multidimensional Gaussian distribution
with a diagonal covariance matrix, i.e., all variables are mutually independent.
Thus, both h() and g() are vector elements of the same size. This further helps to
sample latent variables for a decoder and generate new samples.

The sampling process from the latent distribution is done randomly as the
learned latent embedding is a random variable which follows Gaussian distri-
bution with mean g and covariance h. However, random sampling created a
bottle for error back-propagation during optimization of the parameters. For this
purpose, a method called reparameterization trick is used to enable gradient
descent possible despite random sampling.

z = h(x)𝜁 + g(x) 𝜁 ∼  (0, I) (8.50)



�

� �

�

248 8 Bayesian Deep Learning

f

h

N(0, l)

g

x z = σxζ + μx x̂  = f(z)

Loss = C ‖ x – x̂‖2 + KL[ N(μx, σx), N(0, l) ] = C ‖ x – f(z)‖2 + KL[N(g(x), h(x)), N(0, l) ]

μx = g(x)

σx = h(x)

ζ ~ N(0, l)

Figure 8.9 Illustration of difference between AE (deterministic) and VAE (probabilistic)
with its loss function.

8.4.2 Bayesian Metric Learning

The regularization term in VAE enables Bayesian inference over latent embedding
z of the network for a given input x and makes network generative in nature by
preventing the model to encode data far apart in the latent space. This is done
by creating a gradient over the information encoded in the latent space resulting
into continuity between features. This approach is very good for representation
learning but not for similarity function learning. As a result, it is very challenging
to uniquely identify inter- and intraclass targets among VRU in the context
of radar [7].

8.4.2.1 Vulnerable Road Users (VRUs)
The full pedestrian model is shown in Figure 8.10, where joints are depicted as
dark black circles, whereas the scattering points are illustrated as dark gray crosses.
To the right of the pedestrian, the cyclist model is displayed, where points with lin-
ear velocity are marked by light gray diamonds and dynamic points with rotational
velocities are marked by gray circles.

Examples of relative velocities obtained from the described motion models are
shown in Figure 8.10, both road users move with constant velocities along a linear
trajectory toward the radar sensor. The velocities in Figure 8.10a are obtained from
a male (solid lines) and a female (dashed lines) pedestrian model. The pedestri-
ans are walking with 1.0 m/s toward the radar sensor, noticeable by the oscillating
pattern around this velocity value. Differences from the gender-based gait are vis-
ible as distortions as well as different maximum velocities. However, the absolute
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Figure 8.10 Dynamic VRU point target models for a pedestrian and a cyclist. The
pedestrian joint positions are displayed as dark black circles, while static points of the
cyclist model are shown by light gray diamonds and dynamic points are highlighted as
dark black dots. All scattering positions are marked as dark gray crosses. Relative
velocities of the VRU scattering points for a female (dashed) and a male (solid) pedestrian
(a) walking with [7].

differences are relatively small and only in the order of 0.1 m/s. Apart from that
Figure 8.10b shows the different radial velocities of the cyclists’ scattering points,
with a constant velocity of 𝑣 = 3.0 m∕s of the frame and body, as well as faster
radial velocities for the wheel spokes, pedals, and legs.

For better understanding over similarity on target’s appearance model, the struc-
tural similarity index measure (SSIM) over all permutations of sample classes are
calculated. SSIM values closer to 1 indicate a high similarity between two images,
and is in contrast to, e.g., MSE more robust to noisy variations of the image. Results
on our dataset show a strong visual similarity among intraclass samples as well
as between interclass targets, as indicated in Table 8.2. Most similarity indices
lie around 0.5–0.7, without noticeable differences between cyclist and pedestrian
class combinations. In general, this demonstrates the complexity of the problem
and the importance of finding the optimum feature embeddings, which can be
used for distinct appearance modeling of targets.
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Table 8.2 Similarity indices (SSIM) for simulated micro-Doppler
spectra of inter- and intraclasses for different VRU targets [7].

— mPed fPed nPed Cyc1 Cyc2 Cyc3

mPed 1.0 0.71 0.68 0.57 0.60 0.61
fPed — 1.0 0.70 0.64 0.62 0.66
nPed — — 1.0 0.61 0.61 0.63
Cyc1 — — — 1.0 0.52 0.55
Cyc2 — — — — 1.0 0.53
Cyc3 — — — — — 1.0

8.4.2.2 Metric Learning
Due to the strong structured similarity, we combine the idea of VI over latent
embedding in combination with metric and representational learning. This helps
the network to learn both the feature embedding and the variance over it. As a
result, the learnt input noise can be integrated inside a tracker, which further helps
during the data association (discussed later in this chapter). The details on network
architecture and data preparation can be found under [7]. To have a fair compar-
ison and similarity between the different metric learning-based VAE, Figure 8.11
is illustrated to summarize different architectures.

● Triplet variational autoencoder (TVAE): The architecture is optimized using a
triplet loss [9, 10]. Prior to the network training using the triplet loss, triplet pairs
are selected. These pairs consist of anchor sample (xa), i.e., any random sample,
positive sample (xp), which is from the same class as the anchor, and a negative
samples (xn), which is a sample from any different class in comparison to the
anchor class. The loss function is computed over feature embedding, i.e., the
latent space (z), as shown in Eq. (8.51).

triplet =max (||q𝜙(xa) − q𝜙(xp)||2 − ||q𝜙(xa) − q𝜙(xn)||2

+ 𝛼margin, 0) (8.51)

The network is trained following a min–max distance learning between the
triplet pairs. While the distance between the anchor and negative samples is
maximized by making d(q𝜙(xa), q𝜙(xp)) + 𝛼margin less than d(q𝜙(xa), q𝜙(xn)),
the distance between the anchor and positive samples is minimized forcing
d(q𝜙(xa), q𝜙(xp)) to 0. Here, 𝛼margin is a hyperparameter which defines the
boundary condition between the similar and dissimilar pairs. For this process,
a Euclidean distance function is considered from the available similarity metric
function.
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Figure 8.11 An overview of evaluated architectures and their relation to each other.
While all architecture follows Bayesian fully connected network (BFCN) classifier over
mean embedding for target classification, the variational inference brings additional
Bayesian knowledge over extracted mean using (b) TVAE architecture in contrast to
(a) TNN. With introduction of additional negative sample from similar class-group,
(c) QVAE improves distinct feature learning. This is done by learning the distance
between feature embedding using MLP in contrast to usage of normal L2-Norm [7].

The choice of the input triplet pair plays an important role in learning the
feature embedding. Considering the spatial complexity and similarity between
training examples, the mining of input triplet pairs is done considering hard
examples, i.e., triplets, where the negative sample is closer to the anchor than to
the positive (d(q𝜙(xa), q𝜙(xn)) < d(q𝜙(xa), q𝜙(xp))) and semihard triplets, where
d(q𝜙(xa), q𝜙(xp)) < d(q𝜙(xa), q𝜙(xn)) < d(q𝜙(xa), q𝜙(xp)) + 𝛼margin. The triplet
mining is done in an online approach, i.e., during the network training.
As a result, Eq. (8.52) gives a mathematical overview on the total loss which is a
linear combination of the CE loss, KL-divergence, and the triplet loss for TVAE
architecture.

TVAE = 0.7 ∗ reconstruction + 0.3 ∗ (KL + triplet) (8.52)

● Quadruplet-variational autoencoder (QVAE): TVAE suffers from two major
drawbacks. First, the distance metric function for an anchor is optimized
with respect to the positive and negative samples. As a result, there is no
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discriminator part in the triplet loss function which can help to push target
samples from an intraclass. This problem is avoided by including another
negative sample, belonging to the same group as the first negative sample. This
helps the network to have a better inter- and intraclass distance by adding an
extra parameter optimization to separate the negative class from each other.
The resulting new loss function is termed as quadruplet loss (quadruplet) and
can be summarized by Eq. (8.53). It includes another hyperparameter 𝛼2 which
is kept to 0.5 during the training. While sample si and sj belong to the same class
and represent an anchor and positive sample, sk and sl belong to two different
classes, which are also not an anchor class.

quadruplet =
N∑

i,j,k

[
q
(

xi, xj
)2 − q

(
xi, xk

)2 + 𝛼1

]
+

∑̇N

i,j,k,l

[
q
(

xi, xj
)2 − q

(
xl, xk

)2 + 𝛼2

]
si = sj, sl ≠ sk, si ≠ sl, si ≠ sk (8.53)

The distance metric is computed with a L2 norm (Euclidean) which compares
the feature embedding vectors elementwise with an uniform weighting to each
values. Considering the nature of the training data, i.e., micro-Doppler–based
signatures from VRUs, small changes in Doppler frequency from the intraclass
lead to a unique identification of the target. At the same time, uniform weighting
fails to find outliers within a small difference of the feature embedding which
is usually the case for intraclass VRUs. Thus, the distance function is learned
during the network training. For this purpose, a three-layered multilayer per-
ceptron (MLP)-based architecture is designed and optimized using the principle
of Siamese networks.

8.4.3 Kalman as Bayesian

For most general real-world (nonlinear, non-Gaussian) systems, the multidimen-
sional Bayesian recursion becomes intractable and therefore, approximations have
to be used. This includes methods such as Gaussian approximations (extended
Kalman filters [EKFs]), hybrid Gaussian methods (score function EKF, Gaussian
sum filters), direct and adaptive numerical integration (grid-based filters), sequen-
tial Monte Carlo methods (particle filters), and variational methods (Bayesian
mixture of factor analyzers). Especially, the EKF, a suboptimal approximation
of the recursive Bayesian framework, applied to a GRV of a nonlinear state, is
widely used. It approximates and propagates the state distribution through the
first-order Taylor series linearization, which expands the nonlinear state around
a single-point. As a result, the EKF is not able to capture the uncertainty of
the distribution, introducing large errors in the estimation of the true posterior
mean and covariance, respectively. Alternatives can be unscented Kalman filters
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(UKFs), which use deterministic sampling filters, i.e., a sigma-point Kalman filter
(SPKF), to approximate the GRV by a minimal set of sample points. These sample
points can capture the true mean and covariance of the GRV.

The state-of-the-art tracking algorithms for automotive use-cases mainly focus
on single modalities by having target’s localization information as a state vector
[11, 12]. Additional target parameters such as Doppler spectra are either ignored or
computed separately. In this chapter, we use both the localization and appearance
model for the tracking of detected targets, by augmenting the state-vector target
features, as illustrated in Figure 8.12.
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Figure 8.12 Comparison of (a) state-of-the-art algorithm pipeline for continuous
tracking and classification in contrast to (b) proposed BayesRadar where additional
Bayesian knowledge on extracted embedding enables the framework to follow the
complete Bayesian inference [8].
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As a result, the robustness of the framework is further improved by leverag-
ing the Bayesian information associated with the input and predicted state vector
and by performing data association. The framework includes multiple processing
blocks of which target detection block provides measurement data on the target’s
localization (Zm(𝜇, 𝜎)) to the tracker. The encoder block (q(𝜙)) extracts appear-
ance embedding (Em(𝜇, 𝜎)) and augments the tracker state vector with it for each
frame. The tracker (an UKF in our case) uses this information to estimate the new
position of the target and classifies the target into the defined category using a
Bayesian fully connected network (BFCN) classifier. The integration of the appear-
ance model together with the gating and data association are described below.

8.4.3.1 Integrated Bayesian Tracking
Thus, the integration of the classifier output into the tracker facilitates the process-
ing in obtaining not only the value of the current state of the classification but also
the uncertainty associated with the state. Considering 𝜇i as the mean embedding
of class i with M as the total dimension of the assumed embedding vector, the mod-
ified augmented state vector (xa) of the tracker can be represented as Eq. (8.54).

xa =
[

Px Py 𝑣 Az 𝜇11 𝜇12 · · · 𝜇1M
]T

g(xa) =
[

pP
x pP

y 𝑣P AzP 𝜇11
P · · · 𝜇1M

P ]T (8.54)

Target’s localization parameter is represented by lateral (Px), longitudinal position
(Py), velocity (𝑣), and azimuth angle (Az). Even though Az can be estimated from
Px and Py, Az is chosen to be part of state vector.

8.4.3.2 Target Association
The accuracy of data association relies on the choice of the distance metric which
can be grouped into Bayesian or non-Bayesian based on the nature of the data.
Both measurement (y(i)k∣k−1) and sigma-point transformed prediction (x(i)k∣k−1) follow
a Gaussian distribution, having a mean (ŷ, x̂) and a covariance (Py

k∣k−1,Px
k∣k−1),

respectively. Therefore, the variance over posterior and observation is used for
the data association.

