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Preface 

The merging of computer systems and physical–mechanical systems led to the 
creation of cyber-physical systems (CPSs). A cyber-physical system combines soft-
ware systems, sensors, and actuators connected over computer networks. Through 
these sensors, data about the physical world can be captured for processing. The 
software system processes the captured data from the sensors and makes decisions. 
The decisions are sent as signals to trigger the actuators to perform specific actions 
that affect the state of the physical world. Today examples of cyber-physical systems 
are everywhere, from autonomous vehicles to wearable devices. 

The fact that CPS directly impacts the physical world made the security, privacy, 
and trust of cyber-physical systems a significant concern. The complexity and the 
scale of CPS introduced various security, privacy, and trust challenges that traditional 
security engineering practices cannot handle. 

The application of artificial intelligence (AI) for cyber-physical systems hard-
ening encompasses various techniques, methodologies, and best practices to mitigate 
vulnerabilities and security risks in CPS by eliminating potential security threats and 
reducing the systems’ attack surface. The book focuses on the applications of arti-
ficial intelligence in hardening CPS against conventional and unconventional attack 
vectors. It covers diverse methods and techniques for hardening software, hardware, 
firmware, infrastructure, and communication channels in CPS. Many researchers and 
professionals from academia and industry have contributed theoretical and applied 
studies and real-world case studies to this book. 

This book consists of ten chapters organized as follows. 
The first chapter is an “Introduction” to cyber-physical systems by the editors. It 

defines cyber-physical systems, gives an overview of their underlying characteristics 
and design goals, and discusses barriers to developing intelligent hardening systems. 

In the second chapter entitled “Machine Learning Construction: Implications 
to Cybersecurity”, by Waleed A. Yousef, the author focuses on the importance of 
machine learning (ML) in the field of cyber-physical security, in the sense that ML 
can enable the design of detection algorithms that have the capability of learning from 
security data to hunt several kinds of threats, achieve better monitoring, master the

vii
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complexity of the threat intelligence feeds, and achieve timely remediation of secu-
rity incidents. The field of ML can be decomposed into two basic subfields, namely 
construction and assessment. In the one hand, construction refers to designing or 
inventing an appropriate algorithm that learns from the input data and achieves a 
good performance according to some optimality criterion. On the other hand, the 
assessment part consists in attributing some performance measures to the constructed 
ML algorithm, along with their estimators, to objectively evaluate the algorithm. This 
chapter focuses on the basics of the construction part, emphasizing the associated 
mathematical foundations and underlying concepts. The author first reviews some 
of the regression and classification methods used for predicting a quantitative or 
categorical response variable, respectively. Then, the basic concepts related to the 
performance of these methods are presented. 

In the third chapter entitled “Machine Learning Assessment: Implications 
to Cybersecurity”, by Waleed A. Yousef, the author focuses on assessment and 
performance estimation of ML algorithms, in the context of cybersecurity and cyber-
physical security design. In this chapter, a comprehensive review of nonparametric 
methods to estimate a statistic from just one available dataset through resampling 
techniques, along with the literature to establish a coherent theoretical framework for 
these methods, which can be used to estimate the error rate (a one-sample statistic) 
and the area under the ROC curve (AUC) (a two-sample statistic), is presented. 

In the fourth chapter entitled “A Collection of Datasets for Intrusion Detection 
in MIL-STD-1553 Platforms”, by Hadeer Saad, Issa Traore, Paulo Quinan, Karim 
Ganame, and Oussama Boudar, the authors focus on the security concerns of the MIL-
STD-1553, a military standard communication protocol for the operation of a wide 
range of defense platforms. From a cybersecurity perspective, the inherent vulner-
abilities in MIL-STD-1553 data buses represent prime conduits for compromising 
defense platforms that rely on them for communications. This chapter explores a 
range of cyber-attacks against MIL-STD-1553 data buses and presents a collection 
of datasets that were generated by executing selected attack scenarios in a testbed 
environment. These datasets can be used toward designing and evaluating intrusion 
detection systems for MIL-STD-153 avionic platforms. The authors first review the 
key concepts and requirements that underlie the normal operation of the mil-std-
1553 standard, which has led to a foundation to define a baseline model for the 
normal operation and behavior of MIL-STD-1553 systems. Next, different poten-
tial attack vectors against MIL-STD-1553 are discussed, along with the different 
attack scenarios that can be used for evaluating an MIL-STD-1553 IDS. Finally, the 
simulation environment, procedures, and scenarios used to generate the datasets, are 
described. This dataset is available at the Information Security and Object Tech-
nology (ISOT) Lab, University of Victoria, BC, https://www.uvic.ca/ecs/ece/isot/dat 
asets/index.php. 

In the fifth chapter entitled “Unsupervised Anomaly Detection for MIL-1553 
Avionic Platform Using Cusum”, by Krunal Sachdev, Hadeer S. Ahmed, Issa Traore, 
Karim Ganame, and Oussama Boudar, the authors continue the investigation started 
in the fourth chapter of MIL-STD-1553, a military standard developed by the US 
department of defense for communication among the military avionic platforms.

https://www.uvic.ca/ecs/ece/isot/datasets/index.php
https://www.uvic.ca/ecs/ece/isot/datasets/index.php
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They propose an unsupervised anomaly detection scheme using the CUSUM algo-
rithm for the MIL-STD-1553 protocol. Then, from the dataset constructed in the 
fourth chapter, a set of relevant ML features were extracted based on leveraging the 
time-based properties of the communication bus. These features were then fed to 
the CUSUM algorithm for detection purpose. The experimental evaluation of the 
proposed detector using that dataset showed promising results. 

In the sixth chapter entitled “Secure Design of Cyber-Physical Systems 
at the Radio Frequency Level: Machine and Deep Learning-Driven Approaches, 
Challenges, and Opportunities”, by Ceren Comert, Omer Melih Gul, Michel 
Kulhandjian, Azzedine Touazi, Cliff Ellement, Burak Kantarci, and Claude 
D’Amours, the authors focus on the issue of deploying new 5G services on many of 
the critical infrastructures such as connected vehicles, remote health care and smart 
infrastructures on radio frequency (RF)-based networks, and the ability to protect 
these new wireless networks and the radio spectrum. They put forward the use of 
artificial intelligence (AI)-based transmitter fingerprinting as an efficient solution to 
identify and track the unintended interference sources or malicious actors. As new 
automobiles are expected to be equipped with vehicle to infrastructure (V2I), vehicle 
to vehicle (V2V), and other telecommunications capabilities, the AI-based technique 
and other new automated ones are needed to protect connected and autonomous vehi-
cles (CAVs) on the road from unintentional or malicious interference. This chapter 
presents the state of the art in real-time decision support systems for the cyber-
physical systems that build on critical infrastructures such as CAVs, through radio 
fingerprinting solutions. The authors first present the legacy approaches used to 
detect, classify, and identify a transmitter. Next, machine and deep learning-based 
(ML/DL) approaches for transmitter identification using RF fingerprinting tech-
niques are discussed. Finally, a comparative study on the open issues, challenges, and 
opportunities toward ML/DL-driven security of the critical cyber-physical systems 
through RF fingerprinting is presented. 

In the seventh chapter entitled “Attack Detection by Using Deep Learning 
for Cyber-Physical System”, by Saeid Jamshidi, Amin Nikanjam, Mohammad Adnan 
Hamdaqa, Foutse Khomh, the authors address the issue of detecting cyber-attacks 
on cyber-physical system (CPS), stressing on the need to have the CPS security 
measures implemented. This chapter discusses the various deep learning (DL) and 
reinforcement learning (RL) models to address the detection of cyber-attacks in CPS. 
Challenges to attack detection in CPS are discussed, along with common datasets 
used for DL in CPSs. The authors first present an overview of DL in CPSs. Next, RL 
and DRL techniques that have been successfully utilized in the field of cybersecu-
rity/CPSs are presented, and then the challenges to attack detection in CPSs and some 
robust attacks detection schemes that are available in the literature are discussed. 

In the eighth chapter entitled “Security and Privacy of IoT Devices for Aging 
in Place”, by Noel Khaemba, Issa Traoré, and Mohammad Mamun, the authors 
investigate the issue of rising cost of elderly living and care facilities, and report 
on the need for smart home solutions involving the use of emerging technologies 
centered around smart IoT devices from a security standpoint. More precisely, to 
ensure security and privacy for a smart home for aging in place, different aspects
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of the IoT devices must be considered. This chapter seeks to provide a categorical 
review and analysis of agetech IoT device technologies. The underlying security and 
privacy challenges and available solutions are discussed in-depth. Indeed, starting 
with a discussion on the major categories of devices used for aging in place (AIP) and 
the corresponding use cases, the common threats and vulnerabilities faced by AIP 
technologies and threats common to the broad IoT user population are discussed. 
Finally, the relevance of using artificial intelligence to tackle agetech security is 
discussed and the relevant datasets and approaches are described. 

In the ninth chapter entitled “Detecting Malicious Attacks Using Principal 
Component Analysis in Medical Cyber-Physical Systems”, by Wei Lu, the author 
raises attention to the surge of cybercriminal activities targeting the medical cyber-
physical systems from a security and privacy perspectives. Existing security solu-
tions in this domain are mainly prevention-based and are highly insufficient due to 
the power consumption and costly resources when implementing computationally 
expensive solutions. This chapter proposes an anomaly detection system based on the 
principal component analysis to assure the security of networked medical devices. 
The proposed approach is evaluated by considering a publicly available dataset 
collected in a real-time medical cyber-physical system testbed network, showing 
promising results in terms of detection of malicious attacks with a high detection 
rate and an acceptable low false alarm rate. The authors first present the concept of 
intrusion detection systems, followed by the proposed principal component analysis 
(PCA)-based anomaly detection scheme, and ending with its performance evaluation 
study. 

In the tenth chapter entitled “Activity and Event Network Graph and Applica-
tion to Cyber-Physical Security”, by Paulo Gustavo Quinan, Issa Traore, and Isaac 
Woungang, the authors introduce the activity and event network (AEN) as a new large 
graph model that enables describing and analyzing continuously in real-time the key 
security-relevant information about the operations of networked systems and data 
centers. This model allows identifying long-term and stealthy attack patterns, which 
may be difficult to capture using traditional approaches. The focus of the chapter is on 
defining the model elements and the underlying graph construction algorithms. The 
author first defines the theoretical foundation of the AEN graph model, then presents 
the data sources used to construct the graph. Next, the AEN graph model elements 
are defined by presenting the node and edge types that are involved. Following 
these concepts, the AEN underlying probability model framework architectures are 
presented. Finally, an illustrative case study based on an existing cyber-physical 
security dataset is described in-depth. 

The guest editors of this book wish to thank the contributing authors for their 
interesting contributions, as well as for their timely collaboration in the preparation 
of their chapters. We also would like to appreciate the anonymous reviewers for their 
careful reviews of the contributed chapters, and their useful suggestions and feedback
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Introduction 

Issa Traore, Isaac Woungang, and Sherif Saad 

Abstract Cyber-physical systems (CPS) arise from the merging of computer 
systems and physical–mechanical systems. Although they build on existing proven 
technologies (e.g., control systems, wireless sensor networks, cyber systems) as a 
whole, they represent an emerging technology that is poised to have disruptive and 
consequential impact in the next few years. This chapter provides a general overview 
of CPS and discuss the underlying challenges and opportunities. 

Keywords Artificial intelligence · Cyber-physical systems · Vulnerabilities ·
Security risks · Conventional attack vectors · Unconventional attack vectors ·
Hardware · Firmware · Infrastructure · Communication channels 

1 Context and Definition 

Cyber-physical systems bridge the gap between physical and virtual components. It 
is a growing technology which merges computational and physical components and 
span many industries. Many of these industries play a central role in mission-critical 
and life-critical sectors such as smart grids, nuclear power plants, smart manufac-
turing, automated transportation and vehicles, robotic surgery, personalized health-
care, smart building, smart agriculture, and supply chain automation and control, to 
name a few. 

While physical systems have been around for a very long time, automating tasks 
and processes to achieve autonomy in the systems has lagged [1]. However, recent
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advances in wireless sensor network (WSN), cloud computing, machine learning and 
deep learning, are enabling efficient and effective integration of sensing, processing, 
and networking, to deliver automation of CPS processes across many industries. 

As an emerging technology, CPS brings new opportunities, but also faces many 
challenges [2]. Challenges include, among others, mastering the heterogeneity and 
complexity of the components involved, addressing integrability and interoper-
ability requirements, addressing the need for real-time data processing and fast data 
communication, ensuring safety, and data and communication security. 

2 Characteristics and Design Goals 

Major components of typical CPS include sensors, actuators, and computation 
modules, interconnected through network artifacts. To achieve the goal of CPS, 
the integration of the components combines feedback control, fast data transfer and 
processing, and intelligent computation. 

According to Lozano and Vijayan [1], the required characteristics of a CPS include 
autonomy, stability, robustness, efficiency, scalability, safety, reliability, accuracy, 
and connectivity. A key characteristic that is missing from this list and should be 
added is security. 

One of the most prominent among these characteristics is autonomy, which refers 
to the decision-making ability of a CPS. While autonomy can be implemented in 
many ways, using artificial intelligence (AI) and machine learning (ML) techniques 
provide an edge in achieving such goal. However, the imperfections inherent in AI and 
ML techniques pose some challenges in achieving characteristics such as stability, 
reliability, and accuracy. When leveraging AI/ML techniques to achieve autonomy, 
trade-offs must be done to deliver the most accurate, reliable, and stable system. 

3 Security and Hardening 

As CPS integrates the physical world and cyberspace, Jamal et al. [3] advocates 
the need for an integrated approach in hardening CPS, where security concerns are 
addressed in both physical components (e.g., embedded controllers) and cyberspace 
components (e.g., digital systems) conjointly rather than separately as it has been the 
case traditionally for many systems. The hybrid automation architecture proposed by 
Tantawy et al. [4] is an example of such integrated approach. The proposed approach 
relies on a tree-based model that uses the same data for both process automation and 
attack identification. 

While many traditional cyberspace attacks are still largely applicable to CPS 
(e.g., denial of service (DOS), man-in-the-middle (MITM), replay attacks, deception 
attacks), several new attacks specific to physical aspects of CPS have emerged such 
as time synchronization attacks, jamming attacks, sophisticated data poisoning and
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injection attacks (e.g., on compressive sensing), primary user (PU) emulation attacks, 
device cloning and SIM swapping attacks, to name a few. 

Such threats originate both from external adversaries seeking to exploit vulnera-
bilities in cyberspace systems and physical processes as well insiders leveraging their 
inside knowledge and privileges to achieve the same goals. In this context, in addi-
tion to adopting an integrated design approach, hardening strategies must identify 
the interdependencies between cyber and physical components and the interactions 
between cyber-attackers and system operators [5]. This would provide the founda-
tion for robust and sound security risk identification, mitigation, and monitoring for 
CPS [6]. 

4 Intelligence 

The last two decades have witnessed a tremendous progress in AI, ML, and deep 
learning techniques, with the appearance of new algorithms and techniques to address 
the challenges that hamper accuracy and precision (e.g., noisy data, missing data, 
concept drift), processing speed and data storage, and data privacy, trust, and security. 
New techniques and architectures have appeared (e.g., federated learning, distributed 
ML, meta learning, distributed control systems and networked control systems) that 
help assuage these concerns [7]. 

Considering that many security systems deal with imperfect data and are them-
selves inherently pattern recognition systems, there is also a rich tradition of using 
AI and ML techniques to design such systems. 

Not surprisingly, the hardening of CPS is leveraging the knowledge and back-
ground accumulated through the years in advancing AI and ML and developing 
intelligent cybersecurity systems which have mastered how to handle many threats 
common to both traditional cyber systems and emerging CPS. However, despite the 
overlaps in attack vectors between CPS and cyber systems, CPS have unique char-
acteristics that should be leveraged in building intelligent hardening systems. For 
instance, there is still a strong tendency in many existing CPS to depend heavily 
or solely on traditional cyberspace datasets such as network traffic. For instance, 
most existing IoT security datasets cover only attack data based on network traffic 
and involve only traditional attack vectors. On the other hand, most CPS datasets 
(such as smart home datasets) cover only legitimate/normal occurrences or opera-
tions, without any actual attack traces, which make the design of intelligent hardening 
systems dependent on only synthetically generated attack samples. The challenges in 
generating intrinsic CPS operational and environmental attack samples are a tremen-
dous barrier toward developing hybrid automation systems that take advantage of 
the intrinsic process automation data for intelligent system hardening. 

Cyberphysical systems are inherently multidisciplinary. Building intelligent hard-
ened CPS also involves multiple disciplines such as control theory and engineering, 
communication engineering and networking, cybersecurity, artificial and machine 
intelligence, system engineering, etc. Finding a single individual with expertise in all
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these disciplines is almost impossible or very rare. Therefore, multidisciplinary teams 
with expertise in the different areas involved are likelier to achieve better success in 
the design and development of such systems. Specifically, to avoid mistakes made 
previously in the design of intelligent security systems such as ML/AI-based intru-
sion detection systems (IDSs) [8, 9], it is important to ensure that the right expertise 
is available when designing intelligent hardened CPS. For instance, this requires 
strong expertise in security threat and vulnerabilities identification modelling, and a 
deep understanding of machine learning construction and assessment fundamentals 
and techniques and its implication for system security. 

5 Summary 

Like any emerging technology, CPS are full of opportunities, but also faces great 
challenges. These challenges must be addressed for CPS to fully achieve its promises. 
Some of these challenges arise from the security, privacy and trust issues created by 
the interconnection between the physical components and structures which used to 
be deployed and operate in isolation in closed loop, with the cyberspace, which 
inherently is open. 

The remaining chapters in this book discuss some of the challenges involved in 
hardening CPS using intelligent models and present some solutions toward achieving 
such goal. Specifically,

• Chapters 2 and 3 explore machine learning model construction and assessment 
and the implications for cybersecurity, which is a core aspect of cyberphysical 
system security.

• Data is the bloodline of machine and deep learning. Chapter 4 tackles the need 
for adequate datasets in building hardened CPS, by presenting a collection of IDS 
datasets for the MIL-STD-1153 protocol, which is a core protocol underlying data 
buses interconnecting avionics systems in military aircraft.

• Chapters 6 and 7 discuss the use of machine and deep learning for secure design 
of CPS at the radio frequency level and for attack detection in these systems.

• CPS involve different applications such as smart healthcare, smart manufacturing, 
and smart cities [2]. Chapters 5, 8, and 9 present concrete intelligent hardening 
models for CPS in different application areas, including ageing in place in smart 
homes, avionics data buses, and networked medical devices.

• Chapter 10 presents a new graph-based framework to model and detect long-term 
threats, along with a case study based on an existing IoT security dataset. 

Although these chapters cover only a few aspects of intelligent CPS hardening, 
they help advance and improve our understanding of the challenges and opportunities 
involved in developing and maintaining secure CPS architectures.
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Machine Learning Construction: 
Implications to Cybersecurity 

Waleed A. Yousef 

Abstract Statistical learning is the process of estimating an unknown probabilistic 
input-output relationship of a system using a limited number of observations. A sta-
tistical learning machine (SLM) is the algorithm, function, model, or rule, that learns 
such a process; and machine learning (ML) is the conventional name of this field. ML 
and its applications are ubiquitous in the modern world. Systems such as Automatic 
target recognition (ATR) in military applications, computer aided diagnosis (CAD) 
in medical imaging, DNA microarrays in genomics, optical character recognition 
(OCR), speech recognition (SR), spam email filtering, stock market prediction, etc., 
are few examples and applications for ML; diverse fields but one theory. In particular, 
ML has gained a lot of attention in the field of cyberphysical security, especially in the 
last decade. It is of great importance to this field to design detection algorithms that 
have the capability of learning from security data to be able to hunt threats, achieve 
better monitoring, master the complexity of the threat intelligence feeds, and achieve 
timely remediation of security incidents. The field of ML can be decomposed into 
two basic subfields: construction and assessment. We mean by construction design-
ing or inventing an appropriate algorithm that learns from the input data and achieves 
a good performance according to some optimality criterion. We mean by assessment 
attributing some performance measures to the constructed ML algorithm, along with 
their estimators, to objectively assess this algorithm. Construction and assessment of 
a ML algorithm require familiarity with different other fields: probability, statistics, 
matrix theory, optimization, algorithms, and programming, among others. To help 
practitioners, specially those of cyberphysical security, to understand the theoreti-
cal foundations of ML, before they delve into whole books, we compile the very 
basics of the first of these two subfields (construction) in this chapter. In addition 
to explaining the mathematical foundations of the field, we emphasize the intuitive 
explanation and concepts. 
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1 Introduction 

1.1 Motivation 

Consider a sample consisting of a number of cases (observations), where each case 
is composed of a set of inputs and the corresponding output, all of which will be 
given to a learning algorithm. Such a sample provides the means for the algorithm 
to learn during its so-called training (or learning) stage. The goal of this training 
or learning stage is to understand as much as possible how the output is related to 
the inputs in these observations, so that when a new set of inputs is given, in the 
future, the algorithm will have some means of predicting the corresponding output. 
The above terminology has been borrowed from the field of ML. However, the roots 
of this problem exists originally in the field of statistical decision theory, where 
the terminology is somewhat different. In the latter field, the inputs are called the 
predictors and the output is called the response. When the output is quantitative the 
learning algorithm is called regression; when the output is categorical or ordered 
categorical the learning algorithm is called classification. In other communities, the 
terms input features and output class are used, respectively. The learning process can 
be defined as follows. 

Definition 1 Learning is the process of estimating an unknown input-output depen-
dency or structure of a system using a limited number of observations [10]. ◻ 

Statistical learning is crucial to many applications. For example, In cyberphysical 
security, a network activity must be classified as normal or malicious to avoid any 
potential threat [30]. This is an example of prediction, regardless of whether it is 
done by a network analyst or by a ML algorithm. In either case, the prediction is 
done based on learning from previous network traffics. The features, i.e., predictors, 
in this case may be the activity’s IP address, number of scanned ports, duration of 
connection, etc. The output in this case, i.e., response, is categorical and belongs to 
the set: G = {normal, malicious}. There are so many such examples, including 
email filtering and spam detection, fraud detection in financial transactions, etc. All 
of these examples involve a prediction step based on previous learning. 

This chapter reviews some of the regression and classification methods used for 
predicting a quantitative or categorical response variable, respectively. In addition, 
the chapter explains basic concepts related to the performance of these methods. The 
purpose is not to present a survey as much as to introduce the field in an approach that 
combines both mathematics and intuition, and to explain how the different ingredients 
relate to each other. We hope this chapter helps practitioners realize the importance
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of being equipped with the minimum amount of theory before diving deeply into 
practice. 

1.2 Notation 

Some basic concepts and terminology, necessary for the sequel, must be formally 
introduced. The world of variables can be categorized into two categories: determin-
istic variables and random variables. A deterministic variable takes a definite value; 
the same value will be the outcome if the experiment that yielded this value is rerun. 
On contrary, a random variable is a variable that takes a non-definite value with a 
probability value. 

Definition 2 A random variable X is a function from a sample space S into the real 
numbers R, that associates a real number, x = X (s), with each possible outcome 
s ∈ S. ◻ 

Details on the topic can be found in [9, Chap. 1]. For more rigorous treatment of 
random variables based on measure theoretic approach see [4]. Variables can be 
categorized as well, based on value, into: quantitative (or metric), qualitative (or 
categorical), and ordered categorical. A quantitative variable takes a value on R, 
and it can be discrete or continuous. A categorical variable does not necessarily 
take a numerical value; rather it takes a value from a finite set. E.g., the set G = 
{red, green, blue} is a set of possible qualitative values that can be assigned to a 
color. An ordered categorical variable is a categorical variable with relative algebraic 
relations among the values. E.g., the set G = {small, medium, large} includes 
ordered categorical values. 

Variables in a particular process are related to each other in a certain manner. 
When variables are random the process is said to be stochastic, i.e., when the inputs 
of this process have some specified values there is no deterministic value for the 
output, rather a probabilistic one. The output in this case is a random variable. 

Before delving into mathematical details, it is convenient to introduce some com-
monly used notation. A random variable—or a random vector—is referred to by 
an upper-case letter, e.g., X . An instance, case, or observation, of that variable is 
referred to by a lower-case letter, e.g., x . A collection of n observations for the p-
dimensional random vector X is collected into an n × p matrix and represented by 
a bold upper-case X. A lower-case bold letter x is reserved for describing a vector of 
any n-observations of a variable, even a tuple consisting of non-homogeneous types. 
The main notation in the sequel will be as follows: tr : {ti = (xi , yi ) , i = 1, . . . ,  n} 
represents an n-case training dataset, i.e., one on which the learning mechanism will 
execute to train, or learn. Every observation ti of this set represents a tuple of the 
predictors xi represented in a p-dimensional vector, and the corresponding response 
variable yi . All the n observations xi ’s may be written in a single n × p matrix 
X, while all the observations yi may be written in a vector y. Some terminologies
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Fig. 1 Conditional 
expectation of a r.v. Y , 
conditional on a r.v. X , is the  
best regression function 
under the squared-error loss 

may arise from diverse scientific communities. To avoid confusion, the word algo-
rithm can be used exchangeably with function, model, or rule. Using the dataset 
tr for learning, training, or fitting, means replacing, or estimating, the algorithm’s 
unknown parameters with appropriate values, as will be explained throughout the 
chapter. Therefore, at the end of this learning process, the final algorithm, function, 
model, or rule, is called learned, trained, or fitted. 

1.3 Roadmap 

The remainder of this chapter is structured as follows. Section 2 introduces the statis-
tical decision theory, which constitutes the foundation of ML. The chapter explains 
how the ideal (the best performing) ML algorithm can be constructed, either for 
regression or classification, if we know the probability distribution of the data. 
Section 3 introduces some important parametric models for both regression and 
classification, and how they are constructed. Section 4 introduces the nonparametric 
and smoothing models, and explains the connection to neural network. These three 
sections will follow [20], an excellent comprehensive source for regression and clas-
sification methods with practical approaches and illustrative examples. Section 5 
introduces mathematical optimization and how it is strongly connected to the con-
struction of ML algorithms. This section will follow [8]. Section 6 discusses, in more 
detail, the performance of classification rules. It provides the link between the present 
and the next chapter. Section 7 concludes the chapter and provides a general advice 
for practitioners.
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2 Statistical Decision Theory 

This section provides an introduction to statistical decision theory, which serves as 
the foundation of ML. If a random vector X and a random variable Y have a joint 
probability density function (PDF) fX,Y (x, y) the problem is defined as follows: 
how to predict the variable Y from an observed value for the variable X . In this  
section we assume having a full knowledge of the joint density fX,Y ; therefore, there 
is no learning yet (Definition 1). The prediction function η(X ) is required to have 
minimum average prediction error. The prediction error should be defined in terms 
of some loss function L(Y, η(X )) that penalizes for any deviation in the predicted 
value of the response from the correct value. Define the predicted value by: 

Ŷ = η(X ). (1) 

The risk of this prediction function is defined by the average loss, according to the 
defined loss function: 

R(η) = E L(Y, Ŷ ). (2) 

2.1 Regression 

Suppose that the response Y is a quantitative variable. This is the starting point of the 
statistical branch of regression, where (1) is the regression function. A form should 
be assumed for the loss function. A mathematically convenient and widely used form 
is the squared-error loss function: 

L (Y, η  (X )) = (Y − η (X))2 . (3) 

In this case (2) becomes: 

R(η) = 
{ 

(Y − η(X)) 2 dFX,Y (X, Y ) (4a) 

= EX EY |X 
[
(Y − η(X )) 2|X] 

. (4b) 

Hence, (4b) is minimized by minimizing the inner expectation over every possible 
value for the variable X ; and the best regression function is then given by:
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η∗(X) = arg min 
η(X ) 

[
EY |X 

[
(Y − η(X )) 2|X]]

(5a) 

= EY [Y |X ] (5b) 

This means that if the joint distribution for the response and predictor is known 
the best regression function, in the sense of minimizing the risk, is the expectation of 
the response conditional on the predictor (Fig. 1). In that case the risk of regression 
in (4b) will be: 

Rmin(η) = R(η∗) = EX Var [Y |X ] . (6) 

2.2 Classification 

Recalling (2), and supposing that the response is a qualitative (or categorical) vari-
able, give rise to the classification problem. Now the loss function cannot be the 
squared-error loss function defined in (3), because this has no meaning for categor-
ical variables. Because Y may take now a qualitative value from a set of size K 
(Sect. 1), the loss function can be defined by the matrix 

L(Y, η  (X)) = 
((
ci j  

)) 
, 1 < i, j < K , (7) 

where the non-negative element ci j  is the cost, the penalty, or the price, paid for 
classifying an observation as y j when it belongs to yi . Under this assumption, the 
risk defined by (2) can be rewritten for the categorical variables to be: 

R(η) = EX EY |X L (Y, η  (X )) (8a) 

= EX 

KΣ   
i=1 

ci j  Pr [Y = yi |X ] , (8b) 

where Pr [Y |X ] is the probability mass function for Y conditional on X . Then, the 
conditional risk for the decision y j , 

R( j, η)  = 
KΣ   
i=1 

ci j  Pr [Y = yi |X ] , (9) 

is the expected loss when classifying an observation as belonging to y j , where the 
expectation is taken over all the possible values of the response. Again, (8b) can be 
minimized by minimizing the inner expectation to give: 

η∗(X) = arg min 
j 

[ 
KΣ   
i=1 

ci j  Pr [Y = yi |X ] 
] 

. (10)
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Expressing the conditional probability of the response in terms of Bayes law, and 
substituting in (10) gives:  

η∗(X) = arg min 
j 

[ 
KΣ   
i=1 

ci j  fX (X |Y = yi ) Pr [yi ] 

] 

. (11) 

The probability Pr [yi ] is the prior probability for yi , while Pr [yi |X ] is the posterior 
probability, i.e., the probability that the observed case belongs to yi , given the value 
of X . This is what is called Bayes classification, Bayes decision rule, or alternatively, 
the Bayes classifier. 

Some special cases here may be of interest. The first case is when equal costs are 
assigned to all misclassifications and there is no cost for correct classification, i.e., 
c11 = c22 = 0 and c12 = c21 = 1, which is called the 0–1 cost, or loss function. This 
reduces (10) to:  

η∗(X ) = arg min 
j 

[
1 − Pr[Y = y j |X ]] (12a) 

= arg max 
j 

[
Pr[Y = y j |X ]] . (12b) 

The rule thus is to classify the observed case to the class having maximum posterior 
probability, which is very intuitive. 

Another special case of great interest is binary classification, i.e., the case of 
K = 2. In this case (10) reduces to: 

Pr [y1|X ] 
Pr [y2|X ] 

y1 
≷ 
y2 

(c22 − c21) 
(c11 − c12) 

. (13) 

Alternatively, this can be expressed as: 

fX (X = x |y1) 
fX (X = x |y2) 

y1 
≷ 
y2 

Pr [y2] (c22 − c21) 
Pr [y1] (c11 − c12) 

. (14) 

The decision taken in (10) has the minimum risk, which can be calculated by sub-
stituting back in (8b) to give:  

Rmin(η) = 
KΣ   
i=1 

{ 

X 

ci j  Pr [yi ] dFX (X |yi ), (15) 

where j = η(X), which is the class decision prediction. 
For the case where K = 2 and cii  = 0, i = 1, 2, Eq.  (15) reduces further to:
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Rmin(η) = c12 Pr [y1] 
{ 

R2 

dFX (X |y1) + c21 Pr [y2] 
{ 

R1 

dFX (X |y2), (16) 

where each of R1 and R2 is the predictor hyperspace over which the optimum decision 
(13) predicts as class 1 or class 2, respectively. Later, the response variable Y may 
be referred to Ω in case of classification; and to follow the notation of Sect. 1, the  
response of an observation is assigned a value ωi , i = 1, . . . ,  K , to express a certain 
class. 

Example 1 Figure 2 illustrates an example of a binary classification problem, where 
each class has a two dimensional predictor, with a binormal distribution, with two 
different mean vectors μ1, μ2, and two different covariance matrices Σ1, Σ2. The  
best decision surface appears as the intersection of the two PDFs (left). The observa-
tions sampled from these two classes, along with this best decision surface, are drawn 
in the 2D space of the predictors (right). It is interesting, and may be counter-intuitive 
for some practitioners, to know that although the two distributions are normally dis-
tributed, the likelihood ratio (14) is not necessarily normally distributed [28]. For 
an early development of the theory of binary classification under the multinormal 
assumption of the class distribution, [17] is an indispensable resource. ◻ 

2.3 Where Is Learning? 

To recap, this section emphasized the fact that there is no distinction between regres-
sion and classification from the conceptual point of view. Each minimizes the risk of 
predicting the response variable for an observation, i.e., a sample case with known 
predictor(s). If the joint PDF for the response and predictors is known, it is just a 
matter of direct substitution in the above results, which produces the best regression 
or classification function that minimizes the risk. If the joint distribution is known 
but its parameters are not known, e.g., multinormal distribution with unknown mean 
vector and covariance matrix, a learning process in this case is nothing but estimating 
those parameters from the dataset tr by well known methods of statistical inference. 
However, if the joint distribution is unknown, this gives rise to two different branches 
of prediction: (1) parametric regression (or classification), where the regression or 
classification function is modeled and a training sample is used to build that model, 
(2) and nonparametric regression (or classification), where no particular parametric 
model is assumed. Subsequent sections in this chapter briefly review some of these 
techniques, and explain the interesting connections among them.
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Fig. 2 The best decision surface of a binary classification problem with binormal features: the 
two PDFs, with their intersection that shows the best decision surface (left); and how the decision 
surface looks in the 2D feature space, along with observations drawn from the two classes (right) 

3 Parametric Regression and Classification 

The prediction method introduced in Sect. 2 assumes, as indicated, that the joint 
PDF of the response and the predictor is known. If such knowledge does not exist 
all the methods revolve around modeling the regression function (1) in the case of 
regression or the posterior probabilities in (10) in the case of classification. 

3.1 Linear Models (LM) 

In LM theory, it is assumed that Y is in the form: 

Y = E Y + e (17a) 

= α + X 'β + e, (17b) 

where the randomness of Y comes only from e, the conditional expectation of Y is 
linear in the predictors X , and the random error component e has a zero mean and a 
constant variance with X . The regression function (1) is then written as: 

η(X ) = α + X 'β. (18) 

More generally, still a LM, it can be rewritten as: 

η(X) = X ' 
newβ, (19a) 

X ' 
new = ( f1 (X) , . . . ,  fd (X )) , (19b)
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where the predictor X is replaced by a new d-dimensional vector, Xnew, whose 
elements are scalar functions of the original random vector X . The intercept α in 
(18) may be absorbed in terms of (19a) by setting f1 (X) = 1. Equation (19a) can 
be seen as equivalent to (18), where X has been transformed to Xnew, which became 
the new predictor, on which Y will be regressed. 

Now β must be estimated, and this point estimation is done for some observed 
values of the predictor; this is merely the learning process of the LM. Writing the 
equations for n observed values gives: 

y = Xβ + e. (20) 

Eq. (20) can be solved for β to give the least sum-of-squares for the components of 
error vector e, which is quite known as the least-squares (LS) problem (Sect. 5). Said 
differently, it can be solved to minimize the residual sum-of-squares (RSS) between 
the predicted and the true response: 

RSS = e'e (21a) 

= (y − Xβ)'(y − Xβ) (21b) 

=
Σ   
i 

(yi − x ' 
i β)2 , (21c) 

to give: 
β̂ = 

(
X'X

)−1 
X'y. (22) 

Then the prediction Ŷ of Y is done by estimating its expectation, which is given by: 

Ŷ = η̂(X ) = Ê Y = X 'β̂. (23) 

For short notation we always write Ŷ instead of ^E [Y ]. The rational behind minimizing 
the RSS is that RSS/n is a good estimate of the mean squared error (MSE), or the 
expected squared-loss E(Y − X 'β)2. In addition, the latter is differentiable, which 
leads to the closed-form solution (22). 

Nothing up to this point involves statistical inference. This is just fitting a mathe-
matical model using the squared-error loss function. Statistical inference starts when 
considering the random error vector e and the effect of that on the confidence interval 
for β̂, and the confidence in predicted values of the response for particular predictor 
variable, or any other needed inference. All of these important questions are answered 
by the theory of LMs. Bowerman and O’Connell [7] is a very good reference for 
an applied approach to LMs, without any mathematical proofs. For a theoretical 
approach and derivations, the reader is referred to [12, 18, 23]. 

It is remarkable that if the joint distribution of the response and the predictor is 
multinormal, the LM assumption (17b) is an exact expression of the random variable 
Y . This result arises from the fact that the conditional expectation of the multinormal
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distribution is linear in the conditional variable. That is, by assuming the joint PDF 
is multinormal with mean vector μ and covariance matrix Σ , and given by: 

( 
Y 
X 

) 
∼ N (μ, Σ) , μ  = 

( 
μY 

μX 

) 
, Σ  = 

(
Σ11 Σ12 

Σ21 Σ22 

) 
, (24) 

then the conditional expectation of Y on X is given by: 

E [ Y | X = x] = μY + Σ12Σ
−1 
22 (x − μX ). (25) 

For more details on the multinormal properties see [1]. 
In the case of classification, the classes are categorical variables but a dummy 

variable can be used as coding for the class labels. Then a linear regression is carried 
out for this dummy variable on the predictors. A drawback of this approach is what 
is called class masking, i.e., if more than two classes are used, one or more can 
be masked by others and they may not be assigned to any of the observations in 
prediction. For a clear example of masking see [20, Sect. 4.2]. 

3.2 Generalized Linear Models (GLM) 

In a LM, the response variable is directly related to the regression function by a linear 
expression of the form (17b). In many cases a model can be improved by indirectly 
relating the response to the predictor through a LM—some times it is necessary, 
as well, for the classification problem, as will be shown. This is done through a 
transformation or a link function g, by assuming: 

g(E Y ) = X 'β. (26) 

Now it is the transformed expectation that is modeled linearly. Hence, LMs are 
merely a special case of the GLM when the link function is the identity function 
g(E Y ) = E Y . 

A very useful link function is the logit function defined by: 

g(μ) = log 
μ 

1 − μ 
, 0 < μ <  1. (27) 

Through this function the regression function is modeled in terms of the predictor 
as: 

E [Y ] = exp(X 'β) 
1 + exp(X 'β) 

, (28) 

which is known as logistic regression (LR). Equation (28) implies a constraint on 
the response Y , i.e., it must satisfy 0 < E [Y ] < 1, a feature that makes LR an ideal



18 W. A. Yousef

approach for modeling the posterior probabilities in (10) for the classification prob-
lem. Equation (27) models the two-class problem, i.e., binary classification, by con-
sidering the new responses Y1 and Y2 to be defined in terms of the old responses 
ω1 and ω2, the classes, as: 

Y1 = Pr [ω1|X ] , (29a) 

Y2 = Pr [ω2|X ] = 1 − Pr [ω1|X ] . (29b) 

The general case of the K -class problem can be modeled using K − 1 equations, 
because of the constraint

Σ   
k Pr [ωk |X ] = 1, as:  

log 
Pr [ωk |X = x] 
Pr [ωK |X = x] 

= x 'βk, k = 1, . . . ,  K − 1. (30) 

Alternatively, (30) can be rewritten as: 

Pr [ωk |X = x] = exp 
(
x 'βk 

) 
1 + Σ   K −1 

k '=1 exp (x
'βk ' ) 

, 1 ≤ k ≤ K − 1, (31) 

Pr [ωK |X = x] = 1 

1 + Σ   K −1 
k '=1 exp (x

'βk ' ) 
. (32) 

The question now is how to estimate βk ∀ k. The multinomial distribution for mod-
eling observations is appropriate here. For illustration, consider the case of binary 
classification; the log-likelihood for the n-observations can then be written as: 

l(β) = 
nΣ   

i=1 

[
yi log Pr[ω1|Xi , β] +  (1 − yi ) log(1 − Pr[ω1|Xi , β])] (33a) 

= 
nΣ   

i=1 

[
yi x

' 
i β − log(1 + ex '

i β )
] 
. (33b) 

To maximize this likelihood, the first derivative is set to zero to obtain: 

∂l(β) 
∂β 

= 
nΣ   

i=1 

xi 

( 

yi − ex
'
i β 

1 + ex '
i β 

) 
set= 0. (34) 

This is a set of p, or  d , nonlinear equations, because the vector X can be either 
the original predictor (x1, . . . ,  xp)' or any transformation ( f1(X),  . . . ,  fd (X ))' as 
in (19b). These equations can be solved by iterative numerical methods like the 
Newton-Raphson algorithm. Finding the optimal values of these parameters is one 
of the optimization problems (Sect. 5), whose solution exists in many software pack-
ages. For more details with numerical examples see [20, Sect. 4.4] or [9, Sect. 12.3].
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It can be noted that (33a) is valid under the assumption of the following general 
distribution: 

f (X ) = φ(θi , γ  )h(X, γ  )  exp(θ ' i X), (35) 

with probability pi , i = 1, 2, p1 + p2 = 1, which is the exponential family. So LR 
is no longer an approximation for the posterior class probability if the distribution 
belongs to the exponential family. For insightful comparison between LR and the 
Bayes classifier under the multinormal assumption see [14]. 

It is very important to mention that LR, and all subsequent classification methods, 
assume equal a priori probabilities. Then the ratio between the posterior probabilities 
will be the same as the ratio between the densities that appear in (11). Hence, the 
estimated posterior probabilities from any classification method are used in (11) as  
if they are the estimated densities. 

3.3 Nonlinear Models 

The link function in the GLM is modeled linearly in the predictors (26). Consequently, 
the response variable is modeled as a nonlinear function. In contrast to the LMs 
described in Sect. 3.1, in nonlinear models the response can be modeled nonlinearly 
right from the beginning, without the need for a link function. 

4 Nonparametric Regression and Classification 

In contrast to parametric regression, the regression function (1) is not modeled para-
metrically; i.e., there is no particular parametric form to be imposed on the function. 
Nonparametric regression is a versatile and flexible method of exploring the rela-
tionship of two variables. It may appear that this technique is more efficient than 
the LMs, but this is not the case. LMs and nonparametric models can be thought 
of as two different techniques in the analyst’s toolbox. If there is an a priori reason 
to believe that the data follow a parametric form, then LMs or parametric regres-
sion in general may provide an argument for an optimal choice. If there is no prior 
knowledge about the parametric form the data may follow, or no prior information 
about the physical phenomenon that generated the data, there may be no choice other 
than nonparametric regression. There are many nonparametric techniques proposed 
in the statistical literature. What was said above, when comparing parametric and 
nonparametric methods, can also be said when comparing nonparametric methods 
to each other. None can be preferred across all situations (Sect. 7).
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4.1 Smoothing Techniques 

Smoothing is a tool for summarizing, in a nonparametric way, a trend between a 
response and a predictor such that the resulting relationship is less variable than the 
original response, hence the name smoothing. When the predictor is uni-dimensional, 
the smoothing is called scatter-plot smoothing. In this section, some methods used 
in scatter-plot smoothing are considered. These smoothing methods do not succeed 
in higher dimensionality. This is one bad aspect of what is called the curse of dimen-
sionality (Sect. 6.5). 

4.1.1 K -Nearest Neighbor (KNN) 

The regression function (1) is estimated in the KNN approach by: 

η(x) = 
1 

n 

nΣ   
i=1 

yi Wi (x), (36) 

Wi (x) = 
{
n/K i  ∈ Jx = {i : xi ∈ NK (x)} 
0 other wise  

, (37) 

where NK (x) is the set consisting of the nearest K points to the point x . In words, 
this technique approximates the conditional mean, i.e., the regression function that 
gives minimum risk, by local averaging the response Y . 

In the case of classification, the posterior probability is estimated by: 

Pr 
[
ω j |x

] = 
1 

n 

nΣ   
i=1 

Iωi=ω j Wi (x), (38) 

and I is the indicator function defined by: 

Icond = 
{ 
1 cond = True  
0 cond = False  . (39a) 

That is, replacing the continuous response in (36) by an indicator function for each 
class given each observation. So, the posterior probability is approximated by a 
frequency of occurrence in a K -point neighborhood. 

A single-nearest-neighbor method (1-NN) is a special case of the KNN method, 
where K = 1. It can be thought of as narrowing the window W on which regression 
are carried out. In effect, this makes the regression function or the classifier more 
complex because it is trying to estimate the distribution at each point, which results 
in decreasing the bias and increasing the variance (Sect. 6.4).
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4.1.2 Kernel Smoothing 

In this approach, a kernel smoothing function κ is assumed. This means that a weight-
ing and convolution (or mathematical smoothing) is carried out for the points in the 
neighborhood of the predicted point according to the chosen kernel function. For-
mally this is expressed as: 

η(x) = 
nΣ   

i=1 

yi κ 
( 
x − xi 
hx 

) /  nΣ   
i '=1 

κ 
(
x − xi ' 
hx 

) 
. (40) 

Choosing the bandwidth hx of the kernel function is not an easy task. Usually, it is 
done numerically by cross validation (as explained in the next chapter). It is worth 
remarking that KNN smoothing is nothing but a kernel smoothing for which the ker-
nel function is an unsymmetrical flat window spanning the range of the K -nearest 
neighbors of the point x . The kernel (40) is called Nadaraya-Watson kernel. Histor-
ically, and interestingly, [22] first introduced the window method density function 
estimation; his work was pioneered later by [21, 26] in regression. 

4.2 Additive Models (AM) 

Recalling (19), and noticing that the function fi (X ) is a scalar parametric function of 
the whole predictor, show that LMs are parametric AMs. By dropping the parametric 
assumption and letting each scalar function be a function of just one element of the 
predictor, i.e., Xi , allows defining a new nonparametric regression method, namely 
AMs, as: 

η(x) = α + 
pΣ   

i=1 

fi (Xi ), (41) 

where the predictor is of p dimensions. The response variable itself, Y , is modeled 
as in (17a) by assuming zero mean and constant variance for the random component 
e. Then, fi (Xi ) is fit by any smoothing method defined in Sect. 4.1. Every function 
fi (Xi ) fits the value of the response minus the contribution of the other p − 1 func-
tions from the previous iteration. This is called the back-fitting algorithm [19, Sect. 
4.3] 

4.3 Generalized Additive Models (GAM) 

GAMs can be developed in a way analogous to how GLMs were developed above, 
i.e., by working with a transformation of the response variable, hence the name 
generalized additive models. Equation (41) describes the regression function as an 
AM; alternatively it can be described through another link function:



22 W. A. Yousef

g (η(x)) = α + 
pΣ   

i=1 

fi (Xi ). (42) 

Again, if a logit function is used the model can be used for classification exactly 
as was done in the case of GLMs. Rewriting the score Eq. (34) for the GAM, using 
the posterior probabilities as the response variable, produces the nonparametric clas-
sification method using the GAM. Details of fitting the model can be found in [19, 
Sect. 4.5 and Chap. 6]. 

4.4 Projection Pursuit Regression (PPR) 

PPR, introduced by [16], is a direct attack on the dimensionality problem, since it 
considers the regression terms as a summation of terms, each of which is a function 
of a projection of the whole predictor onto a direction (specified by some unit vector). 
Formally it is expressed as: 

η(x) =
Σ   
i=1 

gi (α
' 
i x). (43) 

The function gi , for every selection of the direction αi , is to be fit by a smoother  in  
the new single variable α' 

i x . It should be noted that (43) assumes that the function 
gi (α' 

i X ), named the ridge function, is constant along any direction perpendicular 
to αi . Fitting the model is done by iteratively finding the best directions αi ’s that 
minimize(s) the RSS, hence the name pursuit. Details of fitting the model and finding 
the best projection directions can be found in [16, 20]. 

In (43), by deliberately setting each unit vector αi to have zero components except 
αi i  = 1, reduces the PPR to AM. Moreover, and interestingly as well, introducing 
the logit link function to the regression function η(x) in (43) suits the classification 
problem exactly as was done in the GAM. This turns out to be exactly the same as 
the single-hidden-layer NN, as will be presented in the next section. 

4.5 Neural Networks (NN) 

The field of NN has been evolving, since its start in the engineering community 
around 1950s, until we reached now the era of deep neural networks (DNN). A 
single-hidden-layer NN can be considered as a process for modeling the output in 
terms of a linear combination of the inputs. The set of p input features, i.e., the 
predictor components X1, . . . ,  X p, are in turn weighted linearly to form a new set 
of M arguments, Z1, . . . ,  ZM , that go through the sigmoid function σ , which can 
have different values of steepness, or learning rate. Figure 3 illustrates a single-
hidden-layer NN with its architecture (left), and a plot of its sigmoid function with
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Fig. 3 A single-hidden-layer NN. The architecture that reflects Eq. (44) (left), and the sigmoid 
function with different learning rates a (right) 

different learning rates (right). The output of the sigmoid function accounts for a 
hidden layer consisting of M intermediate values. Then these M hidden values are 
in turn weighted linearly to form a new set of K arguments that go through the final 
output functions, whose output is the response variables Y1, . . . ,  YK . This can be 
expressed mathematically in the form: 

Zm = σ(αom + α' 
m X ), m = 1, . . . ,  M, (44a) 

σ(μ)  = 1 

1 + e−μ , (44b) 

Yk = fk 

( 

β0k + 
MΣ   

m=1 

βmk Zm 

) 

, k = 1, . . . ,  K . (44c) 

Equation (44c) shows that if the function f is chosen to be the identity function, 
i.e., f (μ) = μ, the NN is simply a special case of the PPR method defined in (43), 
where the sigmoid function has been explicitly imposed on the model rather than 
being developed by any smoothing mechanism as in PPR. This is what is done when 
the output of the network is quantitative. When it is categorical, i.e., the case of 
classification, the function f can be simply modeled as: 

fk(μk) = eμk 

/ KΣ   
k '=1 

eμk' . (45) 

In this case each output node models the posterior probability Pr [ωk |X ], which is 
exactly what is done by the LR link function defined in (27). Again, the model will 
be an extension to the GAM as defined at the end of Sect. 4.4. Although Eq. (44) are  
indeed parametric, we list NN in this section for the strong connection to the AM, 
GAM, and PPR that were just explained. Excellent references for the early basics
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and foundations of NN are [5, 24]. We conclude this section by quoting the following 
statement from [20]: 

There has been a great deal of hype surrounding neural networks, making them seem magical 
and mysterious. As we make clear in this section, they are just nonlinear statistical models, 
much like the projection pursuit regression model discussed above. 

5 Optimization 

Optimization serves an amazing variety of practical problems: e.g., optimizing power 
consumption in electrical stations, optimizing overall budget in project management, 
and most importantly to us in this chapter optimizing ML algorithms to provide 
the best performance. In this section, we will provide a very basic introduction to 
optimization and its strong connection to the construction of ML algorithms. 

5.1 Introduction 

The mathematical optimization problem (MOP) is an abstraction of how to make the 
“best” possible choice of some vector β under some constraints. These constraints 
represent a set of trim requirements, or specifications, that limits the possible choices 
of this vector. The objective function of this problem represents the cost, or  loss, to  
minimize, or the utility to maximize, for each vector β, and this what makes that 
value of β the “best” possible choice. This is formalized in the following definition. 

Definition 3 A mathematical optimization problem has the form: 

minimize 
β 

f0(β) 

subject to: fi (β) ≤ 0, i = 1, . . . ,  m, 
hi (β) = 0, i = 1, . . . ,  l, 

where 

β = (β1, . . . , βp) ∈ Rp, (optimization variable) 
f0 : Rp �→ R, (objective (cost) function) 
fi : Rp �→ R, (inequality constraints (functions)) 
hi : Rp �→ R, (equality constraints (functions)) 
D : ⋂m 

i=1 dom fi ∩ ⋂l 
i=1 domhi (domain of constraints: feasible set) 

= {β | β ∈ Rp ∧ fi (β) ≤ 0 ∧ hi (β) = 0} 
β∗ : {β | β ∈ D ∧ f0(β) ≤ f0(α) ∀α ∈ D} , (solution) 

where the solution β∗ is called the optimizer (or minimizer). ◻ 
The problem aims at minimizing a mathematical function, under some constraints. 
From Definition 3, it is clear that minimizing f0 is the same problem as maximizing
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Fig. 4 An objective function 
in a single dimension, with a 
constraint 1 ≤ β ≤ 2 (the 
colored region). The 
minimizer β∗ = 1, under this 
constraint, is different from 
the global minimizer β∗ = 0 

− f0; the constraints fi ≤ 0 are equivalent to − fi ≥ 0; the constraints fi ≤ 0 are 
equivalent to fi ≤ bi , where bi can be simply absorbed into fi ; and, finally, m = l = 0 
is the case of unconstrained problem with global minimization. 

Example 2 The is a very basic example of an MOP in a single dimension, with a 
single constraint: 

minimize 
β 

f0(β) = β2 

subject to: β ≤ 2, 
1 ≤ β. 

It is clear that the minimizer is β∗ = 1; however, the minimizer for the unconstrained 
problem is β∗ = 0 (Fig. 4). ◻ 

Example 3 [11, Example 20.1, p. 454]: This example shows how the MOP may not 
be as simple as finding the derivatives: 

minimize 
β 

f0(β1, β2) = (β1 − 1)2 + β2 − 2 

subject to: β2 − β1 = 1, 
β1 + β2 ≤ 2. 

This 2D objective function, along with the constraints, are illustrated in Fig. 5. It is  
obvious that the function has no global minimizer (∂ f0/∂β2 = 1 
= 0). After setting 
the constraints, it is quite easy to see that f0|(β2−β1=1) = (β1 − 1)2 + (β1 − 1) attains 
a minima at β1 = 1/2, and hence, the minimizer is β∗ = (1/2, 3/2)'. ◻
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Fig. 5 A simple objective function in two dimensions (the colored surface, shown along with its 
contours drawn in black), with two constraints (the red lines). Although the surface has no global 
minimum, the constrained problem does have 

Fig. 6 ML and MOP. A training dataset of three observations, for a regression problem with a 
single feature, to be fitted by a linear model having only two parameters β0 and β1 (left). The RSS 
of this model is the objective function, of these two parameters, to be minimized (right). The red 
point on the surface is the value (not the minimum yet), at some initial values of β0 and β1 that 
corresponds to the intercept and slope of the line on the left 

5.2 Connection to Machine Learning 

As explained earlier in this chapter, all parametric ML algorithms, e.g., LM, LR, 
SVM, NN, DNN, etc., include parameters that need to be replaced by numerical 
values. This is performed with the help of a dataset that is called a training dataset. 
The following simple example illustrates the connection between ML and MOP, and 
relates both to the title of the present chapter.
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Fig. 7 100 pairs of true AUC versus true MSE. Each pair is obtained from training the same NN, to 
minimize the RSS, on a new training datasets, then testing on a very large testing dataset to mimic 
the population. Although there is an obvious trend of getting a high AUC with low MSE, it is not a 
guaranteed behaviour for each training dataset 

Example 4 (Machine Learning: construction) Suppose that we have a strong belief 
that the best regression function for a particular problem is the LM Y = β0 + β1 X . 
Then, for a given training dataset tr : {ti = (xi , yi ) , i = 1, . . . ,  n}, we need to min-
imize the RSS of this model on this dataset. This is a typical MOP, which can be 
formalized as: 

minimize 
β0,β1 

nΣ   
i=1 

(β0 + β1xi − yi )2 , (xi , yi ) ∈ tr. 

Figure 6 illustrates a dataset of only three observations (n = 3), along with a straight 
line of initial values of the parameters β0, β1, all drawn in the feature space (left). 
The objective function to be minimized (the RSS) is drawn as a function of the two 
parameters β0, β1 (right). Each pair of values of β0, β1 results in a new line (fitted 
model) in the feature space, and a new point on the surface of the objective function 
in the parameter space. The solution of this MOP is the vector β∗ = (β0, β1) that 
minimizes the objective function, which fortunately for linear models has a closed-
form solution given earlier in Eq. (22). ◻ 

Departing from the previous example, in the following few paragraphs we will 
emphasize important concepts. The example demonstrated the relationship between: 
(1) the ML model, along with the training dataset, in the feature space, and (2) the 
objective function, which should be minimized, in the parameter space. All other 
ML models, whether for regression or classification, have parameters that should be 
replaced, tuned, or estimated, to optimize (minimize or maximize) some objective 
function. Ideally, this objective function should be a good estimator for the same 
intended performance measure of the model, not for any other performance mea-
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sure. However, some mathematical difficulties may preclude this ideal practice, as 
will be seen next. 

In Example 4, the objective function to be minimized was the RSS, which mini-
mizes RSS/n, an estimator of the MSE. However, in some circumstances it is very 
difficult mathematically to optimize the targeted performance measure. In such cases, 
another performance measure is optimized, because of the tractability of its mathe-
matical formalization, hoping that the solution optimizes, as well, the targeted per-
formance measure. Figure 7 illustrates this fact for a very simple four-neuron single-
layer NN, trained on a simulated two-class univariate normal dataset. The NN is 
required to achieve a high AUC (a performance measure that will be explained in 
Sect. 6); however, because its estimator is non differentiable, and therefore is very 
hard to maximize using conventional mathematical approaches, the NN is trained to 
minimize the RSS, instead. For illustration, the NN is trained on 100 different train-
ing datasets, and tested after each training on a very large testing dataset to provide 
a good estimate of the true AUC and MSE. The figure shows the 100 pairs of values 
of these two performance measures, with a general trend of exhibiting a high AUC 
with a low MSE. However, some instances exhibited a low MSE (good performance) 
associated with a low AUC (bad performance). 

Another important fact to emphasize is that all of the model’s parameters that are 
estimated during the learning process are functions of the training dataset. Hence, the 
following facts hold: these parameters are random variables, the model is a random 
model, the objective function is a random function, and the minimum value of this 
objective function, which is the model optimal performance, is a random variable 
(as will be detailed in Sect. 6); all will vary if the training dataset varies. 

To recap, Example 4 demonstrated how LM, one of the ML models explained in 
this chapter, represents an MOP whose solution fortunately can be found in closed 
form. Other ML models belong to a class of MOP that is difficult to solve; DNN is an 
example. In the next section, we will provide a very short account of the taxonomy of 
the MOP to show its different types and the connection of each of these types to ML. 

5.3 Types of MOP 

According to the nature of the objective function and its constraints, the MOP can 
be classified into one of these nested classes: 

Linear ⊂ Quadratic ⊂ Convex ⊂ Nonlinear. 

For each of these classes, several questions arise: (1) is there a closed-form solution? 
(2) if not, is there a numerical solution? (3) if yes, is it guaranteed? (4) what are 
the ML models that belong to this class? In the following subsections, we discuss 
very briefly each of these classes, and provide some answers to these questions. It is 
important to emphasize that although these classes are mathematically nested—in the 
very strict sense that any linear is quadratic, any quadratic is convex, and any convex 
is nonlinear—the solution techniques for each class are quite different from others.
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The solution techniques for these classes vary between: closed-form, numerical (e.g., 
Newton’s methods, gradient descent, etc.), or even intelligent-based methods (e.g. 
genetic algorithms, particle swarm, etc.). 

5.3.1 Linear Programming 

Definition 4 A linear programming problem is an MOP with an objective and all 
constraints are linear: 

minimize 
β 

f0(β) = c'β 

subject to: a' 
i β ≤ bi , i = 1, . . . ,  m, 
h' 
i β = gi , i = 1, . . . ,  l. 

◻ 

Example 5 (Chebyshev minimization) The MOP: 

minimize 
β 

f0(β) = max 
i=1,...,n 

|yi − x ' 
i β|, 

can be understood in terms of ML terminology as minimizing the maximum possible 
error, measured in absolute deviance between the true response value yi and the 
predicted value x ' 

i β. This should be contrasted with the least-squares MOP of the 
LM (as illustrated in Example 4 and will be more detailed in Sect. 5.3.2 below) 
in two important aspects: (1) the error is measured in terms of absolute deviance 
rather than squared difference. (2) the objective function here focuses only on the 
single observation that achieves the maximum error rather than summing over all 
observations. After little manipulations, the problem can be reduced, and found to 
be equivalent, to the following: 

minimize 
β 

t 

subject to: x ' 
i β − t ≤ yi , i = 1, . . . ,  n 

−x ' 
i β − t ≤ −yi , i = 1, . . . ,  n, 

which is a typical linear programming problem, per Definition 4. ◻ 

In general, there is no closed-form solution to the linear programming problems. 
However, there exists a set of very robust, reliable, and computationally effective 
methods of numerical solutions: e.g., Dantzig’s simplex and interior point that can 
solve problems with several thousands of variables.
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5.3.2 Least-Squares (LS) Problems 

Definition 5 A LS problem is an MOP with no constraints (i.e., m = l = 0), and an 
objective in the form: 

minimize 
β 

f0(β) = 
nΣ   

i=1 

(x ' 
i β − yi )2 = ||Xn×pβp×1 − yn×1||2 . 

◻ 

Example 6 (LM) The linear models for regression, discussed in Sect. 3.1 and Exam-
ple 4, is a typical example for the LS problem, where the solution is given in the 
closed form by β = 

(
X'X

)−1 
X'y. ◻ 

The algorithms for finding the matrix inversion and matrix multiplication in this 
closed-form solution exist in many scientific computing software, and this technology 
is quite mature even for thousands of variables. 

There is a more elaborate version of the LS problem that is called weighted LS. 
This type of problem appears in ML, e.g., when more emphasis is required on some 
observations than others: 

minimize 
β 

f0(β) = 
nΣ   

i=1 

wi (x
' 
i β − yi )2 , 

or when it is required to penalize for using extra parameters to guard against overfit-
ting (Sect. 6.4), an approach known as regularization: 

minimize 
β 

f0(β) = 
nΣ   

i=1 

(x ' 
i β − yi )2 + ρ 

pΣ   
j=1 

β2 
j . 

It is quite easy to show that both problems can be solved as LS problem, per 
Definition 5. 

5.3.3 Convex Optimization 

Definition 6 A convex optimization problem is an MOP with an objective and all 
constraints are convex: 

minimize 
β 

f0(β) 

subject to: fi (β) ≤ 0, i = 1, . . . ,  m, 
hi (β) = 0, i = 1, . . . ,  l, 
fi (aα + bβ) ≤ a fi (α) + b fi (β), a + b = 1, 0 ≤ a, b, 0 ≤ i ≤ m, 
hi (β) = c' 

i β + di 0 ≤ i ≤ p. 

◻
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Example 7 (Lasso Regression) Similar to the penalized LS problem, lasso regres-
sion minimizes the RSS; however, it does so with an L1 penalty rather than the L2 

of the LS problem. The problem is formalized as: 

minimize 
β 

nΣ   
i=1 

(yi − x ' 
i β)2 

subject to: 
pΣ   

j=1 
|β j | ≤  t, 

which can be shown to be equivalent to the MOP: 

minimize 
β 

f0(β) = 
nΣ   

i=1 

(yi − x ' 
i β)2 + ρ 

pΣ   
j=1 

|β j |, 

The latter, in contrast to the LS penalization, has no closed-form solution because of 
the difficulty introduced by the non-differentiable term |β j |. However, the numerical 
solution is quite feasible and reliable as all convex optimization problems are. ◻ 

The numerical solution of a convex optimization problem is well established 
through the methods of interior point, although no closed-form solution exists. Prob-
lems with thousands of variables can be solved robustly as in linear programming 
problems. In addition, many problems are initially formulated, then with some math-
ematical manipulation they can be transformed to a solvable convex problem. 

Fig. 8 A plot of a 3D function [11, Example 14.3, p. 290]: f (β0, β1) = 3(1 − β0)
2e−β2 

0−(β1+1)2 − 
10e−β2 

0−β2 
1

(
−β3 

0 + β0 5 − β5 
1

)
− 1 3 e

−(β0+1)2−β2 
1 that shows several minima, maxima, and saddle 

points
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5.3.4 Nonlinear Optimization 

Definition 7 A nonlinear optimization problem is an MOP with objective and con-
straint functions are nonlinear ◻ 

Example 8 A nonlinear objective function, just in two dimensions, with several min-
ima, maxima, and saddle points, is illustrated in Fig. 8. A NN, or in its more complex 
form, a DNN with several layers, can have hundreds of millions of parameters, not 
only two as illustrated in the figure! ◻ 

The nonlinear optimization problems can be very hard to solve, even for simple-
looking problems in few parameters (variables). Several approaches exist for solving 
the problem; these approaches can be divided into two main categories: numberical 
methods and computational intelligence, as briefly explained in the following two 
paragraphs, respectively. 

Finding the minima or the maxima of a function numerically is a well known 
topic in mathematics and numerical analysis. However, the challenge of nonlinear 
optimization, especially for problems like DNN, remains in the computational com-
plexity that grows exponentially with the dimensions of the objective function, the 
matter that makes it almost impossible to find a global minimum. Alternatively, 
finding a local minimum is a practical compromise, although it does not guarantee 
converging to the global one. Local minimization starts at a point in the parameter 
space (usually is selected randomly, or by other criteria determined by the numerical 
algorithm) then the space is navigated, and guided by the multi-dimensional deriva-
tives (with respect to the parameters) of the objective function. All the well known 
methods, starting form Newton’s method to the most recent approaches used for 
DNN, e.g., stochastic gradient descent (SGD), belong to this category. It is obvious 
that the initial starting point in the parameter space heavily affects the convergence 
process and the final solution. 

The term computational intelligence was first coined early by [2, 3]: 

A system is computationally intelligent when it: deals only with numerical (low-level) data, 
has a pattern recognition component, and does not use knowledge in the AI (Artificial 
Intelligence) sense; and additionally, when it (begins to) exhibit (i) computational adaptivity; 
(ii) computational fault tolerance; (iii) speed approaching human-like turnaround, and (iv) 
error rates that approximate human performance. 

Since that time, the term computational intelligence (CI) has been accepted as a 
generic term to the field that combines NNs, fuzzy logic, and evolutionary algo-
rithms [25, 31]. Later, the area of swarm detection was considered as a peer paradigm 
to the other three mentioned above [15]. 

6 Performance 

From what has been early discussed at the beginning of this chapter, there is not 
any conceptual difference between regression and classification for the problem of
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supervised learning. Abstractly, both aim to achieve the minimum risk (2) under a 
certain loss function, for predicting a response, from a particular predictor. Although 
risk is a very obvious performance measure for assessing ML algorithms, we will 
elaborate in this section and show how we can depart and define other important 
performance measures, e.g., the individual error components, ROC, and AUC. It is 
must be noted that what will be defined in this section is the parametric form (also 
known as the true performance or the population performance), which can only be 
calculated if the posterior probabilities are known. On the contrary, if the posterior 
probabilities are not known all performance measures can be estimated from a given 
dataset, called the testing dataset, using appropriate estimators. If the testing dataset 
is infinitely large, i.e. testing on the population, the estimated performance will 
converge to the true performance. Performance estimation and different estimators 
are discussed in the next chapter. 

6.1 Error Components 

We will elaborate on the special case of binary classification, with no cost on correct 
classification (cii  = 0, i = 1, 2), which is of great interest in many applications. In 
this case, the risk of each classifier is reduced to (16), which can be rewritten as: 

Rmin = c12 P1e1 + c21 P2e2, (46) 

where e1 is the probability of classifying a case as belonging to class 2 when it 
belongs to class 1, and e2 is vice versa. 

In the feature space, the regions of classification have the dimensionality p, and it 
is very difficult to calculate the error components from multi-dimensional integration. 
It is easier to look at (14) as:  

Fig. 9 The probability of 
LLR conditional on each 
class. The two components 
of error are indicated as the 
FPF and FNF
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h(x) 
ω1 

≷ 
ω2 

th, (47a) 

h(x) = log
fX (X = x |ω1) 
fX (X = x |ω2) 

, (47b) 

th  = log
Pr[ω1]c21 
Pr[ω2]c12 , (47c) 

where the log is taken just as a convention to simplify the analysis for the case 
of multinormal distribution (because it has an exponent); however, it has no other 
significance. The function h(X ) is called the log-likelihood ratio (LLR), which is 
obviously a random variable, whose variability comes from the feature vector X . 
The LLR has a PDF conditional on each of the two classes, as indicated in Fig. 9; (it  
can be easily shown that the two curves in this figure cross at h(X ) = 0, when the 
threshold is zero.) 

In general, the two error components appearing in (46) can be rewritten, equiva-
lently to their corresponding terms in Eq. (16), using the LLR in (47), as: 

e1 = 
th{ 

−∞ 

fh (h(x)|ω1) dh(x), (48a) 

e2 = 
∞{ 

th  

fh (h(x)|ω2) dh(x). (48b) 

Now, it is very important to realize the generality of this error equation and the two 
messages it conveys. (1) It expresses the two components of error for any classifier 
that produces an output, or a score, of h(x) for a predictor X = x , even if it is not 
the best (Bayes’) classifier. The only exception then would be that the score h(X ) is 
no longer the LLR that produces the minimum risk. (2) Whether h(X) is the score 
of the Bayes’ classifier or not, Eq. (48) says that at each threshold value th  there is 
a pair of two components of error. Over the continuum of threshold values there is 
a continuum of these pairs, which define a new curve. This curve is called the ROC 
curve, a device that is much more rich for assessing classification rules than a single 
pair of errors, as will be explained next. 

6.2 Receiver Operating Characteristic (ROC) Curve 

Now, assume the classifier is trained under the condition of equal prevalence and 
cost, i.e., the threshold is zero. In other environments there will be different a priori 
probabilities yielding to different threshold values. The error is not a sufficient metric 
now, since it is a function of a single fixed threshold. A more general way to assess a 
classifier is provided by the ROC curve. This is a plot for the two components of error, 
e1 and e2, under different threshold values. It is conventional in many applications to
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Fig. 10 ROC curves for two different competing classifiers. Left: ROC1 is better than ROC2, since  
for any error component value, the other component of classifier 1 is less than that of classifier 2. 
Right: ROC1 is better than ROC2 only in the range of FPF that is lower than the value c 

refer to e1 as the False Negative Fraction (FNF), and e2 as the False Positive Fraction 
(FPF). This is because cases from the abnormal class typically are assigned higher 
classifier’s scores than cases from the normal class, hence the names “positive” and 
“negative”. For example, a network activity belonging to the abnormal class (the class 
of anomalous activities) whose classifier’s score is less than the chosen threshold will 
be called “negative”. This is obviously a false negative decision; hence the name FNF. 
The situation is reversed for the other error component. 

Because the classification problem now can be seen, more generally, in terms of 
the classifier’s output score rather than the hard binary decision, it is apparent that 
each of the two error components is an integral over a univariate PDF. Therefore, the 
resulting ROC is a monotonically non-decreasing function. A convention in many 
fields is to plot the true positive fraction (TPF), which is given by TPF = 1 − FNF, 
vs. the FPF. In that case, the farther apart the two distributions fh(h|ωi ), i = 1, 2 
of the score function h(X) from each other, the higher the ROC curve and the larger 
the area under the curve (AUC). Figure 10 (left) shows ROC curves for two different 
competing classifiers. The first classifier performs better because it has a lower value 
of e2 at each value of e1. Thus, the first classifier unambiguously separates the two 
classes better than the second one. Therefore, the AUC for the first classifier is larger 
than that for the second one. The AUC can be thought of as one summary performance 
measure for the ROC curve. Formally, the AUC is given by: 

AUC = 
1{ 

0 

TPF d(FPF). (49)
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Fig. 11 A population of 
ROC curves of a classifier 
trained on several training 
datasets; for each training 
dataset an ROC is built. The 
mean ROC is shown in bold 

And it can be shown that it is also given by: 

AUC = Pr
[
h(x)|ω2 < h(x)|ω1 

]
, (50) 

which expresses how the classifier scores for class ω1 are stochastically larger than 
those of class ω2, and hence more capable of the classification task. 

If two ROC curves cross (Fig. 10, right), this means each classifier is better than 
the other only for a certain range of the threshold setting, and vice versa. In that case, 
some other performance measure can be used, such as the partial area under the ROC 
curve in a specified region [27]. 

6.3 The True Performance Is A Random Variable! 

As was explained in Sect. 5.2, regardless of whether the ML task is regression 
or classification, the model, its parameters, and its performance, all are random 
variables, where the randomness comes from the training dataset. In addition, this 
variation depends on the complexity of the model, and its capacity to learn, relative 
to the training dataset size. 

For instance, the output scoring function h(X ) of a particular classifier is indeed 
htr(X ), which is subscripted to show the dependence on the training dataset; hence, 
the PDFs fhtr (h|ωi ) and ROCtr, all should be subscripted as well. Therefore, there is 
a population of ROC curves that corresponds to the population of training datasets 
(Fig. 11). For more elaboration, consider the AUC as the performance measure of 
interest. Then, the fundamental quantities of interest are the following: 

1. AUCtr: the true performance of the classifier, conditional on a particular training 
dataset tr of a specified size n but over the population of testing datasets (as if we 
trained on tr then tested on infinite number of observations),
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Fig. 12 Two regression functions with: low bias and high variance (left); high bias and low variance 
(right) 

2. Etr AUCtr: the expectation of the true performance over the population of training 
datasets of the same size n, and 

3. Vartr AUCtr: the variance of the true performance over the population of training 
datasets of the same size n. This variance expresses how the classifier is sensitive 
to retraining, e.g. in the case of obtaining a new training dataset. 

Any other performance measure, e.g., each of the error components, the risk, etc., is 
a r.v. as well, should be similarly subscripted tr, and has a mean and a variance as 
explained above. For more elaboration, we explain this crucial concept in Sect. 6.4, 
in a more mathematical detail, for the case of regression than classification, because 
it is more obvious and easier to explain. 

6.4 Bias-Variance Decomposition 

Over-training (or overfitting) a particular algorithm is an expression used to describe 
the complexity of this algorithm, and hence its capacity, to fit the current training 
(e.g. getting a very small value of the RSS). Although this seems a success, it is not! 
This is because what is required is to have the best performance on the unseen data 
(the population of testers, as opposed to the training dataset itself). As explained 
in Sect. 5.2, when a ML algorithm trains on a training dataset there are two things 
to realize: (1) the training dataset is taken as an example of the population, and 
(2) the objective function, to be minimized on this training dataset, is an estimator 
of the performance measure that we hope to be minimized on the population. For 
example, recall that we used the RSS as an objective function to estimate the MSE 
as a performance measure.
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Fig. 13 Bias-variance 
decomposition. A visual 
illustration using the same 
colors of the mathematical 
quantities in Eq. (51). (Part 
of the background of the 
figure, namely, the bold 
green curve, the bold red 
curve, and the shaded area, is 
as appears in [6, Fig. 1.17, p. 
32]) 

Overfitting an algorithm results in decreasing the bias of the performance measure 
and increasing its variance, and vice versa; and there is always a trade-off between 
this bias and variance. Before delving into any mathematics, Fig. 12 qualitatively 
illustrates this phenomenon for two different ML algorithms (left and right). The 
bold function η∗, in both subfigures, is the conditional expectation, which is the 
best regression function. Training the algorithm on a training dataset tr produces a 
function ηtr that may exist anywhere in the shaded region in the figure. The pointwise 
mean of these functions is plotted in light black. The algorithm of the left subfigure 
produces a mean model Etr ηtr(x) that is very close to η∗ (low bias); however, a 
single fitted model may exist anywhere in the wide shaded region (high variance). 
The algorithm of the right subfigure behaves conversely. 

This can be best understood if the KNN is taken as an example. At some point 
xi , the prediction is Σ j∈NK (xi )y j /K . The expectation of this regression function is 
Σ j∈NK (xi ) E 

[
y j 

] 
/K , while the variance will be σ 2/K (where the response is assumed 

to have constant variance σ 2 with the predictor). If the window size of this rule is 
squeezed to produce a more complex rule, i.e., K is decreased, the variance will 
increase, but the bias will decrease since Σ j∈NK (xi ) E 

[
y j 

]
/K tends to approach E [yi ]. 

On the contrary, increasing K obviously decreases the variance, while incorporating 
many data points whose expectations will be very likely to vary from E [yi ], hence the 
bias increases. This example of KNN is provided in [20]. For more elaboration [19, 
Chap. 3], review a measure of the complexity of smoothing functions in terms of an 
effective number of degrees of freedom. 

The bias-variance decomposition for a regression function is analyzed quantita-
tively in Eq. (51), and is illustrated in Fig. 13. This figure is conceptually similar 
to Fig. 12, but with indicating each component of Eq. (51) on the figure. For better 
illustration and pedagogy, the colors of the figure match the colors of the correspond-
ing terms of the equation as follows: the light red for a trained model, the bold red 
for its mean over the population of training datasets, the blue circles for the train-



Machine Learning Construction: Implications to Cybersecurity 39

ing dataset (observed response), the green circles for the testing dataset (observed 
response), the bold green for the response conditional mean (the best regression 
function). The symbol ∼= is used to indicate how the corresponding quantity can be 
estimated from a dataset, regardless whether this is a good estimator or not as will be 
explained in the next chapter. The symbol M denotes the number of training datasets 
drawn through Monte Carlo (MC) trials. 

We end this discussion with the following two questions that pave the road for the 
subfield of ML assessment, the topic of the next chapter. These questions are valid for 
any other performance measure, and the error rate is given just as a clear example. The 
subfield of ML assessment explains different methods for estimating the performance 
of a ML algorithm, from a given dataset (because the whole population of testers is 
unknown) to select among a variety of competing models and assess them, which 
answers the following two questions. 

(1) How can we minimize the mean error Etr Errtr (51f), where the expectation 
is taken over the population of training datasets? As appears from the equation, this 
error is decomposed to three terms: the response variance, the model variance, and 
the model squared bias, respectively. The response variance is the natural variance in 
the physical phenomenon that generated the data and is model independent; hence, it 
is irreducible. Therefore, to minimize the mean error Etr Errtr, the model complexity 
should be tuned so that the summation of the bias squared and variance is minimized. 
Tersely speaking: too simple (complex) models produce high bias (variance) and low 
variance (bias); and since the variance (bias squared) cannot drop below zero, the 
summation of these two quantities will be high. 

(2) Should we design the ML model to minimize the conditional error Errtr (con-
ditional on a particular training dataset) or the mean error Etr Errtr that involves the 
bias and variance components?
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6.5 Curse of Dimensionality 

This expression refers to what may happen when the predictor has high dimensions, 
i.e., p is too large. The word “large” should be understood relatively to the size n 
of the available dataset. For illustration, consider smoothing in high dimensions. It 
will almost fail because for a fixed number of available observations (the training 
dataset), the volume size needed to cover a particular percentage of the total number 
of observations increases by a power law, and thus exponentially, with dimensional-
ity. This makes it prohibitive to include the same sufficient number of observations 
within a small neighborhood, or bandwidth, to smooth the response. More quantita-
tively, consider a unit hyper-cube in the p-dimensional space containing uniformly 
distributed observations; the percentage of the points located inside a hyper-cube 
with side length l is l p. This means, if the suitable bandwidth for a certain smoother 
is l, the effective number of observations in the p-dimensional problem will go as 
the power 1/p. This deteriorates the performance dramatically for 3 < p. This is  
why, e.g., the additive model (Sect. 4.2) and its variants are expressed as summation 
of functions of just one dimension. This single dimension may be just a component 
of the predictor or a linear combination. 

Many other problems occur when n << p, including increasing the model vari-
ance. In addition, the performance of the model fitted from a given dataset will not 
generalize on the population or a future dataset. All of these problems, and others, 
are indeed related and connected mathematically to each other, which is out of the 
scope of the present chapter. 

Therefore, a very crucial topic in ML is dimensionality reduction (it is called 
feature selection in some other communities). Qualitatively speaking, this means 
selecting those predictor components that best summarize the relationship between 
the response and predictor. In real-life problems, some features are statistically depen-
dent on others; this is referred to as multi-collinearity. On the other hand, there may 
also be some components that are statistically independent from the response. These 
add no additional information to the problem; thus they serve only as a source of 
noise. 

Several existing approaches aim to reduce the dimensions of the problem. A 
dimensionality reduction method of course can be considered as part of the ML algo-
rithm. Therefore, for a given problem, selecting among different methods account as 
selecting among different algorithms which is the main topic of the next chapter, as 
explained at the end of Sect. 6.4. 

6.6 Performance of Unsupervised Learning 

It should be noticed that the formal definition of the learning process, discussed 
thus far in the present chapter, assumed the existence of a training dataset, tr : 
{ti = (xi , yi ) , i = 1, . . . ,  n}. Each element ti , or sample case, in this set has an
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already known value for the response variable. This is what enables the learning 
process to develop the relationship between the predictor and the response. This is 
what is called supervised learning. On the contrary, in some applications the available 
dataset is described by tr : {ti = xi , i = 1, . . . ,  n}, without any additional informa-
tion. This situation is called unsupervised learning. It is usually required in such a 
situation to understand the structure of the data from the available empirical prob-
ability distribution of the points xi . For the special case, where the data come from 
different classes, the data will be represented in the hyper p-dimensional space, to 
some extent, as disjoint clouds of data. The task in this case is called clustering, i.e., 
trying to identify those classes that best describe, in some sense, the current avail-
able data. More formally, if the available dataset is X, it is required to find the class 
vector Ω = [ω1, . . . , ωk]' and the clustering function ηtr(X), such that a criterion (an 
objective function) J (X,Ω)  is minimized: 

Ω = arg min 
[
J (X,Ω)

] 
. (51) 

Different criteria give rise to different clustering algorithms. More discussion on 
unsupervised learning and clustering can be found in [13, 17, 20]. 

It is important to emphasize that although the construction of the supervised and 
unsupervised rules is quite distinct, the assessment procedure and the performance 
measures, including error rate, risk, ROC, AUC, etc., are essentially the same. This 
is obvious because the unsupervised rule Ωtr(X ), regardless of its construction, 
ultimately provides the same mapping ηtr(X) �→ {ω1, . . . , ωK } as the supervised 
rule, which is assigning a class label to a predictor. 

6.7 Classifier Calibration 

As detailed throughout the chapter, the final classifier decision ηtr(x) of a classifier 
is obtained by comparing its output score htr(x) to a threshold th. However, there are 
two important issues to consider. (1) The scores do not necessarily equal to the poste-
rior probabilities Pr[ωi |x], which are much more informative than a mere numerical 
score; indeed, many classifiers provide score values outside the period [0, 1]. (2)  
Scores of two different classifiers cannot be compared, simply because they are not 
on the same scale. Classifier calibration is a remedy to these two issues, not naively 
by linear scaling, but by providing a one-to-one nonlinear monotonic transformation 
that maps the output scores to the posterior probabilities. It is important to observe 
that this transformation will not affect the performance of the classifier on the pop-
ulation or on a finite testing dataset. For a formal proof of this result, and for a 
full account of the calibration process including a recent comparative study among 
different calibrators see [29].
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7 Discussion and Conclusion 

This chapter is intended to provide a pilot view of the field of ML to illustrate how 
mathematics and intuition together work, which helps cyberphysical security practi-
tioners, who apply ML in many applications, understand subtle concepts and connect 
scattered pieces. The importance of the theoretical aspects of ML are stressed, and 
demonstrating examples are provided. The mathematical foundations of the field, 
along with different methods and construction, have been motivated. Important and 
fundamental references have been cited for readers, who are interested in more elab-
oration. 

When it comes to real-life applications, many practitioners leverage some ML 
approaches, or models, without having the fundamental rigour or the enough insight, 
a matter that results in a lot of fallacies and pitfalls. A simple example is the use 
of complex models, that have high capacity, relative to the training dataset size. A 
second example is to perform data preprocessing or transformation without including 
the step into the resampling mechanism that estimates the final performance. A 
third example is thinking of a particular model or approach as “magical” that can 
consistently outperform others ubiquitously. 

“No overall winner” is a statement that has been touched upon throughout previous 
sections. If there is no prior information for the joint distribution between the response 
and the predictor, and if there is no prior information about the phenomenon to 
which that regression or classification will be applied, there is no overall winner 
among regression or classification techniques. If one method is found to outperform 
others in some applications, this is likely to be limited to that very situation or that 
specific kind of problem; it may be beaten by other methods for other situations. In 
the engineering and computer science communities, this concept is referred to as the 
no-free-lunch theorem (see [13, Sect. 9.2]). This situation holds because each method 
makes different assumptions about the application or the process being modeled, and 
not all real-life applications are the same. If one or more of the assumptions are not 
satisfied in a given application, the performance will not be optimal in that setting. 
The only unique overall winner is the conditional expectation (for regression) or the 
Bayes’ classifier (for classification) when the probability distributions are known. 

To recap, practitioners are always advised to have a basic level of mathematical 
rigor and understanding of these foundations, even if they do not produce research 
or contribute to theoretical discoveries in the field. 
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27. Yousef WA (2013) Assessing classifiers in terms of the partial area under the roc curve. Comput 

Stat Data Anal 64:51–70 
28. Yousef WA (2020) Prudence when assuming normality: an advice for machine learning prac-

titioners. Pattern Recogn Lett 138:44–50 
29. Yousef WA, Traore I, Briguglio W (2021a) Classifier calibration: with application 

to threat scores in cybersecurity. arXiv:2102.05143, https://github.com/isotlaboratory/ 
ClassifierCalibration-Code

https://doi.org/10.1017/CBO9780511804441
 2557 16466 a 2557 16466 a
 
https://doi.org/10.1017/CBO9780511804441
arXiv:2102.05143
 14329 56760
a 14329 56760 a
 
http://arxiv.org/abs/2102.05143
https://github.com/isotlaboratory/ClassifierCalibration-Code
 22106 56760 a 22106 56760 a
 
https://github.com/isotlaboratory/ClassifierCalibration-Code
https://github.com/isotlaboratory/ClassifierCalibration-Code


44 W. A. Yousef

30. Yousef WA, Traoré I, Briguglio W (2021b) UN-AVOIDS: unsupervised and nonparametric 
approach for visualizing outliers and invariant detection scoring. IEEE Trans Inf Forensics 
Secur 16:5195–5210, https://doi.org/10.1109/TIFS.2021.3125608 

31. Zimmermann HJ, Tselentis G, van Someren M, Dounias D (2002) Advances in computational 
intelligence and learning: methods and applications

https://doi.org/10.1109/TIFS.2021.3125608
 7967 1633 a 7967 1633 a
 
https://doi.org/10.1109/TIFS.2021.3125608


Machine Learning Assessment: 
Implications to Cybersecurity 

Waleed A. Yousef 

Abstract After discussing the construction of machine learning (ML) algorithms in 
the previous chapter, this chapter is dedicated to their assessment and performance 
estimation (with an emphasis on classification assessment), a topic that is equally 
important specially in the context of cyberphysical security design. The literature is 
full of nonparametric methods to estimate a statistic from just one available dataset 
through resampling techniques, e.g., jackknife, bootstrap and cross validation (CV). 
Special statistics of great interest are the error rate and the area under the ROC curve 
(AUC) of a classification rule. The importance of these resampling methods stems 
from the fact that they require no knowledge about the probability distribution of 
the data or the construction details of the ML algorithm. This chapter provides a 
concise review of this literature to establish a coherent theoretical framework for 
these methods that can estimate both the error rate (a one-sample statistic) and the 
AUC (a two-sample statistic). The resampling methods are usually computationally 
expensive, because they rely on repeating the training and testing of a ML algorithm 
after each resampling iteration. Therefore, the practical applicability of some of 
these methods may be limited to the traditional ML algorithms rather than the very 
computationally demanding approaches of the recent deep neural networks (DNN). 
In the field of cyberphysical security, many applications generate structured (tabular) 
data, which can be fed to all traditional ML approaches. This is in contrast to the DNN 
approaches, which favor unstructured data, e.g., images, text, voice, etc.; hence, the 
relevance of this chapter to this field. 
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1 Introduction 

1.1 Motivation 

Consider a ML problem, where some models have been trained on a given dataset. It 
is then required to know their performances, in terms of any performance measure, 
on the population of testers. This is not only for the sake of assessing each of them, 
but also to be able to select the best model among them. These different models 
could even represent different instances of the same ML algorithm, with different 
values of parameters (e.g., a KNN with different values of K ), and it is required to 
choose the best value for the current problem. The performance on the population of 
testers is called the true performance, because this is the performance on the whole 
population, not on a subset of it. 

If the underlying probability distribution of the testers is known, e.g., from a priori 
knowledge about the nature of the problem, the true performance can be calculated 
mathematically. One of the first attempts in this direction was Fukunaga [14], where 
he assumed the data follows a multinormal distribution, to find a closed-form expres-
sion of the error rate of a binary classification rule. An alternative to mathematical 
calculations is simulating a very large dataset, from the assumed distribution, from 
which a very accurate estimation of the true performance can be obtained. 

The early work of Fukunuga was inspiring, from the theoretical point of view, 
for the early community of pattern recognition and machine learning to understand 
important theoretical properties and concepts. However, for real-life applications it is 
very unusual that the assumption of multinormality, or any other assumption, hold. In 
these situations, which are called nonparametric, or distribution-free, it is impossible 
to derive either the true performance in closed form, or estimate it using a very large 
simulated dataset. In such situations, the true performance must be estimated from a 
single testing dataset (testers). The way we obtain such a testing dataset defines two 
major paradigms, discussed next. 

In Paradigm I, we only have one dataset t, usually called the design or construction 
dataset, from which we have to make up a training dataset tr and a testing dataset 
ts, such that t = tr ∪ ts. Otherwise, training and testing on the same dataset t would 
provide a very optimistic estimate of the performance measure. This splitting is per-
formed iteratively using one of the resampling techniques, e.g., jackknife, bootstrap, 
or cross validation. In each resampling iteration we get a different pair of training 
and testing datasets, on which the algorithm will be trained and tested, respectively. 
The results from these different iterations will be compiled together, as defined by 
the resampling method, to provide a single estimate of the performance measure. It 
is obvious that the performance estimation obtained from any of these methods will 
vary with varying the design dataset t. This chapter is dedicated to reviewing this 
paradigm, its different estimators, and the variance estimation of these estimators. 

It is worth mentioning that fatal fallacies are committed by practitioners when 
using this paradigm. For example, a very common mistake is using the whole dataset 
t to learn some statistical properties of the different classes of the classification 
problem, mistakenly naming this a data preprocessing step, using these properties
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to construct a classifier, then excluding this step from the resampling mechanism 
afterwards. Although the correct way of performing preprocessing is explained in 
textbooks (see, e.g.,Hastie et al. [20], Sect. 7.10.2), we still see this mistake in several 
occasions in both academia and industry. 

In Paradigm II, it is required, or even mandated (e.g., in several public-policy-
making or regulatory settings), to maintain what might be called the traditional 
data hygiene of two independent datasets: the design dataset t, and a final testing 
dataset TS, which is a sequestered testing dataset that has never been available to the 
design procedure, but for just onetime final testing. Assessing a ML algorithm from 
independent testing dataset is as simple as applying the estimators of the performance 
measure of interest (Sect. 1.2) on the testing dataset. However, the estimator will then 
have two sources of variability, the design and the testing datasets. The mathematical 
details of this paradigm and the estimation of this variance are discussed in Yousef 
et al. [34], Chen et al. [4], and not reviewed in our present chapter. 

Although it may seem very safe to use this testing paradigm, some practitioners 
abuse it as well. One possible common mistake is that they test several models on 
this sequestered testing set, then they analyze the relative estimated performances. 
Accordingly, these models are redesigned to improve their performance on the testing 
set! Worse than this is keeping iterating this processes several times, which indeed 
turns the independent sequestered testing dataset to be part of the training dataset, 
indirectly through this human mental parsing of the results, which acts as a feedback 
that guides the redesign process. 