Additionally, due to the nature of the state vector (distribution than point), a
Mahalanobis distance as the association metric is used for the computing distance.
This acts as a multivariate Euclidean norm which is described in Eq. (8.55). It
shows that the Mahalanobis distance is a function of both the mean and covariance
of the predicted state vector.

d =
√

(x̂(i)k∣k−1 − y(i)k∣k−1)
TPyi

k∣k−1
−1(x̂(i)k∣k−1 − y(i)k∣k−1) (8.55)

Here, x̂(i)k∣k−1 is the current measurement and yk∣k−1, Pyi
k∣k−1 are the mean and

process covariance model of the predicted state vector at a particular time step.
The distance d is chi-square distributed with nz degrees of freedom, where nz is
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the dimension of the state vector which is 4 for localization and 16 for feature
embedding. The measurement is associated with a particular track state only if
the Mahalanobis distance is lesser than a chosen threshold. The new augmented
state brings two different modalities (motion and appearance) into considera-
tion. Thus, different thresholds for each modality are modeled which in return
improves the gating operation. Overall, a threshold of 0.75 for the localization
and 2.5 for the appearance model is considered. This helped to remove noisy
outliers for target’s localization and feature embedding (used for classification)
from being associated with the states of the tracker.

8.4.4 Results

This section investigates on the accuracy and reliability for LSTM and BayesRadar
toward pretrained and unseen target classes. This is done using both qualitative
and quantitative analysis.

8.4.4.1 Pretrained Target Class
Classification Figure 8.13 compares the classification accuracy of VRUs (6-class)
from state-of-the-art and BayesRadar using t-distributed stochastic neighbor
embedding (t-SNE). To ensure better generalization of BayesRadar, results are
evaluated using feature extractor network optimized with TVAE and QVAE. In
contrast to Figure 8.13a–d shows better feature clustering of target class and
demonstrates the advantage of QVAE over TVAE-based training. Further, the
integrated framework with LSTM compared to BayesRadar shows a comparable
classification accuracy of 99.45% and 99.99%, respectively, for QVAE and 93.6%
and 93.3%, respectively, for TVAE.

Additionally, a quantitative analysis over t-SNE clusters, from Figure 8.13, is
evaluated using silhouette and Davies–Bouldin scores. While silhouette coeffi-
cient gives a similarity measure between a sample and its own cluster (cohesion)
in comparison to other clusters (separation), Davies–Bouldin coefficient indicates
the distance between clusters by estimating the distance of a sample between

(a) TVAE-LSTM (b) TVAE-BayesRadar (c) QVAE-LSTM (d) QVAE-BayesRadar

5

4

3

2

1

0

Figure 8.13 A visual illustration of target classification accuracy using t-SNE plot over
the feature embedding tracked BayesRadar and LSTM. While QVAE-based feature
extractor shows better performance over TVAE, BayesTracker shows improved class
separability in tracking feature embedding in comparison to LSTM [8].
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Table 8.3 Quantitative analysis on the quality of the clustering over pretrained classes
estimated by encoder-LSTM and BayesRadar [8].

Clustering
metric

TVAE-
LSTM

TVAE-
BayesRadar

QVAE-
LSTM

QVAE-
BayesRadar

Silhouette score 0.37 𝟎.𝟒𝟏 0.61 𝟎.𝟕𝟏
Davies–Bouldin score 1.03 𝟎.𝟗𝟕 0.45 𝟎.𝟒𝟎

The bold value here reflects the result from our proposed framework in comparison to the SOTA
framework.

with-in and the neighboring clusters. Similar to the t-SNE plot illustrated in
Figure 8.13, Table 8.3 shows better clustering scores for BayesRadar in compari-
son to LSTM. Additionally, QVAE shows better results over TVAE for both LSTM
and BayesRadar.

Class Uncertainty The reliability for the demonstrated classification accuracy
is evaluated by BFCN using the estimated covariance over the predicted latent
embedding. As a result, uncertainty over predicted target class for BayesRadar is
evaluated using the variance estimated by the UKF. In contrast to the BayesRadar,
uncertainty over predicted target class by LSTM is estimated using predicted
variance from pretrained variational encoder network. Figure 8.14a illustrates the
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Figure 8.14 (a) Visualization of the uncertainty estimates over different classes from
Encoder-LSTM (TVAE and QVAE), and (b) proposed BayesRadar [8].
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learned variance, 𝜎, (x-axis) over the target class (y-axis) using the latent embed-
ding extracted from TVAE- and QVAE-based encoder. Figure 8.14b, evaluated on
estimated latent-model from BayesRadar, shows a reduction in the variance for
classification of pretrained target class. This further confirms the advantage of the
proposed BayesRadar over LSTM by illustrating reduction in class uncertainty.

8.4.4.2 Unseen Target Class
Similar to Figure 8.13, t-SNE plot is used for the visualization of the new unseen
class clusters. The unseen class, labeled as 6, is created by linear combination of
classes 1, 3, and 4.

Classification Figure 8.15 shows the feature embedding over the new class
(shaded gray) for BayesRadar and LSTM framework, having no prior learned
latent model for the unseen class. Both QVAE-LSTM and QVAE-BayesRadar show
better distinction against the unseen class in comparison to TVAE-LSTM and
TVAE-BayesRadar framework. This shows the advantage of quadruplet-based
metric learning over triplet learning, as described in [7]. The classification
accuracy for QVAE-LSTM is reduced by 2.5% points from 99.45% to 97.01%
with the new unseen class. On the other hand, the classification accuracy for
QVAE-BayesRadar is affected only by 1.8% point, with a classification accuracy
of 98.08% in comparison to an original accuracy of 99.9%. This demonstrates the
advantage of the proposed BayesRadar over LSTM-based temporal smoothing
of feature embedding vectors for target classification. The plot also helps to
understand correlations between estimated latent embedding for the unseen
class and pretrained target classes. Since the unseen target class is generated
from classes 1, 3, and 4, most false identification is seen for class 3 and 4, which
corresponds to the cyclist target group. Due to strong reflection from cyclists in
comparison to pedestrians, the confusion for class 1 is almost close to zero.

In parallel to t-SNE plot, similar to Table 8.3, clustering scores for the unseen
class is also calculated to evaluate generalization for the proposed BayesRadar.

(d) QVAE-BayesRadar(c) QVAE-LSTM(b) TVAE-BayesRadar(a) TVAE-LSTM

0

1

2

3

4

5
6

Figure 8.15 t-SNE plot over the latent embedding for unseen data using TVAE- and
QVAE-based integrated framework. Where (a) and (c) represents LSTM framework,
(b) and (d) corresponds to BayesRadar [8].
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Table 8.4 Quantitative analysis on the quality of the clustering over unseen classes
estimated by Encoder-LSTM and BayesRadar [8].

Clustering
metric

TVAE-
LSTM

TVAE-
BayesRadar

QVAE-
LSTM

QVAE-
BayesRadar

Silhouette score 0.33 𝟎.𝟑𝟔 0.59 𝟎.𝟕𝟎
Davies–Bouldin score 1.12 𝟏.𝟎𝟔 0.63 𝟎.𝟓𝟔

Table 8.4 shows the advantage of BayesRadar over LSTM with minimal reduction
in both silhouette and Davies–Bouldin scores. While silhouette score for
QVAE-based BayesRadar and LSTM are affected minimally, TVAE-based frame-
work shows poor performance by reduction of ≈ 12% point. Similar to the t-SNE
plot and clustering score over new unseen class, confidence over the unseen
target class is evaluated using estimated variance from pretrained BFCN and
encoder for BayesRadar and LSTM, respectively.

Class uncertainty Figure 8.16 shows the highest uncertainty over the unseen class
by the LSTM in comparison to the BayesRadar. In addition, the variance estimated
by BayesRadar on the unseen target class (6) has similar uncertainty score across
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Figure 8.16 (a) A visual understanding on the uncertainty estimates over unseen classes
from encoder-LSTM in comparison with (b) BayesRadar [8].
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cycle target group classes (3, 4, 5) for both QVAE and TVAE. This helps to under-
stand the spatial similarity between new target class and cycle target classes. This
also shows that the sampled new class information is biased by cycles target class
micro-Doppler signatures.

8.5 Summary

The demonstrated BayesRadar, a framework, wherein the embedding vectors from
a variational encoder is fed into a Kalman filter for temporal smoothening and
classification. This is obtained by following the tracked embedding vector from the
Kalman filter. It is demonstrated that both state-of-art approach and BayesRadar
achieve similar classification performance on pretrained target classes; however,
BayesRadar shows much better performance against new unseen target classes.
LSTM being a data-driven network suffers from rather inferior performance in
case of unseen data, while the BayesRadar generalizes and performs well under
such scenarios. Furthermore, the uncertainty for both seen and unseen classes for
BayesRadar are much lower compared to their LSTM counterparts.

Due to inherent nature of Bayesian framework in learning model  from
sampled data , it is not only used for quantification of uncertainty. It also pro-
vides flexibility and mathematical formulation for applications such automatic
relevance determination (ARD), data compression, and model pruning. The ARD
helps to select import input or hidden feature inside model by taking width 𝜃𝜎 of
model parameter which corresponds to model weight of each of the input unit or
hidden unit. The 𝜃𝜎 indirectly represent the precision of the features, i.e., inverse
𝜃𝜎 of the prior. If 𝜃𝜎 goes to infinity (very large value), precision goes to infinity,
i.e., relevance goes to zero, i.e., weights for those features are ignored. On the other
hand, if 𝜃𝜎 is a small and finite number, feature coming out of the parameter is
relevant. The similar principle can be used for pruning the weight and data com-
pression by extending it to all hidden units up to input layer. The framework also
gives flexibility for optimization of 𝜃𝜎 , known as type two maximum likelihood.

8.6 Questions to the Reader

● What are the limitations of point-estimate deep learning architecture?
● How does the Bayesian paradigm affect the representation learning and what are

the different kinds of uncertainties which Bayesian framework can quantify.
● What are the limitations of Bayesian framework and at what condition Bayesian

and point-estimate deep neural network are same?
● What are the limitations of Laplacian and MCMC Bayesian approximation

techniques?
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● Imagine you are implementing a deep neural network architecture: which
uncertainty you would model in which scenario?

● Given what you read in this chapter, can Bayesian framework in practice be
applied, with good results, also to recursive problems? Explain why.
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9

Geometric Deep Learning

At the end of this chapter, reader will have an understanding on

● An overview on the principle of learning theory behind geometric deep learning
architecture.

● Different elemental blocks required to formulate geometric deep learning and
different architectures.

● Applications of Bayesian geometric learning and Graph Neural Networks with
their advantages for non-Euclidean datasets.

As mentioned in Chapter 8, the word “deep learning” refers to the method
of learning highly nonlinear and complex problems by building them from
structured and hierarchical data. The success of such a model has broad range of
problems such as computer vision, natural language processing, and audio/speech
analysis. The success on these tasks relies on the inherent geometry of data which
are either Euclidean or grid-like.

For almost many centuries, the word “geometry” was synonymous with
Euclidean geometry simply because no other types of geometries existed. In the
nineteenth century, when Lobachevsky, Bolyai, Gauss, Riemann, and others
constructed the first examples of non-Euclidean geometries together with the
development of projective geometry, the Euclid’s monopoly came to an end and
entire set of different geometries emerged. Later in year 1872, mathematician
Felix Klein redefines geometry as the study of invariant or symmetries of the
properties that remain unchanged under some class of transformations. This
approach created clarity by showing that different geometries could be defined
by an appropriate choice of symmetry transformations formalized using the
language of group theory [1]. As a result, different neural network architectures
for different types of data need to be revisited to understand the relations between
different methods and unifying principle of geometric learning.

Methods and Techniques in Deep Learning: Advancements in mmWave Radar Solutions, First Edition.
Avik Santra, Souvik Hazra, Lorenzo Servadei, Thomas Stadelmayer, Michael Stephan, and Anand Dubey.
© 2023 The Institute of Electrical and Electronics Engineers, Inc. Published 2023 by John Wiley & Sons, Inc.
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The term “geometric deep learning” serves two purposes: first, to provide a
common mathematical framework to derive the most successful neural network
architectures such as CNN, RNN, transformers, and second, to give a constructive
procedure to build future architectures in a principled way. Thus, it can be said
that geometric deep learning is an umbrella term used to generalize current
structured deep neural network models over non-Euclidean data and domain
such as graphs and manifolds [2].

In this chapter, first, we give a theoretical understanding and a mathematical
formulation of geometric deep learning using graph neural networks (GNNs).
Later, we walk through different concepts of GNN based on architectural design.
At the end, in order to show how these formulations and architecture can
be utilized in real-life problems, two practical applications are demonstrated
using automotive radar. For this purpose, radar point-cloud representation is
used, and the state-of-the-art graph-based geometric deep learning is utilized in
combination with Bayesian Deep Learning.

9.1 Representation Learning in Graph Neural Network

In a simplest setting, deep learning is essentially a function estimation problem
where the outputs of the function over seen training datasets are known. With
the availability of high-quality large datasets and compute power, the possibility
to approximate any continuous function to any desired accuracy is favorable. This
property is known as universal approximation which is limited to the problem
definition in low dimensions [3]. The curse of dimensionality is always making
such a naive learning approach impossible. In case of high-dimensional images,
intuitively they have a lot of structure that can be broken and thrown away when
we parse the image into a vector or follow similarity with their neighbors which
helps to enable local receptive filters, known as convolution filters [4]. The typical
CNN architecture encodes the locality pixels that are close to each other and are
probably going to be far more strongly related than pixels that are far away. Thus,
CNN encodes concept of translation in-variance which means that a pattern is
interesting no matter where it is localized in the input dimension. This concept
is very useful for images which follow Euclidean geometry.1 In contrast to this,
graphs don’t assume any particular geometry to their nodes.

9.1.1 Fundamentals

At the first glance, the learning approach used by CNN over high-dimensional
input data show two fundamental principles of translation: invariance and concept

1 It is important to note that, CNN architecture can be treated as a part of GNNs where each
pixel is formulated as nodes of a graph.



�

� �

�

9.1 Representation Learning in Graph Neural Network 263

of locality. This works very good for Euclidean data having fixed geometry, but
for non-Euclidean geometry, it might be challenging to use CNN architectures,
although these two fundamental principles draw cues which help in designing
and formulating the GNNs.

Permutation Invariance: The first one comes from the geometry of the input
signal and is known as a geometric prior. For simplicity, considering the case
of image classification where the input image is not just a d-dimensional vec-
tor, but it is defined in a (most commonly) two-dimensional grid, and thus the
structure of domain is captured by a symmetry. Additionally, the underlying
convolution filter operations are manifested through what is called the group
representation which is simply the shift operator (known as strides) of matrix
(known as convolution kernel or filter) that acts on the group of neighboring
points [5]. This operation makes CNN translation shift in-variance and equiv-
ariance. A similar concept is required for GNNs where nodes are volatile and
thus network should be in-variance and equivariance to permutation of graph.
That means if you have two graphs that are completely isomorphic,2 the net-
work will output exactly the same result for those two graphs. This brings to us
the need of permutation in-variance formulation of the graph.

Permutation Equivariance: The second one is known as multiscale priors,
which comes from the multihierarchy of domain signal created by under
or over sampling nearby points. This operation can be related by coarse
graining operator P applied over input scales. Another objective of CNN f (.)
optimization is evaluated if it is locally stable across different scales of input
representation. These two principles give us a general blueprint of geometric
deep learning that we can recognize in the majority of popular deep neural
architectures. Typically, a sequence of equivariant layers and then an invariant
global pooling layer is aggregated into a single output; in some cases, a hier-
archy of coarsening procedure that takes the form of local pooling in neural
network are implemented. This is a very general design that can be applied to
different types of geometric neural network (Figure 9.1).

9.1.2 Learning Theory

In a typical setting of GNN, architecture has nodes and edges connecting these
nodes together. For a simplicity on the formulation of GNNs, let us assume a graph
with no edge and have a set of nodes 𝑣 where each one of these nodes may have
a feature vector xi for node i. The typical format used for graph representation

2 In a graph theory, an isomorphism of graphs G and H is an edge-preserving bijection between
the vertex sets of G and H such that any two vertices u and 𝑣 of G are adjacent in G if and only if
isomorphism over u and 𝑣 are adjacent in H.
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Symmetry
group ℌ

Domain Ω

xx(g–1u)

u
g

yf

Representation
p(ℌ)

Signals x(Ω)

Figure 9.1 An illustration of geometric priors: the input signal (image x ∈ (Ω)) is
defined on the domain (grid Ω), whose symmetry (translation group (5) acts in the signal
space through the group representation 𝜌(g) (shift operator). Assuming on how the
functions f (e.g., image classifier) interacts with the group restricts the hypothesis
class [6].

Coarse
graining

Ωʹ

Ω
x

PP

y

f ʹ

f

x(Ω)

x(Ωʹ)

Figure 9.2 An illustration of scale separation, where we can approximate a fine-level
function f as the composition f ≈ ’ ∘P of a coarse-level function f ′ and a coarse-graining
operator P [6].

learning is by stacking these row vectors into a matrix of shape n × k where
n represents nodes with k dimension feature. The biggest advantage of such a
representation is that it provides order in which network will traverse. Taking the
fundamental requirement of GNN into account, i.e., permutation in-variance, the
output of GNN f () should not depend on the alignment of nodes inside a matrix
such that the function applied over such matrix give the same result, i.e.,

f (PX) = f (X) = Pf (X) (9.1)

Here, P is a mathematics operation known as permutation matrices for n nodes.
The most common permutation agnostic functions 𝜓 are summation, averaging,
and maximization (Figure 9.2).

Typically, the dimension of feature vector for nodes is of the very dimension, and
thus commonly it is projected into latent dimension hi = 𝜓(xi). This operation is
performed by considering an independent function 𝜓 applied over row of feature
vector xi for a specific node. Later, permutation agnostic aggregation function 𝜓

is performed over latent feature vector. The most common permutation agnostic
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functions 𝜓 are summation, averaging, and maximization. This flow gives typical
learning of any GNN architecture and can be formulated as follows:

f (X) = 𝜙
(⨁

i∈
𝜓(xi)

)
(9.2)

Here, ⊕ represent permutation agnostic aggregation function. Both 𝜙 and 𝜓 are
learnable functions where𝜙 update the feature of operated node and𝜓 transforms
the feature set of neighbors [7].

The GNN f (X) = 𝜙(⊕i∈𝜓(xi)) is now further formulated for graphs having
edges such that a set of edges e which is a subset of the Cartesian product of the
nodes. Typically, these edges with an adjacency matrix A is represented as follows:

aij =
{

1 (i, j) ∈ 
0 otherwise

(9.3)

These edges are commonly represented in the form of adjacency matrix a which
has one entry wherever there is an edge and zero, otherwise. There are other addi-
tions one can add to an adjacency matrix such as edge features, edge types, and
so on, but it is ignored deliberately to keep the formulation simple. The main goal
which we want to evaluate is that if main desiderata of permutation in-variant and
equivariance still hold, i.e.,

Invariance ∶ f
(
PX,PAP⊤

)
= f (X,A)

Equivariance ∶ f
(
PX,PAP⊤

)
= Pf (X,A)

This just gives the updated versions of the invariance and equivariance rules for
graph with node-only inputs. The main difference is that the permutation applied
to any nodes means that same permutation is applied on the edges because the
rows of the node feature matrix correspond to both the rows and the columns of
the adjacency matrix. The permutation matrix is conveniently written down as P.

The concept of in-variance and equivariance is applied to nodes considering
them statistically independent. However, as mentioned earlier, the notion of local
functions that operate only over a locality of a certain node is very interesting for
GNNs too. This enables graphs to give a very nice context to identify the node’s
neighborhood. For example for a node, a graph can define its one hop neighbor-
hood as all of the nodes that are adjacent to it there exists an edge connecting them.
Thus, for a node i, its (1-hop) neighborhood is commonly defined as follows:

i = {j ∶ (i, j) ∈  ∨ (j, i) ∈ } (9.4)

It is important to note that, explicitly directed edges are not considered, and often,
we assume i ∈ Ni. Accordingly, this gives possibility to have local set of features
from the neighborhood too, denoted as follows:

Xi
=
{{

xj ∶ j ∈ i
}

(9.5)
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Here, xj denotes all the feature vectors of the nodes adjacent to node i. Considering
a local function g(.) which can operate over a node and its neighborhood giving
multiset of features. This gives path to a GNN for generic learning by enabling
generic permutation equivariance function that can be used appropriately in a
shared manner by operating over this multiset of features from node and neigh-
borhoods: g

(
x′

iXNi
)
.

In order to ensure that using locality is still equivariant, g(.) needs to make sure
that it does not depend on the order in which neighborhood is presented. So g(.)
should be typically constructed to be a permutation invariant to the entries of xi.
As a result, GNN can be expressed as a local shared function g(.) applied to every
node and its neighborhood in isolation:

f (X,A) =

⎡⎢⎢⎢⎢⎢⎣

− g
(

x1,X1

)
−

− g
(

x2,X2

)
−

⋮

− g
(

xn,Xn

)
−

⎤⎥⎥⎥⎥⎥⎦
(9.6)

The visual understanding of this can be expressed in Figure 9.3. Here, local
shared function g(.) is applied to every node and its neighborhood in isolation,
and as a result of this node, we will be transformed from input features xi to latent
features hi. Later, the transformed feature matrix can be used for a task like node
classification zi = f (hi), where one can look at each of the nodes latent in isola-
tion and learn a classifier on them. Graph classification zG = f (⊕j∈i

hi), where
permutation invariant function such as summation can be used to combine all
the nodes into one representation and then apply graph-level classifier to classify
them. At last, link prediction zij = f (hi, hj, eij), where certain properties of edges
can predicted using a function that operates over the latency of the two nodes and
potentially any edge features between them. These are the general tasks for GNNs.

Node classification
zi = f (hi)

Graph classification
zG = f (⊕i∈ν hi)

Latents
(H, A)

Inputs
(X, A)

GNN hi

zi

zG

zij

Xi

Link prediction
zij = f (hi, hj, eij)

Figure 9.3 An illustration of feature engineering and different task learning for GNNs
based on node, edges, or entire graph.
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xc

g(xb, XNb
)

hbxb

xd

xa
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Figure 9.4 An illustration of efficient task-independent feature learning, i.e., embedding
learning where nodes are encoded into the latent so that similarity in the embedding
space (e.g., dot product) approximates similarity in the original network.

9.1.3 Embedding Learning

During the processing embedding learning, the feature of the nodes of the graph
is embedded into the embedding space where every node has a set of s feature
coordinates. The goal during embedding learning is to find the embedding so that
the similarity of the node in the embedding space relates or is similar to the both
root and neighboring node from the original network. This is done by using an
encoder which maps node to embeddings, as illustrated in Figure 9.4. This further
brings the requirement to define a similarity function, i.e., a measure of similarity
in the original network, i.e., (xb, xc) ≈ h⊤

xb
hxc

. The most common way to measure
similarity in literature is using the Euclidean distance between the two points,
whereas this gets computationally expensive and inefficient for high-dimensional
non-Euclidean data. As an alternative, cosine similarity is often used. The cosine
similarity is defined as follows: if all feature sets are nonnegative, dot product
between two vector equals the cosine of the angle between the two vectors. If the
two vectors are orthogonal, then the similarity is zero, and if they overlap one on
top of the other, then it is basically the length of the vector. In GNNs, the cosine
similarity is just the dot product between the coordinates node xb and neighboring
nodes. Thus, during embedding learning, parameter of encoder is optimized using
defined similarity function.

9.2 Graph Representation Learning

As mentioned earlier, GNN constructs permutation equivalent functions f (.) by
sharing a local permutation invariant function g(.)3 over all the neighborhoods.

3 Under many studies, g(.) is referred to as diffusion propagation or a message passing.
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Xa
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cbd cbe

cbc
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Xb

Figure 9.5 An illustration of
convolution CNN where features of
neighbors are aggregated with fixed
weights [6].

Broadly, choice and alignment of 𝜓 , 𝜙, and ⊕ give three flavors of GNN layers,
i.e., convolution, attention, and message passing. The details are discussed below.