Nowadays, it is almost the default in the field of ML to leverage both paradigms 
in the task of model assessment and selection. The available dataset is initially split 
into two datasets: 

1. the design dataset t, from which the ML algorithm is designed. This is conducted 
via one of the resampling methods of paradigm I explained above. Usually, sev-
eral algorithms are used, and several parameters’ values are examined for each 
algorithm. Then, the model with the best performance is chosen. 

2. the sequestered testing dataset TS, on which the final chosen model from paradigm 
I is assessed once and only once, without redesign. This is the final estimation of 
the performance measure that should be reported, along with the estimation of its 
variance. 

It is worth mentioning that, there is a convention in the field to call the dataset ts that 
is split from the design dataset t during the resampling process, a validation dataset 
rather than a testing dataset, to reserve the word testing to the final testing datset TS 
of paradigm II. However, in some applications, the converse is adopted; i.e., ts is 
called the a testing dataset and TS is called a validation dataset. To avoid ambiguity, 
any notation and expression should be defined clearly within any context. 

What is introduced above is valid for any ML problem, whether it is regression 
or classification, and for any performance measure, whether it is the error rate Err, 
AUC, or any other. However, we emphasize below two very important issues. 

(1) The true performance, which we discussed its estimation in this introduction 
so far, is itself a random variable whose randomness arises from the randomness of
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the training dataset, as was explained in the previous chapter. Have we changed the 
training dataset, the true performance would change. For example, and without loss of 
generality (WLOG) but for the sake of illustration, suppose the whole design dataset 
t is used as a training dataset tr and we are interested in the AUC as a performance 
measure. Then, as was explained in the previous chapter, we should be interested in 
the following: 

1. AUCt: the true performance conditional on a particular training dataset t of a 
specified size n. 

2. EtAUCt: the expectation of true performance over the population of training 
datasets of the same size n. 

3. VartAUCt: the variance of the true performance over the population of training 
datasets of the same size n. 

(2) Regarding the meaning and utility of the performance measure, we emphasize 
the importance of the ROC curve and its AUC as a summary measure [2, 18, 19], 
where the former is a manifestation of the trade-off between the two types of error of 
any binary classification rule. We always advocate for the use of the ROC or its AUC 
since they are prevalence independent; i.e., they do not depend on a particular chosen 
threshold, class prior probability, or misclassification costs. Adopting a performance 
measure that is prevalence dependent, e.g., the overall accuracy or its many different 
versions, can provide a misleading measure of the classification power of the clas-
sification algorithm, especially in classification problems that involve, for instance, 
unbalanced data (different class size). Therefore, the present chapter assumes famil-
iarity with the ROC and its AUC, at the level provided in the previous chapter. 
However, for the sake of completeness, all notations are tersely summarized in the 
following subsection. 

1.2 Notation 

Consider the binary classification problem, where a classification rule η gives a score 
of h(x) for the predictor x , and classifies it to one of the two classes by comparing 
this score h(x) to a chosen threshold th. The observation x belongs to one of the two 
classes with distributions Fi , i = 1, 2. The two error components of this rule (e1, or  
the false negative fraction (FNF), and e2 or the false positive fraction (FPF)), along 
with the risk, are given as follows: 

FNF = e1 = 
th{ 

−∞ 

fh (h(x)|ω1) dh(x), (1a) 

FPF = e2 = 
∞{ 

th  

fh (h(x)|ω2) dh(x), (1b)
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R = c12 P1e1 + c21 P2e2. (1c) 

The cost ci j  , i, j = 1, 2 is the cost of classifying an observation as belonging to 
class j whereas it belongs to class i ; cii  = 0, which means there is no cost for correct 
classification; and Pi is the prior probability of each class, i = 1, 2. The risk (1c) is  
called the “error rate” Err, or probability of misclassification (PMC), when putting 
c12 = c21 = 1, which is denoted by the 0-1 cost, or loss. 

The receiver operating characteristics (ROC) curve is a plot of the true positive 
fraction (TPF), which is 1 − FNF, versus the FPF. Then the area under the curve 
(AUC) is given by: 

AUC = 
1{ 

0 

TPF d(FPF). (2a) 

= Pr
[
h(x)|ω2 < h(x)|ω1 

]
, (2b) 

which expresses how the classifier scores for class ω1 are stochastically larger than 
those of class ω2. 

If the distributions F1 and F2 are not known, a setup that is called nonparametric 
or distribution-free, any performance measure can be estimated only numerically 
from a given dataset, called the testing dataset. This is regardless of the testing 
paradigm, i.e., whether this testing dataset is obtained by simulation, resampling, or 
sequestering. This is done by assigning equal probability mass for each observation: 

F̂ : mass 
1 

n 
on ti , i = 1, . . . ,  n, (3) 

where n is the size of the testing dataset. Lemma 1 shows that this is the maximum 
likelihood estimator (MLE) of the distribution F . 

In this case the performance measures (1) can be obtained as follows. 

^FNF = ê1 = 
1 

n 

nΣ  
i=1 

Ih(xi |ω1)<th  (4a) 

^FPF = ê2 = 
1 

n 

nΣ  
i=1 

Ih(xi |ω2)>th (4b) 

^R(η) = 1 

n 
(c12 ê1 n1 + c21 ê2 n2) . (4c) 

The indicator function Icond equals 1 or 0 when the Boolean expression cond is true 
or false, respectively. The values n1 and n2 are the number of observations in the two 
classes respectively, and P̂1 and P̂2 are the estimated a priori probabilities for each 
class.
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As the the two components TPF and FPF defined a single operating point on 
the ROC, the two components ^TPF(= 1 − ^FNF) and ^FPF give one point on the 
empirical (estimated) ROC curve. To draw the complete curve in the nonparametric 
situation, the classifier’s sore is calculated for each point of the available dataset. 
Then all possible thresholds are considered in turn, i.e., the threshold values between 
every two successive scores. At each threshold value a point on the ROC curve is 
calculated. Then the AUC (2a) can be estimated from the empirical ROC curve using 
the trapezoidal rule: 

^AUC = 
1 

2 

nthΣ  
i=2 

(FNFi − FNFi−1) (TPFi + TPFi−1), (5) 

where nth  is the number of threshold values taken over the dataset. By plotting the 
empirical ROC curve, it is easy to see that (5) is the same as the Mann-Whitney 
statistic—which is another form of the Wilcoxon rank-sum test [15, Chap. 4]— 
defined by: 

^AUC = 
1 

n1n2 

n2Σ  
j=1 

n1Σ  
i=1 

ψ 
(
h (xi |ω1) , h 

(
x j |ω2 
))

, (6a) 

ψ(a, b) = 

⎧⎨ 

⎩ 

1 a > b 
1/2 a = b 
0 a < b 

. (6b) 

It is interesting, as well, to know from the theory of U -statistics [25] that the esti-
mator (6) is the uniform minimum variance unbiased estimator (UMVUE) for the 
probability (2b) under the distribution (3). 

All the estimators given above have the nice property of converging to their cor-
responding population definitions, (1) and (2), as the size of the testing set goes 
to infinity. It is worth mentioning that each of the error estimators ê1 and ê2 in (4) 
is called a one-sample statistic, because its kernel I(·) requires only one observation 
from either distributions. However, the AUC estimator in (6) is a two-sample statistic 
since its kernel ψ(·, ·) requires two observations, one from each distribution. This is 
a fundamental difference between both estimators (statistics) which will be treated 
and explained carefully in the present chapter. 

1.3 Roadmap 

The rest of this chapter is organized as follows. Section 2 paves the road to the chapter 
by reviewing the nonparametric estimators for estimating the mean and variance of 
one-sample statistics, including the preliminaries of bootstraps and influence func-
tion. This section is a very concise review mainly of the work done in Hampel [16],
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Efron and Tibshirani [11], and Huber [21]. Section 3 switches gears and reviews the 
nonparametric estimators that estimate the mean and variance of a special kind of 
statistics, i.e., the error rate of classification rules. This section is a concise review of 
the work done mainly in Efron [8], and Efron and Tibshirani [13]. Section 4 explains 
how the nonparametric estimators that estimate the error rate, a one-sample statistic, 
can be extended to estimate the AUC, a two-sample statistic. It does so by provid-
ing theoretical parallelism between the two sets of estimators and showing that the 
extension is rigorous and not just an ad hoc application. Section 6 concludes the 
chapter and provides a discussion and an advice for practitioners. 

2 Nonparametric Methods for Estimating the Bias 
and the Variance of a Statistic 

Consider a statistic s that is a function of a dataset x : {xi , i = 1, . . . ,  n}, where 
xi 

i.i.d ∼ F . The statistic s is now a random variable and its variability comes from the 
variability of xi . Suppose that this statistic is used to estimate a real-valued parameter 
θ = f (F). Then θ̂ = s (x) has expected value E s(x) and variance Var s(x). The  
mean squared error (MSE) of the estimator θ̂ is defined as: 

MSE( ̂θ)  = E 
[
θ̂ − θ 
]2 

. (7) 

The root of the mean squared error (RMS) has the same units and is on the same 
scale of the original variable θ , and hence has more intuitive value. The bias of 
the estimator θ̂ = s (x) is defined by the difference between the true value of the 
parameter and the expectation of the estimator, i.e., 

biasF 
(
θ̂
) 

= EFs (x) − θ. (8) 

Then, it is known that, the MSE in (7) can be decomposed to: 

MSE( ̂θ)  = bias2 F 
(
θ̂
) 

+ VarF θ̂ . (9) 

A critical question is whether the bias and variance of the statistic s in (9) may be 
estimated from the available dataset? 

2.1 Bootstrap Estimate 

The bootstrap was introduced by Efron [5] to estimate the standard error of a statistic. 
The bootstrap mechanism is implemented by treating the current dataset x as a
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Fig. 1 Bootstrap mechanism: B bootstrap replicates are withdrawn (by sampling and replacement) 
from the original sample. From each replicate the statistic is calculated. (The idea behind this figure 
first appeared in [11, Fig. 6.1, pp. 48]) 

representation for the population distribution F ; i.e., approximating the distribution 
F by the MLE defined in (3). Then B bootstrap samples are drawn from that empirical 
distribution. Each bootstrap replicate is of size n, the same size as x, and is obtained 
by sampling with replacement. Then in a bootstrap replicate some case xi , in general, 
will appear more than once at the expense of another x j that will not appear. The 
original dataset will be treated now as the population, and the replicates will be 
treated as samples from the population. This situation is illustrated in Fig. 1. Each of 
these bootstrap replicates is denoted by x∗b, b = 1, . . . ,  B, and the corresponding 
bootstrap replications of the statistics θ̂ = s(x) itself are given by:
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θ̂ ∗b = s(x∗b ), b = 1, . . . ,  B, (10) 

The bootstrap estimate of bias and standard error are defined by: 

biasB( ̂θ)  = θ̂ ∗ − θ̂ ,  (11) 

ŜEB = 

[
1 

(B − 1) 

BΣ  
b=1 

[
θ̂ ∗b − θ̂ ∗

]2 ]1/2 
, (12) 

θ̂ ∗ = 
1 

B 

BΣ  
b=1 

θ̂ ∗b . (13) 

Either in estimating the bias or the standard error, the larger the number of bootstraps 
B the closer the estimate to the asymptotic value, i.e., 

lim 
B→∞ 

ŜEB ( ̂θ ∗) = SE F̂ ( ̂θ ∗). (14) 

For more details and some examples the reader is referred to [11, Chap. 6, 7, and 
10]. 

2.2 Jackknife Estimate 

Instead of replicating from the original dataset, a new set x(i) is created by removing 
the case xi from the dataset. Then the jackknife samples are defined by: 

x(i) = (x1, . . . ,  xi−1, xi+1, . . . ,  xn), i = 1, . . . ,  n, (15) 

and the n-jackknife replications of the statistic θ̂ are: 

θ̂(i) = s(x(i)), i = 1, . . . ,  n. (16) 

The jackknife estimates of bias and standard error are defined by: 

^biasJ = (n − 1)( ̂θ J − θ̂ ),  (17) 

ŜEJ = 

[
n − 1 
n 

nΣ  
i=1 

( ̂θ(i) − θ̂ J )2 
]1/2 

, (18) 

θ̂ J = 
1 

n 

nΣ  
i=1 

θ̂(i). (19)
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For motivation behind the factors (n − 1) and (n − 1)/n in (17) see  [11, Chap. 11]. 
The jackknife estimate of variance is discussed in detail in Efron [6] and Efron and 
Stein [10]. 

2.3 Bootstrap Versus Jackknife 

Usually, it requires up to 200 bootstraps to yield acceptable bootstrap estimates; (in 
special situations like estimating the uncertainty in classifier performance it may 
take up to thousands of bootstraps). Hence, this requires calculating the statistic θ̂ 
the same number of times B, as well. In the case of the jackknife, it requires only n 
calculations as shown in (16). If the sample size is smaller than the required number 
of bootstraps, the jackknife is more economical in terms of computational cost. 

In terms of accuracy, the jackknife can be seen to be an approximation to the 
bootstrap when estimating the standard error of a statistic [11, Chap. 20]. Thus, if the 
statistic is linear they almost give the same result; (the bootstrap gives the jackknife 
estimate multiplied by [(n − 1)/n]1/2). A statistic s(x) is said to be linear if: 

s(x) = μ + 
1 

n 

nΣ  
i=1 

α(xi ), (20) 

where μ is a constant and α(·) is a function. This also can be viewed as having one 
data point at a time in the argument of the function α. Similarly, the jackknife can be 
seen as an approximation to the bootstrap when estimating the bias. If the statistic 
is quadratic, they almost agree except in a normalizing factor . A statistic s(x) is 
quadratic if: 

s(x) = μ + 
1 

n

Σ  
1≤i≤n 

α(xi ) + 
1 

n2
Σ  

1≤i < j≤n 

β(xi , x j ). (21) 

An in-depth treatment of the bootstrap and jackknife, and their relation to each other, 
in mathematical detail is provided by Efron [7, Chaps. 1–5]. 

If the statistic is not smooth the jackknife will fail. Informally speaking, a statistic 
is said to be smooth if a small change in the data leads to a small change in the 
statistic. An example of a non-smooth statistic is the median. If the sample cases are 
ranked and the median is calculated, it will not change when a sample case changes 
unless this sample case bypasses the median value. Using the same argument, we 
can see that an example of a smooth statistic is the sample mean.
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2.4 Influence Function, Infinitesimal Jackknife, 
and Estimate of Variance 

The infinitesimal jackknife was introduced by Jaeckel [22]. The concept of the influ-
ence curve was introduced later by Hampel [16]. In the present context and for 
pedagogical purposes, the influence curve will be explained before the infinitesimal 
jackknife, since the former can be understood as the basis for the latter. 

Following Hampel [16], let R be the real line and s be a real-valued functional 
defined on the distribution F , which is defined on R. The distribution F can be 
perturbed by adding some probability measure (mass) on a point x . This should be 
balanced by a decrement in F elsewhere, resulting in a new probability distribution 
Gε,x defined by: 

Gε,x = (1 − ε)F + εδx , x ∈ R. (22) 

Then, the influence curve ICs,F (·) is defined by: 

ICs,F (x) = lim 
ε→0+ 

s ((1 − ε) F + εδx ) − s (F) 
ε 

. (23) 

It should be noted that F does not have to be a discrete distribution. A simple 
example of applying the influence curve concept is to consider the expectation 
s = 
{ 
x d  F(x) = μ. Substituting back in (23) gives:  

ICs,F (x) = x − μ. (24) 

The meaning of this formula is the following: the rate of change of the functional s 
with the probability measure at a point x is x − μ. This is how the point x influences 
the functional s. The influence curve can be used to linearly approximate a functional 
s, along with its variance, which is similar to taking up to only the first-order term 
in a Taylor series expansion (Appendix 7.2). 

It is important to state here that s should be a functional in F̂ that is an approxi-
mation to F , as was initially assumed in (23). If for example the value of the statistic 
s changes if every sample case xi is duplicated, i.e., repeated twice, this is not a 
functional statistic. An example of a functional statistic is the biased version of the 
variance estimate Σi (xi − x̄ i )2/n, while the unbiased version Σi (xi − x̄ i )2/(n − 1) 
is not a functional statistic. Generally, any approximation s( F̂) to the functional 
s(F), by approximating F by the MLE F̂ , obviously will be functional. In such a 
case the statistic s( F̂) is called the plug-in estimate of the functional s(F). Moreover, 
the influence function (IF) method for variance estimation is applicable only to those 
functional statistics whose derivative (73) exists. If that derivative exists, the statistic 
is called a smooth statistic; i.e., a small change in the dataset leads a small change in 
the statistic. For instance, although the median is a functional statistic in the sense 
that duplicating any sample case will result in the same value of the median, it is not 
smooth as described at the end of Sect. 2.3. A key reference for the IF is Hampel 
[17]. Appendix 7.2 shows an interesting connection to the jackknife estimate.
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3 Nonparametric Methods for Estimating the Error Rate 
of a Classification Rule 

The review provided in this section is a terse summary of the main work of Efron [8, 
11, 13]. In the previous section the statistic, or generally speaking the functional, was 
a function of just one dataset. For a non-fixed design, i.e., when the predictors of the 
testing set do not have to be the same as the predictors of the training dataset, a slight 
clarification for the previous notations is needed. The classification rule trained on 
the training dataset t will be denoted as ηt. Any new observation that does not belong 
to t will be denoted by t0 = (x0, y0). Therefore, the classification loss is given by 
L(y0, ηt(x0)). Any performance measure conditional on that training dataset will be 
similarly subscripted. Thus, all the performance measures should be subscripted t; 
and hence the risk and the error rate (1) should be denoted by Rt and Errt, respectively. 
In the sequel, for simplicity and WLOG, the 0-1 loss function will be used. In such 
a case the conditional error rate will be given by: 

Errt = E0F L (y0, ηt (x0)) , (x0, y0) ∼ F. (25) 

The expectation E0F is subscripted so to emphasize that it is taken over the obser-
vations t0 /∈ t. If the performance is measured in terms of the error rate and we are 
interested in the mean performance, not the conditional one, then it is given by: 

Err = EtErrt. (26) 

The expectation Et is the expectation over the training dataset t, which would be the 
same if we had written EF ; for notation clarity the former is chosen. 

Consider a classification rule ηt already trained on a training dataset t. A natural 
next question is, given that there is just a single dataset available, how to use this 
dataset in assessing the classifier performance as well? Said differently, how should 
one estimate, using only the available dataset, the true classification performance of 
a classification rule in predicting new observations; these observations are different 
from those on which the rule was trained. In this section, we will review the principal 
methods in the literature for estimating both the true error rate (25) and its mean (26) 
of a classification rule. 

3.1 Apparent Error 

The apparent error is the error of the fitted model when it is tested on the same 
training data. Of course it is downward biased with respect to the true error rate since 
it results from testing on the same information used in training [9]. The apparent 
error is defined by:
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Errt = E F̂ L(y, ηt(x)), (x, y) ∈ t (27a) 

= 
1 

n 

nΣ  
i=1 

[
Iĥt(xi |ω1)<th  + Iĥt(xi |ω2)>th  

] 
. (27b) 

Overfitting a classifier to minimize the apparent error is not the goal. The goal is 
to minimize the true error rate (25) or its mean (26). 

3.2 Cross Validation (CV) 

The basic concept of CV, as a resampling approach, has been proposed in different 
articles since the mid-1930s. The concept simply leans on splitting the data into two 
parts; the first part is used in design (or training) without any involvement of the 
second part. Then the second part is used to test the designed procedure; this is to 
test how the designed procedure will behave for new datasets. Stone [28] is a key  
reference for CV that proposes different criteria for optimization. 

CV can be used to assess the prediction error of a model or in model selection. 
The true error  rate  in  (25) is the expected error rate for a classification rule if tested 
on the population, conditional on a particular training dataset t. This performance 
measure can be approximated by the leave-one-out CV (LOOCV) by: 

Êrrcv1 t = 
1 

n 

nΣ  
i=1 

L (yi , ηt(i ) (xi )) , (xi , yi ) ∈ t. (28) 

This is done by training the classification rule on the dataset t(i) that does not include 
the case ti ; then testing the trained rule on that omitted case. This proceeds in “round-
robin” fashion until all cases have contributed one at a time to the error rate. There is 
a hidden assumption in this mechanism: the training dataset t will not change very 
much by omitting a single case. Therefore, testing on the omitted observation one at 
a time accounts for testing approximately the same trained rule on n new cases, all 
different from each other and different from those the classifier has been trained on. 
Besides this LOOCV, there are other versions named K -fold (or leave-n/K -out). In 
such versions the whole dataset is split into K roughly equal-sized subsets, each of 
which contains approximately n/K observations. The classifier is trained on K − 1 
subsets and tested on the left-out one; hence we have K iterations. It is clear that the 
LOOCV is a special case of the K -fold CV, where K = n. 

It is of interest to assess this estimator to see whether it estimates the conditional 
true error E

[
Êrrcv1 t − Errt 

]2 
, with small MSE, as was designed or not. Many simula-

tion results, e.g., Efron [8], show that there is only a very weak correlation between 
the CV estimator Êrrcv1 t and the conditional true error rate Errt. This issue is discussed 
in mathematical detail in the excellent paper by Zhang [35]. Those other estimators 
that are based on resampling as well, and will be reviewed below, are shown to have 
this same attribute. This very interesting (and perhaps surprising) result means the
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following: whether the estimator is designed to estimate the conditional performance 
or the mean performance it indeed estimates the latter because of the weak correlation 
with the former. 

3.3 Bootstrap Methods for Error Rate Estimation 

The prediction error in (25) is a function of the training dataset t and the testing popu-
lation F . Bootstrap estimation can be implemented here by treating the empirical dis-
tribution F̂ as an approximation to the actual population distribution F . By replicating 
from that distribution one can simulate many training datasets t∗b, b = 1, . . . ,  B. 
For every replicated training dataset the classifier will be trained and then tested on 
the original dataset t. This is the simple bootstrap (SB) estimator approach [11, Sect. 
17.6] that was defined formally by: 

ÊrrSB  t = E∗ 

nΣ  
i=1 

L(yi , ηt∗ (xi ))/n, F̂ → t∗. (29) 

It should be noted that this estimator no longer estimates the true error rate (25) 
because the expectation taken over the bootstraps mimics an expectation taken over 
the population of trainers, i.e., it is not conditional on a particular training dataset. 
Rather, the estimator (29) estimates the expected performance of the classifier EFErrt. 
For a finite number of bootstraps, the expectation (29) can be approximated by: 

ÊrrSB  t = 
1 

B 

BΣ  
b=1 

nΣ  
i=1 

L (yi , ηt∗b (xi )) /n. (30) 

3.3.1 Leave-One-Out Bootstrap (LOOB) 

The previous estimator is obviously biased since the original dataset t used for testing 
includes part of the training data in every bootstrap replicate. Efron [8] proposed that, 
after training the classifier on every bootstrap replicate, it is tested on those cases 
in the set t that are not included in the training; this concept can be developed as 
follows. Equation (30) can be rewritten by interchanging the order of the double 
summation to give: 

ÊrrSB  t = 
1 

n 

nΣ  
i=1 

BΣ  
b=1 

L (yi , ηt∗b (xi )) 
/
B. (31) 

This equation is formally identical to (30) but it expresses a different mechanism for 
evaluating the same quantity. It says that, for a given point, the average performance
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over the bootstrap replicates is calculated; then this performance is averaged over all 
the n cases. Now, if every case ti is tested only from those bootstraps that did not 
include it in the training, a slight modification of the previous expression yields the 
leave-one-out bootstrap (LOOB) estimator: 

Êrr(1) 
t = 

1 

n 

nΣ  
i=1 

[ 
BΣ  

b=1 

I b i L (yi , ηt∗b (xi )) 
/ BΣ  

b'=1 

I b
' 

i 

] 
, (32) 

where the indicator function I b i equals one when the case ti is not included in the 
training replicate b, and zero otherwise. Efron and Tibshirani [13] emphasized a 
critical point about the difference between this bootstrap estimator and the LOOCV. 
The CV tests on a given sample case ti , having been trained just once on the remaining 
dataset. By contrast, the LOOB tests on a given sample case ti using a large number of 
classifiers that result from a large number of bootstrap replicates that do not contain 
that sample. This results in a smoothed cross-validation-like estimator. We explained 
and elaborated on this smoothness property in Yousef [30]. 

3.3.2 The Refined Bootstrap (RB) 

The SB and the LOOB, from their definitions, look like designed to estimate the mean 
true error rate (26) of a classifier. For estimating the true conditional error rate of a 
classifier, conditional on a particular training dataset, Efron [8] proposed to correct 
for the downward biased estimator Errt. Since the true error rate Errt can be written 
as Errt + (Errt − Errt), then it can be approximated by Errt + EF (Errt − Errt). The  
term (Errt − Errt) is called the optimism. The expectation of the optimism can be 
approximated over the bootstrap population. Finally the refined bootstrap approach, 
as named in Efron and Tibshirani [11, Sect. 17.6], gives the estimator: 

ÊrrRB  t = Errt + E∗(Errt∗( F̂) − Errt∗), (33) 

where Errt∗( F̂) represents the error rate obtained from training the classifier on 
all bootstrap replicates t∗ and testing on the empirical distribution F̂ . This can be 
approximated for a limited number of bootstraps by: 

ÊrrRB  t = Errt + 
1 

B 

BΣ  
b=1 

[ 
nΣ  

i=1 

L (yi , ηt∗b (xi )) /n − 
nΣ  

i=1 

L 
(
y∗ 
ib, ηt∗b (x

∗ 
ib)
) 
/n 

] 
. (34) 

3.3.3 The 0.632 Bootstrap 

If the concept used in developing the LOOB estimator, i.e., testing on cases not 
included in training, is used again in estimating the optimism described above, this
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gives the 0.632 bootstrap estimator. Since the probability of including a case ti in the 
bootstrap t∗b is given by: 

Pr(ti ∈ t∗b ) = 1 − (1 − 1/n)n ≈ 1 − e−1 = 0.632, (35) 

the effective number of sample cases contributing to a bootstrap replicate is approx-
imately 0.632 of the size of the training dataset. Efron [8] introduced the concept of 
a distance between a point and a sample in terms of a probability. Having trained 
on a bootstrap replicate, testing on those cases in the original dataset not included 
in the bootstrap replicate accounts for testing on a set far from the training one, i.e., 
the bootstrap replicate. This is because every sample case in the testing set has zero 
probability of belonging to the training dataset, i.e., very distant from the training 
dataset. This is a reason for why the LOOB is an upwardly biased estimator. Efron 
[8] showed roughly that: 

EF 
[
Errt − Errt 

] ≈ 0.632 EF 
[
Êrr(1) 

t − Errt 
] 
. (36) 

Substituting back in (33) gives the 0.632 estimator: 

Êrr(0.632) 
t = 0.368 Errt + 0.632 Êrr(1) 

t . (37) 

The proof of the above results can be found in Efron [8] and Efron and Tibshirani 
[11, Sect. 6]. 

The motivation behind this estimator as stated earlier is to correct for the downward 
biased apparent error by adding a piece of the upward biased LOOB estimator. But 
an increase in variance should be expected as a result of adding this piece of the 
relatively variable apparent error. Moreover, this new estimator is no longer smooth 
since the apparent error itself is unsmooth. 

3.3.4 The 0.632+ Bootstrap Estimator 

The 0.632 estimator reduces the bias of the apparent error. But for over-trained 
classifiers, i.e., those whose apparent error tends to be zero, the 0.632 estimator is 
still downward biased. Breiman et al. [3] provided the example of an overfitted rule, 
like 1NN where the apparent error is zero. If, however, the class labels are assigned 
randomly to the predictors the true error rate will obviously be 0.5. But substituting 
in (37) gives an estimate of 0.632 × 0.5 = 0.316. To account for this bias for such 
over-fitted classifiers, Efron and Tibshirani [13] defined the no-information error 
rate γ by: 

γ = E0Find  L (y0, ηt(x0)) , (38) 

where Find  means that x0 and y0 are distributed marginally as F but they are inde-
pendent. Or said differently, the label is assigned randomly to the predictor. Then for 
a training sample t, γ can be estimated by:
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γ̂ = 
1 

n2 

nΣ  
i=1 

nΣ  
j=1 

L 
(
yi , ηt(x j )

)
. (39) 

This means that the n predictors have been permuted with the n responses to produce 
n2 non-informative cases. In the special case of binary classification, let p̂1 be the 
proportion of the response classified as belonging to class 1. Also, let q̂1 be the 
proportion of the responses classified as belonging to class 1. Then (39) reduces to: 

γ̂ = p̂1(1 − q̂1) + (1 − p̂1) ̂q1. (40) 

Also define the relative overfitting rate: 

R̂ = 
Êrr(1) 

t − Errt 
γ̂ − Errt 

. (41) 

Efron and Tibshirani [13] showed that the bias of the 0.632 estimator for the case of 
over-fitted classifiers is alleviated by using a renormalized version of that estimator: 

Êrr(0.632+) 
t = (1 − ŵ)Errt + ŵ ̂Err(1) 

t , (42a) 

ŵ = 0.632 

1 − 0.368 R̂ 
. (42b) 

It is useful to express the 0.632+ estimator in terms of its predecessor, the 0.632 
estimator. Combining (37), (40), and (41) then substituting in (42a) yields: 

Êrr(0.632+) 
t = Êrr(0.632) 

t + ( ̂Err(1) 
t − Errt) 

0.368 · 0.632 · R̂ 
1 − 0.368 R̂ 

. (43) 

Efron and Tibshirani [13] consider the possibility that R̂ lies out of the region [0, 1]. 
This leads to their proposal of defining: 

Êrr(1)' 
t = min(Êrr(1) 

t , γ̂ ),  (44) 

R̂' = 
{ 

(Êrr(1) 
t − Errt)/( ̂γ − Errt) Err t < Êrr(1) 

t < γ  
0 otherwise 

, (45) 

to obtain a modification to (43) that finally becomes: 

Êrr 
(0.632+) 
t = Êrr (0.632) t + ( ̂Err(1)' 

t − Errt) 
0.368 · 0.632 · R̂' 

1 − 0.368 R̂' . (46)



62 W. A. Yousef

3.4 Estimating the Standard Error of Error Rate Estimators 

What have been reviewed above are several resampling methods: the CV, 0.632, and 
0.632+ estimate the conditional error rate of a classification rule, conditional on that 
training dataset; and the LOOB estimates the mean error rate, where the expectation 
is taken over the population of training datasets. Regardless of what the estimator is 
designed to estimate, it is still a function of the current dataset t, i.e., it is a random 
variable. If, e.g., the LOOB estimator Êrr(1) 

t is considered, it estimates a constant real-
valued parameter E0FEF L(y0, ηt(x0)) with expectation taken over all the trainers and 
then over all the testers, respectively; this is the overall mean error rate. Yet, Êrr(1) 

t is a 
random variable whose variability comes from the finite size of the available dataset. 
If the classifier is trained and tested on a very large number of observations, this 
would approximate training and testing on the entire population, and the variability 
would shrink to zero. This also applies for any performance measure other than the 
error rate. So, we are interested now in estimating Vart Êrr

(1) 
t , the variance of the 

estimator, not estimating VartErrt, the variance of the true performance. 
The next question then is, having estimated the mean performance of a classifier: 

what is the associated uncertainty of this estimate. Said differently: an estimate of 
the variance of this estimator be obtained from the same training dataset? Efron 
and Tibshirani [13] proposed the use of the IF method (Sect. 2.4), to estimate the 
uncertainty (variability) in Êrr(1) 

t . The reader is alerted that estimators that incorporate 
a piece of the apparent error are not suitable for the IF method. Such estimators are 
not smooth because the apparent error itself is not smooth. 

By recalling the definitions of Sect. 2.4, Êrr(1) 
t is now the statistic s( F̂). To simplify 

notation, the error L(yi , ηt∗b (xi )) may be denoted by Lb 
i , and define the following 

notation: 

lb · = 
1 

n 

nΣ  
i=1 

I b i L
b 
i , (47) 

Also, define N b i to be the number of times the case ti is included in the bootstrap b. 
Then, it has been proven in Efron and Tibshirani [12] that the IF of such an estimator 
is given by: 

∂s( F̂ε,i ) 
∂ε 

|||||
ε=0 

= (2 + 1 

n − 1 
)( Êi − Êrr(1) 

t ) + 
n
Σ  B 

b=1 (N 
b 
i − N̄ i )I b iΣ  B 

b=1 I 
b 
i 

. (48) 

Combining (78) and (48) gives an estimation to the uncertainty in Êrr(1) 
t .
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4 Nonparametric Methods for Estimating the AUC 
of a Classification Rule 

In the present section, we extend the study carried out in Efron [8], Efron and Tibshi-
rani [13], and summarized in Sect. 3, to construct nonparametric estimators for the 
AUC (a two-sample statistic) analogue to those of the error rate (a one-sample statis-
tic). Although some previous experimental comparative studies [26, 27, 32] were  
conducted to compare some of these resampling-based AUC estimators, in particular 
the 0.632 versions, there was no theoretical justification of using these estimators for 
the AUC. We provide here a full account of the different versions of bootstrap esti-
mators reviewed in Sect. 3 and show how they can be formally extended to estimate 
the AUC. 

4.1 Construction of Nonparametric Estimators for AUC 

Before switching to the AUC, some more elaboration on Sect. 3 is needed. The SB 
estimator (29) can be rewritten as: 

ÊrrSB  t = E∗EF̂ 

[
L(ηt∗ (x), y)|t∗] . (49) 

Since there would be some observation overlap between t and t∗, this approach suf-
fers an obvious bias as was introduced in that section. This was the motivation behind 
interchanging the expectations and defining the LOOB (Sect. 3.3.1). Alternatively, 
we could have left the order of the expectation but with testing on only those obser-
vations in t that do not appear in the bootstrap replication t∗, i.e., the distribution 
F̂ (∗). The parenthesis notation (∗) refers to excluding from F̂ , in the testing stage, 
the training cases t∗ that were generated from the bootstrap replication. We call the 
resulting estimator Êrr(∗) 

t , which we define formally by: 

Êrr(∗) 
t = E∗E F̂ (∗) 

[
L(ηt∗ (x), y)|t∗] (50) 

We can give the inner expectation the notation Errt∗b ( ̂F (∗) ), and rewrite the estimator 
as: 

Êrr(∗) 
t = E∗Errt∗b (F̂ (∗) ) (51a) 

= 
1 

B 

BΣ  
b=1 

[ 
NΣ  
i=1 

I b i L(ηt∗b (xi ), yi )
/ NΣ  

i '=1 

I b i ' 

] 
, (51b) 

where the indicator I b i equals one if the observation ti is excluded from the bootstrap 
replication t∗b, and equals zero otherwise. The inner expectation in (50) is taken over 
those observations not included in the bootstrap replication t∗, whereas the outer 
expectation is taken over all the bootstrap replications.
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Analogously to Sect. 3, and to what has been introduced above, we can define 
several bootstrap estimators for the AUC. The start is the SB estimate, which can be 
defined as: 

^AUC 
SB  

t = E∗AUCt∗ ( ̂F), F̂ → t∗ (52a) 

= E∗ 

⎡ 

⎣ 1 

n1n2 

n2Σ  
j=1 

n1Σ  
i=1 

ψ(  ̂ht∗ (xi ), ĥt∗ (x j )) 

⎤ 

⎦ , xi ∈ ω1, x j ∈ ω2. (52b) 

This averages the Mann-Whitney statistic over the bootstraps, where AUCt∗ (F̂) 
refers to the AUC obtained from training the classifier on the bootstrap replicate t∗ 

and testing it on the empirical distribution F̂ . In the approach used here, the boot-
strap replicate t∗ preserves the ratio between n1 and n2, which is called stratification. 
That is, the training sample t is treated as t = t1 ∪ t2, t1 ∈ ω1, t2 ∈ ω2; then n1 
cases are replicated from the first-class sample and n2 cases are replicated from the 
second-class sample to produce t∗1 and t∗2 respectively, where t∗ = t∗1 ∪ t∗2 . This was 
not needed when the performance measure was the error rate since it is a statistic that 
does not operate simultaneously on two different sets of observations as the Mann-
Whitney statistic does (in U -statistic theory [25], error rate and Mann-Whitney are 
called one-sample and two-sample statistics respectively). The expectation (52a) is  
approximated by averaging over a finite number of bootstrap: 

^AUC 
SB  

t = 
1 

B 

BΣ  
b=1 

AUCt∗b (F̂), (53) 

The same motivation behind the estimator (32) can be applied here, i.e., testing 
only on those cases in t that are not included in the training dataset t∗b, in order to 
reduce the bias. This can be carried out in (53) without interchanging the summation 
order. The new estimator is named ^AUC 

(∗) 

t , where the parenthesis notation (∗) refers 
to the exclusion, in the testing stage, of the training cases that were generated from 
the bootstrap replication. Formally, we define this as: 

^AUC 
(∗) 

t = E∗AUCt∗b (F̂
(∗) ) (54a) 

= 
1 

B 

BΣ  
b=1 

⎡ 

⎣ 
n2Σ  
j=1 

n1Σ  
i=1 

ψ(  ̂ht∗ (xi ), ĥt∗ (x j ))I 
b 
i I 

b 
j 

/ n1Σ  
i '=1 

I b i ' 
n2Σ  
j '=1 

I b j ' 

⎤ 

⎦ . (54b) 

The RB and 0.632 estimators can be introduced here in the same way it was used 
for the true error rate (Sect. 3.3.3) as:  

^AUC 
RB  

t = AUCt + E∗ 
[
AUCt∗( ̂F) − AUCt∗ 

] 
. (55)
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Then, if testing is carried out on cases excluded from the bootstraps, analogously 
to the 0.632 estimator of the error rate, this gives rise to the 0.632 estimator of the 
AUC: 

^AUC 
(0.632) 

t = 0.368 AUCt + 0.632 ^AUC 
(∗) 

t . (56) 

It should be noted that this estimator is designed to estimate the true AUC for a clas-
sifier trained on the dataset t (the classifier performance conditional on the training 
dataset t). This is on contrary to the estimator (54) that estimates the mean perfor-
mance of the classifier (this is the expectation over the training dataset population 
for the conditional performance). 

The 0.632+ estimator ^AUC 
(0.632+) 

t develops from ^AUC 
(0.632) 

t in the same way as
Êrr(0.632+) 

t developed from Êrr(0.632) 
t in Sect. 3.3.4. There are two modifications to the 

details. The first regards the no-information error rate γ ; it can be proven that the 
no-information AUC is given by γAUC = 0.5 (Lemma 2). The second regards the 
definitions (44), which should be modified to accommodate for the AUC. The new 
definitions are given by: 

^AUC 
(0.632+) 

t = ^AUC 
(0.632) 

t + ( ^AUC (∗)' 
t − AUCt) 

0.368 · 0.632 · R̂' 

1 − 0.368 R̂' , (57a) 

^AUC 
(∗)' 
t = max

( ̂
AUC 

(∗) 

t , γAUC 
)
, (57b) 

R̂' = 

{ 
(^AUC(∗) 

t −AUCt) 
(γAUC−AUCt) 

if AUC t > ^AUC 
(∗) 
t > γAUC 

0 otherwise 
. (57c) 

To this end, we have constructed the AUC nonparametric estimators analogue 
to those of the error rate. Some of them, mainly the 0.632+ estimator, will have 
the least bias [13]. However, all of these estimators are not “smooth” and not eli-
gible for the variance estimation via, e.g., the IF method (Sects. 2.4 and 3.4). The 
only estimator that may seem smooth, is the star versions Êrr(∗) 

t and ^AUC 
(∗) 

t . How-
ever, the inner components Errt∗b (F̂ (∗) ) and AUCt∗b ( ̂F (∗) ) are unsmooth themselves, 
because the classifier is trained on just one dataset. Applying the influence function 
enforces distributing the differential operator ∂/∂ε, of the IF, over the summation to 
be encountered by these unsmooth components. 

4.2 The Leave-Pair-Out Boostrap (LPOB) ^AUC 
(1,1) 

, 
Its Smoothness and Variance Estimation 

The above discussion suggests introducing an analogue to Êrr(1) 
t for measuring the 

performance in AUC. This estimator is motivated from (52a) the same way the 
estimator Êrr(1) 

t was motivated from (31). The SB estimator (52a) can be rewritten as:
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^AUC 
SB  

t = 
1 

n1n2 

n2Σ  
j=1 

n1Σ  
i=1 

E∗ψ(  ̂ht∗ (xi ), ĥt∗ (x j )) (58) 

= 
1 

n1n2 

n2Σ  
j=1 

n1Σ  
i=1 

BΣ  
b=1 

[
ψ(  ̂ht∗b (xi ), ĥt∗b (x j ))

/
B
]
. (59) 

In words, the procedure is to select a pair (one observation from each class) and cal-
culate for that pair the mean—over many bootstrap replications and training—of the 
Mann-Whitney kernel. Then, average over all possible pairs. This procedure will be 
optimistically biased because sometimes the testers will be the same as the trainers. 
To eliminate that bias, the inner bootstrap expectation should be taken only over those 
bootstrap replications that do not include the pair (ti , t j ) in the training. Under that 
constraint, the estimator (58) becomes the leave-pair-out bootstrap (LPOB) estimator: 

^AUC 
(1,1) 

t = 
1 

n1n2 

n2Σ  
j=1 

n1Σ  
i=1 

^AUCi, j , (60a) 

^AUCi, j = 
BΣ  

b=1 

I b j I 
b 
i ψ(  ̂ht∗b (xi ), ĥt∗b (x j ))

/ BΣ  
b'=1 

I b
' 

j I 
b' 
i . (60b) 

The two estimators ^AUC 
(∗) 

t and ^AUC 
(1,1) 

t produce very similar results; this is expected 
since they both estimate the same thing, i.e., the mean AUC. However, the inner com-
ponent ^AUCi, j of the estimator ^AUC 

(1,1) 

t also enjoys the smoothness property of Êrr(1) 
t . 

4.3 Estimating the Standard Error of AUC Estimators 

The only smooth nonparametric estimator for the AUC so far is the LPOB estima-
tor (60). Yousef et al. [33] discusses how to extend the approach of estimating the 
uncertainty in the error rate estimator using the IF method (Sect. 3.4) to estimate 
the uncertainty of this estimator, where interested readers may be referred to for all 
mathematical details and experimental results that show that the IF method provides 
almost unbiased estimation for the standard error of the LPOB estimator. 

5 Illustrative Numerical Examples 

5.1 Error Rate Estimation 

Efron [8] and Efron and Tibshirani [13] provide comparisons of their proposed 
estimators (discussed in Sect. 3). They ran many simulations considering a variety of
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Table 1 Average of RMS error of each estimator over 24 experiments run by Efron and Tibshirani 

[13]. The estimator Êrr 
(1) 
t is the next to the estimator Êrr 

(0.632+) 
t with only 2.5% increase in RMS 

Estimator Average RMS 

Errt 0 

Êrr(1) t 0.083 

Êrr(0.632) t 0.101 

Êrr(0.632+) 
t 0.081 

Errt 0.224 

classifiers and data distributions, as well as real datasets. They assessed the estimators 
in terms of the RMS, the root of the experimental MSE: 

MSE = EMC (Êrrt − Errt)2 (61a) 

= 
1 

G 

GΣ  
g=1 

( ̂Errtg − Errtg )2 , (61b) 

where Êrrtg is the estimator (any estimator) conditional on a training dataset tg , 
and Errtg is the true prediction error conditional on the same training dataset. The 
number of MC trials G in their experiments was 200. The following statement is 
quoted from Efron and Tibshirani [13]: 

The results vary considerably from experiment to experiment, but in terms of RMS error the 
0.632+ rule is an overall winner. 

This conclusion was without stating the criterion for deciding the overall winner. It  
was apparent from their results that the 0.632+ rule is the winner in terms of the 
bias—as was designed for. We calculated the average of the RMS of every estimator 
across all the 24 experiments they ran; Table 1 displays these averages. The estimators
Êrr(1) 

t and Êrr
(0.632+) 
t are quite comparable to each other with only 2.5% increase in the 

average RMS of the former. We will show below in Sect. 5.2 that the AUC estimators 
exhibit the same behavior but with magnified difference between the two estimators. 