9.2.1 Convolution GNN

In the convolution setting of GNNs, features from the neighbors are aggregated
with constant weight cij which depends directly on the adjacency matrix, as illus-
trated in Figure 9.5. This tells us how much does a node xi value the features of
node xj and then they are basically coefficients in a well weighted sum or a differ-
ent kind of weighted combination of locally transformed features using𝜓 function
applied to every node feature in isolation. The permutation invariant aggregators
such as summation can be used to return the recipe for the features of that node
in the next step. The operation can be formalized as follows:

hi = 𝜙
⎛⎜⎜⎝xi,

⨁
j∈i

cij𝜓
(
xj
)⎞⎟⎟⎠ (9.7)

The most common examples are Chebyshev networks [8], graph convolution
networks [9], and the simplified graph convolution networks [10]. They are very
useful when edge encoded labels are similar. This can be solved with a very sim-
ple average of what is inside the node of a graph. Additionally, because of their
scalability, lightweight, easy to train, and hardware friendly with simple matrix
operation, such an architecture is very useful:

9.2.2 Recurrent Graph Neural Networks (RGNNs)

Recurrent graph neural network (RGNN) [11] processes the node information
recurrently by assuming that the nodes exchange information with their neigh-
bors until a stable point is reached. RGNN defines the node aggregation function
as in Eq. (9.8).

ht
u =

∑
𝑣∈N(u)

𝜙(xu, xe
(u,𝑣), x𝑣,h

(t−1)
𝑣 ) (9.8)
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where 𝜙(⋅) is a nonlinear differentiable recurrent function. In [11], the proposed
architecture is an RNN, where the connections between the neurons are classified
into internal and external connections. While the first refers to the internal con-
nections within units of the network, the external ones refer to the edges of the
processed graph.

9.2.3 Graph Autoencoders (GAEs)

Graph autoencoders (GAEs) belong to the family of unsupervised frameworks
and are used for graph-based representation learning and graph generation [12].
In both tasks, an encoder is employed to extract node embeddings of a graph,
followed by the reconstruction of new graphs from corresponding latent or embed-
ding vectors. For representation learning, graph structural information is recon-
structed as an adjacency matrix. In the case of graph generation, the process might
involve a stepwise generation of the nodes and edges, or output the entire graph
at once.

9.2.4 Spatial Temporal Graph Neural Networks (STGNNs)

Spatial temporal graph neural networks (STGNNs) aim at capturing underlying
spatial and temporal relations simultaneously [12]. The spatial relation is captured
by using graph convolutions, and the temporal relation is modeled by employing
RNN blocks.

9.2.5 Attention GNN

On the other hand, when edges are no longer just as a code for label similarity but
may contain some repulsion effects from the neighboring node, constant weights
are not enough to encode such effect. For example if xi retweet someone’s tweet,
it doesn’t mean that xi entirely agrees it. As a result, constant fixed weights are
replaced with learnable scalar weights. It is done by attention mechanism which is
any learnable function a(.) that takes features of the root node and neighbor nodes
and returns a coefficient that can be used to weight the node’s contributions to the
root node. The entire process can be formulated as follows:

hi = 𝜙
⎛⎜⎜⎝xi,

⨁
j∈i

a
(
xi, xj

)
𝜓
(
xj
)⎞⎟⎟⎠ (9.9)

This is a very elegant and powerful way to learn more complicated weighted
combinations, but it still doesn’t require that much information has be computed
and stored, and there are several models implementing this idea, and some of the
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Figure 9.6 An illustration of attention
CNN where features of neighbors are
aggregated with implicit weights (via
attention) [6].

earliest ones include Monet model [13], the graph attention network [14], and the
gated attention network [15]. These models are very useful as a sort of middle
ground for situation where edges do not encode strict homophily relations and
one might want some more complicated sums with only one scalar for every edge.
The typical illustration of such architecture is summarized in Figure 9.6, where
features of neighbors are aggregated via implicit weight learning using attention.

9.2.6 Message-passing GNN

Unlike attention GNNs where only raw feature of neighbors is aggregated via
implicit weight learning using attention, message-passing GNN have both root
and neighboring node features collaborate to compute an arbitrary vector using
𝜓 function, as formulated below.

hi = 𝜙
⎛⎜⎜⎝xi,

⨁
j∈i

a
(
xi, xj

)
𝜓
(
xj
)⎞⎟⎟⎠ (9.10)

This formulation gives the most generic GNN layer and can fit some very complex
simulation data such as algorithmic reasoning, physical simulations, or compu-
tational chemistry, but that could imply some scalability or learnability issues,
because now these weights needs to be stored and computed on an entire vec-
tor for every edge in your graph. Typically, in a graph, there are a lot more edges
than there are nodes. The typical message passing GNN is illustrated in Figure 9.7

Xa

Xc

XeXd

Xb

mba
mbb

mbc

mbembd

Figure 9.7 An illustration of attention
message-passing GNN where arbitrary
vectors are computed using feature set
of both neighbors and nodes [6].
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9.3 Applications

As discussed above, Geometric Deep Learning techniques can be particularly use-
ful to capture underlying local and global structures while working with represen-
tations that involve use of nongrid points. One such representation is point cloud,
which is composed of multiple points in a N-dimensional space usually having
the coordinate values as features and in some cases, additional domain-specific
features such as Doppler value of the point for a radar use-case. In this section,
we cover two of our recent works [16] with radar point clouds as input in both the
applications. Application one involves using a novel Bayesian PointNet architec-
ture that allows for an end-to-end target classification and localization. The second
application leverages cross-learning idea from Chapter 5 and GNNs discussed in
this chapter earlier to build a robust gesture-sensing solution for long-range (target
distance from radar > 1 m).

9.3.1 Application 1: Long-Range Gesture Recognition

Human control interfaces for various indoor applications, e.g., sound systems,
television, and lightning, continuously evolve to increase user comfort. Going
from buttons, switches, and rotary knobs to touchscreen-based control with
smartphone-apps, the trend is now heading toward gesture-based control [17, 18],
allowing for interaction from further distances without requiring additional
hardware. Gesture control needs to be intuitive, accurate, and should be compu-
tationally cheap [19]. While vision-based systems nowadays fulfill these criteria,
they are often seen as too privacy-invasive. Therefore, radar-based systems have
recently been under investigation as a privacy-preserving alternative solution
[20–24]. However, while progress has been made, and radar-based gesture
sensing has been deployed in products [20, 25–27], it is still less accurate than
vision-based systems, especially on longer distances. Therefore, we present an
mmWave radar-based gesture-recognition solution that incorporates knowledge
from a camera system during the training process. Our proposed system uses
preprocessed radar data in the form of point clouds, as input to a DGCNN [28]
for performing cross-learning from a camera point cloud, which then predicts the
performed gesture, taking multiple frames into account.

9.3.1.1 Camera Point Cloud
To determine 3D joint coordinates from 2D camera images, the joints must be
visible in at least two cameras and must be matched. First, we feed all camera
images into Detectron2 [29] to detect people and their associated keypoints in
2D space. Here we use the best pretrained keypoint recurrent convolution neural
network (RCNN) architecture available in the Detectron2 model zoo trained on
the Coco keypoint dataset [30]. The Coco keypoint dataset contains 17 keypoints
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for each person, which are the nose, left eye, right eye, left ear, right ear, left
shoulder, right shoulder, left elbow, right elbow, left wrist, right wrist, left hip,
right hip, left knee, right knee, left ankle, and right ankle. Matching 2D poses
through multiple views is challenging for various reasons, such as occlusion
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Figure 9.11 Radar point cloud
with shade showing velocity
value in m/s.
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and truncation (Figures 9.8–9.11). Our association component, as shown in
Figure 9.12, consists of two robust approaches that complement and reinforce
each other: person re-identification and epipolar geometry. The result of our
approach is as shown in Figure 9.9, 3D joint coordinates, and 17 keypoints.

Person Re-identification The goal of person re-identification is to identify the cor-
responding person of interest in different views or at different times. We use the
implementation provided in [31]. It uses a ML model, in which the embeddings of
individuals that are close to each other are considered to be the same person.

Epipolar Geometry Using epipolar geometry, the geometric information can be
leveraged and objects localized in different cameras. For example, if the object’s
location is specified in the first camera, the search area in the second camera is
constrained to a single line if the epipolar geometry is known [32].

9.3.1.2 Radar Point Cloud
This section describes the radar sensor setup and the preprocessing for convert-
ing raw radar data to five-dimensional point clouds [33] with x–y–z coordinates,
intensity, and Doppler values, as illustrated in Figure 9.13.

9.3.1.3 mmWave FCMW Radar Sensor
We use Infineon’s BGT60TR13C FMCW radar chipset. It operates by transmitting
multiple frames, each containing a sequence of frequency chirps with a short ramp
time. The response is digitized in 12-bit by the analog-digital converter, and is
further passed to the PC over USB. The operating parameters of the radar are
presented in Table 9.1.
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Figure 9.12 Overview of used approach for skeleton detection. Given an input set of calibrated camera recordings from different views, we
first detect persons and their keypoints in 2D space using Detectron2. Thus, to match 2D poses in multiple views, we combine person
re-identification and geometric information of persons. The person re-identification cues along with the geometric cues are then
concatenated and triangularized to determine 3D points.
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Figure 9.13 Preprocessing of raw radar data.

Table 9.1 Operating parameters.

Parameters, symbol Value

Ramp start frequency, fmin 57.5 GHz
Ramp stop frequency, fmax 58.5 GHz
Frame rate, f 20 fps
Number of samples per chirp, NTS 64
Sampling frequency, fs 2 MHz
Chirp time, Tc 64 μs
Number of chirps, PN 128
Number of Tx antennas, NTx 1
Number of Rx antennas, NRx 3

Range-Doppler and Angles Estimation The reflected target signal is mixed with the
transmitted chirp signal and then passed through a low-pass filter to obtain the
intermediate frequency signal [34]. Since we are only interested in moving tar-
gets in gesture recognition, we use previous frame subtraction as MTI [35]. By
applying 2D Range-Doppler FFT along the sample and chirp axes, we can acquire
range-Doppler image, comprising range, Doppler, and intensity information, as
shown in Figure 9.10. Additionally, as we work with single-person scenarios, we
first detect the range-Doppler bin with the highest intensity and filter out any
points far away from it as noise [36]. Afterward, we select a certain number of
high-intensity range-Doppler bins and use the values in a 5 × 3 window around
each bin, seen in Figure 9.10, to estimate the covariance matrix for DOA estima-
tion with bartlett beamforming. Now, the points are in spherical radar coordinates
(r, 𝜃azi, 𝜃ele), which correspond to range, azimuth angle, and elevation angle. We
finally apply the transformation matrix [37] shown below,

⎡⎢⎢⎣
x
y
z

⎤⎥⎥⎦ =
⎡⎢⎢⎣
1 0 0
0 cos 𝜃tilt sin 𝜃tilt
0 − sin 𝜃tilt cos 𝜃tilt

⎤⎥⎥⎦
⎡⎢⎢⎣

r cos 𝜃ele sin 𝜃azi
r cos 𝜃ele cos 𝜃azi

r sin 𝜃ele

⎤⎥⎥⎦ +
⎡⎢⎢⎣
xr
yr
h

⎤⎥⎥⎦ (9.11)
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where (x, y, z) denote the resulting ground Cartesian coordinates, 𝜃tilt and (xr, yr, h)
are the tilt angle and ground Cartesian coordinates of radar, respectively.

Point Cloud With the help of a radar sensor, we can collect the points correspond-
ing to the detected object. However, a specific number of sample points for each
frame is required as input. Thus, to simplify the computation, traditional zero-
padding is the method we choose for oversampling, which means adding all-zero
points to complement the point cloud. Meanwhile, for frames with more points
than we require, sorting the points by their intensity and selecting a predefined
number allows us to save the samples with the most information [38]. Finally, we
take (x, y, z, d) intensities, which are coordinates, Doppler, and intensity value into
consideration as the features of each point, shown in Figure 9.11.

9.3.1.4 Architecture and Learning
In this section, we introduce the network’s architecture of our proposed autoen-
coder shown in Figure 9.14 for cross-learning between radar and camera informa-
tion [39]. The architecture is composed of a GNN [40], specifically DGCNN [28],
followed by LSTM layers for recognition of gesture sequences.

Edge Convolution The radar point cloud contains n points with F features in each
frame, denoted by R = {r1,… , rn} ⊆ ℝF . In our case, F = 5, representing 3D
coordinates xi, yi, zi, intensity and Doppler value i, d in RD-image and n points
per frame. We apply k-nearest neighbor (k-NN) by Euclidean distance to generate
the local graph of R in ℝF including self-loop, represented as  = ( , ), where
 = {1,… ,n} and  ⊆  ×  are the 𝑣ertices and edges, respectively. As illus-
trated in Figure 9.15, to capture both global structure and local neighborhood
information, edgefeatures between two points is computed as follows:

eij = h𝚯(ri, rj − ri) (9.12)

where h𝚯 ∶ ℝF ×ℝF → ℝF′ is a nonlinear function with learnable parameters 𝚯
and {rj ∶ (i, j) ∈ } is the set of neighbors around ri. More specifically, this edge
convolution can be expressed as follows:

eijf ′ = 𝜎(𝜽f ′ ⋅ (rj − ri) + 𝝓f ′ ⋅ ri) (9.13)

and implemented as a shared MLP, here 𝚯 = (𝜽1,… ,𝜽F′ ,𝝓1,… ,𝝓F′ ), leakyReLU
is chosen as nonlinear function 𝜎(⋅). At last, we take max pooling as the aggrega-
tion operation on the edgefeatures to update the points:

r′if ′ = max
j∶(i,j)∈eijf ′ (9.14)

which can capture the sharpest features to represent the points in lower-level.
In general, this EdgeConv creates an F′-dimensional point cloud with the same
number of points as the input F-dimensional point cloud, where k = 3 and n = 64.
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Figure 9.14 Network architecture: Radar point cloud in shape n × 5 first passes through an input transformation module and then is fed
into DGCNN autoencoder, followed by one fully connected layer to reconstruct camera-based skeletons. Next, the latent space of each
autoencoder-frame is stacked in temporal order with sequence length l = 30, which is used to generate classification scores for five classes
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pooling across neighboring edge features, we get a updated tensor of shape n × an.
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Figure 9.15 Left: Generating f ′ -dimensional edge features eij from two f -dimensional
points ri and rj . Here, we choose one fully connected layer as hΘ(⋅) and f = 3, f ′ = 4, for
example. Right: Updating r′i from ri by Edge Convolution, k = 3 in our case, and ei0
indicates self-loop.

Model Architecture The overview of our whole network architecture is visualized
in Figure 9.14, including three main parts: input transformation, cross learning
between radar and camera point cloud, and gesture recognition.

Input Transformation As described in Section 9.3.1.2, we multiply the coordinates
in radar coordination by our radar setup’s rotation matrix to convert them to
ground Cartesian coordinates. However, this transformation is insufficiently pre-
cise due to the measurement, and the object, in this case the test person, should
be invariant following certain geometric modifications. As a result, we refer to the
spatial transformation in this contribution [41], in which a mininetwork (T-net
in Figure 9.14) predicts an affine transformation matrix from the point itself and
its neighbors, and applies it directly to the input point cloud.

Cross Learning The upper branch of the network architecture illustrated in
Figure 9.14 is the autoencoder for cross learning between the point cloud from
radar and camera domain. The encoder contains three successive EdgeConv
blocks, where the graph is dynamically updated after each one. Afterward, their
multiscale outputs are concatenated together, followed by one fully connected
layer to form 136 dimensional latent space. Then, the decoder is used to recon-
struct camera skeletons from prior latent feature vector, having a similar structure
with the encoder, while there are only two EdgeConv blocks present. Finally, after
going through the last fully connected layer (51), the point cloud is reshaped to
17 × 3, representing 17 joints of the person in (x, y, z) coordinates. The number k
for computing k-NNs is set as 3 for all EdgeConv blocks.
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Classification After obtaining the latent features from the encoder, the lower
branch shown in Figure 9.14 extracts both spatial and temporal information of
each gesture motion sequence with length l = 30. The latent feature vectors of
each frame in the sequence are first stacked to create l × 136 tensor, fed as input
into two 64-units bidirectional LSTM layers [42]. The last two fully connected
layer (64,5) produce five-dimensional feature vector for gesture classification.

9.3.1.5 Experiments and Results
We used a synchronized camera–radar setup as introduced in Section 9.3.2.1 to
perform seamless multimodal data acquisition to train our proposed model and
then for evaluation. The training data are balanced and consist of 1773 recordings
and 392 recordings (sequence length l = 30 for each recording) for evaluation. The
evaluation dataset doesn’t include any camera data as only radar data are used as
input during inference.

We define five macrogestures as classes that involve a complete hand move-
ment. The five classes are swipe – where the hand is moved horizontally from
one end to another; push – where the hand is moved toward the radar from the
body; pull – where the hand is moved from away from the radar toward the body;
clockwise – where a big circular movement is done by the hand in a clockwise
manner; and anticlockwise – where the same is done but in an anticlockwise
manner. The choice of gestures was made based on their relevance to past litera-
ture and simplicity. The training data involved five volunteers who performed the
gesture at a distance ranging between 1 and 2 m with minimal prior instructions
and switched between left and right hands and their distance from the radar.
The evaluation dataset was similarly performed by another five volunteers but
in a different room and radar orientation setup to demonstrate the proposed
architecture’s generalization capability. Furthermore, the room setup for the
evaluation dataset contained more reflecting objects so as to check our model’s
ability to suppress such reflections.

The upper branch in Figure 9.14 is first trained with synchronized radar point
cloud and camera skeletons data using MSE loss, and then we save the input
transformation and Encoder modules for the training of classification in the
lower branch by cross-entropy and triplet losses combined in the same weight,
which can be set as frozen or not for fine-tuning. The overall accuracy for the pro-
posed model is 98.4% compared to from 45% to 90% for the baseline model, which
is trained in a unimodal fashion. Figure 9.16 depicts the confusion matrix for our
proposed model and Figure 9.17 represents the training and testing accuracy of
different setups. It clearly demonstrates the superiority of the proposed learning
approach over a unimodal approach with better accuracy, robustness, and stable
learning.
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9.3.2 Application 2: Bayesian Anchor-Free Target Detection

The typical GNN architecture brings an instance of geometric diplomatic
blueprint with the permutation group as the geometric prior. A sequence of
permutation equivalent layers, often referred to as propagation or diffusion layers,
and an optional global pooling layer, to produce a single graph-wise output,
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are used by the architecture. Additionally, some architectures also include local
pooling layers that can also be learnable. In principle, a graph with no edges is a
set which are also unordered. In this case, the most straightforward approach is
to process each element in the set entirely independently by applying a shared
function to their feature vectors. This translates into a permutation equivalent
function over the set. This is a special setting of GNN architecture known as
DeepSets in deep learning or PointNet [43] in computer graphics. Taking this
concept and architecture inspired from PointNet, we proposed a framework for
target classification using radar point cloud. The architecture details are below.

The given point cloud is denoted as P which contains n points p1, p2,… , pn ∈ ℝd

with d dimensional features. The input feature vector of each point pi for
segPointNet consists of the global target coordinate space

(
xi, yi

)
, the azimuth

angle (𝜃), and the signal reflection power (𝜎). The set of semantic labels is denoted
as L. Semantic segmentation of a point cloud is a function Ψ which assigns
semantic labels to each point in the point cloud, i.e., Ψ ∶ P → Ln. The objective of
segmentation algorithms is to find the optimal mapping from the input space to
the semantic labels. However, the performance of the network strongly depends
on the richness of input features presented to the network [44].

In this work, we connect the concepts of multimodality and attention to split
the problem of target detection into three parts, as illustrated in Figure 9.18.
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Figure 9.18 Overview of our methods which is composed of five modules, (i) target’s
direction vector estimation (dirPointNet); (ii) hierarchical spatial attention inside target
segmentation network (segPointNet) using target’s direction modality; (iii) hierarchical
spatial attention module; (iv) Bayesian sampling for target location using direction
vector; and (v) refineNet for bounding box (bbox) and target class estimation. Both
dirPointNet and segPointNet follow the same architecture parameter with sampling
abstraction (SA) layer and feature propagation (FP) layer [16].
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First, a one-channel direction field vector is estimated for each point. This outputs
a coherent direction vector for all points belonging to an unique target. Afterward,
a direction field vector is used to provide attention inside the segmentation
network to achieve better feature learning. In the end, the information from the
segmented output and the direction field network is fused to perform a Gaussian
sampling for unique cluster identification. These clusters are passed through
another network for a bounding box estimation. The individual networks uses the
PointNet++ [43] architecture adapted for the radar scene data [45]. We propose
an end-to-end hierarchical, spatial, attention-based multimodal segmentation
framework, called HARadNet. The first network, named dirPointNet, learns the
direction vector field for each point. This information is used inside the second
network (segPointNet) to improve spatial localization. This approach increases
the cross-correlation of the shared representations and potentially yields a faster
convergence.

9.3.2.1 Direction Field Estimation
Using the inherent property of the radar sensor, the tangential velocity of the
target is determined along with its spatial position in the azimuth dimension
(𝜃) for each reflected point. Taking advantage of both values together with
the sensors’ yaw angle (𝜙), the direction of motion for each point is estimated
as d(𝜑) = 𝜃 + 𝜙. The velocity of the target is compensated with respect to the
ego-motion, while the azimuth angle is transformed to global coordinates. In
real-world scenarios, many reflections that do not belong to a moving object show
a nonzero ego-motion-compensated velocity component, caused by errors in the
odometry, sensor misalignment, time synchronization errors, mirror effects, or
other sensor artifacts. In addition, reflections with zero velocity do not necessarily
belong to a static object, since also reflections from the bottom of a rotating car
wheel or body parts of a pedestrian that move perpendicular to the walking
direction may show no radial velocity. As a result, multiple static targets are
misinterpreted as dynamic ones. To overcome this problem, we optimize the
dirPointNet network to estimate the direction of targets and suppress unwanted
“noise” caused by multipath reflections.

The network follows an encode–decode scheme similar to a general seman-
tic segmentation network, except for changing the problem from classification to
regression. The network is trained using 4D input feature tensors (x̂cc, ŷcc, �̂�cc,

−→
�̂� r)

to predict the motion direction vector for each traffic participant (d(𝜑)). Further-
more, both input features and labels are rescaled to the range of [0,1) by applying

x̂cc =
xcc − xicell

sxcell

, ŷcc =
ycc − ykcell

sycell

, 𝑣r =
1

𝑣max
𝑣r, �̂�cc =

𝜃

60∘
, d(�̂�)i =

d(𝜑)i

180∘

(9.15)
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with (xicell
, ykcell

) representing the position of the left bottom corner of a cell. The
indices (i, k), (sxcell

, sycell
) resemble the cell extension in x, y-direction, while 𝑣max is

the maximum velocity, and 𝜎max the maximum signal power obtained from the
whole data set. This rescaling restricts the gradient from exploding during the net-
work training.

The resulting network optimization is still very challenging due to highly unbal-
anced target points and the sparsity of target features. Thus, we propose the fol-
lowing hybrid loss function to train the network.

Ldirection = 𝑤wmseLwmse + (1 −𝑤wmse)L1

Lwmse =
1
n

∑n
i=0 𝑤i

(
d̂(𝜑)i − d(𝜑)i

)2

∑n
i=0 𝑤i

(9.16)

𝑤i = log
(

d̂(𝜑)i + 1
)
+ 1

Here, L1 represents absolute differences between the true value and the predicted
value. The value of 𝑤i is calculated over a number of positive samples in a batch.
An empirically determined fixed value of 0.8 as used for weighted mean square
error (𝑤wmse).