5.2 AUC Estimation 

We carried out different experiments to compare the three bootstrap-based esti-
mators ^AUC 

(∗) 

t , ^AUC 
(.632) 

t , and ^AUC 
(.632+) 

t considering different dimensionalities, dif-
ferent parameter values, and training set sizes. All experiments provided consis-
tent and similar results. Here, in this section, we illustrate the results when the 
dimensionality p = 5, for multinormal 2-class data, with Σ1 = Σ2 = I, μ1 = 0, 
μ2 = c1, and c is an adjusting parameter to adjust the Mahalanobis distance
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Table 2 Comparison of the different bootstrap-based estimators of the AUC. They are comparable 
to each other in the RMS sense, ^AUC 

(.632+) 
t is almost unbiased, and all are weakly correlated with 

the true conditional performance AUCt 

Estimator Mean SD RMS RMSAM ρ Size 

AUCt 0.6181 0.0434 0 0.0434 1.0000 

^AUC(∗) 
t 0.5914 0.0947 0.0973 0.0984 0.2553 

^AUC(0.632) 
t 0.7012 0.0749 0.1128 0.1119 0.2559 20 

^AUC(0.632+) 
t 0.6431 0.0858 0.0906 0.0894 0.2218 

AUCt 0.8897 0.0475 0.2774 0.2757 0.2231 

AUCt 0.6231 0.0410 0 0.0410 1.0000 

^AUC(∗) 
t 0.5945 0.0947 0.0956 0.0990 0.2993 

^AUC(0.632) 
t 0.6991 0.0763 0.1066 0.1077 0.3070 22 

^AUC(0.632+) 
t 0.6459 0.0846 0.0863 0.0876 0.2726 

AUCt 0.8788 0.0499 0.2615 0.2606 0.2991 

AUCt 0.6308 0.0400 0 0.0400 1.0000 

^AUC(∗) 
t 0.5991 0.0865 0.0897 0.0922 0.2946 

^AUC(0.632) 
t 0.6971 0.0701 0.0961 0.0965 0.2997 25 

^AUC(0.632+) 
t 0.6442 0.0817 0.0815 0.0828 0.2758 

AUCt 0.8656 0.0471 0.2406 0.2395 0.2833 

AUCt 0.6359 0.0358 0 0.0358 1.0000 

^AUC(∗) 
t 0.6035 0.0840 0.0874 0.0901 0.2904 

^AUC(0.632) 
t 0.6962 0.0688 0.0906 0.0915 0.2934 28 

^AUC(0.632+) 
t 0.6479 0.0792 0.0785 0.0802 0.2719 

AUCt 0.8554 0.0472 0.2253 0.2246 0.2747 

AUCt 0.6469 0.0343 0 0.0343 1.0000 

^AUC(∗) 
t 0.6170 0.0750 0.0792 0.0807 0.2746 

^AUC(0.632) 
t 0.6997 0.0623 0.0818 0.0817 0.2722 33 

^AUC(0.632+) 
t 0.6553 0.0761 0.0752 0.0766 0.2656 

AUCt 0.8419 0.0439 0.2010 0.1999 0.2434 

AUCt 0.6571 0.0308 0 0.0308 1.0000 

^AUC(∗) 
t 0.6244 0.0711 0.0753 0.0783 0.3185 

^AUC(.632) 
t 0.6981 0.0598 0.0710 0.0725 0.3167 40 

^AUC(.632+) 
t 0.6595 0.0739 0.0707 0.0739 0.3092 

AUCt 0.8246 0.0431 0.1735 0.1730 0.2923 

AUCt 0.6674 0.0271 0 0.0271 1.0000 

^AUC(∗) 
t 0.6357 0.0654 0.0690 0.0727 0.3534 

^AUC(.632) 
t 0.6995 0.0556 0.0615 0.0642 0.3570 50 

^AUC(.632+) 
t 0.6685 0.0690 0.0646 0.0690 0.3522 

AUCt 0.8091 0.0406 0.1473 0.1474 0.3517 

AUCt 0.6808 0.0217 0 0.0217 1.0000 

^AUC(∗) 
t 0.6533 0.0546 0.0602 0.0611 0.2451 

^AUC(.632) 
t 0.7053 0.0471 0.0527 0.0531 0.2488 66 

^AUC(.632+) 
t 0.6840 0.0568 0.0556 0.0569 0.2477 

AUCt 0.7946 0.0355 0.1195 0.1192 0.2499 

(continued)



Machine Learning Assessment: Implications to Cybersecurity 69

Table 2 (continued) 

Estimator Mean SD RMS RMSAM ρ Size 

AUCt 0.6965 0.0158 0 0.0158 1.0000 

^AUC(∗) 
t 0.6738 0.0454 0.0483 0.0507 0.3422 

^AUC(.632) 
t 0.7119 0.0399 0.0405 0.0428 0.3492 100 

^AUC(.632+) 
t 0.7004 0.0452 0.0426 0.0453 0.3448 

AUCt 0.7772 0.0312 0.0860 0.0866 0.3596 

AUCt 0.7141 0.0090 0 0.0090 1.0000 

^AUC(∗) 
t 0.6991 0.0298 0.0327 0.0334 0.2288 

^AUC(.632) 
t 0.7205 0.0272 0.0273 0.0279 0.2291 200 

^AUC(.632+) 
t 0.7170 0.0285 0.0279 0.0286 0.2294 

AUCt 0.7573 0.0228 0.0487 0.0489 0.2277 

Δ = 
[
(μ1 − μ2)

'Σ−1(μ1 − μ2)
]1/2 = c2 p. We adjust c to keep a reasonable inter-

class separation of Δ = 0.8. When the classifier is trained, it will be tested on a 
pseudo-infinite test set, here 1000 cases per class, to obtain a very good approxi-
mation to the true AUC for the classifier trained on this very training dataset; this 
is called a single realization or a Monte-Carlo (MC) trial. Many realizations of the 
training datasets with same n are generated over MC simulation to study the mean 
and variance of the AUC for the Bayes classifier under this training set size. The 
number of MC trials is 1000 and the number of bootstraps is 100. It is apparent 
from Fig. 2 that the ^AUC 

(∗) 

t is downward biased. This is a natural opposite of the 
upward bias observed in Efron and Tibshirani [13] when the performance measure 
was the true error rate as a measure of incorrectness, by contrast with the true AUC 

Fig. 2 Comparison of the 
three bootstrap estimators, 
^AUC 

(∗) 
t , ^AUC 

(0.632) 
t , and  

^AUC 
(0.632+) 
t for 5-feature 

predictor. The ^AUC 
(∗) 
t is 

downward biased, while the 
^AUC 

(0.632) 
t is an over 

correction for that bias. 
^AUC 

(0.632+) 
t is almost the 

unbiased version of the 
^AUC 

(0.632) 
t . The figure first 

appeared in Yousef et al. [32] 
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Table 3 Average of RMS error of each estimator over the 10 experiments displayed in Table 2. 

The estimator ^AUC 
(∗) 
t is the next to ^AUC 

(0.632+) 
t with only 9% increase in RMS 

Estimator Average RMS 

AUCt 0 
^AUC 

(∗) 
t 0.07347 

^AUC 
(0.632) 
t 0.07409 

^AUC 
(0.632+) 
t 0.06735 

AUCt 0.17808 

as a measure of correctness. The ^AUC 
(.632) 

t is designed as a correction for ^AUC 
(∗) 

t ; it  
appears in the figure to correct for that but with an over-shoot. The correct adjustment 
for the remaining bias is almost achieved by the estimator ^AUC 

(.632+) 

t . The ^AUC 
(.632) 

t 
estimator can be seen as an attempt to balance between the two extreme biased 
estimators, ^AUC 

(∗) 

t and AUCt. However, it is expected that the component of AUCt 

that is inherent in both ^AUC 
(0.632+) 

t and ^AUC 
(0.632) 

t increases the variance of these two 
estimators that my compensate for the decrease in the bias. Therefore, we assess all 
estimators in terms of the RMS, the root of the MSE defined in (61), and report the 
results in Table 2. In addition, we average the RMS of these estimators over the 10 
experiments of Table 2 and list the average in Table 3. It is evident that the 0.632+ 
is slightly the overall winner with only 9% decrease in RMS if compared to the 
^AUC 

(∗) 

t estimator. This almost agrees with the same result obtained for the error rate 
estimators and reported in Table 1. 

In addition to the RMS, Table 2 compares the estimators in terms of the RMS 
around mean (RMSAM ): the root of the mean squared difference between an estimate 
and the mean performance (the mean over all possible training sets), instead of the 
conditional performance (conditional on a particular training set). The motivation 
behind that is explained next. The estimators ^AUC 

(∗) 

t and ^AUC 
(1,1) 

t seem, at least from 
their formalization, to estimate the mean AUC of the classifier (this is the analogue 
of Êrr(∗) 

t and Êrr(1) 
t ). However, the basic motivation for the ^AUC 

(.632) 

t and ^AUC 
(.632+) 

t 
is to estimate the AUC conditional on the given dataset t (this is the analogue of
Êrr(.632) 

t and Êrr(.632+) 
t ). Nevertheless, as mentioned in Efron and Tibshirani [13] and 

detailed in Zhang [35] the CV, the basic ingredient of the bootstrap based estimators, 
is weakly correlated with the true performance on a sample by sample basis. This 
means that no estimator has a preference in estimating the conditional performance. 
Section 5.3 elaborates more on this phenomenon.
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Fig. 3 The lack of correlation (or the weak correlation) between the bootstrap-based estimators and 
the true conditional performance. Every line connects the true performance of the classifier trained 
on  a data set  ti and the estimated value. The figure represents 15 trials of the 1000 MC trials. Two 
nearby values of true performance may correspond to two widely separated estimates on different 
sides of the mean 

5.3 Components of Variance and Weak Correlation 

Many simulation results, e.g., Efron [8], Efron and Tibshirani [13], show that there is 
only a weak correlation between the CV estimator and the conditional true error rate 
Errt. This issue is discussed in mathematical detail in the excellent paper by Zhang 
[35], which therefore concludes that the CV estimator should not be used to estimate 
the true error rate of a classification rule conditional on a particular training data set. 
Other estimators discussed in the present article have this same attribute, since they 
have the same resampling ingredient of the CV estimator and “we would guess, for 
any other estimate of conditional prediction error” (Sect. 7.12, [20]). We provide 
our simple mathematical elaboration as follows. Denote the true performance of 
the classification rule conditional on the training set t (whether Errt, AUCt, or any  
other performance measure) by St, the unconditional performance by Et St, and an 
estimator of either of them by Ŝt. For easier notation we can unambiguously drop 
the subscript t and decompose the MSE as 

MSE(Ŝ, S) = E(Ŝ − S)2 (62a) 

= E(Ŝ − ES)2 + Var(S) − 2Cov(Ŝ, S). (62b) 

Then, by normalizing with the standard deviations we get: 

MSE(Ŝ, S) 
σSσŜ 

= 
MSE(Ŝ, ES) 

σSσŜ 
+ 

σS 

σŜ 
− 2ρŜS. (63)
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Table 4 Estimating the uncertainty in the estimator that estimates the difference in performance 
of two competing classifiers, the LDA and the QDA. The quantity M represents AUC1 for LDA, 
AUC2 for QDA, and Δ for the difference 
Metric M LDA QDA Δ 
E Mt 0.7706 0.7163 0.0543 

SD Mt 0.0313 0.0442 0.0343 

E M̂ (1,1) 0.7437 0.6679 0.0758 

SD M̂ (1,1) 0.0879 0.0944 0.0533 

E ŜD M̂ (1,1) 0.0898 0.1003 0.0708 

SD ŜD M̂ (1,1) 0.0192 0.0163 0.0228 

This equation relates four crucial components to each other: 

• MSE(Ŝ, S)
/
σSσŜ , the normalized MSE of Ŝ, if we see it as an estimator of the 

conditional performance S. 
• MSE(Ŝ, ES)

/
σSσŜ , the normalized MSE of Ŝ, if we see it as an estimator of the 

expected performance ES (and therefore called MSE around the mean). 
• σS 
/
σŜ , the standard deviation ratio between S and Ŝ. 

• ρŜS , the correlation coefficient between S and Ŝ. 

From (63), an estimator Ŝ is a good candidate to estimate S than ES if its MSE(Ŝ, S) 
is less than its MSE(Ŝ, ES). Then, it is the responsibility of the correlation coefficient 
ρŜS  to be high enough to cancel σS 

/
σŜ and a portion of MSE(Ŝ, ES). Unfortunately, 

this is not the case as we illustrate experimentally in Table 2, which provides all 
quantities of the decomposition (63). It is obvious from the values that RMS(Ŝ, S) 
and RMS(Ŝ, ES) are very close to each other because the quantity σS 

/
σŜ − 2ρŜS ≃ 

0.413 − 2 × 0.290 = −0.167 (on average over the 10 experiments shown in the 
table). Moreover, in some cases, e.g., the first experiment, it goes as low as −0.052. 
The correlation between Ŝ and S is weak to cast Ŝ as an estimate to S, although it 
is designed to estimate it! For more illustration, Fig. 3 visualizes the components in 
Eq. (63) and the numbers in Table 2. This figure shows 15 realizations of the 1000 MC 
trials of the same experiment above. On the right, are the true values of S when trained 
on these different 15 training sets. On the left, are the corresponding 15 estimated 
values of Ŝ. The lines provide links between the true values and the corresponding 
estimates. This figure shows that two nearby true values of S are likely to have two  
widely separated estimated values Ŝ on different sides of the mean. This visually 
illustrates the lack of correlation (or the weak correlation) between the estimators 
and the true conditional performance.
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5.4 Two Competing Classifiers 

If the assessment problem is how to compare two classifiers, rather than the individual 
performance, then the measure to be used is either the conditional difference 

Δt = AUC1t − AUC2t , (64) 

or the mean, unconditional, difference 

Δ = E Δt = E 
[
AUC1t − AUC2t 

] 
, (65) 

where, we defined them for the AUC just for illustration with immediate identical 
treatment for other measures. Then it is obvious that there is nothing new in the 
estimation task, i.e., it is merely the difference of the performance estimate of each 
classifier, i.e.,

Δ̂ = ^EAUC1t − ^EAUC2t , (66) 

where each of the two estimators in (66) is obtained by any estimator. A natural 
candidate, from the point of view of the present chapter is the LPOB estimator 
^AUC 

(1,1) 
—because of both the smoothness and weak correlation issues discussed so 

far. 
Then, how to estimate the uncertainty (variance) of Δ̂. This is very similar to 

estimating the variance in ^EAUCt. There is nothing new in estimating Var Δ̂. It is  
obtained by replacing ^AUC 

(1,1) 
, in Yousef et al. [33], by the statistic Δ̂ in (66). For 

demonstration, typical values are given in Table 4, for comparing the linear and 
quadratic discriminants, where the training set size per class is 20 and number of 
features is 4. 

6 Discussion and Conclusion 

In this chapter, the very important topic of the assessment of ML algorithms is 
reviewed, with an emphasis on the nonparametric assessment of classification rules. 
The topic is quite important to many fields and applications, in particular cyberphys-
ical security, where ML algorithms are almost ubiquitous. We started with reviewing 
the basic nonparametric methods for estimating the bias and variance of a statistic. 
Then, we reviewed the basic resampling-based methods for estimating the error rate 
of a classification rule. Departing from that, we extended these estimators from esti-
mating the error rate (a one-sample statistic) to estimating the AUC (a two-sample 
statistic). This extension is theoretically justified, and not just an ad hoc applica-
tion. Among these estimators, we identified those that are smooth and eligible for 
estimating their standard error using the IF method.
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It was interesting to see, through the whole chapter, the connection among dif-
ferent resampling-based estimators. It is worth mentioning that, in addition to the 
conventional K -fold CV, there are other versions and variants, which are usually 
used in an ad hoc way by many practitioners. The formalization of these versions 
and variants, and the mathematical connection among them, along with their con-
nection to the bootstrap-based estimators, all can be established in the same spirit 
and approach followed in the present chapter. However, many of them are unsmooth 
except possibly the repeated CV, which is partially smooth and suitable for the IF 
method [30, 31]. 

With this rich variety of estimators, a practitioner may legitimately wonder about 
the “optimal” estimator (in terms of any optimality criterion) that should be sys-
tematically used. There are three aspects, on which we can base our comparison: 
accuracy, uncertainty estimation, and computational efficiency. 

In terms of accuracy, it is surprising to know that, from the few number of com-
parative studies available in the literature, there is no overall winner among these 
estimators. All of them have comparable accuracy, measured in terms of RMS, with 
a little superiority of the 0.632+ bootstrap estimator. In addition, and most impor-
tantly, all estimators have a weak correlation with the true conditional performance 
(e.g., Errt, the conditional error rate, or AUCt, the conditional AUC), a phenomenon 
that allows them to be eligible only for estimating the mean true performance (e.g., 
EtErrt or EtAUCt), where the mean is taken over the population of training datasets 
as explained through the chapter. Said differently, the performance estimation that 
a practitioner obtains using, e.g., the CV, is not an estimation of the performance of 
this very trained ML algorithm; rather, it is an estimation of the mean performance 
of this algorithm had we trained it on all possible training datasets of the same size! 
We quote from [20, Sect. 7.12]: 

This phenomenon also occurs for bootstrap estimates of error, and we would guess, for any 
other estimate of conditional prediction error. 

In terms of the variance estimation of these estimators (not the estimation of the 
variance of the algorithm itself), only a few of them are smooth and candidates for a 
sophisticated method like the IF. The ordinary K -fold CV is not among those! Rather, 
only the computationally expensive version of it, the repeated CV, is partially smooth 
as mentioned above. 

It terms of the computational aspects, the bootstrap-based estimators are computa-
tionally expensive. If compared to the conventional K -fold CV, which requires only 
K iterations of both training and testing, the former require hundreds of bootstrap 
replications. Because the majority of recent ML applications involve both massive 
datasets and complex algorithms, including DNN that is very computationally expen-
sive, it is obvious that the CV may be more practical than the bootstrap-based estima-
tors. However, for some other fields, e.g., cyberphysical security, many applications 
produce tabular (structured) data. Tabular data are more suitable for the traditional 
and less computationally expensive ML algorithms. Therefore, serious practitioners 
in these fields and applications may need to keep all of these estimators in their 
toolbox. Moreover, it is quite prudent to see a future benchmark that compiles these
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estimators, along with different datasets from a wide range of applications, in a single 
comprehensive comparative study. 
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7 Appendix 

7.1 Proofs 

Lemma 1 The maximum likelihood estimation (MLE) for the probability mass func-
tion under nonparametric distribution, given a sample of n observations, is given 
by: 

F̂ : mass 1 
n 
on ti , i = 1, . . . ,  n. (67) 

Proof The proof is carried out by maximizing the likelihood function l( f ) = 
n|| 

i=1 
pi , 

which can be rewritten under the constraint
Σ  

i pi = 1, using a Lagrange’s multiplier, 
as: 

l( f ) = 
n|| 

i=1 

pi + λ 

( 
nΣ  

i=1 

pi − 1 

) 

. (68) 

The likelihood (68) is maximized by taking the first derivative and setting it to zero 
to obtain: 

∂l( f ) 
∂p j 

= 
|| 

i /= j 

pi + λ set= 0, j = 1, . . . ,  n. (69) 

These n equations along with the constraint
Σ  

i pi = 1 can be solved straightfor-
wardly to give p̂i = 1 n , i = 1, . . . ,  n, which completes the proof. ◻ 

Lemma 2 The no-information AUC is given by γAUC = 0.5. 

Proof γAUC, an analogue to the no-information error rate γ , is given by (2a) but with 
TPF and FPF given under the no-information distribution E0F (see Sect. 3.3.4). There-
fore, assume that there are n1 and n2 observations from class ω1 and ω2, respectively. 
Assume also for a fixed threshold th  the two quantities that define the error rate are 
TPF and FPF. Also, assume that the sample observations are tested by the classifier 
and each sample has been assigned a decision value (score). Under the no-information 
distribution, consider the following. For every decision value ht(xi ) assigned for 
the observation ti = (xi , yi ), create new n1 + n2 − 1 observations; all of them have
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the same decision value ht(xi ), while their responses are equal to the responses of 
the rest n1 + n2 − 1 observations t j , j /= i . Under this new sample that consists of 
(n1 + n2)2 observations, it is quite easy to see that the new TPF and FPF for the same 
threshold th  are given by FPF0F̂,th  = TPF0F̂,th  = (TPF · n1 + FPF · n2)/(n1 + n2). 
This means that the ROC curve under the no-information rate is a straight line with 
slope equal to one; this directly gives γAUC = 0.5. 

7.2 More on Influence Function (IF) 

Assume that there is a distribution G near to the distribution F ; then under some 
regularity conditions(see, e.g., [21], Chap. 2) a functional s can be approximated as: 

s(G) ≈ s(F) + 
{ 

ICs,F (x) dG(x). (70) 

The residual error can be neglected since it is of a small order in probability. Some 
properties of (70) are: { 

ICT,F (x) dF(x) = 0, (71) 

and the asymptotic variance of s(F) under F , following from (71), is given by: 

VarFs(F) ≃ 
{ [

ICT ,F (x)
]2 

dF(x), (72) 

which can be considered as an approximation to the variance under a distribution G 
near to F . Now, assume that the functional s is a functional statistic in the dataset 
x = {xi : xi ∼ F, i = 1, . . . ,  n}. In that case the influence curve (23) is defined for 
each sample case xi , under the true distribution F as: 

Ui (s, F) = lim 
ε→0 

s(Fε,i ) − s(F) 
ε

= 
∂s(Fε,i ) 

∂ε 

||||
ε=0 

, (73) 

where Fε,i is the distribution under the perturbation at observation xi . Equation (73) 
is called the IF. If the distribution F is not known, the MLE F̂ of the distribution F 
is given by (3), and as an approximation F̂ may substitute for F in (73). The result 
may then be called the empirical IF [24], or infinitesimal jackknife [22]. In such an 
approximation, the perturbation defined in (22) can be rewritten as: 

F̂ε,i = (1 − ε) F̂ + εδxi , xi ∈ x, i = 1, . . . ,  n. (74) 

This kind of perturbation is illustrated in Fig. 4. 
It will often be useful to write the probability mass function of (74) as:
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Fig. 4 The new probability 
masses for the dataset x 
under a perturbation at 
sample case xi obtained by 
letting the new probability, at 
xi exceed the new probability 
at any other case xi by, ε 

f̂ε,i (x j ) = 
{ 1−ε 

n + ε j = i 
1−ε 
n j /= i . (75) 

A very interesting case arises from (75) if  −1/(n + 1) is substituted for ε. In this  
case the new probability mass assigned to the point x j=i in (75) will be zero. This 
value of ε simply generates the jackknife estimate discussed in Sect. 2.2, where the 
whole observation is removed from the dataset. 

Substituting F̂ for G in (70) and combining the result with (73) gives the IF  
approximation for any functional statistic under the empirical distribution F̂ . The  
result is: 

s( F̂) = s(F) + 
1 

n 

nΣ  
i=1 

Ui (s, F) + Op(n
−1 ) (76a) 

≈ s(F) + 
1 

n 

nΣ  
i=1 

Ui (s, F). (76b) 

The term Op(n−1) reads “big-O of order 1/n in probability”. In general, Un = 
Op(dn) if Un/dn is bounded in probability, i.e., Pr{|Un|/dn < kε} > 1 − ε ∀ ε >  0. 
This concept can be found in [1, Chap. 2]. Then the asymptotic variance expressed 
in (72) can be given for s(F) by: 

VarFs = 
1 

n 
EFU

2 (xi , F), (77) 

which can be approximated under the empirical distribution F̂ to give the nonpara-
metric estimate of the variance for a statistic s by: 

V̂ar F̂ s = 
1 

n2 

nΣ  
i=1 

U 2 
i (xi , F̂). (78)
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7.3 ML in Other Fields 

In this section we provide very brief miscellanea from other fields for the reader to 
see a bigger picture of this chapter. As already was mentioned, ML is crucial to many 
applications. For example, in the medical imaging field, a tumor on a mammogram 
must be classified as malignant or benign. This is an example of prediction, regardless 
of whether it is done by a radiologist or by a computer aided detection (CAD) 
software. In either case, the prediction is done based on learning from previous 
mammograms. The features, i.e., predictors, in this case may be the size of the tumor, 
its density, various shape parameters, etc. The output, i.e., response, is categorical and 
belongs to the set: G = {benign, malignant}. There are so many such examples 
in biology and medicine that it is almost a field unto itself, i.e., biostatistics. The 
task may be diagnostic as in the mammographic example, or prognostic where, for 
example, one estimates the probability of occurrence of a second heart attack for 
a particular patient who has had a previous one. All of these examples involve a 
prediction step based on previous learning. A wide range of commercial and military 
applications arises in the field of satellite imaging. Predictors in this case can be 
measures from the image spectrum, while the response can be the type of land, crop, 
or vegetation of which the image was taken. 

Some expressions and terminology of ML belong to some fields and applications 
more than the others. E.g., it is conventional in medical imaging to refer to e1 as 
the false negative fraction (FNF), and e2 as the false positive fraction (FPF). This is 
because diseased patients typically have a higher output value for a test than non-
diseased patients. For example, a patient belonging to class 1 whose test output value 
is less than the threshold setting for the test will be called “test negative”, while the 
patient is in fact in the diseased class. This is a false negative decision; hence the 
name FNF. The situation is reversed for the other error component. 

The importance of the AUC is natural and unquestionable in some applications 
than others. The equivalence of the area under the empirical ROC and the Mann-
Whitney-Wilcoxon statistic is the basis of its use in the assessment of diagnostic tests; 
see Hanley and McNeil [19]. Swets [29] has recommended it as a natural summary 
measure of detection accuracy on the basis of signal-detection theory. Applications of 
this measure are widespread in the literature on both human diagnosis and computer-
aided diagnosis, in medical imaging [23]. In the field of machine learning, Bradley 
[2] has recommended it as the preferred summary measure of accuracy when a single 
number is desired. These references also provide general background and access to 
the large literature on the subject. 

Even the mistakes committed by some practitioners are obvious in some fields 
more than others. E.g., in DNA microarrays, these mistakes are fatal and produce 
very fragile results. This is because of the very high dimensionality of the problem 
with respect to the amount of available dataset. A more elaborate assessment phase 
should follow the design and construction phase in such ill-posed applications.
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A Collection of Datasets for Intrusion 
Detection in MIL-STD-1553 Platforms 

Hadeer Ahmed, Issa Traore, Paulo Quinan, Karim Ganame, 
and Oussama Boudar 

Abstract MIL-STD-1553 is a military standard communication protocol that has 
been around for over four decades and is central to the operation of a wide range 
of defense platforms. At its inception, the standard was conceived with a focus 
only on reliability and fault tolerance, with no attention paid to security concerns. 
However, it has been shown in the last few years that modern defense platforms are 
increasingly the target of cyber-attacks from both state and non-state actors. In such 
a context, MIL-STD-1553 data buses represent prime conduits for compromising 
defense platforms that rely on them for communications. This chapter explores a 
range of cyberattacks against MIL-STD-1553 data buses and present a collection of 
datasets that were generated by executing a selected attack scenarios in a testbed 
environment. It is expected that the proposed datasets can be used toward designing 
and evaluating intrusion detection systems for MIL-STD-153 avionic platforms. 
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1 Introduction 

This MIL-STD-1553 is a standard communication bus that interconnects different 
terminals and devices involved in military vehicles. It is a serial communication bus 
which uses asynchronous Time Division Multiplexing (TDM), which means that 
each device maintains and uses its own clock for transmission. 

It is central to the operation of a broad range of defense platforms deployed 
on various major military aircraft [1]. However, it was designed at a time when 
cybersecurity was an afterthought. Indeed, while MIL-STD-1553 was designed with 
built-in reliability and fault tolerance, it has no inherent cybersecurity protections. 
There are many glaring security flaws in the protocol which could be exploited by 
determined and skilled actors, which is the hallmark of state-actors who are known 
to be constantly probing and threatening national defense posture [2, 3]. 

As highlighted in a master’s thesis conducted by Blaine Losier at the Royal Mili-
tary College (RMC) of Canada, classified research, recently performed, has exposed a 
number of vulnerabilities in the MIL-STD-1553 protocol [4]. For instance, in [5], the 
authors demonstrated the feasibility of cyber-attacks against MIL-STD-1553 buses 
used for communications between subsystems in a satellite. 

Because a complete redesign of the protocol would require a major overhaul of 
the thousands of systems that depend on the bus, a solution that has been advocated in 
the recent literature is to mitigate the security flaws by deploying adequate intrusion 
detection and response systems [6]. An intrusion detection system (IDS) can fit neatly 
in the current MIL-STD-1553 architecture through the so-called Bus Monitor (BM), 
which provides a standard placeholder for monitoring devices hooked on the bus. 
This would represent a cost-effective alternative to a major overhaul of the protocol 
and its dependent systems. 

Our goal is to develop a new anomaly detection model for MIL-STD-1553 that 
uses unsupervised machine learning models. To our knowledge, all the existing rele-
vant IDS proposals focus on supervised models, which may not be effective in the 
context of MIL-STD-1553 systems. Supervised anomaly detection requires a labelled 
dataset to train the corresponding model. In contrast, unsupervised techniques do not 
depend on labelled data for detection. We believe that unsupervised detection is more 
suitable for MIL-STD-1553 platforms due to the limited availability of prior knowl-
edge on the attack methods targeted at these platforms due to their novelty and the 
restricted classification applied for information related to military cyber incidents. 
A system based on this kind of anomaly detection techniques will be able to detect a 
much broader range of anomalies, including novel and unseen ones. The main chal-
lenge in using unsupervised machine learning for detecting anomalies is the need 
to design an effective and efficient mechanism for determining what is normal for 
the time series being monitored. Another major challenge in designing an anomaly 
detection system is the availability of adequate datasets. To our knowledge, only one 
relevant dataset has been released to the public [7]. 

In this chapter, we explore different attack scenarios and use such knowledge to 
generate new datasets through simulation.
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The rest of the chapter is structured as follows. 
Section 2 presents the key concepts and requirements that underlie the normal 

operation of 1553 standard. These provide a foundation to define baseline model for 
the normal operation and behavior of MIL-STD-1553 systems. 

Section 3 presents different potential attack vectors against MIL-STD-1553. 
While such enumeration of attack methods is far from being exhaustive, it helps 
sketch different attack scenarios which can be used in evaluating MIL-STD-1553 
IDS. 

Section 4 presents the simulation environment and the procedures and scenarios 
used to generate our dataset. Section 5 makes concluding remarks. 

2 Mil-STD-1553 Baseline 

The MIL-STD-1553 architecture consists of 5 generic components: bus controller 
(BC), bus monitor (BM), remote terminals (RTs), couplers and the bus itself [1]. A 
coupler isolates connected components from one another and in doing so it helps 
shield the bus from damage resulting from component malfunction. 

The architecture is based on master–slave topology structured around a dual-
redundant serial communication bus. Only one channel transmits data over the bus 
at a time, while the other channel serves as backup. If the transmission of a message 
on the primary bus failed, it will be retransmitted on the backup channel. 

2.1 Major Components 

Bus controller (BC): The communication between the components that are connected 
to the bus is orchestrated in a centralized way around the BC. 

The BC manages communications between the bus components using 
command/response messages and following a strict predefined order and timing. 

The BC is the only component allowed to initiate and mediate the communications 
between the components that are connected to the bus. 

While several connected components may have BC capability, only one active 
BC is allowed at a time. 

Remote Terminal (RT ): An RT is any component that does not operate as BC 
or as BM. RT is a component whose core function is to transmit a message when 
instructed to do so by the BC. It cannot initiate a communication on its own. The BC 
can handle up to 31 connected RTs. 

A key module of the RT is the subsystem, which represents the underlying 
computational unit responsible for the computations and data processing involved in 
executing the functionality performed by the RT. 

Bus Monitor (BM): As the name indicates, the BM is responsible for observing 
the state and operation of the system. The BM is a passive component in the sense that
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it does not send any message and does not interfere with the operation and activity 
of the bus. Furthermore, it does not have any assigned Terminal Address (TA). 

However, the BM can also have RT’s capabilities, in addition to the core 
monitoring feature. BM can also serve as a backup BC. 

2.2 Bus Communication 

Communications between components are done by exchanging messages, which go 
through the BC. The data structure used in these communications are called “word”. 
A message consists of a sequence of words, always starting with a command word. 
Each word is 20 bits long, including 3 synchronization bits at the beginning and a 
parity bit at the end. 

Messages can be sent periodically, at fixed time intervals, or asynchronously based 
on some event-based triggers. 

2.2.1 Frames 

Major and minor frames are structures used by the BC to schedule the transmission 
of messages, whether periodically or asynchronously.1 

Major frame: a predefined time interval over which all periodic messages are trans-
mitted at least once. Each message is repeated periodically at a rate between 50 and 
0.5 times per second. The period usually corresponds to the time of the message with 
lowest frequency in the schedule. 

Although aperiodic (i.e., asynchronous) messages are dependent on specific 
(fixed) time interval, they are also part of a major frame and as such, a fixed time slot 
is defined in the frame for them accordingly. 

Minor frame: consists of a sequence of messages with predefined inter message 
transmission gap times. The period of the minor frame typically matches the period 
of the highest frequency message on the bus schedule. 

The period of a minor frame must always be less than the minimum period among 
aperiodic messages. Failure to do so will create frame overflow, whereby the update 
timer for sending some information may trigger before the end of the minor frame. 

2.2.2 Words 

There are 3 types of words: command, data and status, which are outlined in Table 
1.

1 The bus message schedule for an emulated BC is also called Bus list, which consists of a series 
of minor frames of equal duration and may also include a set of aperiodic messages. 
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Table 1 Mil-std-1553 words Fields Position 

Command word Sync 1–3 

RT address 4–8 

T/R 9 

Sub-address/mode 10–14 

Data count/mode code 15–19 

Parity 20 

Data word Sync 1–3 

Data 4–19 

Parity 20 

Status word Sync 1–3 

RT address 4–8 

Message error 9 

Incrementation 10 

Service request 11 

Reserved 12–14 

Broadcast command received 15 

Busy 16 

Subsystem flag 17 

Dynamic bus control 18 

Terminal flag 19 

Parity 20 

Command word: generated by a BC and directed at an RT to perform a specific 
action, which could be either to transmit or receive some data. 

The remaining fields contain the address of the RT for which the word is destined 
(RT address/Terminal address), the direction of the data transmission (1 for transmit 
and 0 for receive), the word count or the mode value if applicable, and the sub-
address or an indication of whether the command is a mode code. The sub-address 
is an integer between 0 and 31, which points to the data buffer where the data will 
be transmitted to or received from by the RT. 

The RT address can contain up to 31 addresses in the range 00000B to 11110B. 
The last address slot 11111B is used only for broadcast command. 

Mode codes are special commands used to alter the status or operation of the RT, 
such as request for self-test, shutdown, synchronization, etc. 

Data word: contains 16 bits of data corresponding to the actual data being transmitted 
by the RT, and it does not follow a prescribed structure. 

Status word: used by RTs to respond to commands issued by the BC and enables RT 
to communicate their status or error information to the BC after executing prescribed 
action (e.g., upon receiving a valid message) using various flags.
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2.2.3 Communication Formats 

The BC orchestrates the communications between RTs by following a strict, prede-
fined order and timing. There are 4 types of communication instances which can take 
place between the components. 

BC-RT/RT-BC communication: 
Receive (BC → RT): 

1. BC sends a receive command to RT 
2. BC sends data words 
3. Designated RT sends a status word 

Transmit (RT → BC) 
1. BC sends a transmit command to RT 
2. RT responds by sending a status word 
3. RT sends data words 

RT-RT communication: 

1. BC sends receive command to receiving RT 
2. BC sends transmit command to sending RT 
3. Sending RT sends a status word and follow up by sending the data words 
4. Receiving RT then sends a status word 

Mode code communication: The BC can send a mode code to a specific RT or 
several RTs by setting the sub-address/mode field to 00000B or 11111B (i.e., SA 0 
or SA 31) and the word count field to the mode code value. 

Broadcast communication: done only for messages in which the BC is the 
transmitting component, and all other components are on the receiving end. 

The BC can send a broadcast message by setting the RT address field to 11111B, 
the broadcast address (i.e., TA 31) and eliminating the status words transmission for 
all the receiving RTs. The broadcast message will be sent to all remote terminals 
(that implement the broadcast option), but no remote terminals will respond to the 
message to avoid conflicts on the bus.2 However, the lack of explicit response from 
the terminals means the message cannot be resent in case of errors. 

2.2.4 Timing Constraints 

Messages are transmitted over the bus by XORing the data with a 1 MHz clock and 
deriving from the signal the bit values. Bit values of 1 and 0 correspond to high to 
negative and negative to high voltage transitions, respectively.

2 Most MIL-STD-1553 avoids using broadcast messages, as such they are not used on most of the 
MIL-STD-1553 systems, because these violate one of the key principles of 1553, which is that all 
successful data transfers be explicitly acknowledged before the next transfer is attempted. This is 
impossible to achieve in a broadcast environment. 
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Transmission of a command word from BC to RT results in the following response 
time constraints: 

– Expected response time: 4 µs ≤ T ≤ 12 µs 
– If response time 12 µs < T ≤ 14 µs then generate Late Response error. 
– Else if 14 µs < T then generate No Response error. 

All data words that are part of the same message must be transmitted in sequence 
without any time gap between them. However, a time gap of 4 µs must be maintained 
between the end of a message and the start of another message; so an inter message 
time gap of 4 µs must be maintained by the BC. 

Message transmission scheduling is structured around the major and minor 
frames. Messages are grouped in minor frames, which in their turn are grouped in 
major frames. The transmission frequency for minor frames is defined for each major 
frame. Aperiodic messages are inserted in the schedule according to their triggering 
events by appending them appropriately at the end of the next minor frames. 

3 Mil-Std-1553 Attack Vectors 

3.1 Assumptions and Attacker Position/foothold on 1553 
Platform 

The feasibility of a specific attack vector on the 1553 data bus depends on the type of 
access the attacker has on the platform. The main assumption made for most of the 
attacks and that we will consider as basis for our simulations is that the attacker can 
connect a rogue device on the network that is capable to statistically learn the frame 
schedule by exploiting the centralized multiplexing and scheduling scheme which is 
controlled by the BC. 

There are 4 kinds of positions for the attacker: 

1. Attacker controls or compromise an external system that uses data transmitted 
through the 1553 

2. Attacker controls a RT that is connected to the 1553 network 
3. Attacker controls a component that performs the function of bus controller on 

the bus 
4. A combination of some of the above footholds. 

Due to its centralized role, a compromised bus controller gives the attacker 
the capability to initiate new messages, and remove, modify, or replace existing 
messages. 

A compromised remote terminal can initiate new messages, impersonate any of 
the existing genuine remote terminals as well as the bus controller itself, and disrupt 
message exchange between other terminals.
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A compromised host can disrupt messaging between the terminals connected to 
the bus by violating deliberately the constraints and rules of the 1553 standard or by 
exchanging fake data/commands within/outside the regular bus schedule. 

3.2 Attack Vectors and Types 

Under the abovementioned assumption, different attack vectors are applicable in the 
1553 network. Some of the attack vectors overlap or are dependent on other attack 
vectors [2, 3, 8]. 

The following is a non-exhaustive list of attack vectors which can be executed 
against the 1553 network: 

1. Reconnaissance 

a. Identify the bus schedule 
i. Identify message timing and order 
ii. Identify message content 

b. Identify the bus topology and components 

2. Injection 

a. Jamming 
b. Basic injection 
c. Selective injection 

3. Impersonation/masquerade 
4. Data leakage 
5. Denial of service (DOS) 
6. Frame overflow 
7. Logic attacks 

We describe below example attacks that fall under the abovementioned vectors. 

Broadcast message spoofing: consists of leveraging the broadcast feature of 1553 to 
send fake broadcast messages to the terminals connected to the bus. This requires 
compromising the bus controller and having it send the broadcast messages to the 
terminals connected to the bus. 

Mil-STD-1553 Network scanning: consists of probing the components connected to 
the bus by sending them benign messages and analyzing the response to infer or 
extract information about their status. This may be carried out by a compromised 
component impersonating the bus controller, or a compromised remote terminal 
interacting with other components without coordination with the bus controller. 

Denial of service (DOS): results in blocking communication on the bus among 
the connected terminals. DOS may result from physical damage to the bus or some 
of the key connected components such as the BC, or by corrupting the output of
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some of the components or making them unresponsive when some response would 
be expected. 

DOS can be executed through random injection on the bus of messages that will 
create some collisions. This can be achieved by transmitting words that correspond 
to some of the messages in accordance with the bus schedule. This will confuse the 
centralized multiplexing and scheduling, causing some decoding error, which may 
lead the BC to switch the transmission to a backup channel. In this case, for maximum 
effect, the attack could be carried out simultaneously against both the primary and 
backup channels. At the same time, to evade detection the attack must be conducted 
stealthily by minimizing the amount of confusion or noise injected. 

An example DOS attack scenario is as follows: 

1. Rogue device cause collision by sending periodically the same command word 
issued by the BC for specific RTs. 

2. At the same, the device will respond on behalf of the RT, sending thereby fake 
information. 

3. Collided messages will not be decoded by the RT or will fail message validation 
with no response from the RT. Such lack of response will enable the rogue device 
to fill the vacuum by responding on behalf of the RT with false information. 

Injection: three kinds of injection attacks can be executed, including jamming, 
basic injection and selective injective, as described below: 

– Jamming: consists of injecting many packets to slow down or block communica-
tion on the bus. Rather than targeting 100% utilization, it is advised to target a much 
lower utilization, e.g., 30–50%, to evade detection. This will slow down consid-
erably the bus traffic while allowing basic functions such as power management 
to be available. 

– Injection: consists of injecting packets selectively in the bus so as to minimize 
collisions with the scheduled traffic. This requires leveraging the periodicity in 
the bus schedule to predict the injection times that would achieve lower collision 
probability. 

– Selective jamming: consists of injecting packets in the bus so as to collide repeat-
edly with specific message, thereby preventing two or more components from 
communicating over the bus. 

Spoofing: consists of subverting or abusing the logic underlying the expected func-
tioning of the bus system. For instance, this may consist of identifying empty slots in 
the bus schedule when no communication is expected to take place and using these 
slots to exchange malicious information. This takes advantage of the fact that there 
is no reliable way of determining the identity of the devices that are connected to 
the bus. So, a rogue device can masquerade as a legitimate component and confuse 
genuine terminals. 

The attack may consist of modifying legitimate messages exchanged over the 
bus or sending fake messages within unexpected time slots (e.g., idle slots) or over 
unusual order.
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Data leakage: consists of illegal data transfer between components, e.g., from a legit-
imate component connected to the bus with higher (security) classification level to an 
external component with lower classification. Data leakage can occur by changing 
the terminal address field, which allows directing the data to another component, 
by increasing the word count, which allows sending excess data, or by stuffing the 
leaked data through reserved bits in a status word. 

Frame overflow: can occur unintentionally due to inadequate design of the bus 
schedule. However, it can also be induced intentionally to attack the 1553 network. 

Here, the attack leverages the priority feature associated with aperiodic messages. 
Aperiodic messages may be executed with high or low priority. 

Low priority messages are executed in the time frame between the last message 
in a minor frame and the start of the next minor frame. 

High priority messages are executed immediately after completion of the current 
messages in the periodic bus list. The execution of periodic messages in the bus list 
resumes after completing these high priority aperiodic messages. However, unlike 
high priority messages, low priority messages are executed only if there is enough 
time to transmit these messages before the start of the next minor frame. 

The attack consists of inducing minor frame overflow by generating high priority 
aperiodic messages that would delay the execution of periodic messages. The goal 
is to stretch the execution of the aperiodic messages in the bus list beyond the start 
of the next minor frame. 

Low priority messages can also be targeted by padding the periodic messages list 
so that the time left in to process the low priority messages would not be enough 
to process these messages. This would block the low priority messages from ever 
running. 

Logic attacks: consist of abusing or pushing to the extreme the constraints imposed 
by the 1553 standard on the bus and the connected components. 

An example of such attack consists of creating a loop that exceeds the minor 
frame time defined in the major frame specification. Eventually, such a loop would 
lock up the 1553 bus such that the corresponding minor frame is never exit. 

Another example consists of sending a broadcast message through a rogue RT. 
(RT- > RT) with an unusual (in the context) mode code, e.g., sending a shutdown 

or busy mode code to all legitimate terminals during operation. 
Normal RT- > RT messages are common message types, but RT- > RT Broadcast 

messages are relatively rare for most systems. 

4 Simulation and IDS Dataset Generation 

4.1 Simulation Setup 

Our simulation setup involves the following main components:



A Collection of Datasets for Intrusion Detection … 91

• ABACO R15-USB-2M: MIL-STD-1553 multi-function, two dual-redundant 
channel, USB interface box, 8 Bi-directional discrete. 

• Abaco BUSTOOLS/1553 GUI Software for MIL-STD-1553 bus analysis, simu-
lation and data logging running on Microsoft Windows. 

Abaco Systems R15-USB is a high-speed USB 2.0 interface with dual-redundant 
MIL-STD-1553A/B channels, which can operate either in dual-function or multi-
function modes. In Dual-function mode, it operates simultaneously as either a Bus 
Monitor and Bus Controller, or a Bus Monitor with up to 31 Remote terminals. 
In Multi-function mode, it operates simultaneously as a Bus Controller, with up to 
31 Remote Terminals and Bus Monitor. Our simulations were based on the multi-
function mode. 

BusTools/1553 provides a GUI to simulate completely a dual redundant MIL-
STD-1553 data bus, including the Bus Controller, multiple remote terminals (up 
to 32), and bus monitor. In addition, BusTools/1553 provides analysis and debug-
ging features including error injection and detection, data filtering, and bus data 
visualization. 

4.2 Baseline Scenarios and Datasets 

The ABACO BusTools simulation software provides several sample topologies 
which cover different avionics operational settings. We use one of these topolo-
gies to define our core baseline scenario for simulation and dataset generation. The 
baseline topology is depicted by Fig. 1. From the core bus list, we generate data 
samples representative of normal activities, and then by simulating different attack 
scenarios we generate attack samples. 

The baseline setup consists of four remote terminals (RT1–RT4) and a bus 
controller. The four remote terminals consist of an inertial reference unit (IRU),

Fig. 1 Baseline architecture 
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a multi-function display unit (MFD), a flight control computer (FCC) and a mission 
computer keyboard (MCK). 

• The bus controller is a Mission Computer (MC) that manages the data transfers 
among the different components. 

• RT1 is an IRU which provides navigation data to the FD and FCC under the 
control of the MC. 

• RT2 is a MFD unit which displays flight data from components such as MC, FCC 
or IRU. 

• RT3 is an FCC, which produces flight status information and receives navigation 
and flight path data from the IRU and the MC, respectively. 

• RT4 is a MCK that receives input from the crew and transmit such data to the 
MC. 

Table 2 depicts the messages involved in the bus list; 18 messages are defined in 
total. 

Table 3 depicts the data words defined within the messages. Table 4 depicts the 
bus list. The bus list consists of a major frame performed at a rate of 1 Hz, including 
4 minor frames performed at a rate of 4 Hz.

Since, errors are to be expected in the regular operation of avionics system, one 
of the IRU navigation data buffers (i.e., in the simulation rounds) has an associated

Table 2 Message list 

RT Message description SA T or R WC 

IRU (T1) Synchronize with data mode code 0 R 17 

IRU (T1) Navigation data output 1 T 9 

IRU (T1) Data wrap 20 both 1 

IRU (T1) Periodic built-in test (PBIT) results 30 T 32 

MFD (RT2) Synchronize with data mode code 0 R 17 

MFD (RT2) Nav data display input 2 R 9 

MFD (RT2) Data wrap 20 both 1 

MFD (RT2) Periodic built-in test (PBIT) results 30 T 20 

FCC (RT3) Synchronize with data mode code 0 R 17 

FCC (RT3) Navigation data input 1 R 9 

FCC (RT3) Display data selection input 2 R 2 

FCC (RT3) Data wrap 20 both 1 

FCC (RT3) Periodic built-in test (PBIT) results 30 T 32 

MCK (RT4) Synchronize with data mode code 0 R 17 

MCK (RT4) Data available 5 T 1 

MCK (RT4) Keyboard data 6 T 32 

MCK (RT4) Data wrap 20 both 1 

MCK (RT4) Periodic built-in test (PBIT) results 30 T 1 
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Table 3 Message data definitions 

RT Message description T/R SA Wrd Label Units 

IRU (RT1) Synchronize with data 
mode code 

R 0 1 Minor frame Count 

IRU (RT1) Navigation data output T 1 1–2 Altitude Feet 

IRU (RT1) Navigation data output T 1 3 Air speed Knots 

IRU (RT1) Navigation data output T 1 4 Heading Degrees 

IRU (RT1) Navigation Data 
Output 

T 1 5–6 Latitude Degrees 

IRU (RT1) Navigation data output T 1 7–8 Longitude Degrees 

IRU (RT1) Navigation data output T 1 9 Data valid Boolean 

IRU (RT1) Data wrap T 20 1 IRUWrapR Counts 

IRU (RT1) Data wrap R 20 1 IRUWrapT Counts 

IRU (RT1) Periodic built-in test 
results 

T 30 1 IRU bit OK Boolean 

MFD (RT2) Synchronize with data 
mode code 

R 0 17 Minor frame Count 

MFD (RT2) Display input R 2 1–2 Altitude Feet 

MFD (RT2) Display input R 2 3 Air speed Knots 

MFD (RT2) Display input R 2 4 Heading Degrees 

MFD (RT2) Display input R 2 5–6 Latitude Degrees 

MFD (RT2) Display input R 2 7–8 Longitude Degrees 

MFD (RT2) Display input R 2 9 Data valid Boolean 

MFD (RT2) Data wrap R 20 1 MFDWrapT Counts 

MFD (RT2) Data wrap T 20 1 MFDWrapR Counts 

MFD (RT2) Periodic built-in test 
results 

T 30 1 MFD bit OK Boolean 

FCC (RT3) Synchronize with data 
mode code 

R 0 17 Minor frame Count 

FCC (RT3) Navigation data input R 1 1–2 Altitude Feet 

FCC (RT3) Navigation data input R 1 3 Air speed Knots 

FCC (RT3) Navigation data input R 1 4 Heading Degrees 

FCC (RT3) Navigation data input R 1 5–6 Latitude Degrees 

FCC (RT3) Navigation data input R 1 7–8 Longitude Degrees 

FCC (RT3) Navigation data input R 1 9 Data valid Boolean 

FCC (RT3) Display data selection 
input 

R 2 1 Selection 1/0 

FCC (RT3) Data wrap R 20 1 FCCWrapR Counts 

FCC (RT3) Data wrap T 20 1 FCCWrapT Counts

(continued)
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Table 3 (continued)

RT Message description T/R SA Wrd Label Units

FCC (RT3) Periodic built-in test 
(PBIT) results 

T 30 1 FCC bit Ok Boolean 

MCK (RT4) Synchronize with data 
mode code 

R 0 17 Minor frame Count 

MCK (RT4) Data available T 5 1 Data avail Boolean 

MCK (RT4) Keyboard data T 6 1 Key data ASCII 

MCK (RT4) Data wrap R 20 1 MCKWrapR Counts 

MCK (RT4) Data wrap T 20 1 MCKWrapT Counts 

MCK (RT4) Periodic built-in test 
results 

T 30 1 MCK bit OK Boolean

error specified. An unintentional functional error is not a malicious occurrence, and 
therefore an anomaly detector should be able to distinguish unintentional errors from 
malicious errors. 

To generate our baseline (normal) dataset, we run the simulation based on the 
abovementioned bus list for 10 min. Figures 2 and 3 show sample simulated data.

The simulation resulted in the generation of 23,000 legitimate message samples. 
As mentioned above, some of the generated (legitimate) messages have error flags 
associated with them. 

The captured data was saved in.bdmx format, and an ASCII dump was generated 
as shown in Fig. 4.

Then, a parser was implemented to convert the ASCII dump in CSV format (see 
Fig. 5), which is suitable to conduct the data analysis and the design of the machine 
learning algorithms for anomaly detection.

The dataset consists of 55 fields described in Table 5.

4.3 Attack Scenarios and Datasets 

To generate the attack samples, we executed 6 different attack vectors described in 
the following. 

Attack 1: consists of a DOS attack where a rogue terminal (RT0) targets the FCC 
(RT3) by sending random words in a loop. The attack was run for 30 s and generated 
148 messages, a mix of normal and attack data. Sample messages are shown in Fig. 6.

Attack 2: consists of a DOS were broadcast messages were sent in a loop by the 
rogue terminal (RT0). By running the attack for 30 s., 373 messages were generated, 
involving both legitimate and malicious data. Sample messages are shown in Fig. 7.

Attack 3: consists of fake data injection. A rogue terminal (RT0) replicates one of the 
messages (i.e., Navigation Data Output) sent by one of the legitimate RTs (RT1–IRU)
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Table 4 Bus list 

Minor 
frame 

Message 
type 

Source 
RT/SA 

Destination 
RT/SA 

WC Description Message name 

1,2,3,4 MC 17 BC 1/0 17 Sync with 
data 

Mode code 17—1—x 

1,2,3,4 MC 17 BC 2/0 17 Sync with 
data 

Mode code 17—2—x 

1,2,3,4 MC 17 BC 3/0 17 Sync with 
data 

Mode code 17—3—x 

1,2,3,4 MC 17 BC 4/0 17 Sync with 
data 

Mode Code 17—4—x 

1 BC - > RT BC 1/20 1 Data wrap WrapIRU-20-R 

2 BC - > RT BC 2/20 1 Data wrap WrapMFD-20-R 

1 BC - > RT BC 3/20 1 Data wrap WrapFCC-20-R 

2 BC - > RT BC 4/20 1 Data wrap WrapMCK-20-R 

3 RT - > BC 1/20 BC 1 Data wrap WrapIRU-20-T(B) 

4 RT - > BC 2/20 BC 1 Data wrap WrapMFD-20-T(B) 

3 RT - > BC 3/20 BC 1 Data Wrap WrapFCC-20-T(B) 

4 RT - > BC 4/20 BC 1 Data wrap WrapMCK-20-T(B) 

1 RT - > BC 1/30 BC 32 PBIT results PBTIRU-30-T 

2 RT - > BC 2/30 BC 20 PBIT results PBTMFD-30-T 

3 RT - > BC 3/30 BC 32 PBIT results PBTFCC-30-T 

4 RT - > BC 4/30 BC 1 PBIT results PBTMCK-30-T 

1,2,3,4 RT - > BC 4/5 BC 1 Data 
available 

DAvailMCK-5-T 

1,2,3,4 RT - > BC 4/6 BC 32 Keyboard 
data 

DataMCK-6-T-Cond 

1 BC - > RT BC 3/2 2 Data 
selection 

Sel-FCC-2-R 

4 RT - > BC 3/2 BC 10 FCC data out Sel-FCC-data-2-T 

1,2,3,4 RT - > RT 1/1 3/1 9 Nav data Nav-data-to-FCC 

1,2,3,4 RT - > RT 1/1 2/2 9 Nav data Nav-data-to-MFD

by slightly altering one of the data items (Altitude). By running the attack for 30 s, 
970 messages are generated (malicious and normal). Sample messages are shown in 
Fig. 8.

Attack 4: consists of fake data injection like attack 3, except that in this case fake 
data is generated. This is less subtle and noisier, but its impact can be felt much 
quicker. By running the attack for 30 s, 970 messages are generated (malicious and 
normal). Sample messages are shown in Fig. 9.
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Fig. 2 Sample simulated data during normal operations 

Fig. 3 Sample simulated 
messages during normal 
operations

Attack 5: logic attack consisting of unusual broadcasting. In this case a rogue RT 
broadcast mode code value 4 (0 × 04), which corresponds to Transmitter Shutdown. 
It is unusual to issue such a request in the middle of an operation (i.e., during flight). 
The attack ran for 30 s and generated 981 messages, a mix of normal and malicious 
samples.
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Fig. 4 Sample message viewed in BusTools GUI and corresponding ASCII dump

Fig. 5 Sample data from normal dataset in CSV
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Table 5 Dataset format 

Fields Description 

msgID Sequence number associated with the message by the simulator 

timestamp Message timestamp in seconds 

Error Indicate whether or not the error bit of the status word related to the message 
is set: contains TRUE/FALSE accordingly 

modeCode Indicate whether or not the message is a mode command message: contains 
TRUE/FALSE accordingly 

Channel Channel associated with the message 

connType Communication type 

sa Address of sending RT 

ssa Sub-address of the sending subsystem from the sending RT 

da Address of receiving RT 

dsa Sub-address of the receiving subsystem at the receiving RT 

wc Word count: number of data words included in the message 

modeCode value Mode code value when applicable 

txRsp Transmit command response time in µs 

txSts Transmit status word 

rxRsp Receive command response time in µs 

rxSts Receive status word 

dw0 … dw31 Values of the data word included in the message ranging from dw0 to dw31; 
N/A is used when there is no data words for a field 

Malicious Indication of whether or not the message is malicious: contains 
TRUE/FALSE accordingly 

Injected Indication of whether or not part of the data included in the message is 
injected: contains TRUE/FALSE accordingly 

Gap Inter-message gap time in µs 

msgTime Message time in µs

Attack 6: a combination of attacks 4 and 5. The attack is run for 30 s and 1004 
messages are generated consisting of a mix of malicious and normal messages. 

5 Conclusion 

Data is one of the most essential ingredients in the design of an IDS, especially when 
the corresponding model depends on machine learning techniques. 

By setting up a simulation environment, we have identified and executed different 
attack scenarios. Using the same setup, more scenarios can be executed. But we 
believe the example scenarios generated so far provides a good basis toward designing 
and evaluating IDS for MIL-STD-1553 platforms. The generated dataset is available
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Fig. 6 Sample messages 
generated from Attack 1

Fig. 7 Sample messages 
generated from Attack 2

Fig. 8 Sample messages 
generated from Attack 3
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Fig. 9 Sample messages 
generated from Attack 4

for public use through the website of the Information Security and Object Technology 
(ISOT) Lab at https://www.uvic.ca/ecs/ece/isot/datasets/index.php 

. 
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for MIL-STD-1553 Avionic Platforms 
Using CUSUM 
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Abstract MIL-STD-1553 is a military standard developed by the US department 
of defense for communication among military avionic platforms (e.g., F-35 and F-
16). It has been widely accepted worldwide for more than five decades and is used 
in many applications other than military avionics. It follows a strict and determin-
istic procedure for communication among its components. However, research has 
suggested that it has many vulnerabilities associated with it that can be exploited 
to carry a range of attacks on it. And since numerous applications make use of this 
standard, it is crucial to protect MIL-STD-1553 networks. This chapter presents an 
unsupervised anomaly detection scheme using the CUSUM algorithm for the MIL-
STD-1553 protocol. A dataset was collected in the ISOT lab by executing six attack 
vectors on a simulated MIL-STD-1553 network. We leverage the time-based prop-
erties of the communication bus to extract a set of relevant features that are fed to 
the CUSUM algorithm for detection. The experimental evaluation of the proposed 
detector using the dataset yielded promising results, which are very encouraging 
considering the unsupervised nature of the underlying algorithm. 
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1 Introduction 

MIL-STD-1553 is a military standard introduced by the US Department of Defense 
(DoD) in 1973 [1]. It has also been widely used in other branches of armed forces 
other than military avionics and has served the military for more than 50 years by 
now. It is based on a master/slave mechanism where the master sends messages in a 
fixed and predefined time and order. 

While it was designed with built-in reliability and fault tolerance capabilities, it has 
no inherent cybersecurity protections. The MIL-STD-1553 protocol was introduced 
at a time when cybersecurity was an afterthought. As a result, existing data buses 
are highly vulnerable. Furthermore, as more types of avionics data buses are being 
deployed and interconnected in both new and updated aircraft there is an increasing 
concern that these vulnerabilities in security could allow unauthorized access to 
devices communicating on these buses. 

As highlighted in a master’s thesis conducted by Blaine Losier at the Royal Mili-
tary College (RMC) of Canada, classified research, recently performed, has exposed 
several vulnerabilities in the MIL-STD-1553 protocol [2]. For instance, in [3], the 
authors demonstrated the feasibility of cyber-attacks against MIL-STD-1553 buses 
used for communications between subsystems in a satellite. 

While reports on cyber incidents targeted at defense platforms based on MIL-
STD-1553 currently remain classified, published examples against similar protocols 
in other domains provide strong indicators of the feasibility of such attacks. Likewise, 
several vulnerabilities have been reported in the MODBUS serial protocol, which 
underlies existing supervisory control and data acquisition (SCADA) and industrial 
control systems (ICS) [4]. As serial buses, MODBUS and MIL-STD-1553 share 
many of the same characteristics, and as demonstrated in [5] many of the MODBUS 
vulnerabilities reported in [4] are applicable against MIL-STD-1553. 

So, considering the use of MIL-STD-1553 across multiple avionics platforms, it is 
imperative to continue research to build an intrusion detection system (IDS) solution 
for the standard. This chapter presents a step toward developing an intrusion detection 
scheme based on unsupervised anomaly detection tailored for the MIL-STD-1553 
protocol, which targets a broad range of attacks aimed at this platform. 

The basic principle of intrusion detection assumes that intrusive activities are 
noticeably different from normal ones and thus are detectable. Many intrusion detec-
tion approaches have been proposed for conventional systems in the literature and 
in industry since the seminal work of Anderson in the 1980s [6]. Traditionally, 
intrusion detection techniques are broadly classified into two categories: misuse 
detection and anomaly detection. Misuse detection assumes that most attacks leave 
a set of signatures in the stream of communication and activity traces, and thus 
attacks are detectable if these signatures can be identified and matched against mali-
cious system behaviors. However, misuse detection approaches are strictly limited to 
known attacks. They are ineffective when faced with new attack vectors or variants 
of known attacks.



Unsupervised Anomaly Detection for MIL-STD-1553 Avionic … 103

Anomaly detection is based on the premise that all intrusive activities are anoma-
lous [6–8]. Consequently, it involves establishing normal activity profiles for the 
system, and then tracking and reporting any deviation from normal profiles as an 
intrusion. The primary advantage of anomaly detection is its ability to detect novel 
attacks. However, if the underlying normalcy model is not carefully designed, the 
false alarm rate can be quite high. 

Anomaly detection is suited for monitoring the MIL-STD-1553 bus due to its 
great level of determinism and predictability, which provide a good foundation for 
designing a strong model of the normal behavior of the system and tracking violations 
of such a model. 

Existing proposals on detecting intrusions against the MIL-STD-1533 data buses 
are largely based on supervised machine learning models and cover only a limited 
set of attacks, such as covert channel or spoofing attacks [2, 9–11]. Our proposed 
approach is based on unsupervised machine learning techniques [12–14]. The 
detector monitors and analyzes bus traffic data and extracts a variety of features. The 
features are fed to the CUSUM algorithm to detect anomalous behavior. Evaluation 
is done using datasets collected at the Information Security and Object Technology 
(ISOT) Lab in a simulated environment. 

The remainder of the chapter is structured as follows. Section 2 gives a brief 
overview of the datasets. Section 3 presents the extracted machine learning (ML) 
features that form the basis of the classification models. Section 4 present the 
proposed detection techniques and give a brief overview of the underlying algo-
rithms. Section 5 presents the experimental evaluation of the proposed detection 
models and discuss the obtained results. Section 6 makes some concluding remarks 
and discusses future perspectives. 

2 Datasets 

The availability of adequate datasets is crucial to guide the design and evaluation of 
anomaly detection models that use machine learning techniques. We used datasets 
collected at the ISOT lab in a simulated environment consisting of normal activi-
ties and a series of attacks against the MIL-STD-1553 databus. We provide a brief 
overview of the datasets in the following. 

The simulation was conducted using Abaco R15-USB-2 M USB interface box 
and Abaco BUSTOOLS/1553 GUI Software for MIL-STD-1553 bus analysis, 
simulation, and data logging. 

Figure 1 depicts the simulated bus components. The example bus architecture used 
in the simulation consists of a bus monitor (BM) and five different avionic systems, 
including a flight control computer (FCC) as RT3, a mission computer (MC) as BC, 
an inertial reference unit (IRU) as RT1, a mission control keyboard (MCK) as RT4, 
and a multi-function display unit (MFD) as RT2. The MC serves as bus controller 
(BC), while the remaining components are remote terminals.
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Fig. 1 Simulated MIL-STD-1553 bus components 

The above components were the only ones used to execute the normal activities. 
To simulate the attack, we added a rogue terminal as RT0. 

Our investigations uncovered several possible attack vectors against MIL-STD-
1553; more details are provided about these attack vectors in the progress report. 
We selected a subset of these attacks to generate our datasets. A baseline dataset 
consisting of normal activities was generated by running the simulation for 10 min. 
Subsequently, 6 different attack scenarios were run separately against the baseline 
architecture, by introducing RT0 as rogue terminal. Table 1 provides a summary of 
the different datasets and Table 2 shows the different fields involved in the raw data.

As shown in the Table 1, the datasets obtained from executing the attacks include 
a mix of normal and attack messages. All the messages in the datasets were assigned 
adequate labels, clearly identifying them as legitimate or malicious. The raw datasets 
were parsed and converted into CSV format. Each dataset consists of 55 different 
fields. More details on the datasets can be found in Chap. 4. 

Figure 2 shows the spread of the different type of samples in the data. The graph 
reveals an imbalance in the dataset between attack and benign samples. This is 
expected for security datasets in general, and IDS datasets specifically. By comparing 
different techniques to handle imbalanced data and running selected classical super-
vised machine learning algorithms (i.e., Random Forests, Support Vector Machines, 
Decision Tree, Extra Decision Tree, and Ada Boost) on the data, it was found that 
the imbalance does not have any impact on classification accuracy.

3 Features Model 

To identify a set of useful features, we analyzed the statistical characteristics of the 
raw features depicted in Table 2. To analyze the correlation between different features 
a heatmap is created based on the correlation matrix of the dataset as shown in Fig. 3.
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Table 1 Outline of the collected MIL-STD-1553 datasets 

Dataset # Type of data Attack type Attack 
description 

Number of 
messages 

Simulation 
length 

1 Normal N/A N/A 23,000 10 min 

2 Mix 
normal/malicious 

Targeted/Basic 
DOS (Attack 1) 

rogue terminal 
(RT0) targets 
the FCC (RT3) 
by sending 
random words 
in a loop 

148 30 s 

3 Mix 
normal/malicious 

Multi-target DOS 
(Attack 2) 

Rogue terminal 
(RT0) sends 
broadcast 
messages in a 
loop 

373 30 s 

4 Mix 
normal/malicious 

Subtle Fake data 
injection (Attack 
3) 

rogue terminal 
(RT0) 
replicates one 
of the messages 
sent by one of 
the legitimate 
RTs by slightly 
altering one of 
the data items  

970 30 s 

5 Mix 
normal/malicious 

Noisy fake data 
injection (Attack 
4) 

like the above 
attack, except 
that in this case 
fake data is 
randomly 
generated 

970 30 s 

6 Mix 
normal/malicious 

Logic attack 
(Attack 5) 

a rogue RT 
broadcast mode 
code value 4 (0 
× 04), which 
corresponds to 
Transmitter 
Shutdown, and 
which is 
unusual 

981 30 s 

7 Mix 
normal/malicious 

Hybrid 
Logic/fake data 
injection (Attack 
6) 

combination of 
the attacks in 
datasets 5 and 6 

1004 30 s
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Table 2 Raw dataset format 

Fields Description 

msgID Sequence number associated with the message by the simulator 

timestamp Message timestamp in seconds 

error Indicate whether or not the error bit of the status word related to the message 
is set: contains TRUE/FALSE accordingly 

modeCode Indicate whether or not the message is a mode command message: contains 
TRUE/FALSE accordingly 

channel Channel associated with the message 

connType Communication type 

sa Address of sending RT 

ssa Sub-address of the sending subsystem from the sending RT 

da Address of receiving RT 

dsa Sub-address of the receiving subsystem at the receiving RT 

wc Word count: number of data words included in the message 

modeCode value Mode code value when applicable 

txRsp Transmit command response time in μs 

txSts Transmit status word 

rxRsp Receive command response time in μs 

rxSts Receive status word 

dw0 … dw31 Values of the data word included in the message ranging from dw0 to dw31; 
N/A is used when there is no data words for a field 

Malicious Indication of whether the message is malicious: contains TRUE/FALSE 
accordingly 

injected Indication of whether part of the data included in the message is injected: 
contains TRUE/FALSE accordingly 

gap Inter-message gap time in μs 

msgTime Message time in μs

Feature correlation analysis allows understanding the relationships between 
multiple attributes and features in a dataset. We can get some insight, such as whether 
any features depend on or cause another feature. 

The heatmap provides a graphical representation of the data that uses a system of 
color-codes to represent different values. In the heatmap, correlation ranges from − 1 
to + 1. Values closer to zero means there is no linear trend between the two variables. 
The close to 1 the correlation is the more positively correlated they are. That is as 
one increases so does the other and the closer to 1 the stronger this relationship is. 

As it can be seen from the heatmap, there are strong correlations for several 
feature-pairs such as connType (communication type), modeCodeVal (mode code 
value), txRsp (transmit command response time), txSts (transmit status word), and 
rxRsp (receive command response time). We can also notice a relationship between 
words counts (WC) and [dw0 to dw31] (values of the data word).
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Fig. 2 Attack and benign sample distribution among the data

Fig. 3 Heatmap based on the correlation matrix of the dataset
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Table 3 List of features extracted from the raw data 

Features Description Values 

Inter-message gap Time interval between the end of a message (i.e., when the BC 
receives the corresponding final status word) and the start of 
the next message (i.e., when the corresponding first command 
is sent) 

Numeric 

Data throughput Amount of data words transmitted over the bus during a 
specific time window δt; by default, we set δt = 50 ms 

Ratio 

Bus utilization Percentage of time during which the bus is busy transmitting 
data measured over a specific time window δt; by default, we 
set δt = 50 ms 

Percentage 

Periodicity The mean time between the BC sending messages to a specific 
RT, measured over a 50 ms frame 

Numeric 

modeCode Indicate whether the message is a mode command message True, False 

From the data analysis, we identified a suite of five promising features depicted in 
Table 3. Two of the features are raw features and the other three features are obtained 
from transformation or combination of some of the raw features. 

A brief description of the extracted features is provided as follows:

• Throughput: consists of the amount of data word transmitted across the bus in 
over 200 ms time frame.

• Bus Utilization: computes the utilization of the bus during a 200-ms frame. After 
getting an individual 200 ms frame, the difference between timestamps is calcu-
lated and added together, which gives the time when the bus is not utilized. This 
is then subtracted from the actual time frame that is 200 ms to find the utilization 
of the bus.

• Periodicity: This feature extracts the mean time between the transmission of 
messages from BC to specific RT. It is also measured for a time frame of 50 ms.

• Inter Message Gap: This feature extracts the time measured between when the 
BC receives the final status word of a message, and when it transmits the first 
command word of the next message.

• ModeCode: Indicate whether a mode code is sent by an RT to the BC over a 
frame of 200 ms. 

The correlation analysis, of the features presented in Fig. 4, shows positive corre-
lation between periodicity and data throughput, and negative correlation between 
data throughput, bus utilization, and periodicity.

The correlation analysis of the extracted features presented in Fig. 4 shows a strong 
positive correlation between periodicity and data throughput. However, we can see 
a slight positive correlation between periodicity/data throughput and inter message 
gap and bus utilization. A slight negative correlation exists between ModeCode value 
and other features such as throughput, inter message gap and periodicity. We should 
always be wary of the existence of perfect correlation. Suppose a dataset has perfectly 
positive or negative correlation. In that case, there is a high chance that the model’s
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Fig. 4 Correlation among features

performance will be impacted by multicollinearity. This happens when one feature 
in a model can be linearly predicted from the others with a high degree of accuracy, 
leading to misleading results. However, this can be solved using algorithms such as 
decision trees and boosted trees algorithms which are immune to multicollinearity. 
Another solution is to remove some of the features to prevent this from happening. 

4 Detection Model 

Anomaly detection approaches fall into two subcategories: supervised and unsu-
pervised. Supervised anomaly detection consists of creating a baseline for known 
benign network and system activity, and then looking for any events that seem anoma-
lous with respect to the baseline. Supervised approaches require prior knowledge of 
normal instances which can be used to build the baseline. 

Unsupervised approaches consist of identifying anomalous behaviors without any 
prior knowledge. In other words, while supervised approaches require some training 
on normal instances, unsupervised approaches do not require any training; detection 
can take place early on, without going through the process of building a baseline.
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Most available unsupervised approaches use statistical methods to cluster the data 
closer to each other and look out for outliers/rare events to flag them as anomalous 
events. 

Anomaly is defined as something that deviates from what is standard, normal, or 
expected [7, 13]. Anomaly detection consists of determining statistically significant 
deviations from the regular or normal pattern of behavior for the system. Change-
point detection, which consists of determining the occurrence of abrupt changes in 
a data stream provides a natural model for the anomaly detection problem. In this 
work, we explore unsupervised anomaly detection based on change point analysis 
techniques. 

4.1 Change Point Detection 

Change point analysis is used to establish if a monitored time series data stream is 
statistically homogeneous or not. If it is not homogeneous a change is detected at the 
time when the distribution changes. 

Several approaches have been published on using change point analysis to 
detect intrusions [17–22], however, these proposals have targeted only conventional 
networks. 

To detect a change point, the data should be received sequentially or in a stream 
fashion, known as a sequence of observations. The detection occurs when a single or 
multiple changes suddenly happen in the distribution at the unknown change points 
T1, T2…, Tn, and between every pair of change points, it is usually assumed that 
the observations are independent and identically distributed. 

There are two statistics that are commonly observed to detect a change: the mean 
and variance. The mean was used in the first change point detection model introduced 
by [23] for detecting a change in a univariate mean. Then, this approach was extended 
to detect a change in different setting, for example, in the variance [24], in multivariate 
change detection [25] and in non-parametric setting [26, 27] either for a single or 
multiple change points. 

There are two main types of change point detection algorithms, namely, batch and 
sequential, also known as offline and online, respectively. In batch detection models 
the decision of homogeneity or a change point is made offline only after the entire set 
of observations are received. A fixed length sequence of observations is examined to 
determine whether any change point occurred at a particular point in the sequence or 
not. In contrast, in the sequential detection models the decision of homogeneity or a 
change point is made online while the observations are being received sequentially. 

The offline method performs well with a sequence of observations that has only a 
small number of change points [28, 29]. This may not be adequate for MIL-STD-1553 
environments where many devices are constantly generating data. Online methods 
are more adequate to handle such potentially unending stream of data. Therefore, in
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this work, we have decided to use online change detection approaches by exploring 
one of the most popular algorithms for online change detection called CUSUM 
[15, 16]. 

4.2 Using CUSUM Algorithm 

As the name suggests, CUSUM stands for Cumulative Sum. It is statistical sequen-
tial change detection algorithm that was discovered by Page at the University of 
Cambridge in 1954 [30]. It is one of the most well-known algorithms for change 
detection. Change detection refers to finding changes in sequential data when a 
property of the time series changes [31]. The first classic CUSUM algorithm was 
designed for independent and identical distributions. 

There are different forms of CUSUM as defined by Page [30]: direct or recursive 
forms and one-sided or two-sided forms. The aim of this algorithm, like any other 
change detection algorithm, is to detect the change when the state of the process 
changes from normal behavior to an abnormal one at a given time. In other words, a 
threshold is set for normal behavior, and if that threshold is exceeded, the algorithm 
sends an alarm at that time. 

The algorithm to identify attacks based on CUSUM is written in Python program-
ming language and uses one of the known Python modules for change detection in 
it. 

Algorithm 1: CUSUM algorithm [32] 
⎧ 
⎨ 

⎩ 

s[t] = x[t] − x[t − 1] 
g+[t] = max

(
g+[t − 1] + s[t] − dri f  t, 0)

g−[t] = max
(
g−[t − 1] + s[t] − dri f  t, 0)

i f  g+[t] > threshold  O  Rg−[t] > threshold  

⎧ 
⎨ 

⎩ 

talarm = t 
g+[t] = 0 
g−[t] = 0 

The algorithm takes three inputs: the first is the data x, the other two are threshold 
and drift values. There are many ways to implement the CUSUM algorithm. One of 
the ways is to find out positive (g+[t]) and negative (g−[t]) changes in the values of 
data (x) and then calculate its cumulative sum. The cumulative sum is then compared 
to the threshold value. If the cumulative sum at a given time t exceeds the threshold, 
it is made to start from zero, and an alarm(t) is generated to detect the change. It can 
be seen in the above Algorithm 1. The drift, which is another essential parameter, 
is used here to reduce the false positives. Therefore, the CUSUM algorithm mainly 
relies on tuning threshold and drift parameters.
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According to Gustafsson (2000) [33], the following steps can be used for tuning 
purposes:

• Choose to begin with a high threshold.
• Pick a drift value that is half of the expected change or such that g = 0 more than 

half of the time.
• The next step would be to set  a  threshold to obtain detections.
• Decrease the drift to achieve faster detection
• Increase the drift to reduce false positives.
• The drift can also be increased in cases where the changes do not make sense. 

The output of the algorithm gives an array of indexes where the changes are 
detected and their amplitude. This means it provides the location of the data frames 
in the form of an array to identify the attacks. The output also plots a graph of the 
detected changes and the data frames. 

5 Empirical Evaluation 

5.1 Performance Metrics 

The performance evaluation of the proposed detection scheme is done by computing 
the detection rate (DR), the false positive rate (FPR) and the accuracy, which are 
classical metrics used for IDS evaluation. In addition to these two metrics, we are 
concerned also by the detection delay or mean-time-to-detect (MTTD), which is an 
important performance criterion when applying change-point detection. 

Detection rate: The detection rate is defined as the number of attack samples 
detected by the model to the total number of attack samples in the data: 

Detectionrate = Numberof at tacksamplesdetected 
T otalnumberof at tacksamples # 

False-positive rate: The false-positive rate is defined as the ratio of the number 
of benign samples that have been reported as malicious to the total number of benign 
samples: 

Falseposi ti  verate = Numberof  benignsamplesmislabelledasmalicious 
T otalnumbero f benignsamples # 

Accuracy: computed as the ratio of correctly classified data points to total data 
points as follows: 

Accuracy 

= True  Posi ti  ves + True  N  egatives 

T rue  Posi ti  ves + False  Posi ti  ves + False  N  egatives + True  N  egati  ves
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Mean absolute error rate: Different metrics are available to calculate the MTTD 
or time difference between the detection time for an attack and the actual time when 
the attack occurred. We use in this project the mean absolute error (MAE) metric to 
compute the MTTD: 

MAE  =
ΣN 

i=1|Predicted(attacki ) − Actual(attacki )| 
N 

where N is the total number attack instances. 
The absolute value of the difference between the predicted and actual attack time 

is summed and normalized over each of the detected attack instances (or change 
points). 

5.2 Evaluation Procedures 

We run each of the algorithms on the datasets by varying the settings (i.e., set of 
algorithm parameter values). For each setting, we calculate the detection performance 
in terms of FPR, DR and MAE, and then we build a ROC curve plotting DR against 
FPR for different setting. 

Since there is no training phase, the complete set of data are used for testing. For 
each setting, we run the algorithm separately on the benign and attack datasets. 

In the proposed approach, once a change is detected, an estimate for its location is 
returned. If the observation at that location is malicious as per the original label, then 
we assume the change is caused by a malicious activity and the change is qualified as 
True Positive (TP). Otherwise, if the observation at the estimated location is normal, 
then the change is qualified as a False Positive (FP). If the detection algorithm fails 
to detect a malicious observation that might cause a change, we refer to the location 
of such an observation as a False Negative (FN). The remaining normal observations 
that do not cause any change are referred to as True Negatives (TN). 

5.3 Evaluation Results 

Figures 5 and 6 show the detection graph and ROC curve for the first Basic DoS 
attack. As seen in Table 4, the data throughput feature performs better than other 
features. The threshold and drift selected for attack are 0.82 and 0.1, respectively.

Figures 7 and 8 show the detection graph and ROC curve for Attack 2 (Broadcast 
DoS). Table 5 shows that the data throughput feature performs better than other 
features in this attack scenario. The threshold and drift selected for attack are 0.81 
and 0.1, respectively.
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Fig. 5 CUSUM detection graph: Attack 1 (basic DoS) with data throughput feature 

Fig. 6 ROC curve: Attack 1 with data throughput 

Table 4 Performance evaluation: Attack 1 

Attack 1: DoS attack (threshold: 0.82 and drift: 0.1) 

Accuracy (%) FPR (%) TPR (%) MAE (%) 

Data throughput 100.0 0.0 100.0 0.0 

Inter message gap 83.33 100.0 100.0 16.67 

Bus utilization 85.71 0.0 50.0 14.29 

Mode code 83.33 100.0 100.0 16.67

Fig. 7 CUSUM detection graph: Attack 2 (Broadcast DoS) with data throughput feature
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Fig. 8 ROC curve: Attack 2 with data throughput feature 

Table 5 Performance evaluation: Attack 2 

Attack 2: broadcast DoS attack (threshold: 0.81 and drift: 0.1) 

Accuracy (%) FPR (%) TPR (%) MAE (%) 

Data throughput 100.0 0.0 100.0 0.0 

Inter message gap 66.67 100.0 100.0 33.33 

Bus utilization 80.0 10.0 100.0 20.0 

Mode code 66.67 100.0 100.0 33.33 

Inter message gap feature outperforms all other features in Attack 3 (Subtle injec-
tion), as seen in Table 6. The threshold and drift selected for attack are 0.9 and 0.1, 
respectively. Figures 9 and 10 show the detection graph and ROC curve, respectively. 

Figures 11 and 12 show the detection graph and ROC curve for Attack 4 (Noisy 
injection). The threshold and drift selected for attack are 0.9 and 0.01, respectively. 
Table 7 shows that the inter message gap feature performs better than other features 
in this scenario.

Table 6 Performance evaluation: Attack 3 

Attack 3: subtle injection attack (threshold: 0.9 and drift: 0.01) 

Accuracy (%) FPR (%) TPR (%) MAE (%) 

Data throughput 59.29 39.639 0.0 40.71 

Inter message gap 97.87 2.17 100.0 2.13 

Bus utilization 45.39 55.07 66.67 54.61 

Mode code 97.85 100.0 100.0 2.15
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Fig. 9 CUSUM detection graph: Attack 3 (subtle injection) with inter message gap feature 

Fig. 10 ROC curve: Attack 3 with inter message gap feature

Fig. 11 CUSUM detection graph: Attack 4 (noisy injection) with Inter message gap feature

As seen in Table 8, the ModeCode feature outperforms all other features for 
Attack 5 (Logic attack). The threshold and drift selected for attack are 0.9 and 0.01, 
respectively. Figures 13 and 14 show the attack’s detection graph and ROC curve.
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Fig. 12 ROC curve: Attack 4 with inter message gap feature 

Table 7 Performance evaluation: Attack 4 

Attack 4: noisy injection attack (threshold: 0.9 and drift: 0.01) 

Accuracy (%) FPR (%) TPR (%) MAE (%) 

Data throughput 60.17 38.73 0 39.82 

Inter message gap 97.50 2.56 100 2.50 

Bus utilization 45.39 55.07 66.67 54.61 

Mode code 97.87 100 100 2.13

Table 8 Performance evaluation: Attack 5 

Attack 5: Logic attack (threshold: 0.9 and drift: 0.01) 

Accuracy (%) FPR (%) TPR (%) MAE (%) 

Data throughput 53.91 41.23 27.78 46.09 

INTER MESSAGE GAP 92.35 5.20 0.0 7.65 

Bus utilization 52.45 51.67 73.91 47.55 

Mode code 84.62 18.33 100.0 15.38 

Fig. 13 CUSUM detection graph: Attack 5(Logic) with ModeCode feature
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Fig. 14 ROC Curve: Attack  
5 with ModeCode feature 

Figures 15 and 16 show the detection graph and ROC curve for Attack 6 (Combi-
nation attack). Table 9 shows that the inter message gap feature performs better than 
other features in this attack scenario. The threshold and drift selected for attack are 
0.9 and 0.01, respectively. 

Fig. 15 CUSUM detection graph: Attack 6 (combination) with Inter message gap feature 

Fig. 16 ROC curve: Attack  
6 with Inter message gap 
feature
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Table 9 Performance evaluation: Attack 6 

Attack 6: combination attack (threshold: 0.9 and drift: 0.01) 

Accuracy (%) FPR (%) TPR (%) MAE (%) 

Data throughput 93.04 3.6 0.0 6.96 

Inter message gap 100.0 0.0 100.0 0.0 

Bus utilization 56.64 40.87 0.0 43.36 

Mode code 68.53 30.65 50.0 31.47 

5.4 Results Discussion 

The above results show that the data throughput will help detect attacks like Denial-
of-Service (DoS) attacks. The basic DoS is carried by a rogue terminal sending 
random words to a specific RT. While, in the broadcast DoS attack, the rogue terminal 
sends broadcast messages to all other remote terminals. The inter message gap feature 
is better suited in attacks where fake data injection occurs. The rogue terminal manip-
ulates either a property value or the entire message while sending the data. It is evident 
from the above findings that the subtle injection attack where rogue terminal changes 
one of the message properties and the noisy injection attack where the rogue terminal 
changes entire data are detected with high accuracy and low FPR. Logic attacks are 
detected efficiently by the mode code feature. These attacks are carried out by sending 
random commands like shutdown in the middle of regular communication. The last 
attack, a combination of logic and fake data injection, was detected accurately with 
the Inter message gap property. 

These findings show that the CUSUM algorithm’s primary objective is to detect the 
attacks as efficiently as possible. However, to build a complete IDS, the above results 
should use a certain combination of features to detect attacks. This can be done by 
combining more than one feature to detect the anomaly using logical operators. The 
performance properties like accuracy, FPR, TPR from the output from the algorithm 
can be used to implement a logic further and make the technique more robust. So, 
this work brings us a step closer to building a complete IDS for the MIL-STD-1553 
standard. 

6 Conclusion 

MIL-STD-1553 is a widely accepted military standard across various platforms 
worldwide. However, it has many attack vectors associated with it and could have 
devastating results if exploited. Our work aimed to develop an intrusion detection 
technique for the MIL-STD-1553 standard using the CUSUM algorithm for change 
detection. 

This aim was achieved by using the timing properties of the protocol and extracting 
four features based on it. Then, a CUSUM algorithm was implemented to use the
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extracted features and detect six attacks on the MIL-STD-1553 communication bus. 
Finally, performances and tests were carried out to validate the algorithm, and the 
results show that individual features gave very positive results to detect specific 
attacks. This proves that the standard’s time-based properties can effectively detect 
such intrusions. 

Future work on this could include using additional properties like periodicity 
and response time, which have proven promising in the past [2]. In addition, future 
work would include implementing some logic based on the output of the features to 
identify attacks and make the technique more robust. This would include working on 
the performance parameters, applying a combination logic using the logic operators 
(e.g., AND, OR etc.), and using the additional properties discussed earlier. Though 
the technique presented in this project successfully detects six attacks, it does not 
cover all attacks, and more work can be done to include newer attack vectors for 
the bus. Also, the CUSUM technique used in this project brings us a step closer to 
building a complete IDS for the MIL-STD-1553 standard. 
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Secure Design of Cyber-Physical Systems 
at the Radio Frequency Level: Machine 
and Deep Learning-Driven Approaches, 
Challenges and Opportunities 
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Cliff Ellement, Burak Kantarci, and Claude D’Amours 

Abstract With the deployment of new 5G services, many of the critical infrastruc-
tures such as connected vehicles, remote healthcare and smart infrastructures will be 
deployed on radio frequency (RF)- based networks. As such, society will be heavily 
dependent on the ability to protect these new wireless networks as well as the radio 
spectrum. Solutions such as artificial intelligence (AI)-based transmitter fingerprint-
ing to identify and track unintended interference sources or malicious actors will be 
one of the several key technologies required to meet the needs of the next generation 
wireless networks as this technology is deployed as part of a critical infrastructure 
(CI). As an example, connected and autonomous vehicles (CAVs) can be considered 
under these cyber-physical systems and critical infrastructures. As 95 percent of new 
automobiles are expected to be equipped with vehicle to infrastructure (V2I), vehicle 
to vehicle (V2V), and other telecommunications capabilities by 2022. To ensure the 
safety of the public, new and automated techniques are needed to protect CAVs on 
the road from unintentional or malicious interference. Against these requirements, 

C. Comert (B) · O. M. Gul · B. Kantarci 
University of Ottawa-Kanata North Campus. 200, 535 Legget Drive, Ottawa, ON K2K 3B8, 
Canada 
e-mail: ccomert@uottawa.ca 

O. M. Gul 
e-mail: ogul@uottawa.ca 

B. Kantarci 
e-mail: burak.kantarci@uottawa.ca 

M. Kulhandjian · C. D’Amours 
University of Ottawa, 800 King Edward Avenue, Ottawa, ON, Canada 
e-mail: mkulhand@uottawa.ca 

C. D’Amours 
e-mail: cdamours@uottawa.ca 

A. Touazi · C. Ellement 
ThinkRF, 390 March Rd, Kanata, ON K2K 0G7, Canada 
e-mail: azzedine.touazi@thinkrf.com 

C. Ellement 
e-mail: cliff.ellement@thinkrf.com 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
I. Traore et al. (eds.), Artificial Intelligence for Cyber-Physical Systems Hardening, 
Engineering Cyber-Physical Systems and Critical Infrastructures 2, 
https://doi.org/10.1007/978-3-031-16237-4_6 

123

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16237-4_6&domain=pdf
ccomert@uottawa.ca
 854
37511 a 854 37511 a
 
mailto:ccomert@uottawa.ca
ogul@uottawa.ca
 854
40389 a 854 40389 a
 
mailto:ogul@uottawa.ca
burak.kantarci@uottawa.ca
 854
43267 a 854 43267 a
 
mailto:burak.kantarci@uottawa.ca
mkulhand@uottawa.ca
 854 47252 a 854 47252 a
 
mailto:mkulhand@uottawa.ca
cdamours@uottawa.ca
 854 50130 a 854 50130
a
 
mailto:cdamours@uottawa.ca
azzedine.touazi@thinkrf.com
 854 54115 a 854 54115 a
 
mailto:azzedine.touazi@thinkrf.com
cliff.ellement@thinkrf.com
 854 56993 a 854 56993 a
 
mailto:cliff.ellement@thinkrf.com
https://doi.org/10.1007/978-3-031-16237-4_6
 -2047 61833
a -2047 61833 a
 
https://doi.org/10.1007/978-3-031-16237-4_6


124 C. Comert et al.

this chapter presents the state of the art in real time decision support systems for the 
cyber-physical systems that build on critical infrastructures such as CAVs, through 
radio fingerprinting solutions. In this chapter, we first present the legacy approaches 
used to detect, classify and identify a transmitter, and then we move towards the 
machine and deep learning-based (ML/DL) approaches for transmitter identification 
using RF fingerprinting techniques. Following upon a comparative study on the open 
issues, challenges, and opportunities towards ML/DL-driven security of the critical 
cyber-physical systems through RF fingerprinting. 

Keywords 5G · Cyber-physical system · Radio frequency fingerprinting ·
Machine learning · Deep learning · Artificial intelligence · Transmitter 
fingerprinting · Connected and autonomous vehicle · Critical infrastructure ·
Interference detection · Classification · Radio frequency security ·
Authentication · Intrusion detection · Anti-spoofing · Dataset 

1 Introduction to Cyber-Physical Systems 

Cyber-physical systems (CPS) are the systems that consist of cyber and physical 
components. Having an embedded network, cyber-physical systems have the ability 
to interact with the physical environment. They also have the capacity to adapt to the 
changing environment and to control it if required [9]. 

A CPS has a control unit, sensors and actuators. These are needed to interact with 
the surrounding environment. A communications interface is also needed to commu-
nicate with other systems. The cyber part of the CPS is responsible for calculating 
and sending inputs to the actuators. Data for the cyber part is obtained by the sensors. 
Then, actuators can take necessary action in the physical environment [72]. 

When linked to the Internet with a central (cloud) processing node and edge 
nodes, a CPS can be called as the Internet-of-Things (IoT) [44]. Another concept is 
the web of things (WoT) which builds on top of IoT. This is achieved by merging 
networked things into the Web. Consequently, WoT can use web-based protocols like 
uniform resource identifier (URI), hypertext transfer protocol (HTTP) etc. As IoT 
connects things to the Internet, WoT connects the physical devices to the Web. The 
WoT framework as explained in [20] has layers such as WoT device, kernel, overlay, 
content and application programming interface (API). Moreover a CPS interface 
connects WoT to the physical world. 