9.3.2.2 Direction Attention
Due to sparsity, nonuniformity, and the highly imbalanced nature of target repre-
sentations in radar point clouds, the actual target recognition becomes very chal-
lenging. Here we use pointwise multiplication to provide hard spatial attention
inside the segPointNet. As dirPointNet and segPointNet share the same number
of input tensors, we are able to preserve the flexibility of providing attention at dif-
ferent feature abstraction levels of the network. segPointNet uses (x̂cc, ŷcc,

−→
�̂� r, �̂�)

as input feature tensor, where �̂� is the normalized signal reflection power. We
have used pointwise multiplication to provide hard attention inside network. For
this purpose, prior to attention, both estimated segPointNet and dirPointNet out-
puts are standardized between 0 and 1. Additionally, 1 × 1 is a pointwise con-
volution with a residual connection to attention that is used to avoid vanishing
gradient. Due to the difference in input features, the estimated signal from both
segPointNet and dirPointNet is standardized to range between 0 and 1 using a
sigmoid function prior to the spatial attention inside segPointNet. Both network
are optimized using end-to-end training. As a result, they complement each other
in learning target features from different modalities. The total loss is formulated
as follows:

Lattention = 𝑤clsLcls + (1 −𝑤cls)Ldirection

Lcls = −
(
1 − p̂y

)𝛾 log
(

p̂y
)

(9.17)
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Table 9.2 A comparison of the effect of attention at different feature abstraction layers for both
binary (top-row) and multiclass (bottom-row) segmentation using the F1-score (see Eq. (9.18)).

w/o Attention 1-depth Attention 2-depth Attention 3-depth Attention

Avg Ped Car Bike Avg Ped Car Bike Avg Ped Car Bike Avg Ped Car Bike
0.92 — — — 0.95 — — — 0.97 — — — 0.96 — — —
0.88 0.61 0.85 0.90 0.92 0.43 0.97 0.77 0.94 0.46 0.98 0.64 0.95 0.75 0.98 0.91

The bold values signify highest accuracy for binary and multi-class segmentation with different
attention-based training setup.

where Lcls denotes the loss for the point classification from the scene and Ldirection
is for the direction field estimation of classified radar targets. In Eq. (9.17),
y ∈ {0,… ,K − 1} represents an integer class label, p̂ =

(
p̂0,… , p̂K−1

)
∈ [0,1]K

is a vector representing the estimated probability distribution over the K classes
and 𝛾 is a focusing parameter which specifies how much high-confidence
predictions contribute to the overall loss. Table 9.2 gives an insight on the effect
of spatial attention by dirPointNet on segPointNet by evaluating the network
performance using the F1-score. The F1-score is the harmonic mean between
precision P and recall R, given by

F1 = 2 ⋅ P ⋅ R
P + R

(9.18)

The performance of segPointNet is evaluated for both binary and multi-class
segmentation tasks. While the binary segPointNet is optimized to predict only the
foreground as targets of interest and the background as static-reflections or noise,
multiclass segPointNet is trained to preserve the target class and background.
The binary segPointNet demonstrates a better average F1-score of 0.92 in contrast
to the multiclass segPointNet with an average F1-score of 0.88. This is caused
by the unavailability of uniform features between points of the same class. In
contrast to the case without attention, both binary and multiclass segPointNet
show an improvement in the average F1-score with attention applied inside the
network and validates advantage and scalability of our proposed architecture.
Further, the multiclass segPointNet shows a significant improvement in the
average F1-score being equal to 0.95 when attention is applied at every feature
propagation layer. It is comparable to binary segPointNet with an average F1-score
of 0.96. Additionally, the network shows major improvements in the recogni-
tion of pedestrians, which share the least samples of target distribution in the
dataset [45]. This proves the advantage of attention inside a network with different
modalities which acts as an additional target feature point and improves the scene
recognition.
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Table 9.3 Distribution of the six different target class in the dataset.

Car (%) Pedestrian (%) Pedestrian group (%) Bike (%) Truck (%) Static (%)

1.23 0.31 0.74 0.11 0.60 97.01

Source: Adapted from Schumann et al. [45].

9.3.2.3 Experiments
The evaluation of the proposed framework is done on real-world data that was
collected by four automotive corner radar sensors. All reflections that belong to the
same physical object are grouped and annotated with a corresponding label from
the following classes: car, pedestrian, pedestrian group, bike, truck, and static. The
distribution of the occurrences among the six classes is shown in Table 9.3. This
gives a clear indication of the typical foreground vs. background class imbalance,
present in the data. Furthermore, pedestrians and bikes have the least number of
training samples. Additionally, both share a lower signal reflection strength and
sparse point distribution in comparison to the other target classes. As a result, the
segPointNet struggles to categorize these classes correctly, as shown in Table 9.2.
In addition, Table 9.3 shows the distribution of object availability with respect to
the distances to the ego-vehicle. Following the object distribution over distance, we
process cropped scenes within a range of 80 m for x̂cc and an absolute range of 20 m
for ŷcc. This reduces the total number of static targets during the network training.

9.3.2.4 Bayesian Sampling
Compared to other vision tasks such as segmentation or categorization, localizing
the object is a very complex task, mainly because the same region could also jointly
belong to another target, if it is closely located or partially occluded. Additionally,
due to the in-homogeneous and sparse distribution of radar points in the point
cloud space, points from neighboring regions often have similar characteristics.
Therefore, we intend to seek a method that has the ability to discover potential
and meaningful patterns among proximity points, so that the set of points can be
clustered into unique groups in a robust way.

In order to deal with such situations, our attention direction network can be
guided not only toward the more relevant features but also toward the selection
of unique regions, using a cluster of direction vectors as a signature distribution,
in combination with spatial information. For ease of usage, we call this step
Bayesian sampling, which is performed in two steps. At first, both spatial and
direction information is fused and passed to different algorithms to estimate
the possible number (order) of targets available in the scene. This is used by
the clustering algorithm to find and localize them uniquely. In our experiment,
we used the density-based spatial clustering of applications with noise (DBSCAN)
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Table 9.4 Comparison of the class-agnostic clustering methods for target localization
with normalized features, i.e., compensated spatial location in x̂cc, ŷcc and azimuth �̂�),
compensated target velocity (�̂�r), reflected signal strength �̂�, and motion direction vector
(d̂(𝜑)) estimated from dirPointNet [9].

Normalized feature dimensions Clustering score (meanIoU [%])

x̂cc ŷcc
−→
�̂� r �̂� �̂� d̂(𝝋)

BIC +
GM

DBSCAN +
GMM

DBSCAN +
VBGM
(Dirichlet
process)

DBSCAN +
VBGM
(Dirichlet
distribution)

✓ ✓ 0.195 0.700 0.703 0.711
✓ ✓ ✓ 0.731 0.640 0.747 0.746
✓ ✓ ✓ ✓ 0.328 0.722 0.739 0.734
✓ ✓ ✓ ✓ ✓ 0.497 0.593 0.601 0.598
✓ ✓ ✓ ✓ ✓ ✓ 0.640 0.652 0.661 0.652
✓ ✓ ✓ ✓ ✓ 0.445 0.796 0.806 0.808
✓ ✓ ✓ ✓ 0.481 0.850 0.859 0.858

✓ ✓ 𝟎.𝟖𝟏𝟓 𝟎.𝟖𝟗𝟒 𝟎.𝟖𝟗𝟑 𝟎.𝟖𝟗𝟒

The bold values signify highest clustering score using combination of different set of normalized
features and methods.

and the Bayesian information criterion (BIC) for the estimation of target order.
Thereafter, the output is clustered into the desired unique bins using a Gaussian
mixture model (GMM) operated at different feature dimensions. To the best of
the author’s knowledge, this approach is novel and has not been investigated in
literature before.

While Table 9.2 demonstrates the quantitative advantage of direction vector
attention for radar point-target segmentation, Table 9.4 shows the advantage
of the direction vector as the key feature dimension for target clustering. To
compare the performance of localization, clustering algorithms are evaluated for
different dimensions of features (x̂cc, ŷcc,

−→
�̂� r, �̂�, �̂�, d̂(𝜑)). Further, to evaluate the

generalization of our approach, the performance of clustering is evaluated for
different clustering algorithms, i.e., GMM and its variant, variational Bayesian
Gaussian mixture (VBGM) model. The principle behind VBGM is the same as for
GMM, which is expectation minimization, but VBGM also adds a regularization
by integrating prior distribution information. Although priors may bring initial
biases, the VBGM selects a suitable number of effective clusters (targets) by
avoiding the singularities which are often found in expectation-maximization
solutions, and pushing weights values close to zero.

IoU =
|||bgt ∩ bpred

||||||bgt ∪ bpred
||| (9.19)
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A common evaluation metric for segmentation tasks is the mean intersection
over union (mIoU). The IoU compares a predicted bounding box bpred with the
ground truth bounding box bgt and is defined as Eq. (9.19). Here, | ⋅ | measures the
total area of the underlying set. If the ground truth and the predicted bounding
box are almost identical, the IoU score tends to be close to one. If the two bounding
boxes do not overlap, the IoU score will be zero. While d̂(𝜑) helps to increase
the localization accuracy, due to nonuniformity in spatial dimensions (x̂cc, ŷcc, �̂�)
of the radar-point clouds, the performance of clustering is strongly limited. As
a result, only the estimated direction vector (d̂(𝜑)) and its magnitude (

−→
�̂� r) are

considered for localization. This leads to significant improvement in localization
accuracy with a mean IoU of ≈ 90% using DBSCAN and GMM and its variant,
validating the robustness of each feature combination. Figure 9.19 illustrates the
statistics of IoU for all clustering methods over the entire validation scene for
all targets of interest. A large percentage of all scenes is distributed around 1.0
in the vertical axis of IoU for all four subplots, indicating that many scenes in
the sequence achieve a perfect match. The combination of DBSCAN and GMM
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Figure 9.19 Visualization of the IoU population distribution for all target of interest
over the entire test sequence. (a) IoU with BIC + GMM. (b) IoU with DBSCAN + GMM.
(c) IoU with DBSCAN + VBGM1. (d) IoU with DBSCAN + VGGM2.
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gains over 50%, and finally the percentage of scenarios with an mIoU over 0.8
exceeds 82%. The best performance is achieved by the combinations of DBSCAN
with VBGM using a Dirichlet distribution as priors. As a result, the rest of our
experiments and evaluations are based on this clustering method.

Figure 9.20 illustrates the different stages for target localization using the pro-
posed Bayesian sampling and the effect of the estimated direction vector from the
dirPointNet. To have a deeper insight on the advantages of the approach, multiple
examples together with their behavior on boundary conditions are demonstrated
using four random scenes from the validation set. The top row shows the input
point cloud marked with the ground truth label and the direction vector. The
middle two rows show the output of the segPointNet and the dirPointNet. The
last row follows the output of the Bayesian sampling layer. Figure 9.20a shows
multiple false positives from both segPointNet and dirPointNet. The Bayesian
sampling layer, however, suppresses false positives by fusion and later discards all
the points with high variance in their feature dimension due to the high variability
of the direction vectors between the neighboring points. As a result, the network
successfully finds regions of interest. Figure 9.20c shows multiple detections for
the same target and misdetections for the target due to noncoherent direction
vectors. Multiple detections for the same target can be suppressed by nonmaxima
suppression (NMS) in the postprocessing stage. The examples demonstrate
that the performance of Bayesian sampling strongly relies on the d̂(𝜃cc) feature
in comparison to the distributed and nonuniform spatial feature dimension
(x̂cc, ŷcc). Furthermore, Figure 9.20b demonstrates an interesting observation
and advantage of our approach where both segPointNet and dirPointNet predict
a target. The Bayesian sampling layer, however, discards both points due to
noncoherent direction vectors and spatial sparsity (no neighborhood). Thus, our
approach also helps to suppress false positive detections.

9.3.2.5 Multi-task Learning
After a joint end-to-end learning of multiclass segmentation and direction field
estimation using a input dimension of 4 × n, the region of interest in the form
of unique point clusters, with the dimension of 4 × m, is passed through a
refineNet, conceptually similar to [46]. The refineNet is a multihead network with
a regression and classification head. While regression head predicts parameters
of a 2D bounding box (Bbox), i.e., its center (xc, yc) and its size (l, 𝑤) around the
clustered points, the classification head is optimized to predict the target class
for the points. For the box center estimation, a residual-based 2D localization is
performed, similar to [47], where the network estimates the centroid over the
center. To guarantee a fixed number of input points to the FC layer, the sampling
process during training is considered. For the 2D bounding box estimation, up
to 32 points are randomly sampled from the point clusters for every radar target.
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Figure 9.20 Visualization of the different intermediate outputs of the proposed a
three-stage approach. The first row in each of (a–d) represents the spatial input with the
corresponding label and its associated direction field. The last three rows of (a–d) show
the predicted segmentation, estimated direction vector, and Bayesian sampling for the
region of interest estimation [9].
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The labeling process automatically generates a bounding box from the annotated
radar point targets by using the ground truth as a reference. The training is
performed with a multitask loss for joint optimization of segmentation, direction
field, and a 2D bounding box estimation. Since the performance of the box
prediction relies on the region proposal which in turn depends on the dirPointNet
prediction, a trained network is used for the initialization of all weights before
the training. The, multitask loss is defined as follows:

Lmulti-task = Lattention + LrefineNet

LrefineNet = 𝑤Bbox

(
Lcx ,reg + Lcy ,reg + Lh, reg + Lw, reg

)
+𝑤s, clsLs, cls (9.20)

During the training, the weight for a target with Lattention is handled using
Eqs. (9.16) and (9.17). Lcx ,reg and Lcy,reg are used for the residual-based center
regression of the box estimation network. Furthermore, Lw, reg and Lh, reg are losses
for width and height estimation, while Ls, cls is for the estimation of the target
class of the box with 𝑤Bbox and 𝑤s,cls their respective task weightings. The choice
of loss for box regression and target classification is smoothL1 and cross-entropy.

The network is evaluated on the full test data set to cover the maximum
number of different situations, including the corner cases, in order to understand
the behavior of the networks for targets like pedestrians and cyclists. Since the
proposed 2D object detection method contains classification and bounding box
estimation, the performance of these modules will be evaluated using the F1-score
(compare Eq. (9.18)) and the IoU metric. Additionally, the performance of the
multihead box network is evaluated under different training conditions and com-
pared with both region based state-of-the-art architecture and regression-based
YOLO. The detailed performance of all approaches are summarized in Table 9.5.

Table 9.5 Comparison of the localization accuracy for the class-agnostic and
class-aware bounding box (Bbox) estimation [9].

Task weights

Weighting criteria Class (𝒘s,cls) Bbox (𝒘Bbox)
Classification
(F1-score)

Bbox
(mIoU)

Class only 1 0 0.92 0.89
Bbox only 0 1 𝟎.𝟗𝟓 0.86
Empirical weighting 0.5 2 0.78 0.93
SOTA [48] — — 0.64 0.64
YOLO 2 7,2,5,0.5 0.66 0.32
Weights with task
uncertainty [49]

— — 0.82 𝟎.𝟗𝟔

The bold values signify highest classification and location (detection) accuracy for proposed
framework when trained in different setup and compared to SOTA and YOLO architecture.
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First, the performance of the network is evaluated separately for cluster clas-
sification and class-agnostic bounding box (Bbox) estimation. This is done by
enabling either 𝑤s,cls or 𝑤Bbox exclusively. The mIoU for the class-only scenario is
the same as the mIoU for the target localization since the Bbox is not fine-tuned
for clustered points but achieves a classification accuracy of 0.92. On the other
hand with Bbox-only, the target localization is degraded from mIoU of 0.89 to
0.86, while the classification accuracy in this case is the same as the F1-score from
the multiclass segmentation task. Both centroid and corner points are estimated
without knowing the target class (point distribution), thus the network considers
all points as an inlier and tries to fit the bounding box to it, which results in a drift
of the centroid. This leads to a bad localization accuracy of 0.86 for the multiclass
segmentation network. By learning the target class distribution together with
the bounding box estimation, the network shows a slightly better localization
accuracy with an IoU of 0.93 and a classification accuracy of 0.78. The strong
weighting for 𝑤Bbox in contrast to 𝑤s,cls results from the much stronger average
classification loss, compared to the box regression.

Additionally, the proposed framework is compared with a state-of-the-art
region-based object detection [48] and a regression-based detection algorithm
using YOLO architecture [50]. The SOTA network shows the best target
classification of 0.96, at the cost of localization mIoU of 0.64. The improved
target classification score is due to the reason that the performance of SOTA
is evaluated over accumulated multiple frames over 500 ms, in contrast to our
approach where the network is evaluated for a single frame. Additionally, the
feature dimension used for localization refinement and classification of clus-
tered point includes the original input dimensions (x̂cc, ŷcc, �̂�, �̂�) and not the
estimated direction vector (

−→
�̂� r). As a result, the network struggles to classify

clustered point-clouds due to incoherency between spatial features. Further,
we also compared our proposed framework with the YOLO architecture by
optimizing it directly on our normalized input data over a single frame. The
YOLO results in worse localization and classification accuracy of 0.32 and 0.66,
respectively.

Although the multitask approach aims to improve the learning efficiency by
learning multiple objectives from shared representations, the performance of
the multitask network optimization is highly sensitive to weights (𝑤Bbox, 𝑤s,cls)
given to the different losses (Lbbox, Lcls). In contrast to an expensive grid-search
or naive weighted sum of losses, the network is optimized using online learned
weights with task (homoscedastic aleatoric) uncertainty which captures relative
confidence between tasks, motivated by Cipolla et al. [49] and Bischke et al. [51].
As a result, the Bbox and target class estimation is modified with joint-learning
function p

(
y1, y2 ∣ fW(x)

)
, where y1 and y2 represents box regression and target

classification as two outputs from the multihead network fW(x). This leads to
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the minimization objective of − log p
(
y1, y2 ∣ fW(x)

)
for the multioutput model,

given as follows:

= − log p
(
y1, y2 = c ∣ fW(x)

)
= − log (

y1; fW(x), 𝜎2
y1

)
⋅ Softmax

(
y2 = c; fW(x), 𝜎y2

)
= 1

2𝜎2
y1

‖‖‖y1 − fW(x)‖‖‖2
+ log 𝜎y1

− log p
(

y2 = c ∣ fW(x), 𝜎y2

)
= 1

2𝜎2
y1

1(W) + 1
𝜎2

2
2(W) + log 𝜎y1

(9.21)

+ log

∑
c′ exp

(
1
𝜎2

y2

f W
c′ (x)

)
(∑

c′ exp
(

f W
c′ (x)

)) 1
𝜎2

y2

≈ 1
2𝜎2

y1

1(W) + 1
𝜎2

y2

2(W) + log 𝜎y1
+ log 𝜎y2

Here, 1(W) stands for the smoothL1(y1, f
W(x)) for the regression loss y1 and

2(W) = − log Softmax
(
y2, f

W(x)
)

for the cross-entropy loss y2. The network is
trained to predict the log-variance log 𝜎2

y for more numerical stability and avoids
gradient division when the loss is zero. The network shows the best localization
accuracy, compared to our proposed framework and SOTA. This is due to the
reason that the localization loss is very sensitive to both the estimated corner
and the center points. As a result, the task uncertainty-based approach helps the
network to choose an appropriate loss weighting during the training. While this
approach helps the network to improve the classification accuracy by significant
amounts compared to the empirical weighting, the network still struggles to clas-
sify very sparse and spatially distributed clustered points into the desired target
class without using the estimated direction vector as another feature dimension.

In addition to the quantitative evaluation, Figure 9.21 illustrates few corner
cases of our proposed anchor-free detection framework and its localization and
classification accuracy. Figure 9.21a1 shows multiple overlapping box proposals
around the ground truth target due to varying target distribution. Consequently,
the concept of NMS can be used as postprocessing. Thus, all the boxes having
IoU > 0.5 with the ground truth are considered. Figure 9.21a2 illustrates the
updated bounding box tightly coupled with the ground truth. Similarly, both
Figure 9.21d1,d2 demonstrate the effectiveness of HARadNet for successful
localization of a target with just four points. Additionally, it also preserves the
target class. As a result, the need for predefined anchor boxes or grid-based
regression methods can be eliminated. On the other hand, while Figure 9.21b,c
demonstrates the target localization, the estimated bounding box leaves out some
target points treating as an outlier. As a result, the network contributes to the
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(a1) (b1)

(i) Pre-NMS

(c1) (d1)

(a2) (b2)

(ii) Post-NMS

(c2) (d2)

Figure 9.21 Combined illustration of the performance of HARadNet. (i) shows the
class-aware bounding box estimation, and (ii) illustrates the final prediction after using
nonmaxima suppression (NMS) as postprocessing [9].

false-negatives during the target localization. This is caused by the loss function
(Lbox) which does not penalize loss caused by the background and the foreground
separately. As an alternative, in the future, loss functions similar to the one
proposed in [52], can be used for better localization.

9.4 Conclusion

In this chapter, we have covered ideas starting from understanding non-Euclidean
data structures, the challenges they come with and geometric deep learning archi-
tectures to tackle them. This would enable the readers to develop a solution
around non-Euclidean radar data representations instead of relying only on
specific representation and conventional deep learning architectures such as
CNNs. The applications provide more in-depth view on how to use such ideas
in real-life radar use-cases. In application one, the use of GNNs along with a
cross-learning methodology allows for capturing target dynamics at a longer range
while suppressing other targets. The can be easily extended to other use-cases
involving people sensing such as activity recognition or people tracking. The
second application propose an anchor-free model for target localization and clas-
sification employing hierarchical spatial attention captured in the form of motion
modality by using direction field vectors for each target point. This is done without
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using additional sensors or other dependencies such as temporal information or
cross-model distillation. The entire model is trained in an end-to-end training
framework using the concept of multitask learning. This approach helps the model
to converge faster for the combined tasks while sharing the learned representa-
tions. The joint motion guided spatial attention mechanism for feature selection
is highly essential to select useful features from the learned representations and to
improve localization performance. Furthermore, the proposed Bayesian sampling
layer takes both spatial and motion modality to sample and cluster points with
similar feature distributions. The architecture can be used as a major block for
radar use-cases ranging from vacuum cleaner bots to self-driving cars which
require to be able to not only detect targets but also classify them to act accordingly.

9.5 Questions to the Reader

● What are the limitations of CNN architecture in comparison to GNNs?
● Discuss the significance of permutation invariance and permutation equivari-

ance in a neural network architecture?
● Differentiate between attention GNNs and Message Passing GNN architectures?

Which architecture would better fit for traffic forecasting and why?
● How does the geometric learning paradigm affect the graph representation

learning and which two explicit conditions are applied over GNN architecture.
● In the first application, we use MSE as reconstruction loss for reconstruction of

radar point cloud data to camera point cloud data. Discuss possible drawbacks of
using MSE for reconstruction and propose some other loss function that might
exhibit better performance.

● Given what you read in this chapter, what kind of GNN architecture is used for
second application and can it be improved using concept of attention GNNs?
Explain why.

● Propose a novel solution for fall detection using radar point cloud as input.
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tracking optimization 129–132

keypoint detection 163–166
KL divergence see Kullback–Leibler

divergence
KNN see K-nearest neighbor
Kullback–Leibler (KL) divergence

31–32, 80, 174–175, 241–244

l
label-aware ranked (LAR) loss functions

71
lag sample 238
Laplace’s approximation 232–235
LAR see label-aware ranked loss

functions
layers

autoencoders 30–31
convolutional neural networks

25–27
general adversarial networks 32–35
recurrent neural networks 29–30
transformer 35–37
variational autoencoders 31–32
visual question answering machines

152
leaky rectified linear unit activation

functions 26, 27
learning rates 38
learning theory

Bayesian deep learning 224–225
graph neural networks 263–267

light detection and ranging (LiDAR)
209–210

likelihood functions 227–229
linear classifiers 24
LO see local oscillators
local oscillators (LO) 2–3
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logistic (sigmoid) activation functions
25, 27

long-range gesture recognition 271–280
long-short term memory cells (LSTMs)

28–29
multi-modal deep learning 152
multifrequency frameworks 99–101
multimodal input learning 160–162
multitarget tracking 133

loss functions
autoencoders 30–31
center loss 61, 80
constrastive 52
convolutional neural networks

24, 26
cross-entropy 26, 42
D-Softmax 58
discrepancy-based domain adaptation

205
hierarchical approaches 71–72
joint embedding learning 153
joint embeddings learning 157
label-aware ranking 71
long-short term memory cells 29
mean squared error 30, 42
minimax 34–35
N-pair 54
quadruplet 53–54
self-supervised multi-modal deep

learning 152
Softmax center-loss 61
triplet 53, 70–71, 79–81
triplet variational auto-encoders 80
variational autoencoders 31–32
Wasserstein 35

LSTMs see long-short term memory cells

m
Mahalanobis distance 51, 69–70
main lobe jamming 124
maintenance, tracking 14
management, tracks 14–18
maps, point clouds 22–23
margin disparity 213
margin error 213
marginal likelihood 229, 232

margins
cosine similarity 56–61
pairwise methods 52–54

Markov Chain Monte Carlo (MCMC)
235–238

Markov decision processes (MDPs)
115–116, 117–118

Bellman equations 116
notation 115
solving 116

max pooling 27
maximum mean discrepancy loss

functions 209, 213–215
maximum observable range 4
maximum unambiguous Doppler 4
MCMC see Markov Chain Monte Carlo
MDWD see multilevel discrete wavelet

decomposition
mean-square error (MSE) 30, 42
message-passing graph neural networks

270
metric learning see deep metric learning
Metropolis–Hastings (MH) algorithm

237–238
micro-doppler components, target

detection and clustering 10–12
minimax loss 34–35, 207, 213–215
MLPs see multilayer perceptrons
MMDL see multi-modal deep learning
model-based reinforcement learning

119–120
model-based variance 135–136
model-free reinforcement learning 120
models, learning theory of 224–225
momentum optimizer 40
Morlet wavelets, 2D 94–95
mother wavelets 9
moving target indicator (MTI) processing

8, 128–129, 168
MSE see mean-square error
MTI see moving target indicator

processing
multi-modal deep learning (MMDL)

151–179
cross-modal learning 153, 162–176
joint embeddings 153, 156–159



�

� �

�

Index 307

multimodal compact bilinear pooling
160

multimodal input 153, 159–162
people counting 166–176
self-supervised 152, 154–156

multifrequency long-short term memory
(LSTM), forecasting frameworks
99–101

multihead attention 36–37
multilayer perceptrons (MLPs) 24, 27
multilevel discrete wavelet

decomposition (MDWD)
99–100

multilevel wavelet decomposition
networks (mWDN) 99–101

multimodal compact bilinear (MCB)
pooling 159, 160, 162

multimodal input learning 153,
159–162

multiple-input multiple-output (MIMO)
detection

reinforcement learning 132, 133
SARSA 123

mWDN see multilevel wavelet
decomposition networks

n
N-pair loss functions 54
NAF see normalize advantage function
Nesterov accelerated gradient optimizer

40
neural networks

classification systems 23–37
image representation 22–23
learning rates 38
loss functions 42
optimizers 40–42
overfitting 38–41
training 33–35, 37–42
transformer 35–37
underfitting 38–41
variance 39–40
weight initialization 38
see also individual architectures...