Depending on their implementation complexity, CPS can be low-end or high-
end. Low-end implementations are linearly complex, distributed and networked. 
They usually have feedback controller systems. High-end ones, on the other hand, 
are non-linearly complex, and decentralized. They are commonly intelligent systems 
with learning capability. If used in critical infrastructures such as nuclear or power 
plants, autopilot systems and autonomous vehicles, a malfunctioning CPS can pose 
a risk to property as well public safety. Moreover, such operations generally have 
uncertainty, which creates challenges for dependability and maintenance [39].
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Additionally, the physical environment is not completely predictable and observ-
able. CPSs also need to function in uncontrolled environments. Therefore, the design 
of CPSs must be robust [55]. The CPS Framework includes aspects and facets which 
should be considered when designing such systems. Aspects can be referred to as 
main categories of concern. Facets are perspectives of bounding responsibilities in 
the engineering process [34]. Facets can be listed as follows:

• Conceptualization: The activities that output a model of a CPS. It is used for 
defining what should be included.

• Realization: The term used to describe how the CPS should function. Trade-offs 
and designs can be given as example.

• Assurance: A desired level of confidence and methods for reaching this level of 
confidence are defined. 

Aspects of CPS can be summarized as follows:

• Functional Aspects: represents functionality and actuators including sensing of 
physical environment

• Business Aspects: is mainly about enterprise, price and marketing.
• Human Aspects: represents human interactions with systems.
• Trustworthiness: is concerned with, among other things, security, privacy and 
safety of the CPS.

• Timing: represents the concerns associated with time and frequency within the 
CPS. Latency and timestamp are main examples.

• Boundaries: stand for topological or functional limitations.
• Composition Aspects: are relevant to the component assembly.
• Life cycle: represents concerns on lifetime of CPS. 

When aspects and facets are taken into consideration, CPSs should also have 
requirements [42] that can be listed as follows.

• Architecture
• Middle-ware design
• Quality of service
• Control
• Real time management
• Systems security 

This book chapter is structured as follows. The rest of this section provides infor-
mation about cyber-physical systems along with their application areas and security 
methods. Section 2 focuses on critical infrastructures. Section 3 continues with the 
fundamentals of RF fingerprinting method which is a promising solution for enhanc-
ing security. Section 4 contains information about security precautions including 
RF fingerprinting methods. The chapter continues with deep and machine learning 
methods for RF fingerprinting in Sect. 5. Related literature is included in this section 
to provide more knowledge. Section 6 provides information about open issues and 
challenges. The chapter is concluded with Sect. 7.
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1.1 Security and Application Areas of CPS 

The applications of CPS are vast. Some examples are concerned with, among other 
things, security, privacy and safety of the CPS: power grids, smart home applications, 
health care systems, assisted living, medical monitoring, wearable devices, agricul-
tural systems, military systems, meteorology, traffic control, energy conservation, 
industrial control systems and autonomous systems (such as drones, autonomous or 
self driving vehicles etc.), mobile and communications systems [3, 45, 52, 85]. 

Figure 1 illustrates a few examples of the application areas of CPSs. 
The application areas listed above are broad and are made up of sub-areas. For 

example, health care systems include, among other things, electronic patient records, 
home care, and assisted living. However, medical CPS are often limited to health 
requirements. To illustrate, consider the X-Ray example of [74] where the CPS is 
used to disable the patient’s respirator before the X-Ray is taken to ensure the safety 
of the patient. 

One of the most commonly studied and important application areas of CPS is 
electrical power grids. One drawback in this area is balancing the supply with respect 

Fig. 1 Application areas of cyber-physical systems
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to the individual users’ consumption demand. Likewise, outputs of renewable energy 
sources can fluctuate significantly and should be predicted correctly. Therefore, the 
balance between supply and the demand is a challenging problem. 

Another application area of CPS is wireless sensor networks (WSN). WSNs have 
applications on CPSs such as smart monitoring, cyberspace and border security 
tracking, more importantly for gathering information about environments. With the 
advances in WSNs, CPS might be applied as a solution for connected and autonomous 
vehicles (CAVs). Intelligent traffic control can be possible. However, WSNs have 
several challenges in terms of energy, space and time. 

While traditional sensor networks are usually designed for some specific tasks and 
have a few nodes connected to a central processor. Differently, WSNs have many 
nodes which are capable of sensing and measuring the surrounding environment. 
With a use of many nodes, line-of-sight (LOS) requirements can be achieved. It 
should be noted that WSN applications on CPS for communications don’t have 
existing predefined infrastructures [67]. 

Varying sensor types can be deployed according to the purpose of use, such as 
electric, light, acoustic, pressure and humidity etc. Smart sensors use two way com-
munication and logic circuits to calculate and process information. Smart sensing 
networks are used in applications like smart home and smart cities. Distributed WSNs 
and mobile ad-hoc networks (MANETs) are also commonly used in CPS applica-
tions, especially smart health care, rescue and transportation systems. 

CPS are also used together with the term of Industry 4.0. As described in [19, 
44] the first revolution was mechanization followed by the mass production. Third  
one is the digitization with the electronics and Internet. CPS is counted as the fourth 
revolution which names the term Industry 4.0. Some technologies for Industry 4.0 
can be listed as additive and smart manufacturing, augmented reality, autonomy, big 
data and cloud applications and so on [86]. 

Becoming a part of our daily lives, CPS provides us many advantages. However, 
rising usage and dependency of CPS can lead to some security threats that should be 
considered [9]. 

An attacker can breach confidentiality by eavesdropping on communications 
between sensors, controllers, and actuators. Integrity is affected if these commu-
nications can be altered by the attacker. Cyber as well as wireless attacks can prevent 
CPS availability, by causing failures in the computer technology or by jamming 
communications, etc. 

Two other important aspects when faced with the possibility of attacks are relia-
bility and authentication. Authentication can be defined as the need for confirming 
that involved users are legitimate. While designing a CPS network, nonrepudiation 
should be provided by proving the actions in order to take precautions. 

Some common security threats within the Wireless domain include spoofing, 
denial of service (DoS), data tampering and corruption, and injection of false infor-
mation. Attacks on computer-based systems are also possible with trojans, viruses 
and worms. Since cyber-physical systems interact with physical world, actuators 
can also be prone to attacks such as injection of false radar signals, global position-
ing system (GPS) spoofing, and interference with cameras. Communication systems
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of cyber-physical systems may be prone to attacks such as sybil attacks, selective 
forwarding, packet spoofing and replaying etc. 

Security problems in cyber-physical systems have become a world-wide concern, 
thus, the design of secure systems is an important and contemporary area of research. 
As security attacks continue, the demand for new measures to protect CPS will persist. 
These measures can be defined as cyber-defense process that includes a number of 
fundamental steps, namely prevention, detection, reaction, and forensics [83]. 

1. Prevention: This stage can be explained as monitoring the systems and detecting 
its vulnerabilities. An example of prevention can be given as access control. 

Access control systems (ACSs) are used for managing privileges to guarantee 
secure access. Firewalls (FWs) are one of the important concepts of prevention. 
They can analyze packet content, detect some malicious content, deny unauthorized 
connections etc. The CPS uses internal firewall system that prevents attackers from 
connecting to server outside of the network [62]. 

Intrusion prevention systems (IPSs) method is highly important. To monitor traffic 
flows, risk assessment techniques can be used to scan vulnerabilities and threats, and 
enumerate them [83]. 

2. Detection: This stage includes detecting and reporting the events. For this stage, 
intrusion detection systems (IDS) are used most commonly. IDS can be divided into 
two groups based on their detection method. 

Anomaly based IDS attempts to identify deviations from normal system activity 
traces and traffic. Signature based IDS performs the detection by matching some 
rules to uncover known attack patterns. Additionally, firewalls are also considered 
as IDSs, too. 

3. Reaction: After detection stage, this stage takes place. Reaction stage includes 
responding and blocking ongoing attacks and, providing effective precautions. At 
this stage, the system is returned into its normal state. 

4. Forensics: stage manages investigating events after the attacks are addressed. 
Thus, parties can understand mistakes and avoid them in the future. 

2 Critical Infrastructures 

Since CPS is used in critical infrastructure, an additional section is included about CIs. 
The term ‘critical infrastructure’ can be explained as critical services or industries 
that play crucial role for a particular business or for the public. A CI is called critical 
if its damage or failure of operation causes a vital impact on health, economics and 
safety. A loss of CIs can have serious effect on society, and it might also cascade to 
other CIs. 

CI includes water supply facilities (including distribution, transport, wastewater, 
storage, treatment), gas production (including transport, distribution), oil products 
(including transport, distribution, production), telecommunication, electricity gen-
eration (including distribution, transmission), which are required for society and the 
economy to function properly [42].
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An important concept is the notion of inter-dependency, which can be explained as 
the relation between infrastructures in which each of them is influenced by the other. 
An example is the inter-dependency between electric power grids and gas systems 
outlined in [80]. Any failure in the electrical system might cascade to the natural gas 
system. 

CIs can be considered as interdependent with other infrastructures if the following 
conditions hold [61].

• Input: The CI needs one or more inputs from another CI.
• Shared: Some components of the CI are shared with other CIs. For example electric 
power and network [26].

• Exclusive-or: One CI or another CI can be in use for the service. Simply, both 
CIs cannot be in use at the same time. As an example, limiting a usage of power 
generator for CI.

• Co-location: At least two CIs’ components are co-located in the same region. The 
location of the CI faces the risk of being damaged if a disaster occurs in the area. 

Methods for studying inter-dependencies of critical infrastructures can be cat-
egorized into three groups [92]. These are conceptual, model and empirical based 
approaches. Simulation and modeling approaches study infrastructure models to ana-
lyze disturbances and their effects on such systems. Whereas empirical approaches 
analyze data and statistics obtained from the actual events. Though they can be more 
effective than simulation approaches due to being based on actual events, empirical 
methods cannot obtain information about the events that haven’t occurred. Concep-
tual inter-dependencies studied in [80]:

• Physical inter-dependency: Which can be explained as coupling between the sys-
tems inputs and outputs. Some other infrastructure might need to use a commodity 
created by another

• Cyber inter-dependency: Concept that is used to explain the dependency on the 
information infrastructure

• Geographical inter-dependency: Some events like geographical hazards can create 
damage or disturbances to CIs

• Logical inter-dependency: This term is often used for infrastructures having recip-
rocal effects without any above-mentioned inter-dependencies 

Figure 2 demonstrates an example of inter-dependencies of critical infrastructures. 
Critical infrastructures are also complex systems. Complex systems have a huge 

number of dimensions, non-linear attributes, and powerful interactions. Their com-
ponents are heterogeneous. Heterogeneity means the differences in the elements and 
connections. In power grids, powerful heterogeneity occurs since facilities are con-
nected by centralized systems to consumer branches. Heterogeneity creates dynamic 
and structural complexity. Most well known example for the complex system that 
can be given is the Internet. Needless to say, the Internet is broadly used by many 
people and companies [108].
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Fig. 2 Interdependencies of critical infrastructures 

Critical infrastructures can be monitored and secured such as IDS, anti-spoofing 
techniques etc. RF fingerprinting can be used to secure CPS by detecting devices 
unique fingerprints. The chapter continues by explaining some fundamentals about 
RF fingerprinting. 

3 Fundamentals of Radio Frequency Fingerprinting 

RF fingerprinting is a process of detecting unique characteristic of transmitters [98]. 
RF fingerprinting can be used for detecting the unique radio transmitters at the 

physical layer level. RF fingerprinting shows the distinguishing characteristics of 
the transmitters’ components, and their properties [18]. RF fingerprinting is a very 
promising method for securing cyber-physical systems. 

Because of some hardware imperfections in manufacturing process, specific char-
acteristics of the transmitter are presented in the transmitted signal, such as imbal-
ances across a number of signal parameters. As these imperfections are unique, they 
can be used for detecting specific transmitters to secure communication network. 

RF fingerprint feature extraction can rely on different features, for example, in 
phase and quadrature imbalance (I and Q), DC offset, power amplifier non-linearity, 
differential non-linearity, carrier frequency offset, clock offset, phase shift difference, 
etc. [13, 107]. 

The features that can be obtained from the received RF waveform can be classified 
as location dependent and location independent (radiometric) features [100]. 

Most commonly known location dependent features are received signal strength 
(RSS) and channel state information (CSI). 

RSS technique depends on the average signal power at the receiver side, attenu-
ation and power of transmission. Even the same transmitters which are at different
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locations may have different RSS. That is why, this method is classified as location 
dependent. However, transmitters at close locations may have close RSS values. This 
method might not be effective if a transmitter is aimed for identification at different 
locations. 

CSI indicates known information about channel assets, and it contains merged 
effects of fading, scaling and so on. CSI at a receiver side may change significantly 
when the receiver is moved. This change often occurs because of small scale fading. 
Location independent features refer to imperfections of individual devices. Imper-
fections caused by the manufacturing process that are insignificant and do not impact 
communication specifications, are typically large enough to be used in detecting spe-
cific transmitters. Developed by Brick et al., passive radiometric device identification 
(PARADIS) is designed for using magnitude and phase errors as features [100]. 

Location independent features can be categorized as waveform and modulation 
based. Waveform techniques focus on time and frequency representations, while 
modulation techniques focus on I/Q symbols. In the following, more detailed knowl-
edge are provided about the above mentioned features. 

PA Non-linearity: Even though PAs are commonly linear, they saturate in high 
voltages. PA non-linearity has effects on communication. This non-linearity can be 
extracted and used as a feature [13]. Figure 3 shows PA distortions in constellation 
figures. 

Phase Shift Difference: Crystal oscillators creates sine waves for up-link con-
versation [105]. Both the carrier frequency offset and phase noise introduce a phase 
shift to the constellations. 

Carrier Frequency Offset: Carrier frequency offset occurs because of frequency 
mismatch in crystal oscillators. It can be used as a feature when identifying specific 
transmitters.
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Fig. 4 IQ Imbalance 

Differential Non-linearity: Differential non-linearity is caused by the discrepancy 
between ideal values and obtained analog values of digital codes [13]. 

I/Q Imbalance: Complex down converter multiplies the signal by a complex 
wave. In order to perform such complex conversation, both sine and cosine waves 
are needed. By using both, the receiver is divided into in phase (I) and quadrature 
(Q) branches. 

For communication, these branches need to have the same amplitude with ninety 
degrees of phase difference. The mismatch between I and Q branches causes IQ 
imbalance [57]. 

IQ imbalance can be observed more clearly in the frequency domain. Hardware 
imperfections and tolerances of the components (like imperfect splitting ratio of 
couplers, and polarization splitters) can cause amplitude and phase imbalance [66]. 
Figure 4 demonstrates IQ imbalance in constellation figures. 

4 Application Areas of RF Security 

Most common applications areas of RF security include authentication, geo-location 
and tracking, intrusion detection, RF interference detection and anti-spoofing. These 
application areas of RF security are presented in more detail in the rest of this section.
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4.1 Authentication 

The state of the art offers various methods to authenticate vehicles. In [94], the pro-
posed model stores sensitive information temporarily and deletes them regularly. By 
this way, this sensitive information is being disposed before being obtained by adver-
saries. The authors mention that commonly used conditional authentication model, 
conditional privacy-preserving authentication (CPPA) relies on a tamper proof device 
(TPD). However, TPDs are not feasible due to practical security requirements and are 
sensitive to vehicle shocks which may cause information loss as a result of attacks. 
Therefore, a more realistic and practical model is needed. 

In this framework the key used for authentication is generated by the vehicle itself 
and stored in the TPD so as to prevent impersonation attacks. The framework also 
uses authentication via trusted authority. The design in [94] enables authentication 
without real time interactions. Usage of pseudo-identities is another concept to keep 
identities safe. A trusted authority (TA) can verify identities. Additionally, since 
only a TA can verify identities, unwanted tracking of vehicles is also prevented. This 
model is designed against replay, impersonation and modification attacks. 

Another authentication framework named signature and prediction TESLA for 
vehicular ad-hoc network (VANETs) is proposed in [58]. This framework uses a 
method for authentication that merges elliptic curve digital signature and TESLA 
algorithms. The TESLA model uses symmetric cryptography for authentication. 
It is not strictly synchronized, but requires time upper bound. Recommended by 
the dedicated short range communications standard such as IEEE801.11p, vehicles 
broadcast a safety message also known as beacon containing important information 
such as location and route. An attacker can perform DoS attack easily by sending 
fake information. 

The TESLA model provides an alternative to signatures by using symmetric cryp-
tography. It is resilient against DoS attacks in V2V communications. Nevertheless, a 
drawback of TESLA is that the receiver has to buffer packets during one disclosure 
delay before it can authenticate them. This situation makes TESLA impractical when 
instant identification is needed. As a result a more practical scheme was designed by 
merging the TESLA model with Merkle hash tree (MHT). The steps taken for this 
model include key generation, beacon prediction, building MHT and broadcasting 
signatures. 

RF fingerprinting is based on detecting and understanding the unique RF charac-
teristics of a transmitter created by its hardware imperfections. When RF fingerprint-
ing is used to verify transmitter authenticity, RF characteristics such as I/Q imbalance 
can be used to identity spoofing and thus making it challenging for attackers. There-
fore, RF fingerprinting can also be used to authenticate legitimate devices. Addi-
tionally, authentication can be more robust since it is based on radio frequency-level 
signatures [43]. As an example, Alladi et al. designed an authentication scheme based 
on physical unclonable functions (PUFs) [4]. The research in [10] introduces device 
authentication codes that integrate RF fingerprinting into IoT device authentication.
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4.2 Geo-location and Tracking 

GPS was the first reliable system for localization. Even though GPS can be success-
ful in some applications, it may not be effective indoors and in urban areas. This and 
GPS-denied areas revealed a need for new geo-location techniques to be developed. 
IEEE 802.11 standard was introduced as a cellular localization technique, and RF 
fingerprinting can be used for outdoor or indoor localization [30]. Moreover, con-
firmed emitters can be tracked with RF fingerprinting. Channel impulse response 
(CIR)-based fingerprinting and frequency channel function (FCF)-based techniques 
can be used for localization. 

In parametric geo-location techniques, the location system collects parametric 
information (as explained below) about a transmitting device to estimate its location 
[65].

• Times of arrival (TOA) method can estimate position when three reference points 
are available.

• Time differences of arrival (TDOA) method can estimate position when three 
reference points are available. This method uses time differences of intersections 
of the hyperbole.

• Angles of arrival (AOA) method can estimate position when two reference points 
to the mobile device are available [30]. 

The geo-location technique is formed from the idea that the signals at different 
locations will have different characteristics from each other [41]. To illustrate, mobile 
device’s location can be found with this technique. 

4.3 Intrusion Detection 

Deep and machine learning methods can be used in intrusion detection. As an exam-
ple, in [15], a machine learning based IDS for Cloud environments is introduced. To 
develop a network IDS based on neural network a hybrid model is used. Genetic algo-
rithms are merged with parallel processing and optimization methodologies such as 
fitness values hashing. In [56], signature based, battery based and agent based meth-
ods are compared. Additionally, pattern classification methods are investigated. Some 
works for mobile systems are surveyed; as an example, in [11], behavior based IDS 
for mobile systems is developed. 

RF fingerprinting can be a strong tool to detect intrusions. It can also identify 
imitation attacks. Attackers can perform replay attacks by mimicking legitimate 
users. Similar to the traditional fingerprints methods, RF fingerprinting can pave the 
way for the security systems to identify attacks [43]. 

For example, in order to detect medium access control (MAC) spoofing attacks 
an anomaly based IDS is introduced in [37] by leveraging RF fingerprinting with 
T-square statistical method.
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Fig. 5 Unintentional RFI 

4.4 Interference Detection and Traditional Approaches 

Radio frequency interference (RFI) that affects the system could be intentional or 
unintentional. Intentional RFI includes illegal sources such as jamming attacks. As 
jamming can be used for malicious intents, it can also be used for Wi-Fi, GPS 
jamming for workplaces or military purposes. 

Unintentional interference is caused by outdated, degraded devices. Chargers, 
relays and switches can cause such RFI [69]. All devices using RF can be vulnerable 
to RFI. Unintentional interference can be either internal or external. Figure 5 shows 
some examples of unintentional RF interference. 

Using spectrum analyzers RFI can be recognized by monitoring values such as 
bit error rate and noise. When RF interference is present, it affects the antenna 
temperature, causing disruption of geophysical parameters [24]. 

Mitigation techniques for detecting RF interference consist of time and frequency 
domain based methods and spectrograms. Time and frequency domain based methods 
remove power samples which are higher than expected values. Spectrograms use 
series of data to receive good resolution in both time and frequency. 

Increasingly accessible low cost hardware and recent technological developments 
in cognitive networking and software-defined radio (SDR) have made many applica-
tions dependent on wireless networks. This gives adversaries the opportunity to inflict 
harm or damage to systems relying on wireless communication networks through 
jamming attacks (also known as intentional RFI) [97]. This type of attack causes a 
DoS problem. DoS attacks can result in slower download times, greatly reducing the 
number of active voice users or a significant increase in network latency [29]. Due to 
the simplicity of jamming techniques, there exists a variety of inexpensive jamming 
technologies available to jammers, making it difficult to overcome these types of 
attacks [35]. For securing wireless communication systems and guaranteeing quality 
of service (QoS), a robust RFI detection method needs to be applied for producing an 
effective mitigation process [35]. Moreover, determining the modulation type of the 
signal of interest combined with RFI precisely is essential. For enabling demodula-
tion processes at the receiver side, automatic modulation classification (AMC) rises 
as an important procedure in communication networks [22].
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4.4.1 Reactive, Non-adaptive Traditional Approaches 

Out-of-band emission by the meaconers, jammers, spoofers, close transmitters and 
harmonics from other intefereing sources are the most common reasons for RFI. 

RFI is prevailing for these emitters in global navigation satellite systems (GNSS), 
[12], microwave radiometry [36], and radio astronomy [47, 93]. In addition, it exists 
for imperfect sensing spectrum in cognitive radio system [31]. Consequently, RFI 
detection and excision bring a necessity for development of statistical [81], trans-
formed domain-based [23], spectral [36], temporal [68], spectral-temporal [12], and 
spatial filtering-based [47, 93] techniques. 

The kurtosis method [81] detects non-Gaussian distributed interference signals 
efficiently and considers those signals as RFI; however, the kurtosis method is not 
able to detect Gaussian or approximately Gaussian distributed interference signals. 
The paper [68] proposes asynchronous pulse deletion method which performs well 
specifically for impulse interference. Nevertheless, the performance of the asyn-
chronous pulse deletion technique becomes quite susceptible to chosen detection 
parameters. Power detection techniques like crossfrequency technique [36] works at 
frequency domains. They are able to mitigate little RFI successfully and efficiently 
for many channels. Spatial methods detect RFI by estimating its subspace. In the 
sequel, these techniques project the estimated RFI subspace for eliminating RFI 
[36]. 

For microwave radiometry applications, the researchers have proposed spectral 
detection and excision techniques like the mitigation technique in [16] and the cross-
frequency blanking [36]. These techniques commonly apply reconstructed interfer-
ence and fast Fourier transforms (FFT) for mitigating RFI. However, crossfrequency 
blanking needs detection thresholds because they may decrease performance, which 
implies the mitigation technique becomes unsuitable for wideband RFI mitigation 
if the thresholds are set incorrectly. As an example of temporal algorithms, asyn-
chronous pulse blanking is a commonly used technique. It blanks the part at which 
signal amplitude becomes larger than the threshold with respect to noise. Neverthe-
less, asynchronous pulse blanking has a performance decrease because of exploited 
heuristic threshold. 

An interfering signal emerges for a short duration in many cases and demon-
strates a variable frequency behaviour [23]. A time-frequency representation like 
Gabor expansion or a spectrogram facilitates the identification and removing of RFI 
in such cases [12]. In [23], the RFI is estimated in time-frequency domain and sub-
tracted from the signal. In a similar way, transformed domain-based techniques using 
the Karhunen-Loève (KL) and wavelet transform, bordered autocorrelation tech-
niques were presented in a detailed way in [23] and [59], respectively. Nevertheless, 
techniques presented in [23] have high computational complexity; the techniques 
presented in [59] cannot detect wideband signals unambiguously. 

Despite their advantages, transformed domain-based and time-frequency tech-
niques are highly complex computationally. Hence, one may apply statistical tech-
niques like kurtosis detection [81] by assuming non-Gaussian RFI.
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Besides, the paper [8] proposes statistical techniques assuming unknown statistics 
for RFI. The work [8] applies generalized likelihood ratio test and Neyman-Pearson 
detection theory to derive a novel GNSS detection technique. However, because 
of their non-linear operations, the statistical detection and excision techniques are 
computationally complex. 

The previously mentioned highly-complex techniques are also susceptible to RFI 
misdetection. Finally, signal processing practitioners may opt for spatial filtering 
methods like cross subspace projection (CSP) [47] and subspace projection (SP) 
[93]. SP relies on eigenvalue decompositions of space-time autocorrelation matri-
ces whereas CSP relies on singular value decomposition (SVD) of the space-time 
crosscorrelation matrix. Particularly for radio astronomy applications, they are state-
of-the-art methods in order to take away the RFI which has more stable interferer 
emission. In addition, the paper [38] proposes oblique projection beamforming tech-
nique to cyclostationary RFI mitigation. Recently, the scenarios with correlated noise, 
relatively rapid interference motion and little interference-to-noise ratio have been 
addressed by the polynomial-augmented subspace projection technique [54]. 

4.5 Anti-spoofing Solutions 

Spoofing can be described as making GPS receivers calculate false positions. 
For spoofing receivers, an adversary requires recreating signals from multiple 

satellites faithfully. In the sequel, it sends those “spoofing” signals for capturing local 
GPS receivers. If targeted GPS receivers cannot distinguish spoofed signals from real 
satellite signals, spoofing can mislead target receivers such that they appear to be at 
different locations. 

Two application areas of anti-spoofing are facial authentication (FA) systems and 
global navigation satellite systems. 

4.5.1 Facial Authentication Systems 

FA systems have recently been used in daily applications such as individual identifi-
cation, online payment and access control. Because of its convenience and precision, 
FA is regarded as a more promising authentication approach different from traditional 
ones, like token, fingerprint, and PIN code [101]. 

Being mostly camera-based, brings some severe drawbacks to the existing FA 
systems, which include security problems and privacy leakage risks. Nevertheless, 
many existing FA systems use RGB cameras for collecting facial features of users, 
which reveals complete visual facial information (VFI). This contributes to exac-
erbating privacy concerns. Nonetheless, by deriving geometric features from VFI, 
this approach performs authentication. By reproducing the features, an attacker can 
make spoofing attacks easily provided that a user VFI is leaked.



138 C. Comert et al.

Even though the research literature has introduced more geometry information 
such as depth information of faces [51] for enhancing security, a camera-based FA 
system is yet susceptible to spoofing attack since it can capture information remotely. 
Examples include using infrared dot projectors or depth cameras [99]. Therefore, 
attackers can manipulate 3D-printed VFI-captured-based masks for deceiving FA 
systems [25]. 

To overcome the disadvantages, bio-material-based FA can be used since it is 
more resilient against spoofing attack. At the same time, the recent developments in 
wireless sensing imply the RF signals are susceptible to materials that RF signals 
encounter during propagation [101]. Therefore, authenticity of users can be deter-
mined by verifying VFI captured in RF signal. Moreover, the scholars demonstrate 
that an array of commercial-off-the-shelf (COTS) RFID tags are able to work prop-
erly as sensitive and cheap sensors for supporting fine-grained wireless sensing [95]. 
As RFID systems have the fine-grained sensing and material-sensitive capabilities, 
an anti-spoofing FA system is attempted to be developed with COTS RFID devices. 

4.5.2 Global Navigation Satellite Systems (GNSS) 

GNSS plays an important role in location, exploration, and communications [53]. 
Unfortunately, the vulnerability of GNSS signals to spoof interference has long been 
known. By broadcasting counterfeit GNSS signal, a spoofer tries to deceive GNSS 
receivers. Counterfeit signals have similar structure as genuine signals, which may 
result in false decisions to receivers. Thus, one of the crucial tasks of GNSS is to 
distinguish spoofing signals from real signals. 

For individual transmitter identification, RF fingerprinting has been used widely. 
The features of RF fingerprinting mainly include steady-state and transient-state 
features broadly. During transmitter’s power off and on, a transient signal occurs. This 
signal is also very short. It is very hard to capture transient signals so transient-state 
features have limited applications. The durations of steady-state signals are longer 
than those of transient signals. They are easier to be captured than the transient ones. 
Therefore, it is more practical for studying. 

Some of the present steady-state feature extraction approaches include higher 
order spectra analysis, fractal theory, and time-frequency transform. Higher order 
spectra is suitable for classification, because higher order spectra has some great 
characteristics like phase information of signals, keeping the amplitude and han-
dling Gaussian noise. However, this technique requires assumption of stationarity of 
the signal. Nevertheless, GNSS signals are generally non-stationary and non-linear; 
therefore, some more efficient methods need to be found [90]. 

The work [32] presents Wigner bispectrum (WB), bispectrum-based time-varying 
higher order spectra, and Wigner higher order spectrum [27] can be described as 
extensions of WB to higher order spectra domain. Nevertheless, WB’s direct utiliza-
tion needs 3D matching template which makes it computationally complex. Diagonal 
sliced Wigner bispectrum (SWB) is one of the main dimension reduction methods for 
reducing computational complexity. By getting a 2D WB slice, SWB is obtained. It
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can just use a little portion of all WB information. The paper [90] proposes axial inte-
grated Wigner bispectrum (AIWB) as a novel dimension reduction method. AIWB 
integrates WB along parallel direction with a frequency axis on the bi-frequency 
plane. The AIWB both reduces WB’s dimension and uses almost all WB information. 
Numerical results demonstrate that this proposed method has superior performance 
compared with bispectrum and SWB. 

4.5.3 High-End and Low-End Receivers 

ZigBee devices which use IEEE 802.15.4 standards of WPAN have commonly been 
adopted in numerous applications such as industrial and building control, health-
care, and security systems [71]. Their rising popularities in high-value and sensi-
tive fields bring vulnerability and security concerns. Advanced encryption standard 
(AES) provides ZigBee security for Application, Network and MAC layers. Nonethe-
less, several techniques have been proposed for exploiting vulnerabilities during key-
exchange process [21]. Moreover, it is shown that via side-channel analysis (SCA) 
techniques, it can passively monitor power consumed by authorized wireless sensor 
nodes for determining secret encryption key [78]. ZigBee alliance overcomes the 
security issues by adopting AES in a more resilient mode against an SCA attack, 
either or cipher block chaining (AES-CCM) or counter (AES-CTR) mode. Never-
theless, AES-CTR mode is exhibited to be susceptible to SCA eavesdropping attack 
theoretically and practically in [46] where full AES-CTR key has been recovered in 
a successful way. Hence, in ZigBee devices, key recovery becomes totally possible, 
which enables attackers to insert rogue devices into present networks. 

5 Machine and Deep Learning-Based RF Security 
for Cyber-Physical Systems 

In this subsection, we present machine learning (ML) and deep learning (DL) based 
security solutions for RF security problems in RF fingerprinting, interference detec-
tion, anti-spoofing and antijamming fields. 

5.1 Machine Learning Based Approaches for RF 
Fingerprinting 

This subsection presents ML based RF Fingerprinting techniques for RF Security. 
ML and DL techniques are known to be successful especially for extracting spe-

cific latent features contained in the data. Traditional RF fingerprinting methods rely 
on built-in measures or some protocol-specific techniques [48]. Deep learning can
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be used for detecting patterns and it can outperform detecting feature better than 
handcrafted features. 

In the literature, there are several works that apply machine learning for detecting 
RF fingerprints. In [40], RF fingerprinting is performed by extracting features such 
as constellation feature, and phase noise spectrum in the transmitted waveform. 

In [98], long short term memory (LSTM)-based recurrent neural network (RNN) 
is developed and used for detecting hardware properties. LSTM can learn from 
past values and retain information. This way, the knowledge of the past transmitter 
information can be used. Deep learning methods do not require human intervention 
for deciding features. In that research, single-carrier quadrature phase shift keying 
(QPSK) modulation is considered. Gaussian noise is added on that signal for sim-
ulating decay of signal-to-noise-ratio (SNR). Without filter or recover, I/Q data is 
collected at analog-to-digital converter (ADC) output. 

Different architectures of convolutional neural network (CNN) is proposed in [48] 
to detect specific transmitters. With the use of spectrum analyzer, they have captured 
IQ samples that contains Wi-Fi signals of 5117 devices with 166 transmissions for 
each one and ADS-B samples of 5, 000 devices with 76 transmissions for each 
one, respectively. As a neural network architecture, the CNN based on AlexNet and 
ResNet is utilized. Both architectures performance has been investigate for varies 
SNR regimes. Morevore, channel effect is studied since the dataset contains both 
Wi-Fi and ADS-B signals. 

Another research that investigates Wi-Fi and ADS-B protocols is proposed by 
Cekic et al. [13]. Differing from the above mentioned work, this research investigates 
use of complex valued neural networks for RF fingerprinting. The focused features 
are both IQ imbalance, and differential and power amplifier non-linearity. The effect 
of the multi path channels is also investigated. The results are compared for both 
with augmentation and without augmentation. This is performed by adding additive 
Gaussian white noise (AWGN). 

Belgiovine et al. [82] propose raw IQ samples based studies for static channels. 
As such, the for static channels no channel prediction are required however, for the 
channels do not need to be predicted. For varying channels, the model is trained 
with complex demodulated symbols to eliminate the channel effect. Their neural 
architecture is based on AlexNet. The bit-error-rate (BER) value of IQ imbalance and 
BER vs. DC offset level for different SNRs are investigated. The obtained accuracy 
is 99%. It can be understood that the proposed model is capable of detecting devices 
using impairments for both varying channel and static channel conditions. 

Ozturk et al. [70] focuses on both RF time series images and the spectrograms 
of radio signals of drone controllers by utilizing CNN network. In time series it is 
mentioned that when the SNR decreases, the model does not perform well because 
transient signal is lost in the noise. However, with spectrograms, it is possible to 
focus on frequency. Time series images are used for training the neural network. 
Images are obtained by plotting the RF arrays. Since the experiments are conducted 
in laboratory, noise is added to the data to obtain more realistic simulations. 

Mohanti et al. [63], proposed RF fingerprinting approach to distinguish autho-
rized unmanned aerial vehicle (UAV). Transmitted IQ samples are collected from
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each UAV for detecting specific fingerprint using CNN. In experiments both ground 
receivers and mounted receivers on UAVs are used. In this work, the focus is adding 
amplitude changes in real/imaginary parts, to obtain only IQ imbalance. Constella-
tion points are used to detect these impairments. As a consequence, an ML classifier 
trained in one channel environment cannot perform well if the wireless channel 
changes. To overcome this challenge, processing block is designed at the transmitter 
side for adjusting the IQ samples before transmission. The dataset consists of sam-
ples from seven UAVs which are of the same make and model rather than different 
models as used in many research works. The used neural network architecture in 
this research, is a one dimensional version of the very deep Convolutional (VGG) 
network [88]. The authors were able to achieve accuracy of 98% for UAV detection 
based on their CNN model that consists of seven convolution layers with maxpooling 
layers and three fully dense layers. 

5.2 Proactive, Adaptive Machine Learning Based 
Approaches for RF Interference Detection 

This subsection presents ML based RF interference detection techniques for RF 
Security. With fast developments in the artificial intelligence (AI) technology, more 
and more research studies have deployed DL to RFI field and the classification of 
modulation. This subsection explains some of these algorithms which apply ML 
techniques for RFI detection. 

Mosiane et al. [64] apply conventional supervised ML algorithms like decision 
tree forests, nearest K-neighbors, and naive Bayesian classification for classifying 
the signals of RFI. Before applying the classifier, the time consuming pre-processing 
of feature extraction process is required. Besides, it cannot guarantee to extract 
deep data characteristics well. Therefore, A keret et al. [2] propose the usage of 
U-Net, a specific kind of CNN to detect and mitigate RF interference. In that paper, 
CNN architecture is trained by simulated data. As RFI demonstrates a non-typical 
behaviour compared with normal signal, Ghanney et al. [33] study RF interference 
detection as anomaly detection problem. Chalapath et al. [14] apply DL to detect 
anomalies while many advanced unsupervised DL techniques have been proposed. 
Some of those techniques can be listed as generative adversarial networks (GANs) 
[87], LSTM [60] and autoencoders (AEs) [5, 79]. 

For detecting clutter and interference in high frequency surface wave radars, 
Zhang et al. [106] propose faster region-based convolution neural network. As input 
for this network, it uses range-Doppler spectrum image. Consequently, this proposed 
technique has a decent detection performance and high classification accuracy [106]. 

Yang et al. [103] develop a CNN-based algorithm RFI-Net for detecting inter-
ference at the 500-m aperture spherical radio telescope. This technique outperforms 
CNN-based U-Net model, sum-threshold, and k-nearest neighbors. Gecgel et al. 
[28] use deep RNNs and deep convolutional neural networks to detect jamming
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attacks. This paper analyzes reference signal jamming and classical wide-band bar-
rage jamming. Numerical results in this paper demonstrate that under realistic test 
environment, classification accuracy reaches up to 86.1%. 

Ramjee et al. [75] have proposed deep residual network, LSTM neural network 
and convolutional long short-term deep deural network for recognizing 10 different 
modulation types. It is numerically demonstrated that at high SNRs, the techniques 
have increased classification accuracy by up to 90%. By minimising training dataset 
size, Ramjee et al. [75] have also deployed principal component analysis (PCA) for 
optimizing classification process. Jiang et al. [49] present a technique combining 
pretrained inception-ResNetV2 with the transfer learning for recognizing 3 kinds 
of modulation at 4 dB SNR, which are binary phase shift keying (BPSK), QPSK, 
and 8PSK. Numerical result in [49] demonstrates that classifications accuracy for 
recognizing BPSK, QPSK, 8PSK are 100%, 99.66%, 96.33%, respectively. 

Karra et al. [50] present a robust hierarchical deep neural network (DNN) architec-
ture performing a hierarchical classification for estimating modulation order, modu-
lation class, and data type (digital or analog modulation). As input of CNN, authors 
utilize snapshot of spectrogram derived from in-phase, quadratic component of base-
band signals and for most modulation schemes to achieve 90% at high SNR. Yang et 
al. [102] present efficient method which uses RNN and CNN for classifying 6 mod-
ulation types under Rayleigh fading and additive white Gaussian noise (AWGN). 
Experimental results demonstrate that classification precision for CNN becomes 
nearly 100% in AWGN channel [102]. 

Minimum classification accuracy still approaches 84% even in Rayleigh channel, 
while maximum value approaches to 96%. Shi et al. [84] present a robust CNN-based 
technique that can classify BPSK, QPSK, 8PSK, and 16QAM in an orthogonal fre-
quency division multiplexing (OFDM) system precisely under phase offset presence. 
Zhang et al. [104] developed scheme based on LSTM and CNN for solving the AMC 
problem. 

Moreover, suggested fusion model-based classifiers in parallel and serial modes 
become quite useful for improving classification accuracy for SNRs varying from 0 
dB to 20 dB [104]. Serial fusion mode achieves better results than others as shown in 
[104]. Ujan et al. [91] tackle the RFI problem in a different way. Besides specifying 
the type of received signal, it also determines various schemes of digital modulation 
in which the jamming signals exist in the DVB-S2 standard-based real-time digital 
video broadcasting by using transfer learning. 

A hierarchical classification technique is proposed for classifying RFI and AMC 
by taking advantages from transfer learning technology which uses pretrained CNN 
like GoogleNet, ResNet18, VGG16, AlexNet for feature learning to which a full-
connected classifier follows. The paper analyzes these pretrained CNNs compara-
tively with respect to the accuracy in context of consumed training time and transfer 
learning. The visual representations of received signal have been generated as the 
input data in time-frequency domain. This is known as scalogram which is magnitude 
squared of wavelet transforms. 

Ghanney et al. [33] consider RFI as anomalous distorting parasite signal since 
it has a damaging influence on wireless communications. Consequently, the RFI
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mitigation becomes quite essential for avoiding this impact. RFI detection and local-
ization can be considered as initial steps for RFI mitigation process. This work 
proposes the following approaches for detecting and localizing RFI by using unsu-
pervised and supervised DL techniques. Firstly, it studies a CNN-based object detec-
tion algorithm as the supervised approach. This technique is based on you only look 
once v3 (YOLO-v3) trained on real-world data which is contaminated by multiple 
RFI source. Secondly, as an unsupervised approach, it proposes usage of convolu-
tional auto encoder (CAE). The numerical results demonstrate that RFI detection by 
YOLO-v3 is faster and it achieves 94% accurate detection rate and demonstrates that 
its average precision can achieve 89% accuracy. Average precision of the CAE can 
achieve 78% and performs better than YOLO-v3 in certain cases. 

5.3 Machine Learning Based Anti-spoofing Approaches 
for RF Security 

This subsection presents ML based anti-spoofing techniques for RF Security. 
Xu et al. [101] propose RFace as a novel anti-spoofing privacy-preserving authen-

tication system. In this strategy, an RFID tag array is used for measuring phase and 
RSS of RF signal in order to derive bio-material and 3D facial geometry features to 
make spoofing attacks resilient. A well-trained Support vector machine (SVM) clas-
sifier uses the extracted features for conducting authentication. In addition, RFace 
achieves resiliency against spoofing attacks because it is difficult for attackers to 
capture the extracted features. 

RF fingerprinting provides catchy countermeasure in physical layer against 
spoofing attacks and rogue device identification. Physical differences between 
devices manifest themselves into measurable differences in their sent signals. RF-
fingerprinting applies ML techniques for exploiting the differences between wireless 
devices and identifying them reliably [77]. RF fingerprinting is an efficient solution 
in general since it utilizes stochastic physical variations between devices to identify 
them, which can be considered as prohibitively for duplication of an attacker. 

Most RF fingerprinting techniques require using high-speed oscilloscopes, or 
expensive, large receivers like Agilent E3238S [71]. Recent research in RF finger-
printing has been successful via usage of low cost universal software radio periph-
eral (USRP) receivers [77]. Nevertheless, no study has compared low and high cost 
receivers for performance tradeoffs. Patel et al. [71] compare the differences in perfor-
mances of RF-fingerprinting between low-cost USRP-based receivers and high-cost 
receivers. Testing is conducted by using six devices which have identical model type 
from the same manufacturer. The uniformity in the model demonstrates hardest case 
for device identification, and performance can be improved just for cases with dif-
ferent device models. Random forest classifier is used for investigating the features 
of amplitude, frequency and phase of the signals and their respective contribution
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in classification. The correct classification rate (%C) characterize its performance 
to identify devices. It also identifies rogue device scenarios for network intrusion 
detection. 

5.4 Machine Learning Based Antijamming Approaches 
for RF Security 

This subsection presents ML based antijamming techniques for RF Security. 
For detecting jamming attacks, the literature include ML methods based on clas-

sifiers like SVM and artificial neural network (ANN) with different features. In order 
to illustrate, Punal et al. [73] present an ANN-based technique for wideband spec-
trum sensing and cyclic spectral analysis. Based on modulation and signal quality, 
this technique discriminates jamming signals from narrowband ones. Grover et al. 
propose a ML based jamming detection system via expectation maximization, SVM, 
and adaptive boosting techniques. Maximum inactive time, busy channel ratio, packet 
delivery ratio, and noise have been used for detecting jamming attack. Many present 
methods need more resource and serve just as stop-gap ultimately. They can detect 
link states; however, these methods cannot detect the source of service outage. More-
over, these methods have larger false alarm rates. They need accurate algorithms for 
training and testing the classification models. Features selection and learning curves 
are often neglected while these are some of the most important aspects in designing 
detection techniques with machine learning. Thus, there is a great need for efficient 
and fast detection techniques able to detect jamming attacks more accurately. 

Arjoune et al. [7] propose a ML-based technique for detecting transmission link 
state between receiver and transmitter for checking whether the link is attacked. 
ML-driven techniques can achieve high detection accuracy provided that they con-
sider the following stages: select suitable input features, collect and build a large 
dataset, and use correct methods for training, validating, and testing the model. For 
detecting jamming attacks, the used features and parameters include clear chan-
nel assessment, bad packet ratio, packet delivery ratio and received signal strength. 
The paper studies methods for assessing communication link status and selecting 
appropriate features. A large dataset is built for training, validating, and testing ML 
models. Cross-validation techniques, dataset normalization and randomization were 
performed to avoid underfitting. 

Ak et al. [1] study antijamming performance of cognitive radar under partially 
observable Markov decision process (POMDP) models. To begin with, an explicit 
expression is obtained for jammer dynamics uncertainty, which enables us to discover 
new insights into the probability for the radar to be jammed beyond conventional 
SNR-based analysis. By applying two frequency hopping strategies proposed for 
reinforcement learning (RL) frameworks, the performance metric is used in LSTM 
network and deep Q-network (DQN) under various uncertainty values. Finally, for 
both network architectures, a softmax operator replaces the target network require-
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ment in the RL algorithm. Numerical results demonstrate that softmax operator 
increases the target network performance. 

Aref et al. [6] present an RL approach for antijamming communication with wide-
band autonomous cognitive radios (WACRs) in multiagent environments. Authors 
assumed system model permits multiple WACRs to operate over the same spec-
trum band simultaneously. Each radio tries evading transmission of other WACRs in 
addition to avoiding jammer signals sweeping across corresponding spectrum band. 
The WACR benefits from its spectrum knowledge acquisition ability to detect and 
identify the location (in frequency) of this sweeping jammer and the signals of other 
WACRs. This information and RL are utilized for learning subband selection policy 
successfully to avoid interference and jammer signal from other radios. Simulations 
demonstrate that the proposed learning-based subband selection policy is less com-
plex computationally and performs considerably better than the random subband 
selection policy. 

6 Open Issues, Challenges and Opportunities in Secure 
Cyber-Physical Systems via RF Fingerprinting 

Despite its advantages, RF fingerprinting also has its own challenges. RF finger-
printing depends on several factors such as changes in the environment, temperature, 
aging, and varying channel conditions [76]. Wireless channels alternate because of 
the movement of some nearby objects. Moreover, the transceiver itself might be mov-
ing such as an UAV. Modeling these impairments is an additional drawback for RF 
fingerprinting. Thus, a necessity for a developed dataset is required, which should 
model the imperfections and varying conditions. 

6.1 Impact of Receiver Hardware 

The fingerprinting approach can be impacted by receiver hardware capturing, and 
processing the emission for fingerprinting. In particular, the receiver hardware intro-
duces IQ imbalance, filter distortions, clock offsets, and phase noise which could 
have its own unique fingerprint for transforming transmitter fingerprints. The ADC 
sampling rate as well as bandwidth of low pass filter (LPF) play an equally impor-
tant role in retaining the fingerprint features that reside in the side lobes of the power 
spectrum density (PSD). Higher sampling rates were shown to retain the fingerprint 
features at a cost of increased noise using actual MicaZ sensors [96]. Moreover, 
the effect of antenna polarization and orientation at the transmitter and receiver end 
can cause fluctuations in radiation pattern affecting the fingerprint extraction per-
formance. The imperfection of emitter antenna hardware can also contribute to the 
fingerprint feature set enabling wireless emitter identification [17]. The number of
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receiver antennas, type, orientation, and polarization can impact the classification 
performance of the fingerprinting system. 

A ML solution for this issue is incorporating captures from multiple receiver hard-
ware corresponding to dataset emitter. Training data distributions permit the model 
for generalizing and differentiating emitter fingerprints from recorded waveforms. 
The independence of fingerprinting algorithm can be assessed by training using sam-
ples captured by specific receiver hardware evaluating learned emitter features by 
testing on samples from another receiver hardware. 

6.2 Robustness in Realistic Operation Environments 

Existing RF fingerprinting literature has covered the emitter signature-identification 
problem for only one active emitter case. A hard problem would be that it is typical in 
real-world settings to have multiple active emitters. That scenario brings the necessity 
for RF fingerprinting technique to distinguish separately and extract each emitter’s 
signature from the received signal clutter. 

Another challenge would be the availability of a dataset which incorporates mul-
tiple active emitters. Each transmission by an emitter forms its own propagation path 
from its transmitting antenna to radio front-end in the receiver hardware. Emitter 
location with respect to the receiver and multipath propagation effects are sufficient 
for creating their own unique signatures varying with wireless channel effects and 
locations. Because of its inherent randomness, these locations and dynamic fading 
effects could mask pure emitter signatures, which may cause misclassification and 
false alarms. 

Wang et al. [96] demonstrate how the PSD is affected by large and small scale 
fading. Authors illustrate because of multipath channel effects, the PSD side lobes 
carrying most of the identity information were distorted significantly in the case 
where sensors are far apart compared with the case where they are near the receiver. 
Another open research problem is the equalization compensating multi-path effect 
without distorting fingerprint features. 

6.3 Simulation-Reality Gap 

Realism in synthetic/generated data is another important issue. It is difficult to achieve 
generalization of DL models to actual radio emission after the training phase with 
synthetic data. This capability gap emerges with assumption about fading channel 
and transmitter hardware imperfections during synthetic dataset generation unlike 
environmental effects and actual hardware. A towering issue that leads to generat-
ing synthetic data is the lack of or limited access to real-world data from actual IoT 
sensors and radio, which has become invalid in more popular ML subfields like com-
puter vision and natural language processing where a group of large-scale datasets
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including Sentiment140, IMDb, Stanford sentiment, MNIST are readily available 
[43]. In addition, the lack of a uniform standard for the dataset structure and orga-
nization stymies the adoption of existing datasets to different ML framework. It is 
stated that training neural networks (NNs) with larger data distribution is very crucial 
for generalized performance. Generalization is the initial phase for deploying ready 
fingerprinting solutions. 

6.4 Finding a Realistic Dataset 

Finding an open source dataset that exactly serves the purpose of the research project 
or creating new dataset can also be considered as some of the main research chal-
lenges. Limited access to real-world data and IoT sensors and radios can be con-
sidered other limitations of creating dataset for RF fingerprinting. The difference 
between reality and simulation on RF dataset is another main drawback. Deep learn-
ing models may not perform well on actual transmissions when training is done 
on simulated data. The reason for that is; assumptions may not represent hardware 
imperfections or environmental and channel effects as in reality [43]. 

6.5 Feature Selection 

One of the most important aspects is determining the features which are relevant. 
How to decide which features will be used is an important question in deep and 
machine learning based solutions. Another aspect is the reduction of dimension of 
dataset by using SVM or PCA schemes [100]. As described in fundamentals of RF 
fingerprinting section, there are many different features that can be used. Moreover, 
some methods are relevant for specific layers. Selecting the most adequate feature 
set which will provide the best result is another challenge. Physical layer features 
may differ because of the environment and moving transmitters as in UAVs. Making 
a robust design which is not very sensitive to changes is another challenge in device 
fingerprinting. 

6.6 Other Open Issues 

We present a few other open issues as follows in this subsection. 
Channel modelling: Usually, air to ground channels are modelled as LOS channels. 

This modelling may not be proper in some environments. A realistic modeling of 
channel is needed for CPS [89]. The mobility of some CPS like UAVs makes it 
difficult to distinguish legitimate users and attackers especially when CSI is used as 
a feature.
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Preventing Pilot Contamination Attack: Eavesdroppers can transmit pilot signals 
which are very close to legitimate ones. Designing secure systems to discriminate 
such signals is very important. 

Preventing Malicious Vehicle Attacks: Malicious attacks like jamming and eaves-
dropping can be performed with some CPS which have high mobility like UAVs. 
Advanced techniques to enhance physical layer security for the secure communica-
tion is required to prevent such attack scenarios. 

Design Robustness: Multipath channel effects when the sensors are not in close 
proximity of each other. Making a robust design by considering multipath channel 
is another challenge. Additionally, if there are multiple emitters active at the same 
time each emitter should be distinguished separately. 

Limited Resources of Cyber-physical Systems: Some systems are limited by bat-
tery capacity, computational complexity, etc. Some vehicles like UAVs have flight 
restrictions like weight, duration, etc. Such limitations may affect the research activ-
ity in time, funding, etc. 

7 Summary 

Cyber-physical systems have many application areas such as health, military, agri-
culture, power and electric grids, traffic control and so on. CPS can be linked to the 
Internet (IoT) and Web (WoT). Additionally, they can be used in critical infrastruc-
tures such as communication systems, dams, electric and power grids, etc. 

Critical infrastructures might be interdependent. Operation of one may affect the 
other. As a result of their increasing usage of many applications, enhancing security 
of CPS has become more important than it was in the past. No need to mention that 
CPSs can be prone to many attack types. These attacks can be performed on control 
systems, communication system, actuators, sensors and software. To prevent such 
attacks from happening, security measures and defense mechanisms are required. 
Some measures can be named as intrusion detection systems (IDS), authentication 
methods as well as anomaly detection capabilities. Moreover, a secure design can 
be provided with the physical layer security countermeasures. RF fingerprinting is 
one of the most promising physical layer security solutions. When combined with 
the deep learning (DL) methods, RF fingerprinting can be used for detecting specific 
transmitters. Therefore, legitimate and malicious transmitters can be distinguished. 
Thus, RF fingerprinting can be used to enhance security. Some application areas of 
RF fingerprinting for the security are authentication, geo-localization, anti-jamming 
and anti-spoofing, and interference detection. 

RF fingerprinting uses specific features when identifying transmitters. There are 
various works on identifying devices in the literature that focus on different features. 
These features include IQ imbalance, time series of RF signals, DC offset, kurtis 
skewness, spectrogram images, constellation figures, power amplifier non-linearity 
and so on. Deep and machine learning models can learn RF fingerprints and they 
can be used to enhance security of cyber-physical systems. In the literature, there
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are different studies based neural networks like CNNs, RNNs, k-nearest neighbors 
networks (KNNs) as well SVM. 

However, the RF fingerprinting has its own research challenges. Finding a realistic 
dataset that considers channel and environmental changes is one drawback. Models 
should be robust to such changes. Moreover, models should differentiate legitimate 
and other transmitters from each other. 
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Abstract With a cyber-physical system (CPS), physical components like industries 
are handled with an automated system. With the booming of cyber-attacks, detecting 
these attacks remains challenging. In order to protect the system from being hacked, 
we need to have CPS security measures implemented. Machine Learning (ML) has 
an important role to play in the detection of security attacks, which is the first step 
to protecting the CPS system. Cutting edge Deep Learning (DL) techniques have 
widely been applied to various domains like image processing and speech recogni-
tion. As part of a review of detecting cyber-attacks in CPSs, this chapter outlines 
the roles of DL and Deep Reinforcement Learning (DRL). Also, we present state-
of-the-art solutions without sacrificing technical details. Additionally, we describe 
common datasets used for DL in CPSs. Finally, we express research opportunities 
and challenges in the CPSs with respect to DL. 
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1 Introduction 

A typical CPS consists of a computer, controller, and physical system. CPSs operate 
using algorithms that are based on computers. The physical and non-physical compo-
nents of CPSs are interdependent, and their interdependence is essential for the proper 
functioning of the system. A sensor data analysis may be used to detect anomalies 
in CPS data so that abnormal behavior may be detected. As an example, it could be 
used for detecting security breaches, problems, etc. Cyber security involves detecting 
various communication attacks that lead to malfunctions in physical systems, thereby 
compromising the objectives that the physical system was designed to accomplish. 

Also, the CPS market is expected to grow at a rate of 9.7% per year by 2025, 
which will result in annual revenue of $9563M according to a report by [1]. As 
part of the aforementioned, hackers are also exploiting the COVID-19 pandemic and 
shifting from onsite to remote workstations, increasing the number of cyber-attacks 
by 29% [1]. The number of ransomware attacks has risen at least 93% in 2021, 
possibly due to improved attack techniques such as Triple Extortion [2]. Cyberattacks 
related to the Internet of Things (IoT) are expected to double between 2015 and 
2025, contributing to the growth of this risky industry in 2021. Cyberattacks have 
become more sophisticated in response to the increasing prevalence of automated 
attack tools [1, 2], and professional hacking groups are heavily using these tools. 
Table 1 shows some of the real attacks against the physical systems. Cyber solutions 
must be capable of addressing well-scoped problems. In order to work together 
with the new technology, the tools and architecture of the current system must be 
compatible, and also it should be possible to evaluate system performance without any 
difficulty. Machine Learning (ML) is becoming an increasingly important concept 
for cyber security. A ML technique can be applied in many different ways, including 
regression analysis in cyber security for fraud detection, classification approach in 
spam filters, clustering used for forensic analysis, and dimensionality reduction in 
facial recognition.

It is no secret that Deep Learning (DL) has grown in popularity in recent years 
as it has led to significant improvements in many applications domains including 
security-related applications in critical infrastructures [4], like detecting attacks and 
unexpected errors in critical infrastructures [5]. A Deep Neural Network (DNN) 
with several types of layers presents higher-level representations containing ampli-
fied features (points of difference between samples) that can effectively discriminate 
certain samples from irrelevant ones, while at the same time suppressing unneces-
sary samples. Through the application of DL models, researchers have been able to 
improve the performance and accuracy in many different areas of Artificial Intelli-
gence (AI). Examples include speech recognition, object detection, natural language 
processing, and pattern recognition [5]. There are several advantages of using DL [6, 
7] over traditional ML, for example in speech recognition, statistical arbitrage and 
medical diagnosis, DL models usually demonstrate superior results, provided that 
the data is sufficient [8, 9]. The past few years have seen the development of some 
DL models to detect cyberattacks targeting critical infrastructures, and alert intrusion
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Table 1 Real CPS attacks [3] 

Country Target Attack nature Type Date Motives 

United 
States of 
America 

Ohio Nuke Plant 
Network 

Slammer Worm Malware-Dos January 25, 2003 Criminal 

Taum Sauk 
Hydroelectric 
Power Station 
Failure 

Sensors Failure Accidents December 14, 
2005 

N/A 

Georgia Nuclear 
Power Plant 
Shutdown 

Installed 
Software Update 

Undefined 
Software 

March 7,2008 Unclear 

US Electricity 
Grid 

Reconnaissance Undefined 
Software 
programs 

April 8, 2009 Political 

Springfield 
Pumping Station 

Backdoor Unauthorized 
Access 

November 8, 2011 Criminal 

Georgia Water 
Treatment Plant 

Physical Breach Unauthorized 
Access 

April 26, 2013 Criminal 

Iran Iranian nuclear 
facilities power 
plant and other 
industries 
Iranian 
infrastructure 
(nuclear, oil) 

Stuxnet 
Stuxnet-2 
DDoS 

Worm 
Worm 
Disruptive 

November 2007 
December 25, 
2017 
October 03, 2012 

Political 
Political 
Political 

Communication 
companies 
Iranian key oil 
facilities 

Computer virus Malware April 23, 2012 Political 

Saudi 
Arabia 

Saudi 
infrastructure in 
the energy 
industry 

Shamoon-1 Malware August 
15–17,2012 

Religio-
Political 

Saudi 
government 
computers and 
targets 

Shamoon-1 Malware November 
17,2016 

Religio-
Political 

Tasnee and other 
petrochemical 
firms, National 
Industrialization 
Company, 
Sadara Chemical 
Company 

Shamoon-1 Malware January 23,2017 Religio-
Political

(continued)



158 S. Jamshidi et al.

Table 1 (continued)

Country Target Attack nature Type Date Motives

Qatar Qatar’s RasGas Shamoon Malware August 30, 2012 Political 

United 
Arab 
Emirates 

UAE Energy 
Sector 

Trojan Laziok Malware January–February 
2015 

Political 

Australia Maroochy Water 
Breach 

Remote Access Unauthorized 
Access 

March, 2000 Criminal 

Canada Telvent 
Company 

Security Breach Exploited 
Vulnerability 

September 10, 
2012 

Criminal 

Ukraine Ukrainian 
Power-grids 

BlackEnergy 
Malware 

DDoS December 23, 
2015 

Political 

Ukrainian 
Electricity Firms 

Petya Ransomware June 27, 2017 Political

detection, malware detection, access control, anomaly detection, and classifications 
[5]. 

On the other hand, the data gathered from CPSs are usually multidimensional and 
DL models are specifically designed to handle such data that has several dimensions. 
Another characteristic of CPSs is that they continually grow in data volumes, they 
are subject to concept drift, and new threats constantly attempt to compromise their 
operations. For this reason, security solutions for CPS data-driven devices must be 
developed that are capable of adapting and expanding to changes in data. They should 
be able to continuously discover new threats and vulnerabilities within. Nonetheless, 
there is a challenge in generalizing the adaptability concept in the context of security-
based applications built for CPSs. It is almost impossible to use a developed model 
for a particular scenario in another one, even if these are part of the same process. 
The performance of DL models in a real-world situation depends mainly on its 
generalization capability, which is decided by how the model handles the data which 
it is not familiar with, i.e., how well it can deal with new data without any knowledge 
of its priors [10]. 

The purpose of the chapter is to review the advances in detecting cyber-attacks 
made possible by DL-driven solutions in the CPS domain. Readers are provided with 
an overview of utilizing a DL-driven methodology consisting of multiple stages to 
help them grasp the process more quickly and develop the skills they need. A multi-
step methodology is used to evaluate DL performance by considering the full cycle 
of DL scenarios through performance evaluation. Researchers, practitioners, and 
students will benefit from this chapter’s focus on building cyber security applications 
using DL-based methods. 

The rest of the chapter is organized as follows: Sect. 2 gives an overview of DL 
in CPSs. Section 3 discusses DL techniques. Section 4 discusses the state-of-art 
DL techniques that have been successfully used in the field of cyber-security/CPSs. 
Section 5 discusses RL and DRL in CPSs. Section 6 introduces data acquisition
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in CPSs. Section 7 discusses the challenges to attack detection in CPSs. Section 8 
outlines robust attacks detection. Finally, Sect. 9 makes concluding remarks. 

2 CPSs and DLs 

CPS is one of the newest technologies that provides the integration of computer 
systems, physical systems, and control systems together. A part of the CPS is the 
automation of all the industrial processes; this includes the manufacturing, moni-
toring, and control processes. Due to the fact that the system involves three different 
domains of optimization, namely computational, physical, and control, these types of 
systems are naturally complex in nature and therefore cannot be optimized conven-
tionally. In order to design and optimize such complex systems, ML provides effec-
tive ways to model the behavior of such systems. Figure 1 illustrates the various 
applications of ML to CPSs, including: 

• Detection of anomalies,
• Security and cybercrime,
• Identifying faults,
• Maintaining predictively,
• Optimization of the process,
• Analysis of QoS,
• Allocating resources. 

ML algorithms, as a branch of AI, have been used to enhance the effectiveness of 
many systems [11]. The reference of data and AI as “new oil” and “new electricity”, 
respectively, underscores their impact in the present world [12]. Furthermore, AI

Fig. 1 Application of ML in CPS



160 S. Jamshidi et al.

along with other emerging technologies like IoT, and CPS are the major technologies 
pushing for the fourth industrial revolution [13]. As a result of these developments, 
a key area of research interest is securing systems from adversarial attacks using AI. 

Some of the early applications of ML for cybersecurity is in Intrusion Detection 
System (IDS). Research in this area included malware and anomaly detection in 
information and communication systems. With the success recorded, ML was also 
used to achieve cybersecurity in IoT systems [14, 15]. Furthermore, the combina-
tion of DL and Reinforcement Learning (RL) have contributed significantly to solve 
problems that posed a challenge to shallow algorithms and the more familiar super-
vised/unsupervised algorithms. Factors that support the use of DL in CPS include 
the high-dimensional data generated and the continual growth of data [16]. 

Moreover, DL techniques have gained a high focus in data science as they have 
enhanced performance in many applications. DL algorithms consist of hierarchical 
architectures with multiple layers in which lower-level features are transferred to 
higher-level ones. They have the capability of extracting relevant features from the 
underlying data. Moreover, the notion of DL combined with RL is also one of the 
best tools we have at our disposal to cope with unstructured environments; they 
can learn from large amounts of data or discover patterns [17]. DL has successfully 
been applied in CPSs for security applications such as intrusion detection, malware 
detection vulnerability identification in CPSs [5]. Due to the fact that CPSs produce 
large volumes of data generated by numerous sensors, DL is suitable for this setting. 
Since DL methods rely primarily on neural networks as the basis of computing, the 
term “DNN” is often used to refer to DL models. 

Recently, researchers have combined DL and RL to arrive at Deep Reinforcement 
Learning (DRL); a development that has resulted in a tremendous revolution in 
CPS research and continues to demonstrate great potential for providing solutions 
to current and impending challenges [18]. This revolution is prominent in vehicular 
CPS like autonomous vehicles, because of the need to continually make dynamic 
decisions like lane changing and respond to traffic signs autonomously through image 
and pattern recognition. 

3 Different DL Models in CPSs 

We will review the different DL models used in CPSs and discuss how they can be 
applied to cyber security in this section. Using the DL model, the overall concept of 
CPS, and the application of DL for CPSs is depicted in Fig. 2.

3.1 Convolutional Neural Networks (CNNs) 

CNNs are among the most popular classes of deep neural networks nowadays. The 
term ‘convolution’ comes from a linear mathematical operation between two matrices
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Fig. 2 Application of DL for CPSs [5]

Fig. 3 Typical CNN architecture [21] 

called the ‘convolution of matrices.’ As shown in Fig. 3, a convolutional network 
has multiple layers, including convolution, pooling, fully connected, and non-linear 
(activation) layers. Usually, it performs well when used for classification tasks even 
with raw input. According to [19], the feature map is calculated from the input. Then, 
promising features are transferred to fully connected layers to perform classification. 
CNNs were initially developed to process and analyze images, but they were also 
applied successfully to other types of data, e.g., detecting intrusions. CNNs are often 
included in IDSs to help extract features from raw data [20]. 

3.2 Auto Encoder (AE) 

An AE is a type of DNNs used to learn proper coding of unlabeled data. The encoding 
is validated and revised by regenerating the input from the encoding. The AE attempts
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Fig. 4 Structure of AE [23] 

to learn a representation (encoding) for a set of data. Typically, this is useful for 
dimensionality reduction: training the network to capture important data and ignore 
insignificant ones. As depicted in Fig. 4, an AE consists of two main parts: an encoder 
that maps the input to the code, and a decoder that maps the code to a reconstructed 
input. Consequently, the encoder receives the inputs and feeds them to the hidden 
layers. Through the training procedure of the AE, a code is generated by the encoder 
and passed to the generator. The generator then reduces the reconstruction errors to 
refine the learned coding. Thus, task discovery and analysis are carried out using 
AEs based on their capability to discover what tasks are needed [22]. 

3.3 Deep Belief Network (DBN) 

DBN is formed by a directed acyclic graph with stochastic variables [24]. DBN 
operates under the principle of greedy selection. There are two critical aspects to 
consider when designing DBNs: unobserved variables and learning problems. The 
most significant advantage of DBNs over other DL models is their accurate predic-
tion on unlabeled data. In recent years, DBNs have successfully been applied to 
a wide range of applications such as image classification, speech recognition, and 
information retrieval. They have also been successfully applied to natural language 
processing and cyber-security [25] (Fig. 5).

3.4 Recurrent Neural Network (RNN) 

RNNs can be viewed as an enhanced version of feed-forward neural networks, where 
data is processed in only one direction: from the input layer toward the output layer. 
Figure 6 depicts the structure of an RNN. An RNN is associated with one or more 
feedback connections, which function as loop activation, connecting the next layers 
(nodes) to the previous ones. Such a network is used to perform sequence learning 
and temporal procedures. The concept of annealing is used to collect and analyze the
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Fig. 5 Structure of the deep 
belief network (DBN) [25]

Fig. 6 Structure of recurrent 
neural network (RNN) [28] 

recurrent features. It has been through various studies that these architectures can 
provide impressive results in various applications, including CPSs security [26, 27]. 

4 Leveraging DL to Detect Attacks in CPSs 

The purpose of this section is to review the state-of-the-art research in the area of 
cyber-attack detection in CPSs using DL. 

4.1 Using Convolutional Neural Networks (CNNs) 

A CNN-based model was proposed for cyber-physical security protection in [29] 
using Siamese neural networks and a few-shot learning model. The proposed 
model is called the few-shot learning model with Siamese convolutional neural 
network (FSL-SCNN). The Siamese CNN employs a feature representation opti-
mized for performing task-specific learning to improve the efficiency of learning
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high-dimensional feature sets. By including three precise losses into the underlying 
cost function, an improved algorithm is developed for intelligent anomaly detec-
tion in industrial CPSs. Based on experiments, FSL-SCNN can provide a significant 
reduction in false alarm rates (FAR) and F1 metrics for cyber security protection in 
industrial CPSs. These improvements are made based on two datasets. The first one 
is a fully labeled public dataset, UNSW-NB15, that was created by the Australian 
security laboratory for CPS. This dataset is composed of network traffic packets 
created using IXIA PerfectStrom tool, including realistic modern normal activity 
and synthetic contemporary attack behavior packets. Moreover, another dataset of 
few labeled samples used in the experiment is generated in an intelligent CPS for 
smart manufacturing in which the network transmission packet is collected via the 
SCADA system and contains a small number of randomly generated abnormally high 
or low transmission rates signals. The FSL-SCNN is capable of not only separating 
accurately anomalous signals from standard signals, but also in the few-shot model, 
it can reduce the false detection rate by utilizing a relative-feature representation 
scheme and a robust cost function. The F1 score and the FAR are reported as 0.936 
and 0.047 respectively. For CPS to detect anomalies effectively, FAR is a critical 
metric to evaluate. 

Another model based on CNN for detecting message injection attacks in vehicular 
networks is presented in [30]. Since there is currently no security protection for the 
controller area network (CAN), malicious packets can quickly be injected into the 
CAN bus via network packets resulting in taking over the vehicle. It is therefore 
essential to follow the CPSs requirements and be able to detect any malicious package 
sent to a physical vehicle in the same manner. Several Raspberry Pi devices have been 
connected to an On-Board Diagnostics (OBD)-II port on an operational passenger 
vehicle to test the model’s effectiveness. The first device acted as a listener, while 
the second was an attacker. There were four primary types of attack that the attacker 
exploited: DoS attacks, fuzzy attacks, drive gear spoofing attacks, and engine RPM 
gauge spoofing attacks. Real-time detection of all attacks in an efficient and effective 
way poses a considerable challenge. The final result of the model was generated 
through two blocks of convolutional layers, a pooling, and then a fully connected 
layer, followed by Softmax activation to make up the final result. There is a sub-
dataset for each attack scenario. In one study, CNN outperformed other classifiers, 
such as Artificial neural networks (ANNs), support vector machine (SVM), long 
short-term memory (LSTM), k-nearest neighbors’ algorithm (k-NN), Naive Bayes 
(NB), and Decision Trees. As a result, the recording datasets produced for each 
session comprised 300 injection attacks. Table 2 shows the using four attack scenarios 
and total messages.

It has been observed that the CNN model made better predictions in terms of 
the false-negative rate (FNR) and the error rate (ER) where FNR is the fraction 
of undetected frames that are truly attack frames, and the ER is the fraction of 
incorrectly classified frames. Based on the CNN model, the results showed that the 
gear spoofing, the RPM spoofing, the DoS, and the fuzzy attacks had an FNR of 0.06, 
0.07, 0.10, and 0.24, respectively. In terms of ER, the CNN model achieved 0.03 for 
DoS attacks, 0.04 for RPM spoofing, 0.05 for gear spoofing, and 0.18 for fuzzy
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Table 2 Attack types and 
total messages 

Total of messages Type of attack 

3,078,250 DoS normal 

587,521 DoS attack 

3,347,013 Fuzzy normal 

491,847 Fuzzy attack 

2,766,522 Gear normal 

597,252 Gear spoofing 

2,290,185 RPM normal 

654,897 RPM spoofing

attacks. CNN models were shown to be a promising technique for detecting false 
message injection attacks in vehicular networks based on experiments performed 
using empirical data. 

A federated DL scheme is also proposed to detect cyber threats targeting industrial 
control systems [31]. Firstly, the authors presented a model for detecting intrusions 
using CNN and Gated Recurrent Unit (GRU). Then, the researchers considered a 
federated learning scenario. Federated learning is an ML technique that trains a 
model across multiple distributed (decentralized) devices or servers containing local 
datasets, without exchanging or merging them. They developed a framework for 
allowing multiple industrial CPSs to build intrusion detection models through feder-
ated learning. To ensure the confidentiality of the model parameters, they adopted 
a communication protocol with the Paillier cryptosystem, a secure communication 
method. The CPS cyber threat detection framework has been able to detect cyber 
threats by using federation-based interceptions of data sources and model parameters. 
Therefore, they proposed DeepFed, based on CNN-GRU, to detect these threats. They 
have presented the design of a CNN-based parser consisting of a CNN module, a GRU 
module, an MLP module, and a layer of Softmax. Using a real-world dataset gener-
ated by a pipeline system, the researchers evaluated the performance of DeepFed, with 
80% of the dataset being used for training and the rest for testing. DeepFed was eval-
uated with different numbers of local agents, noted by (K). With K= 3, DeepFed may 
reach accuracy, precision, recall and F-score as high as 99.20%, 98.86%, 97.34%, 
and 98.08% respectively. All measures could achieve the overall metric of 97%. 
DeepFed was shown to be able to detect multiple types of cyber threats to industrial 
computer systems due to the experiments that were conducted. 

4.2 Using Auto Encoder (AE) 

In the context of smart power networks, the AE model has been proposed in [32] 
with the goal of preserving information privacy. The issue of privacy in smart power 
networks is becoming more prevalent each passing day. It can be difficult to defend
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Fig. 7 DL-based blockchain framework for protecting smart power networks proposed in [32] 

against inference attacks because smart power networks exhibit characteristics of 
CPSs, such as monitoring physical processes, closed control loops, attack sophisti-
cation, and legacy technologies. On the other hand, Variational AE (VAE) converts 
the raw data into an encoded format, making it more secure against inference attacks 
in the classification process. A VAE uses a set of weighted parameters to encode data 
with a feed-forward network. The proposed model consisted of five input layers, four 
hidden layers, and one output layer (see Fig. 7). The VAE was evaluated by using 
two datasets, i.e., the UNSWNB151 and the power system datasets [33]. There were 
37 scenarios in the power system dataset, including 8 natural events, 28 intrusive 
events, and 1 no event. The UNSW-NB15 dataset contains a mix of regular and 
attack records. The performance of the proposed framework was assessed by taking 
300,000 randomly selected legitimate and attack observations from each dataset. 

Though the VAE was only utilized as a part of the IDS, its abilities were demon-
strated when it transformed complex data into a simple format. Concerning the power 
system dataset, VAE achieved an accuracy of 92.1% and a loss of 0.005, while VAE 
achieved a precision of 99.8% and a loss of 0.0001 on UNSW-NB15. 

It is suggested in [34] that an AE-based approach could be used to detect various 
cyberattacks in industrial control networks. The web can be accessed through control 
networks, so many kinds of cyberattacks can occur. The proposed AE consists of 
an input layer, four hidden layers, and an output layer. The proposed feature space 
consists of 41 units on the input layer, and the output layer has five divisions for the 
different types of network traffic. The last hidden layer, which is called Softmax, 
provided stability to the model. The AE was trained from NSL-KDD2 dataset. 
According to early studies, the proposed AE could not detect small classes of attacks

1 https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/. 
2 https://www.unb.ca/cic/datasets/nsl.html. 

https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/
https://www.unb.ca/cic/datasets/nsl.html


Attack Detection by Using Deep Learning for Cyber-Physical System 167

like probe attacks and remote attacks. The stacked AE achieved 97.8% for accuracy 
over the five categories. The model also achieved an F1 score of 96.8%. 

AEs were used to detect cyber-attacks in industrial control systems in [35]. 
There are various characteristics of this problem, including physical process moni-
toring, attack sophistication, and legacy technology. Therefore, it was a classification 
problem within the domain of ML. An algorithm was proposed that uses a 1D CNN. 
An AE consists of five layers: an input layer, a corruption layer that applies Gaus-
sian noise to the input, a fully connected layer with activation functions, an encoder 
layer, and a decoding layer. The Secure Water Treatment (SWaT) dataset3 was used 
to train the model. The AE trained significantly faster than the 1D CNN in less than 
half a second. AE’s precision, recall, and F1 scores were 89.0%, 82.7%, and 84.4%, 
respectively. In the end, the AE model proved to be an efficient and effective way to 
extract useful features. 

The idea of detecting cyber-attacks through LSTM autoencoding for autonomous 
vehicles (AVs) was proposed in [36]. As a result of the communication technolo-
gies that are used in antivirus software, they are prone to network attacks such as 
spoofing attacks and denial of service attacks. These attacks can be detected based on 
the network traffic. For the purpose of detecting these attacks, LSTM autoencoders 
were developed. A number of statistics were computed from the network traffic in 
order to represent the AV activities. Two types of layers were utilized in the neural 
network architecture: LSTM and fully connected layers. A number of LSTM layers 
were applied to encode the transformed likelihood stream. An output reconstruction 
layer was then applied to produce the transformed likelihood stream. As part of the 
evaluation of the proposed scheme, two datasets were used, namely, the Car Hacking 
dataset and the UNSWNB15 dataset. Using the Car Hacking dataset, the LSTM 
based autoencoder, achieved a precision of 99%, a recall of 100%, and the F1 score 
was 99%. It has been found that according to the proposed scheme, the UNSW-NB15 
dataset achieved a precision of 100%, a recall of 97%, and an F1 score of 98%. This 
indicates that the proposed scheme is able to detect several different types of attack 
vectors. 

4.3 Using Deep Belief Network (DBN) 

A DBN-based intrusion detection model was proposed in [37]. Using blockchain-
based data transmission and a classification model for CPSs in the healthcare sector, 
authors proposed an intrusion detection model for secure data transmission. The data 
collection and processing of data in this model involves various types of sensors, and 
the intrusion detection model is used to detect intrusions using different types of 
sensors. Data, which can be processed and transmitted, is integrated with physical 
processes in CPSs. Considering the fact that medical data in the hands of patients are 
governed by legal and ethical considerations, cybersecurity is a basic and challenging

3 https://itrust.sutd.edu.sg/testbeds/secure-water-treatment-swat/. 

https://itrust.sutd.edu.sg/testbeds/secure-water-treatment-swat/
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issue for the healthcare industry. For this reason, it is imperative that the development 
of the CPSs model for healthcare applications is given specific attention to ensure 
that the privacy of the users and the security of the data are protected. In some 
models, multiple share creation (MSC) was used to generate multiple copies of a 
captured image. Furthermore, blockchain technology has been applied to safeguard 
the data transmission process between the cloud server and the database. Moreover, 
a Residual Network (ResNet) based classification model is used to determine the 
presence of the disease. A validation experiment was carried out on the NSL-KDD 
2015 dataset, the CIDDS-001 dataset, and the ISIC dataset to validate the presented 
model. Using the NSL-KDD2015 and CIDDS-001 models, the simulation results 
indicated that the presented DBN model was able to detect 98.95% and 98.94% of 
threats. A more comprehensive analysis of the presented ResNet model shows that 
it exhibits an appropriate level of classification performance, with a sensitivity of 
96.15%, specificity of 98.09%, and accuracy of 98.45%. 

A model based on DBN to detect false data injection attacks on the energy internet 
was also proposed [38]. On the energy internet, they found that it can be quite chal-
lenging to detect stealthy cyber-attacks due to the abundance of control signals and 
meter reading information. This has resulted in the monitoring of physical processes, 
the establishment of closed loops, and the use of legacy technology to represent the 
past. The detection problem was formulated as a dual bi-level programming problem 
with upper and lower bounds since the variations of electric loads can be predicted. To 
solve the prediction problem, a regression model was used, which had been trained to 
forecast electric load, based on historical data. The DBN was made of three stacked 
Random Box Models (RBM) forming six layers: an input layer, four hidden layers, 
and a logistic regression layer as the output layer. 

Data was collected during training to build simulated IEEE 14 and 118-bus 
systems and the DBN was trained on them. The overall error rate was used as the 
model’s performance metric, and DBN achieved a 2.73% error rate, which was almost 
3% lower than SVM as the benchmark model. A recent study shows that when the 
DBN is used only as a forecasting component of the IDS, it is possible to trade off 
the DL model with other programming solutions. 

It has been suggested in [39] that a model based on DBN can be used to detect false 
data injection attacks in electric power networks. The CPS characteristics of false data 
injection detection are mainly based on physical process monitoring, closed control 
loops, and legacy technology. As the research problem was a classification problem, 
they used DL to solve it. In order to investigate the detection accuracy, features 
were automatically generated using DL. There is, however, a proposal to use a DBN 
model as a baseline that can be compared to an RNN model as well as a graph neural 
network (GNN). The DBN was created without optimizing any TensorFlow settings, 
which means that default settings were chosen from the TensorFlow package. Two 
simulated IEEE 30-bus and the other IEEE 27-bus are used to test the performance 
of IEEE 118-bus. Using the IEEE-30 bus, the DBN model has been found to achieve 
99.39% precision and 98.23% recall, which is very similar to the GNN model and 
slightly higher than the RNN model. There is one thing to keep in mind, however: the 
DBN model was consistently better than the RNN model from the IEEE 118-bus, as
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well as the GNN model. The DBN model has been shown to be reliable, consistent, 
and has a high rate of stability, as well as the GNN model showing a high rate of 
potential. 

4.4 Using Recurrent Neural Network (RNN) 

The use of RNNs has been proposed as a model for detecting cyberattacks on smart 
grids in [40]. It can be said that smart grids, in addition to being the target of several 
cyber-attacks, are also the target of data intrusion attacks, denial of service attacks, 
and so on. DoS attacks, intrusion attacks, data theft, and other sorts of cyberattacks are 
common against smart grids. A large smart grid network has quite a few characteris-
tics that make it difficult to detect all attacks, including CPS characteristics and legacy 
technology. Therefore, a vanilla RNN model was trained using the Backpropaga-
tion Through Time (BPTT) algorithm. The RNN was evaluated using three datasets, 
namely, the CIC 2017, Bot-IoT, and power system datasets. The CICIDS2017 dataset 
includes brute force attacks, botnet attacks, denial of service attacks, website attacks, 
Heartbleed attacks, and infiltration attacks. There were various security breaches, 
DoS attacks, and information theft among the Bot-IoT data set. There were injections 
of data, remote command injections, as well as replay attacks in the power system 
data set. The CICIDS2017 dataset is made up of 2,830,743 records, the Bot-IoT 
dataset contains 73,360,900 records, and the power system dataset 78,404 records. 
A series of experimental outcomes were obtained by analyzing the three respective 
datasets individually, demonstrating that the RNN model was able to outperform all 
benchmark classifiers. Using the results from the study, the authors have determined 
that the false positive rate for RNN classification was 0.00986 for the dataset of 
CICIDS2017, 0.01281 for the dataset from the Bot-IoT, and 0.03986 for the dataset 
from the power system. Among the datasets, the RNN model achieved an accuracy 
of 98.94% for CICIDS2017 dataset, 99.91% for Bot-IoT dataset, and 96.88% for the 
power system dataset, respectively. Although the vanilla RNN model performed well 
across all datasets, it remains to be seen how it can be integrated into the DeepCoin 
of the blockchain component for the detection of fraudulent transactions despite its 
good performance across all datasets. Nevertheless, this could serve as a starting 
point for further experiments utilizing blockchain technology as well as DL models. 

5 Leveraging RL and DL in Detecting Cyberattacks in CPS 

This section reviews how DL and RL can be leveraged in detecting cyber-attacks in 
the context of CPSs.
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Fig. 8 Interactions between the agent and environment in a RL system [41] 

5.1 Using Reinforcement Learning (RL) 

A RL agent learns how to make decisions through interaction with its environment. 
During a trial-and-error learning procedure, the agent is rewarded or punished for 
its performance, respectively. The RL learning algorithms aim is to maximize the 
cumulative reward overall. In Fig. 8, the two major components of an RL system—the 
agent and environment—are shown interacting. 

The environment represents the external conditions or objects the agent is inter-
acting with. An RL problem also includes a reward signal that represents the environ-
ment’s feedback upon the agent’s actions. Since the agent is attempting to maximize 
reward through interaction with the environment, it must take advantage of past expe-
riences. On the other hand, the agent needs to explore novel actions (not explored 
previously) to maximize reward if it wants to choose better actions in the future. 
Reward is dependent on the agent’s current actions and the state of the environment 
in which it is operating. 

To maximize its reward, the agent typically manipulates its policy. An agent’s 
behavior can be predicted by a model of the environment based on the information 
it has about what happened in each state and how the agent responded to it. The 
RL represents scenarios in which an active decision-making agent interacts with 
its environment, where the agent seeks to effectively accomplish a goal without 
knowledge of the environment [41]. 

5.2 Deep Reinforcement Learning (DRL) 

RL and DL are components of DRL. A DL solution incorporates DL into the decision-
making process, enabling agents to use unstructured data to make decisions without 
manually engineering the state space. With DRL algorithms, it is possible to optimize 
objectives by taking into account significant inputs. Table 3 represents a summary 
of features of DRL type and their notable methods.
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Table 3 Summary of features DRL type and their notable methods [42] 

DRL types Value-based Policy-gradient Actor-critic 

Features Compute the value of 
action given a state Q (s, a) 

No value function 
is needed 

Actor produces policy π 
(s, a) 

Explicit policy learned Explicit policy is 
constructed 

Critic evaluates action by 
V (s)  

Sample efficient Sample inefficient Often perform better than 
value-based or 
policy-gradient methods 

Typical methods Compute value of action 
given a state Q (s, a) 

REINFORCE 
Vanilla Policy 
Gradient 

DDPG 
D4PG 

explicit policy learned TRPO A3C 

Sample efficient PPO UNREAL 

Applications Suitable for problems with 
discrete action spaces, 
e.g., classic control tasks: 
Acrobat, Cart Pole, and 
Mountain Car as described 
and implemented in the 
popular Open AI Gym 
toolkit 

More suitable for problems with continuous 
action spaces, e.g., classic control tasks 
described and implemented in the Open AI 
Gym toolkit: 
Mountain Car Continuous and Pendulum or 
Bipedal Walker and Car Racing problems 

In addition to being used for cybersecurity applications, RL has also been 
applied to several aspects of personal data protection. Cyber security problems 
are complex and large-scale, and traditional reasoning methods cannot cope with 
them. The number of connected IoT devices has increased substantially in the 
last few years, making cyberattacks more complex and numerous. Using deception 
attacks, launching distributed DoS attacks, infiltrating computer networks, deploying 
jamming, spoofing, malware, or interfering with a network in an adversarial envi-
ronment are all examples of how an attacker can inject false data into a CPS. 
Cyber security topics like multi-agent approaches, combining network-based and 
host-based intrusion detection, modeling free or modeling-based approaches, and 
exploring continuous action spaces in cyber environments deserve attention. Aside 
from human-on-the-loop architectures, deep fakes, poisoning ML, adversarial ML, 
bit-by-bit distributed systems, and denial-of-service attacks, there is also a discussion 
of quantum computers cracking encryption algorithms [42]. 

Researchers have leveraged ML technologies to increase the level of automation 
of vehicles and make them perform tasks previously performed by humans. The 
use of sensors and other monitoring devices in vehicles and other infrastructure has 
become common practice in the past few years. With the help of DRL, the sensor and 
device data are analyzed for information that is used to make critical decisions on the 
road. Because of the inherent uncertainty in autonomous driving of vehicles, DRL is 
used for making decisions such as crossing intersections, changing lanes, controlling 
speed, and evaluating safety and security. Furthermore, the deep Q-Network and
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Q-learning are the most used RL algorithms for research in autonomous vehicles. 
An interesting research area is to study how DRL could be applied to autonomous 
vehicles and other forms of CPS. Moreover, DRL is expected to guide other types 
of decisions as well. However, even though the researchers’ findings are theoretical, 
if they are going to be used in real-life scenarios, it is necessary to do more to 
guarantee the security and safety of the systems [41]. Access control methods cannot 
completely thwart adversarial attacks, which is why algorithms must be developed 
that can operate despite these attacks. Nevertheless, some researchers have argued 
that the reason there are few research studies that use this model is because there 
are various challenges to overcome, such as lack of a stationary training set and a 
distinct right action for every state [43]. 

In the next few years, we expect to see more research into adversarial attacks and 
defenses in RL. These developments, however, are dependent on some research find-
ings, as is evident from the research trend presented in this section. First, intermittent 
attacks that are conducted over a subset of time steps give an adversary even more 
ability to operate stealthily and efficiently. Secondly, DRL models will continue to 
be threatened by the ability to entice agents into taking actions leading to adversarial 
rewards. ATNs and adversarial black-box attacks will extend the frontier of research 
in DRL. Improving the efficiency of creating adversarial examples such as the ATN 
will further extend research in DRL. DRL applications such as those for drones, 
self-driving cars, and other safety–critical systems must address these factors. A 
comparative analysis of RL and DNN adversarial defense shows that it is still in its 
infancy [44]. DRL’s use in CPS and other systems will however continue to grow, 
which will draw attention to the issue of defense. 

There appears to be more efficiency and practicality in adversarial training for 
RL than adversarial training for AI that relies on the generation of examples. New 
defense methods that do not require the generation of examples during training will 
be more efficient and useful in uncertain environments. It is also important to note 
that designing systems without a concern for security and adversarial attacks right 
from the onset has previously presented a challenge in addressing security issues 
afterwards. In light of this, it is imperative to factor security concerns into the design 
of systems in order to make them more resistant to adversarial attacks [41]. 

6 Data Acquisition in CPSs 

The acquisition of data is crucial in the process of training DL models. A researcher’s 
effectiveness in finding a solution to a ML research problem is dependent on the 
quality and quantity of data that are collected. Additionally, data can also influence 
the predictive model’s performance. This is because data is utilized to set up ground 
truth in supervised learning. Alternatively, researchers could make use of a set of 
existing datasets collected by other researchers. Table 4 provides a listing of some 
of existing datasets for cybersecurity research for CPSs.
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Table 4 The existing dataset of CPSs 

Dataset Description 

SWaT4 Data were collected from 11 days of network traffic from a 
scaled-down water treatment plant. In the first week, no attacks 
occurred. 36 types of cyber-attacks are listed in this dataset which are 
among the most prevalent in today’s CPS systems 

SCADA IDS5 Consists of injection of random response packets, hiding the real state 
of the controlled process, injection of malicious state commands, 
injection of malicious parameter commands, injection of malicious 
function code commands, DoS attack, and recon attack 

CICIDS20176 This dataset, which identifies the behavior of 25 users based on several 
protocols, including email protocols, HTTP, HTTPS, SSH, and FTP, 
was created by making use of several protocols. Among the data, one 
can also find many records concerning security attacks like Brute Force 
SSH attacks, Brute Force FTP attacks, Web attacks, Heartbleed attacks, 
and DDoS attacks 

The UNSW-NB157 A software tool referred to as IXIA Perfect Storm is incorporated into 
the process to create the abnormal and the normal network traffic traces 
of the dataset. The objective of this tool is to assess the effectiveness 
and efficiency of NIDSs. It is a tool capable of simulating nine different 
types of cyber-attacks and its data is updated periodically via a site that 
provides information on security vulnerabilities 

The KDD99 Cup8 This dataset is a long version of the DARPA dataset that contains seven 
weeks of network traffic traces, containing four gigabytes worth of TCP 
dump data and five million records. It is estimated that 4,900,000 single 
connection vectors will be used for training KDDCup’99. These vectors 
contain 41 features that can be classified either as attacks or normal. 
This dataset contains the following types of security attacks: DoS 
attacks, User to Root attacks (U2R attacks), Remote to Local attacks 
(R2L attacks), and Probing attacks. In a U2R attack, an attacker will 
gain access to the root account of the target host by first gaining access 
to the user account on the target host. When an attacker performs an 
R2L attack, he sends data packets to a remote host with the intention of 
gaining access to it. The other type of attack is a probing attack, which 
means that the attacker gathers information about a computer network 
in order to carry out a subsequent security attack on the network 

The power system [33] There are three cyber-attacks that are covered in the blue book: data 
injection attack, remote command injection attack, and replay attack 

The Bot-IoT [45] A bundle of network traffic logs from an IoT setup, there are three sorts 
of cyberattacks: infiltration, distributed denial of service (DDoS), and 
data theft

4 http://itrust.sutd.edu.sg/dataset/SWaT. 
5 https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets. 
6 https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets. 
7 https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/. 
8 http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html. 

http://itrust.sutd.edu.sg/dataset/SWaT
https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets
https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
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7 Challenges to Attack Detection in CPSs 

In the event of a cyber-attack, the underlying systems could be exposed to potential 
risks. CPS security is generally addressed by conventional approaches which tradi-
tionally address physical and cyber systems separately and are not able to address 
vulnerabilities that are associated with networks and embedded controllers which are 
meant to keep track of and control physical processes. Therefore, if the CPS is to be 
protected against cyber-attacks, it must take a comprehensive approach to security. 
The literature provides substantial evidence on the importance of protecting systems 
like these, but there is also substantial evidence that if security is ignored, havoc may 
ensue [46]. 