NMS see nonmaxima suppression
noninformative priors 230–231

nonlinear classifiers 24
nonlinear transformations, track filtering

16–18
nonmaxima suppression (NMS) 288
nonparametric Bayesian models 226,

229–230
normalize advantage function (NAF)

132

o
object keypoint similarity (OKS) 165
object persistence, recurrent neural

networks 27–29
objective priors 230–231
off-policy reinforcement learning 119
offline reinforcement learning 122
OKS see object keypoint similarity
on-policy reinforcement learning 119
online reinforcement learning 121–122
open-set classification 49–50
optimality equations, Bellman 116
optimizers 40–42

iterative shrinkage-thresholding
algorithm 183–186

ordered statistics constant false alarm
rate detector ((OS)-CFAR) 10,
191–196

(OS)-CFAR see ordered statistics
constant false alarm rate detector

overfitting 38–41

p
padding, convolutional neural networks

25
pairwise methods, deep metric learning

50, 52–55
parameter optimization, deep

reinforcement learning 125–146
parametric Bayesian models 226–229
parametric rectified linear unit activation

functions 26
people counting 166–176
permutation agnostic aggregation

functions 265
permutation equivariance 263, 265
permutation invariance 263, 265
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person re-identification 273
phase monopulse technique 20
physics-inspired deep learning 186–188
point clouds 11–12

gesture sensing 273, 276
maps 22–23

PointNet 11–12, 22
policy-based reinforcement learning

121
pooling layers, convolutional neural

networks 26–27
primitive-based simulations 187
prior shift 204
priors 230–232
proxy methods, deep metric learning

50, 68, 71–72

q
quadruplet loss functions 53–54
quadruplet variational auto-encoders

(QVAE) 251–252

r
radar cross section (RCS), point clouds

12
radar systems

activity classification 101–111
bandpass filtering 2, 4
basics 1–4
block diagram 2
chirps 2–3
clustering 10–12
congested spectral environments 123
domain adaptation 209–219
gesture sensing 73
iterative shrinkage-thresholding

algorithm 185–186
main lobe jamming 124
multiple-input multiple-output 123
parametric neural networks 92–111
reinforcement learning 122–145
signal detection 3–4
signal processing 4–9
target detection 10–12
target recognition 23–37
target representation 18–23

target tracking 13–18
tracker parameter optimization

125–146
waveform design problems 124–125

radar waveform design problems
124–125

range angle images (RAIs) 20–21
gesture sensing 275–276
people counting 168, 170–172

range-Doppler extended targets 10–12
range-Doppler images (RDIs) 11

gesture sensing 275–276
people counting 173–176
videos 22

ray tracing 187
RCF see residual classification flow
RCS see radar cross section
RDCNet 104
RDIs see range-Doppler images
received signal, basic expression 3
recognition

targets 23–37
autoencoders 30–32
convolutional neural networks

24–27
deep learning 24–37
feature descriptors 24
feedforward networks 24, 27
general adversarial networks

32–35
hand-crafted features 23–24
recurrent neural networks 27–30
transformer 35–37
variational autoencoders 30–32

reconstruction-based domain adaptation
208

rectified linear unit (ReLu) activation
functions 26, 27

recurrent graph neural networks
(RGNNs) 268–269, 283–285

recurrent neural networks (RNN) 22
backpropagation 28–29
classifiers 27–30
domain specialization 188
graph 268–269, 283–285
long-short term memory cells 28–29
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object persistence 27–29
self-loops 28
vanishing gradients 28

reference priors 231
region-based fully convolutional

networks (RFCN) 22
reinforcement learning (RL) 115–150

with continuous actions 122
with discrete actions 122
see also deep reinforcement learning

ReLu see rectified linear unit
reparameterization trick 32, 247
replay buffers 117
representation, targets 18–23
residual classification flow (RCF)

99–101
return, reinforcement learning 118
reward functions

reinforcement learning 117–118,
135–136, 140–145

variance-aware 140–145
RFCN see region-based fully

convolutional networks
RGNNs see recurrent graph neural

networks
RL see reinforcement learning
RMSprop optimizer 41
RNN see recurrent neural networks

s
SARSA 123
scale-invariant feature transform (SIFT)

24
segmentation, targets 191–197
segPointNet 283–284
self-attention layers 35–37
self-loops, recurrent neural networks

28
self-supervised multi-modal deep

learning 152, 154–156
semisupervised domain adaptation 203
SGD see stochastic gradient descent
short-time Fourier transformation

(STFT) 6, 9, 89–92
SIFT see scale-invariant feature

transform

sigma-point Kalman filters (SPKF)
16–18, 255

sigmoid (logistic) activation functions
25, 27

signal detection, basics 3–4
signal modulation, principles 2–4
signal processing 181–199

algorithm unrolling 182–186
architectures 188–190
DBSCAN 11–12, 22, 191–196
deep-learning aided 190–197
discrete Fourier transform 6–8
discrete time Fourier transform 7
fast-Fourier transformation 8
frequency-domain analysis 6–9
interference 8
iterative shrinkage-thresholding

algorithm 183–186
moving target indicator processing 8
(OS)-CFAR 191–196
physics-inspired 186–188
pipeline 4–6
principles 4–9
short-time Fourier transformation

6, 9
sparse coding fast approximation

183–185
wavelets 9
windowing 8–9

sinc filters
2D 93–94, 96
adaptive 96

slow-time 2
softmax activation functions 26, 36

ArcFace 58
center-loss 61
CosFace 58
cosine similarity 56–61
D-Softmax 59–60
domain adaptation 214–218
Euclidean loss 65–66
SphereFace 57

Softmax center-loss 61
sound prediction, from images 154
sparse coding, fast approximation

183–185
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spatial temporal graph neural networks
(STGNNs) 269

speech generation 151
speed up robust features (SURFs) 24
SphereFace 57
SPKF see sigma-point Kalman filters
statistical distance, deep metric learning

68–71
statistical triplets, deep metric learning

70–71, 79–81
STFT see short-time Fourier

transformation
STGNNs see spatial temporal graph

neural networks
stochastic gradient descent (SGD)

algorithm 40
strides, convolutional neural networks

25
structure-aware neural networks 93

2D Morlet wavelets 94–95
2D sinc filters 93–94, 96
activity classification 101–111
adaptive 2D sinc filters 96
complex frequency extraction layer

92, 96–99
multilevel wavelet decomposition

networks 99–101
structured metric learning 71–72
subjective priors 231
subsample layers, convolutional neural

networks 26–27
sum pooling 27
supervised domain adaptation 203
support vector machines (SVM) 24
SURFs see speed up robust features
SVM see support vector machines

t
target detection 10–12

2D sinc filters 93–94, 96
2D Morlet wavelets 94–95
adaptive 2D sinc filters 96
anchor-free 280–294
complex frequency extraction layers

92, 96–99
graph neural networks 280–294

multilevel wavelet decomposition
networks 99–101

target networks 117
target recognition 23–37

autoencoders 30–32
convolutional neural networks

24–27
deep learning 24–37
feature descriptors 24
feedforward networks 24, 27
general adversarial networks 32–35
hand-crafted features 23–24
recurrent neural networks 27–30
transformer 35–37
variational autoencoders 30–32

target representation 18–23
target segmentation 191–197
target tracking 13–18

deep reinforcement learning
115–150, 125–146

filtering 14–18
management 13–14
parameter optimization 125–146

targets
clustering 10–12
deletion 14
detection pipeline 4–6
distance finding 3
filtering 14–18
initiation 13–14
maintenance 14
point clouds 11–12
recognition 23–37
representation 18–23
segmentation 11
tracking 13–18

taxonomies, reinforcement learning
118–122

text-to-speech (TTS) 151
time-frequency uncertainty principle

90–91
TL see transfer learning
Toeplitz structures 186
track deletion 14
track filtering 14–18
track initiation 13–14
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track maintenance 14
track management 13–14
tracking 13–18

2D sinc filters 93–94, 96
2D Morlet wavelets 94–95
adaptive 2D sinc filters 96
complex frequency extraction layers

92, 96–99
deep reinforcement learning

115–150, 125–146
filtering 14–18
management 13–14
multilevel wavelet decomposition

networks 99–101
parameter optimization 125–146

training
backpropagation 37–40
Bayesian deep learning 227–228
cross-modal learning 163–165
domain adaptation 201–222
forward pass 37
general adversarial networks 33–35
gesture sensing 82
joint embeddings learning 159
keypoint detection 163–165
learning rates 38
loss functions 42
multimodal input learning 162
neural networks 33–35, 37–42
optimizers 40–42
overfitting 38–41
self-supervised multimodal learning

155
tracking parameter optimization

134–137, 138–140
transfer learning 201–203
underfitting 38–41
variance 39–40
visual question answering 162
weight initialization 38

transductive transfer learning 203
transfer learning (TL) 201–203

see also domain adaptation
transformation-aware neural networks

93
2D Morlet wavelets 94–95

2D sinc filters 93–94, 96
activity classification 101–111
adaptive 2D sinc filters 96
complex frequency extraction layer

92, 96–99
multilevel wavelet decomposition

networks 99–101
transformer architecture 35–37
triplet loss functions 53, 70–71, 79
triplet variational auto-encoders (TVAE)

79–81, 250–251
TRPO see trust region policy

optimization
trust region policy optimization (TRPO)

124
TTS see text-to-speech
TVAE see triplet variational

auto-encoders

u
UKF see unscented Kalman filter
underfitting 38–41
unscented Kalman filter (UKF) 16–18,

129–132, 252–253, 254
unsupervised domain adaptation 203
unsupervised learning

autoencoders 30–31
general adversarial networks 32–35
variational autoencoders 31–32

unsupervised transfer learning 203

v
VAE see variational autoencoders
value-based reinforcement learning

120–121
vanishing gradients, recurrent neural

networks 28
variance 39–40, 135–136, 263–267
variance-aware rewards 140–145
variational autoencoders (VAE) 30–32

Bayesian deep learning 248–252
deep metric learning 70–71, 78–79
gesture sensing 78–79

variational Bayesian Gaussian mixture
(VBGM) model 286–288

variational inference (VI) 239–244
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VBGM see variational Bayesian Gaussian
mixture model

video-text retrieval 156–159
videos, range-Doppler images 22
visual question answering (VQA)

151–152, 159–163
VQA, see also visual question answering
VRU see vulnerable road users
vulnerable road users (VRU)

classification 244–259

w
Wasserstein general adversarial

networks (WGANs) 35

wavelet transform 9
2D Morlet 94–95
multilevel decomposition networks

99–101
WCN see 2D WaveConvNet
weight initialization 38
WGANs see Wasserstein general

adversarial networks
windowing 8–9

y
you-only look once (YOLO) 22,

290–291
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