The researchers in [47] used static application analysis in CPS to detect malicious 
code injection attacks and exploit the possibility of a worst-case execution time. In 
[46], the authors proposed a lightweight algorithm for matching attack signatures and 
packet payloads, as well as other techniques that require fewer matching to detect 
possible attacks. A system for detecting and mitigating sinkhole attacks using IPv6 
over LoWPANs is proposed in [48], by combining a trust and reputation system 
with watchdogs’ nodes, to detect and mitigate sinkhole attacks for IoT. A special-
ized IDS is for Medical CPS using a behavior-rule specification-based method [49]. 
Behavior rules are transformed into state machines that can detect deviations from 
specifications of the medical device behavior. 

The model proposed in [50] utilizes a mechanism inspired by the Artificial 
Immune System (AIS) that models’ detectors as immune cells classifying any data-
gram based on matching signatures. New conditions and environments can be moni-
tored, and this can be used in assessing how well the environment is. To learn different 
variants of the CPS algorithm, code mutations are used in [50]. In [51], it is suggested 
to equip CPS with automated mechanisms using ML. In this way, they can have self-
adaptive mechanisms to deal with anomalies. In [52], it is emphasized that CPS 
is a typical system with big data, so it is imperative to assess security risks using 
large volumes of data. As blockchain technology was used in several CPS integra-
tions, including IoT described in [53]. The lack of an integrated security framework 
poses potential risks to CPS developments [54]. In addition to security, CPS requires 
intelligence, integration, and cooperation [55]. 

There are limitations and challenges, such as ineffective IDS, even though there 
are multiple ideas to detect attacks. The IDS market has a wide range of products, 
so one can choose from anomaly-based tools [56], behavior-based tools [57], and 
signature-based tools. However, these products are generally designed to protect IoT-
based systems and are not specifically designed to protect CPS systems. Also, CPS 
systems contain plenty of components and subsystems that will also be susceptible to 
failures if they are not properly maintained. There is a possibility that the performance 
of certain sensors deteriorates over time, resulting in incorrect readings. When trying 
to achieve resiliency of the system, such systems will classify a hardware fault as an 
attack and take appropriate measures to protect the system from being taken out of
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action due to this fault. It is also important to use security systems that are trained to 
identify the correct behavior, as well as hostile patterns in data poisoning attacks. 

8 Robust Attacks Detection 

Understanding and detecting cyber-attacks is the first step towards developing robust 
CPS. A reconstruction of attacks is necessary to ensure continuous service of crit-
ical infrastructure, as well as to detect attacks quickly. Further, real-life data must 
be explicitly considered during detection and reconstruction, to account for possible 
perturbations and/or modeling errors. Recently, it has been discussed to prompt detec-
tion and reconstruction using adaptive sliding mode observers paired with parameter 
estimators and robust differentiators [58]. In spite of the lack of external perturba-
tions, bounded observation errors can be achieved using residual signals. According 
to [59], it is essential for CPS robustness to be derived from existing results of phys-
ical systems. Cyber components of a CPS are particularly crucial when it comes to 
robust design. Having robust cyber components requires a clear understanding of 
their behavior. In addition, [60] provides cost functions and transducers. Further-
more, robustness models are discussed from a verification and synthesis perspective. 
A fast optimization solver able to perform MPC at megahertz rates is described in 
[61]. It is possible to solve linear-quadratic MPC problems involving inputs and states 
using various custom computational architectures. Nesterov’s fast gradient method 
is applicable to the architectures, which are suitable for input-constrained prob-
lems. A state-constrained problem can be solved using ADMM-based architectures. 
CPS control must be able to operate reliably despite communication limitations and 
limited resources. The optimal design of control for arbitrary nonlinear processes is 
investigated in [62]. An inequality of stability was derived by relating the plant state 
open-loop growth, the packet erasure probability, and the parameters of the avail-
ability model to the plant state open-loop growth. Event-triggered schemes instead of 
continuous state updates are used by the sensors to reduce communication overhead. 

9 Conclusion 

With a CPS, physical components, such as manufacturing units in industries, are 
managed by an automated system. The maintenance system needs to be secured 
from any type of attack in order to handle manufacturing as well as many control 
applications. Consequently, CPS security measures are essential. DL plays a key 
role in detecting security attacks on the CPS system. The purpose of this review 
was to report such mechanisms and to discuss how well-known DL models such as 
CNN, RNN, and AE have been applied for various tasks in CPS. Moreover, DRL 
(combination of DL and RL) has demonstrated a great ability to provide solutions to 
current and future challenges.
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The fields of cybersecurity and AI are all set to continue evolving. Research is 
focused on the challenges encountered in applying these technologies to real-life 
problems, as well as the opportunities presented by them. This research area is 
becoming more and more interdisciplinary, so there are some emerging technologies 
or innovations that are contributing to the actualization of AI-driven cybersecurity, 
particularly in CPS. Following are some of the problems that we face today in the 
area of CPS:

• This groundbreaking research in DRL has opened promising directions of research 
in a wide range of current and envisioned applications, including navigation, 
robotics, air traffic control, and defense. In the near future, DRL will be of 
increasing interest in the cybersecurity space.

• As attacks have become more sophisticated and large-scale, the defenses them-
selves must be improved as well. To tackle this problem, we can explore the 
possibility of multiagent DRL.

• The majority of DRL algorithms used for cyber defense are model-free that require 
a large quantity of training data. Due to real-life cyber security problems, real-
life training data is extremely difficult to obtain. Researchers often use simula-
tors to validate their proposed approaches. Despite this, these simulators fail to 
capture the real complexity and dynamics of the underlying cyberspace forms the 
IoT. Model-based methods are more appropriate and practical than model-free 
methods when training data is limited since they can be scalable. Exploring and 
integrating model-based and model-free DRL methods for cyber defense would 
be an interesting future study. 
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Security and Privacy of IoT Devices 
for Aging in Place 

Noel Khaemba, Issa Traoré, and Mohammad Mamun 

Abstract The rising cost of elderly living and care facilities prompts for other solu-
tions for the elderly people where aging in place is one of the ways to solve this issue 
using emerging technologies centered around smart IoT devices. To ensure security 
and privacy for a smart home for aging in place, different aspects of the IoT devices 
have to be considered. This chapter seeks to provide a categorical review and analysis 
of age-tech IoT device technologies, and discuss the underlying security and privacy 
challenges and available solutions. 

Keywords Security · Privacy · Internet of things · Ageing in place · Dataset ·
Agetech IoT Solution · Sensor · Raspberry Pi · Cloud storage · Actuator system ·
Threat · Vulnerabilities ·Mitigation strategy ·Machine learning 

1 Introduction 

The global life expectancy index is expected to continue increasing as years go by 
[1]. For instance, in the UK, it is predicted that by 2035, the number of people aged 65 
and above will be approximately 16.9 million [2]. When people live longer there will 
be significant increase in health issues for the elderly. Also, with the increase in the 
elderly population, the societal cost for care facilities and services for them will go 
up [3]. Many families cannot afford care givers or home nurses and it is challenging 
for family members to take care of the elderly as they might have to stop working. 
This creates the need for Ageing in Place (AIP) whereby the elderly population 
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prefer staying in their homes instead of care facilities for elderly people despite their 
health or mobility challenges [1]. To enable AIP, technological solutions based on 
smart Internet of Things (IoT) devices come in handy as they help meet the needs of 
the elderly people [4]. Data collected from these devices can for example show the 
person’s routine and tell when there are inconsistencies and prompt for emergency 
services [2]. IoT refers to the connection of objects or material devices with the 
Internet at the center, and the devices have sensors [1]. In the context of elderly 
people, the IoT smart technology is referred to as Age-Tech which is technology that 
supports or provides solutions for them and their caregivers. 

Despite the growing number of Age-Tech solutions currently available, limited 
attention has been paid to the security and privacy risks posed by these technologies. 
While most of these solutions face the same security and privacy threats as general 
purpose IoT platforms, those threats are exacerbated by the life criticality of most 
devices and the fact that many elderly not being technology savvy opens up the door 
for increased vulnerability. 

The objective of this chapter is to present a categorical review and analysis of 
Agetech IoT solutions and a discussion of corresponding security and privacy chal-
lenges and approaches. Emphasis is placed on outlining solutions based on artificial 
intelligence (AI) and machine learning (ML), and corresponding datasets and clas-
sification models. 

The rest of the chapter is structured as follows. Section 2 presents the major 
categories of devices used for AIP and outline corresponding use cases. Section 3 
discusses the common threats and vulnerabilities faced by aging in place technolo-
gies, by highlighting threats specific to the elderly and threats common to the broad 
IoT user population. Section 4 discuses the use of artificial intelligence for agetech 
security, by outlining relevant datasets and approaches. Section 5 makes concluding 
remarks. 

2 Review of IOT Devices for Aging in Place 

In this section, we present different IoT device types applicable for ageing in place 
and discuss relevant usage scenarios. 

2.1 Device Types 

Activities of daily living are important when monitoring an elderly person’s wellness. 
These are day-to-day life or self-care activities like bathing, working, eating and 
cleaning. There are three types of sensors for daily living activities as follows [5]:
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• Physical Environment Based Sensors like pressure, proximity, Radio Frequency 
Identification (RFID), WIFI and Zigbee sensors. They identify action through 
items or their connections with objects.

• Wearable Sensors or Body-appended Sensors like accelerometers, pedometers, 
goniometers, gyroscopes, electromechanical switches and inertial sensors. Thse 
devices are meant to provide physiological and biomechanical information. These 
help distinguish human body exercises in day-to-day living.

• Other Activity Recognition Sensors include camera footage or audiovisual 
arrangements. These devices help recognize mortal movements or social actions. 

There are three main uses for the aforementioned sensor technologies in ageing in 
place, that is detection of emergencies, monitoring health status and notifying medical 
experts of changes in ones health [1]. Other uses include automating home mainte-
nance and daily tasks, support for transport and navigation and enabling connection 
or communication with different social networks and caregiving communities. 

Dependent on the usage scenario, different combinations or grouping of sensors 
could be used. For instance, Pandya et al. collected activity data in elderly peoples’ 
homes by deploying an experimental setup involving 5 sensor types and an ESP8266 
WiFi micro-controller (MCU) placed together with each sensor in different locations 
of the house [5]. The five sensors used are as follows:

• Passive Infrared (PIR) Sensor that detects human motion.
• Infrared (IR) Sensor for motion detection in the surroundings in case there is an 
obstruction. The infrared radiation detects how far an object is and when there is 
movement.

• Hall Magnetic Sensor that detects the presence and magnitude of a magnetic 
field.

• Pressure Mat Sensor that detects pressure on surfaces like on a bed or sofa.
• Temperature–Humidity Sensor (dht-11) that detects the temperature and humid-
ity in a given space. 

These sensors are considered to be of low cost in the market, ambient and non-
intrusive to the residents. The ESP8266 WiFi micro-controller helps pre-process and 
transfer data to a Raspberry Pi B+ server. These logged data and system logs are 
periodically sent to a cloud storage for backup. It is mentioned that this system had 
shortcomings, for instance, there was inaccurate data generated by wrongly calibrated 
sensors. 

2.2 Use Cases 

There are different sensing and actuator systems in homes for elderly people. These 
sensing technologies can help monitor wellness, social, seasonal and weather related 
characteritics of routine tasks. The data generated from such monitoring can be 
used to construct baseline models by learning daily activity patterns of the elderly
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and identifying unusual or anomalous patterns. An alerting and anomaly detection 
system that can automatically monitor the activities of the elderly and identify unusual 
occurrences is very helpful as it can be used to remotely monitor their health and 
wellness. Such detection system can record contextual data of the various areas of an 
elderly person’s smart home and if it detects any anomalies, it alerts the caretakers 
[5]. 

For instance, Fattah et al. [3] implemented a prototype AIP system that issues to old 
adults reminders for medication in different ways including wristwatch, smartphone, 
and home appliances such as lights and speakers. It is expected that the proposed 
infrastructure, which consists of the aging-in-place service platform and service 
composition tool will be able to contribute to reducing the increasing healthcare cost 
for elderly people and also give informal caregivers including family members and 
friends peace of mind. 

3 AIP Threats and Vulnerabilities 

Succcessful attacks against AgeTech can have far-reaching impact, such as the fol-
lowing: 

1. Misdiagnosis: This is, for example, when an attacker accesses the IoT device 
data and modifies it, that means the information is incorrect and can lead to 
wrong diagnosis of an elderly state of health. 

2. Exposure of Personal Identifiable Information (PII): This is a risk to them-
selves and their family for example when financial information is exposed espe-
cially because smart devices are interconnected. When a loophole in one device 
is exploited, sensitive information can be gathered from many devices. 

3. Privacy Intrusion: The personal privacy of the aged person is interfered with 
when their sensitive information is exposed to unauthorized people. This may 
include records of health information and daily living patterns. 

Threats against AIP can be categorized into threats specific to such environment 
and relevant threats that are common to any environment. 

3.1 Threats Speficic to AgeTech Environment 

Frik et al. highlighted in [6] the fact that most IoT devices are not designed specifically 
for the elderly population and because of their novelty, this poses security and privacy 
concerns. To understand the security and privacy threats faced by agetech, the authors 
cconducted semi-structured interviews with 46 elderly people. This helped determine 
their security and privacy concerns, misconceptions that they may have and it helped 
identify some common threat models and remediation processes. The authors noted
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that finance, health and the living situation affect the older adults interaction or 
decisions around smart devices [6]. When the IoT devices security risks are mitigated, 
it is noted that this causes technical difficulties for the aged, making it difficult for 
them to use the devices and some may decide to avoid smart devices entirely. Hence, 
there is a need to educate the elderly on how to use the devices and at the same time 
make sure there is improved usability of the device without compromising on its 
security [6]. 

Some studies, such as the work by Fournier et al. [7] have a different perspective, 
as they argue that difficulties in the use of technology is not age-related but it is a 
result of peoples’ education and work experience [7]. Currently, most elderly people 
did not use as much technology during their working life so this impacts their ability 
to use IoT devices. Smart devices used at home are more susceptible to security 
breaches like unauthorized access compared to those in a hospital or nursing home 
that are in a controlled environment [7]. 

Elderly people illnesses like mild cognitive impairment (MCI) do pose major 
cybersecurity risks in aging in place [8]. MCI is characterized by decline in cognitive 
function, for example, challenges in coming up with words, frequently forgetting to 
take medicine or go to appointments and impaired geographic orientation. Some of 
these illnesses normally come with age and affect ones life. In severe cases, one may 
suffer from dementia. The use of smart devices and internet connection is beneficial 
to the elderly, however, when they suffer from such illnesses, they are more prone to 
security risks, for example, they can easily be defrauded. 

Mentis et al. [9] conducted a study to gain more insight on the decision mak-
ing process for online security and safety for elderly people with MCI and their 
caregivers. The authors conducted semi-structured audio interviews, recorded and 
transcribed in verbatim. The semi-structured interview consisted of a list of questions 
and topics of discussion that the interviewer doesn’t have to strictly follow. Instead 
they allow room for the conversation to go to different trajectories that are meaning-
ful. The interviews were conducted in the homes of elderly couples’ and involved 
explaining the project to the participants and signing a consent document. The data 
was analyzed using thematic analysis whereby the data was coded and divided into 
themes. Mentis et al. concluded that although the aged people expressed interest 
in taking part in making security and privacy decisions, there is a lack of options 
to safeguard and enforce shared-decision making with their caregivers. Majority of 
caregivers make the decisions by themselves without involving the elderly people 
[9]. 

Beside MCI, there are other aged population health factors that can cause security 
risks with age-tech. For instance, 

1. Impaired Vision: As people age, they are likely to have decline in their visual 
clarity. This makes them vulnerable to security attacks, for example, an attacker 
can replace their smart device with a malicious device without them noticing 
because they’re not very alert or can’t see so well. 

2. Parkinson’s Disease: The Parkinson’s disease is characterized by decline in coor-
dination, trembling or shaking of the jaw, arms, legs, head, stiffness and challenges
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in walking. This is a disease that comes as one ages, it may hinder their capability 
to manage the security and privacy of their smart devices because they may focus 
more on their well being and what easily works for them. 

3.2 Common Threats 

There are several threats common to all IOT devices. Obviously, these threats are 
applicable for AgeTech, and in some cases, they are aggravated when applied for the 
elderly. 

IoT devices are sometimes left unattended to; this physical exposure makes it easy 
for an attacker to take the device, extract information, modify its programming or 
even replace it with a compromised device that the attacker controls [10]. 

According to Kaspersky [11], most users of smart devices use them without chang-
ing the default credentials. Therefore, one of the attack strategies from hackers is 
guessing passwords since most smart devices use default passwords. In order to col-
lect data and analyse attacker activities on smart devices, a honeypot was setup, and it 
was discovered that attackers use infected IoT devices to launch malicious activities 
or perform Distributed Denial of Service (DDoS) attacks [11]. These are some of the 
attack strategies that infiltrate devices and applications used in aging in place. 

Older adults have decline in their abilities or capabilities as they continue aging, 
they may also not have much technical know-how of especially novel technologies 
and may be reluctant to learn as well. There are several other attacks they are likely 
to face, most of which are old types of attack techniques, including the following. 

3.2.1 Phishing and Spamming 

The aged population is an exposed target to social engineering [12]. They are more 
likely to be tricked using social engineering tactics and also considering that attackers 
come up with new strategies every other day, the elderly people are less likely to be 
informed or remain updated on newer cybersecurity risks. They can easily be tricked 
to give their personal information, for instance, through a phone call or text message. 

3.2.2 Scareware 

This in most cases is a pop-up, email or message that asks the user to take immediate 
action or else they face certain consequences. This may scare off an elderly person 
who can click on it and give their PII to an attacker without their knowledge.
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3.2.3 Access Tailgating 

This is piggybacking where a person who is not authorized to enter a place follows the 
elderly person behind and enters their home without their knowledge. Since elderly 
people are generally slow in their movement it is possible for this to happen. 

3.2.4 Baiting 

This is where something desirable is presented to the user, for example, asking them 
to listen to a video or participate in a competition to win money. Considering that 
some elderly people have financial challenges, they may be tempted to try this and 
end up accessing malicious sites from an attacker. 

3.2.5 Smart Device Theft 

With living in place, most homes are not well monitored, for example, with CCTV 
cameras everywhere so the smart devices with sensitive information can be stolen. 

3.3 Device Specific Threats 

In this section, the focus is to understand how specific devices work and the threats 
they may face. IoT devices for aging in place can be divided into two categories, 
that is domestic smart devices that help with tasks in the home and health equipment 
that help monitor or support different health factors. Some of the IoT devices used 
by the elderly population include self-learning stove alarm, lights, IoT controlling 
temperature, smart barcode that can be connected to a smart oven to identify cooking 
temperatures, smart doorbell, smart speakers, and reminders for medication using 
wristwatch or smartphone [3]. Smart devices can also be divided into three categories 
as below. 

3.3.1 Wearable Devices Like Smartwatches 

The attacks that wearable devices face include man in the middle (MITM) attack 
whereby the data payload is intercepted and modified. The solution to this is per-
forming encryption [13]. There is also malicious code injection where the attacker 
takes full control of the sensor node. Other attacks include firmware attack, mole 
attack, mule attack and user account hijacking attack.
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3.3.2 Motion Sensor Devices 

These include devices like gyroscope, accelerometer and linear acceleration sensors. 
One attack is denial of service whereby an attacker injects the sensor with a signal to 
make it unavailable to the user. Other attacks include eavesdropping, transmission of 
malicious commands, keystroke inference and false sensor data injection [14]. There 
is a need for a context-aware model that can learn the device’s and user’s behavioural 
patterns and adapt to it. 

3.3.3 Environmental Sensors 

These include light sensor, camera, temperature sensor, audio sensor, and proximity 
sensor. The attacks they are likely to face are similar to those of the motion sensor 
devices [14]. 

Table 1 lists different types of sensors and possible attacks. 

Table 1 : Sensors and possible attacks 

Type of attack Wearable sensors Motion sensors Environmental sensors 

Firmware attack ✓ ✗ ✗ 

Mole attack ✓ ✗ ✗ 

Eavesdropping ✗ ✓ ✓
Transmission of 
malicious commands 

✗ ✓ ✓

Keystroke inference ✗ ✓ ✓
False sensor data 
injection 

✗ ✓ ✓

Mule attack ✓ ✗ ✗ 

User account injection 
attack

✓ ✗ ✗ 

MITM attack ✓ ✗ ✗ 

Denial of Service 
(DoS) 

✗ ✓ ✓

Malicious code 
injection

✓ ✗ ✗
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3.4 Mitigation Strategies 

Previous research has focused on providing recommendations that will enhance adop-
tion of IoT devices by the elderly in their home while helping mitigate some of the 
security threats. 

For instance, to counter the impact of MCI on AgeTech security, Mentis et al. [9] 
recommended having shared decision making systems. Research shows that more 
often than not, the caregivers make decisions without consultation yet the elderly 
people would like to be involved in the decision making [9]. This method is not 
feasible because there isn’t proper safeguarding of a range of options for the caregiver 
and the elderly person to choose from. There is also need for a balance in reinforcing 
security while at the same time allowing the elderly person to enjoy social interactions 
or communication through smart devices. There should be a legal way for caregivers 
and the elderly person to establish some form of trust such that the privacy and 
security of the data generated from the IoT devices is safeguarded. 

For better joint decision making, a person-centered approach is recommended 
where the care-recipient has a voice in decision making with discussion with their 
family or caregivers. They are able to preserve their safety and autonomy and not 
feel like decisions are being made for them. It is noted that, even among healthy 
people, making choices in cybersecurity is still challenging. There is insufficient 
consumer involvement in security and privacy decisions whereby most of the time 
they’re presented with long privacy policy documents that most people don’t read 
[9]. In order to recognize a security threat, a healthy level of cognitive ability is 
necessary. It is already hard for elderly people without cognitive decline to notice 
phishing scams and so it is even worse for those suffering from cognitive impairment 
like MCI [9]. 

To help strenghthen security and privacy, Barralon et al. recommended using new 
cryptographic schemes such as Identity Based Encryption [4]. They also highlighted 
two crucial goals that age-tech must help to achieve, that is optimizing home delivery 
of elderly care so that they do not have to be admitted to hospitals or such occurrence 
can be postponed and when hospitalization occurs they can be discharged faster 
because they have a home with smart devices to support them [4]. 

Almeida et al. proposed in [8] a new way of collecting and managing data for 
elderly peoples’ activities. This involves gathering data across several cities from 
heterogeneous devices, which allows for comparison of behaviour patterns of the 
aged in the different locations. The proposed system is able to serve multiple cities 
concurrently and it consists of Linked Open Data paradigms and IoT. These are in two 
layers: personal data capturing system and personal data storage and management 
system. In this solution, the data is integrated across cities and each city can have a 
different level of data abstraction bringing about an endpoint that can be queried and 
deductions made from the data.
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Research on AgeTech security is at an early stage. Most of the proposals on this 
topic focus on general guidelines as illustrated above. An area full of promise for 
AgeTech security is using machine learning and artificial techniques in mitigating 
relevant threats and vulnerabilities. We discuss in the next section efforts in this 
direction. 

4 Using Machine Learning and AI Models 

Data is one of the most valuable ingredients of AI and applied machine learning tech-
niques. In this section, we present existing datasets and proposals towards addressing 
AgeTech security challenges using ML/AI techniques. 

4.1 Available Datasets 

4.1.1 Anomalous Activity in IoT Networks Dataset 

Ullah et al. [15] reviewed different intrusion detection datasets and identified several 
weaknesses. 

For instance, they noted that DARPA98/99 datasets which are widely used as 
network intrusion datasets have often been criticized for containing many redundant 
records. The KDD99 dataset which is a widely used dataset for intrusion detection has 
TCP attributes, 5 million data instances and more than 20 different types of attacks but 
failed to provide information about IP addresses. They observed also that University 
of Twente’s flow-based intrusion detection labelled dataset by Sperotto that was the 
first publicly available dataset in this category has a high ratio of malicious instances 
since the network traffic was collected from a honeypot. This affects the learning 
algorithm to be biased in the direction of the most frequent class and reduces the 
ability of the detection algorithm from learning the least common class. 

Having determined dataset weaknesses, they came up with a new dataset called 
IoTID20 for anomalous activity detection in IoT networks [15]. 

4.1.2 Multi Sensor Dataset of Human Activities 

This dataset which consists of human activities data based on multiple sensors 
deployed in a smart home was collected by Chimamiwa et al. [16]. The authors 
recommended that this dataset can be used for habit or activity pattern recognition 
using machine learning methods. The dataset consists of records of information from 
sensors of activities of a person living in a smart home. 6 types of sensors were used, 
including temperature-humidity, motion, light, contact, pressure and smart plug sen-
sors. 23 sensors were deployed in the smart home, including 3 force sensing resistors,
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6 passive infrared, 3 reed switches, 1 temperature and humidity sensor, 3 mini pho-
tocell light sensors, and 7 smart plugs [16]. A WiFi micro-controller programmed to 
read data and send it to a central database was attached to each of the sensors. The 
message queuing telemetry transport (MQTT) communication protocol was used in 
gathering and sending data for storage on a central database server. The data was 
collected over a period of six months at a frequency of 1 Hz. The user information 
collected from the smart home environment include indoor movements, pressure 
applied on the couch or bed, use of the TV, fridge and stove, or the use of electrical 
appliances like microwave, coffee maker, dishwasher, sandwich maker or washing 
machine. Three tables were used to record the data as explained below.

• Sensor Table—information such as the id, datatype of the sensor reading, and 
sensor name.

• Sensor-Sample-Int Table—integer measurements from motion, pressure, light, 
and contact sensors. Contact and motion are binary, either 0 or 1.

• Sensor-Sample-Float Table—floating point datatype from temperature and humid-
ity sensor and the smart plugs. 

The intention behind choosing the type of sensors used in this experiment is so that 
they can capture the resident’s indoor activities of daily living (ADL) like sleeping, 
sitting, cleaning, cooking and bathing. Two major categories of sensors were used 
in this experiment. 

I. Ambient Sensors 
These are sensors that capture information concerning the atmosphere or air. The 
following ambient sensors were used:

• Mini Photocell Light Sensor—used to measure light intensity, for example, when 
the stove or TV is switched on.

• PIR Motion Sensor (Grove)—used to detect presence of the resident in a specific 
area of the home.

• Si7021 Temperature and Humidity Sensor BoB—used to measure temperature 
and humidity of the air particularly in the bathroom. 

II. Object Sensors 
These are sensors that are attached to objects in the house so that they can capture 
data concerning those specific items. The following object sensors were used:

• Force Sensing Resistor—attached to the couch, bed and weight scale so as to tell 
the quantity of pressure applied as the resident interacts with the item.

• Reed Switch—attached to a room’s door or the door of the fridge to detect when 
the door is opened or closed.

• TP-Link Wi-Fi Smart Plugs HS110—They have energy monitoring ability, there-
fore they can measure the amount of current being used by the different electric 
appliances like the electric kettle, washing machine, microwave, coffee maker or 
vacuum cleaner
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4.1.3 Open Smart Home Dataset 

The open smart home dataset was collected by Schneider et al. by deploying a smart 
home with different sensors that can measure temperature, humidity and brightness. 
The authors didn’t provide information about the specific type of sensors used. They 
placed the sensors in the kitchen, bathroom, toilet, and three different rooms (room1, 
room2, and room3) in a flat. The dataset is a time series dataset which consists of 
records of readings from the sensors and the respective time the measurement were 
made [17]. The dataset has the following types of measurements:

• ThermostatTemperature—this is temperature of the air measured using 2 ther-
mostats installed in room 2. The thermostat is mounted to the radiator. The data 
type is float and degree Celsius is the unit.

• Brightness—a luminance sensor is placed in each room to measure brightness. 
The data type is float and lux is the unit.

• Humidity—a humidity sensor is mounted on the wall in each room to measure the 
percentage of relative humidity in the atmosphere. The data type is integer.

• Temperature—a temperature sensor is placed in each room to measure the indoor 
air temperature. The data type is float and degree Celsius is the unit.

• SetpointHistory—Set point is the desired temperature value that is set on the 
remote or which a thermostat has been initially set to. The data type is float and 
degree Celsius is the unit.

• OutdoorTemperature—This is the temperature outside the building that is obtained 
from a virtual weather service. The data type is float and degree Celsius is the unit. 

4.1.4 Smart Building Dataset 

This is a time series dataset collected by Hong et al. [18]. The dataset was collected 
from 4 floors of a building in UC Berkeley consisting of 51 rooms and involving 255 
sensors in different areas. 5 measurement types were collected from each room over 
a period of one week. These measurements include CO2 concentration, PIR motion 
sensor data, room air humidity, luminosity and room temperature. 

The data consists of the sensor reading together with the time the measurement 
was collected in Unix Epoch Time. In every 5 seconds, all the sensors are sampled 
except for the PIR motion sensor that is sampled every 10 seconds. The PIR sensor 
helps determine whether there’s room occupancy or not because it measures infrared 
(IR) light radiating from items in its field of view. When the PIR value is zero, it 
shows that the room is empty and when it is non-zero, it indicates that the room is 
occupied [18].
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4.1.5 Smart Home Dataset With Weather Information 

This dataset was collected by Zainab et al. [19] to study IoT devices used at home 
together with the weather information. The goal of the experiment was to determine 
the trustworthiness of readings or information collected by smart home devices. The 
dataset was collected over a period of one year at a frequency of one minute. The 
data includes the following areas and appliances: fridge, dish washer, living room, 
barn, microwave, garage door, well, wine cellar, solar and home office. It consists 
of the following weather features: temperature, pressure, cloud cover, wind speed, 
icon, precipitation probability, humidity, dewPoint, precipitation intensity, visibility, 
windBearing, and apparent temperature. 

4.1.6 REFIT Smart Home Dataset 

This dataset was collected by Firth et al. [20] from 20 smart homes in the UK over a 
period of slightly more than 3 years. For each home, a building survey was conducted 
to get information about the occupancy, construction materials, energy services and 
building geometry . Below are the sensors that were set up in each home:

• Current Cost Mains Clamps—this is for measuring the electrical power load used 
in the home.

• Replacement Gas Meters—for measuring the household’s mains gas consumption.
• Hobo U12 or Hobo Pendant Sensors—for measuring light level, temperature in a 
room and relative humidity.

• iButton Temperature Sensors—for measuring radiator surface temperature.
• CurrentCost Individual Appliance Monitors—for measuring plug electrical power 
loads.

• RWE Smart Home Devices—these include smoke sensors, exterior and interior 
motion detectors, programmable thermostatic radiator valves and door and window 
opening sensors.

• British Gas Hive Programmable Thermostats—it helps one to control the heat in 
a home remotely for example using a smartphone application such that you don’t 
have to heat the home when it’s empty and can schedule to have it warm when you 
come back. 

4.1.7 Dataset from Assembled IoT Testbed 

This dataset was collected by Anthi et al. [21] from an IoT testbed that consisted of 
different smart home devices. These include Belkin NetCam camera, Amazon Echo 
Dot, TP-Link NC200 Camera, Samsung Smart Things hub, TP-Link Smart Plug and 
British Gas Hive that is connected to two sensors: a window/door sensor and motion



194 N. Khaemba et al.

sensor, and Lifx Lamp. Various attacks were executed and in order to record the 
network traffic and generate and save logs automatically, a laptop was connected to 
the network. 

A tcpdump tool was used to collect the data that consist of benign data points 
and malicious data points. Two weeks worth of malicious data and three weeks 
of benign data was collected from the IoT testbed so that the data can conform 
to other comparable research datasets [21]. The cyber-attacks that were executed 
include Man-In-The-Middle (MITM), Spoofing, Denial of Service (DoS), Replay 
and Reconnaissance. The methods used to implement the attacks in each of the 
attack categories are as below.

• Reconnaissance—NMAP scan, iot-scanner
• Denial of Service (DoS)/DDoS—hello flood attacks, UDP/TCP flood
• MITM—Burpsuit, SSL Strip, Ettercap
• Spoofing—ARP, DNS
• Replay—mitmframework suite. 

4.1.8 Observations 

A few key observations can be made about the above datasets. These datasets mainly 
focus on sensors that can provide information which can determine patterns in terms 
of the well-being of the resident in the smart home. However, considering aging in 
place, data about health is very crucial, so measurements for, for example, blood 
pressure, and heart rate are necessary. 

In the Multi Sensor Dataset of Human Activities [16], only one home was con-
sidered. Having data collected from several homes will provide stronger ground to 
investigate and address a much broader range of research challenges. The Open 
Smart Home Dataset [17], mainly has sensors for temperature, humidity and bright-
ness which implies that there isn’t much variety in the type of sensors. For aging 
in place, it is good to consider more sensor types to measure a broader variety of 
features. 

The Smart Building Dataset [18] has a luminosity sensor which is quite unique 
compared to the sensors mentioned in other resources. The luminosity sensor is 
considered to be a sophisticated light sensor that measures both visible light and 
infrared to better approximate the response of the human eye. 

The Dataset from assembled IoT testbed [21], focused on collecting network data 
of IoT devices in order to come up with supervised Intrusion Detection System for 
Smart Home IoT Devices. This is different from the other datasets that focused on 
collecting sensor recordings.
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4.2 Existing ML-Based Proposals 

4.2.1 Anomaly Detection Using ML for AIP 

The two traditional ways of remote health monitoring are use of body sensors to 
measure different body parameters and use of systems with sensors in a smart home 
that send reports to health specialists. The first option requires the elderly person to 
be involved which can be tedious and inconvenient. The second approach relies on 
medical experts to review the reports which is time consuming and costly. There-
fore, there is a need to develop an automatic anomaly detection and alert system 
that requires minimal human interaction. To achieve this, Pandya et al. proposed a 
behavioural pattern recognition approach that is based on reinforcement learning and 
machine learning models [5]. This health monitoring system is able to collect and 
automatically process data, then generate reports and alerts that are sent to caretakers 
who can reach out to medical experts when need be. Pandya et al. analysed monthly 
data from two smart homes for elderly people where they collected over 5000 test 
samples and used it to validate the accuracy of the proposed system [5]. 

Piau et al. [22] performed a study to assess the relevance of the automatic sensor 
alerts based on the feedback from the elderly people, their caregivers and profession-
als who supported the elderly people. This was a way to help evaluate the performance 
of the real-time behavioral anomaly detection algorithm. They also further analysed 
the sensor capability to tell when the elderly person has a major medical issue and 
decline in cognitive abilities. In their research the participants were 25 elderly people 
above 75 years of age that lived by themselves in their homes. They did a follow-up 
for 6 months. The study targeted frail elderly people who are at the verge of losing 
or already lost their cognitive abilities but they are able to walk without assistance. 

Piau et al. [22] stated that as much as technology has been effectively used to 
manage many medical issues, there are fewer solutions that focus on monitoring 
intrinsic capabilities of the elderly for AIP. There is a lack of comprehensive solutions 
that allow monitoring the various health aspects when aging in place, instead, many of 
the used smart devices overlap in function and there is a tendency to use several tools 
when it would be better to have a consolidated one. The research targeted different 
non-intrusive sensors and one particular sensor that stood out is the push-button on 
a bracelet or pendant that could be used in case of an emergency to trigger an alert. 
They proposed an alert system that is triggered by the AI algorithm when it detects 
significant changes in indoor activities of daily living (ADL) patterns. In the first 
month, the algorithm learns from the activity data recorded by the sensors, thereafter 
it detects behavioral anomalies in real-time. They noted that the main setback to 
high adoptability of alert systems is because of factors like false positive alarms and 
challenges in integrating them into the already complex health care systems. 

What stands out from Piau et al.’s research is that the proposed solution caters 
to the needs of the elderly people living by themselves, it is unobtrusive, it incor-
porates assessments from end users, it uses low-cost sensors that require minimal 
maintenance and the AI algorithm continually improves its performance based on the 
feedback from end users. However, they didn’t provide detailed information about
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the AI algorithm. Therefore it is difficult to assess independently the effectiveness 
of the proposed solution. 

Shahid et al. [23] performed a study whose objective was to develop a model that 
can learn the older people’s day-to-day routine, detect when there are anomalies and 
generate real-time alerts to their relatives. The study involved setting up in elderly 
peoples homes off-the-shelf sensors and IoT devices including smart water meters, 
motion sensors and wall plugs. The study consisted of recording meals and bathroom 
actvity from 9 apartments. 

The authors developed a data analytics architecture for detecting deviations in 
behavioural patterns using a statistical-based anomaly detection model model. They 
performed the trial experiment in 9 actual elderly peoples’ apartments for 64 days. 
Thereafter, more data for analysis and modeling was collected for 2 years. In the 
proposed statistical model, which is based on the Chebyshev’s inequality, anomalies 
were identified when the duration of an activity in each room was outside the limits 
of two standard deviation from the mean (μ − 2σ, μ − 2σ), where μ and σ stand for 
the mean and standard deviation, respectively. 75% confidence interval was used for 
the tested data. The mean (μ) and standard deviation(σ ) were estimated over hourly 
time periods for 80 to 355 days depending on the apartment. They also developed 
an SMS-based notification and user evaluation service that the users could use to 
rate the service and overall they reported to have had a positive user experience. The 
user and caregivers could also get notifications for both normal and abnormal daily 
activities. In future work they recommend using reinforcement learning and more 
contextual sensors. 

Aran et al. [24] performed a study whereby their objective was to observe the daily 
activities of seniors, and to identify the corresponding patterns and detect outliers. 
They collected a dataset from 40 households of seniors based on pressure, motion 
and door sensors. They used a probabilistic spatio-temporal model to interpret daily 
behaviour and anomalies were singled out using a cross-entropy measure. In creating 
the model, the assumption is that the location of the elderly person at a given time 
is depended on the hour of the day. The behavioral model captures the conditional 
probability of being in a certain location at a given hour which helps to provide 
a summary of daily activity patterns for each user. The four locations considered 
are living room, bathroom, bedroom and outing which is when a senior leaves the 
household. Aran et al. also used k-means clustering method from which they observed 
that there were two clusters of behavioral patterns among the elderly people whereby 
most of them spend the day in the living room and slept in the bedroom at night while 
the others did not use their bedroom to sleep at night. Therefore, for the latter group, 
the bed sensor may not collect much information. The cross-entropy measure is low 
when the activities are normal which implies that the learned behavioral model is 
doing a good job in making predictions but when there are anomalies, they noted the 
cross-entropy is high which means that the model did not make accurate predictions. 
For future work, they suggested that there is a need to have anomalies ground truth 
data with labels as this will help validate the anomaly detection model performance. 

Artola et al. highlight the fact that there is not much research that focuses on 
well being and healthcare anomaly detection. Therefore in their study they suggest
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developing anomaly detection system for detecting deviations in the behavioural 
patterns of elderly people. This is to help improve the older persons’ wellbeing and 
early recognition of health issues like cognitive decline. Thw authors collected data 
from different sources including ADL records from sensors or devices and electronic 
personal records. They used eHealth sensors, wearables, mobile applications, assis-
tive robots and IoT enabled devices as tools to support the wellbeing of the elderly 
and gather data. The data which is unlabelled and unstructured is analysed by an 
anomaly detection system (ADS) that learns activity patterns and can tell when there 
are abnormal cases or outliers. The ADS consists of several AI methods that are 
statistical based, rule based, nearest neighbour based, clustering based and classifi-
cation based. To arrive at a decision in a given instance, they apply the algorithm with 
the optimal results. The ADS classifies the behaviour or activities of each elderly 
person using the three colours of traffic lights; green meaning everything is normal, 
yellow meaning there is something suspicious that needs follow-up while red means 
there is an anomaly, which must be addressed as soon as possible. These results are 
presented to the caregivers and health professional via a dashboard. The study is 
ongoing; in [25], the authors presented a prototype of the project and indicated that 
in the next phase o f the work, they intend to perform validation of ADS using data 
collected from a nursing home and a smart living environment for older adults. The 
shortcoming of this study is that the authors did not provide an elaborate discussion 
of the AI models used. 

Lentzas et al. [26] explored different studies about human activity recognition 
(HAR) and anomaly detection among elderly people and provided a review of the 
various frameworks used. They noted that the commonly used unobtrusive sensors 
include smartwatches or smart bands, smartphones, ambient sensors for force, tem-
perature or humidity and RFID devices. Although there is an increasing focus on 
using machine learning methods in HAR, many existing approaches are based on sta-
tistical models. A few approaches have embraced machine learning main techniques 
such as decision tree, random forest, hidden markov models, rule based models, 
support vector machine, recurrent neural networks, fuzzy logic, markov chains, etc. 
Lentzas et al. recommend further investigating the use deep learning and recurrent 
neural networks (RNN) as they showed promising results in behavioral analysis and 
HAR. The most used performance metrics include accuracy, recall score (True Pos-
itive Rate (TPR)), precision score (False Positive Rate (FPR)) and F-score. Lentzas 
et al. noted that as much as recall and precision scores provide a strong way of eval-
uating anomaly detection model performance in terms of correct and false alarms, 
an improvement can be made such that the system response time is incorporated in 
coming up with the overall score. This is especially because time is of essence in 
case of critical health anomaly. 

It can be observed from the above studies and the literature that although there 
are many papers on anomaly detection for agetech, to our knowledge, none of the 
proposed approaches address anomalies arising from malicious activities. The exist-
ing approaches are focused on anomalies from a well being or health perspective. 
For example, when sensor values are extremely low or high compared to baseline, it 
means the elderly person has a health emergency and not that it could be a security
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breach. There is a gap in the research in identifying and addressing anomalies in 
aging in place stemming from malicious activities, which is the essence of anomaly 
detection in cybersecurity. 

4.2.2 Security and Privacy for AIP Smart Devices 

Ulah et al. [27] used TensorFlow neural network to detect malware files and pirated 
software targeting IoT devices. Specifically, a novel methodology that involves color 
image visualization and convolution neural network (CNN) was used to detect mal-
ware. In the proposed approach, the files with malware are converted into colour 
images which give better visualization features, then these are passed through a 
CNN. It is noted that this combined method produces better results than when using 
the conventional models. The proposed method focuses on achieving high accuracy, 
low computational cost and reduced overhead [27]. 

In processing the data, the malware binary files are converted into gray-scale 
images, then feature extraction techniques are applied to classify the type of malware. 
Feature reduction is used to reduce the number of features which in turn improves 
the classification. The deep learning algorithms performed better than the shallow 
machine learning algorithms because they can use filters to automatically reduce 
noise [27]. 

Gochoo et al. [28] encourage the use of environmental sensors instead of cameras 
because this preserves the privacy of the elderly person. They recommend using 
Robots to carry out daily living activities and have sensors integrated with them. 

Gochoo et al. focus on reviewing the various technologies and smart home solu-
tions that are currently being used for the betterment of the quality of life of the 
elderly. They also point out technologies that are privacy-preserving. They noted 
that from the previous papers they reviewed, the research did not incorporate all 
aspects that form a complete smart home. They stated that such a smart home should 
be non-intrusive, have easily accessible emergency features, incorporate fall detec-
tion, assist in activities of daily living (ADL), provide companionship for less anxiety 
or loneliness and incorporate entertainment and gaming. They recommended that to 
increase unobtrusiveness, the use of wearables smart devices and cameras should be 
kept to a minimum. The use of robots to assist the elderly person with activities like 
sitting and standing or bringing the medication was encouraged. Therefore, technol-
ogy that incorporates robots along with sensors would be highly effective. They also 
argued that previous studies did not incorporate data security and privacy which is 
an important factor because it affects the user’s trust in the systems [28]. Therefore, 
it needs to be given very high priority.
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5 Conclusion 

There is an increasing societal cost for public healthcare services for the elderly 
worldwide due to their increasing population. Therefore, aging in place is meant to 
help cater to the needs and support the elderly to age comfortably in their homes 
without having to pay for elderly living facilitites or being disconnected from their 
communities and family. 

We have provided a review of the different IoT technologies used in AIP, the 
different types of smart devices used and the type of data collected from sensors 
and IoT devices. We have also highlighted the security breaches that are likely to 
happen in an AIP environment, and discussed anomaly detection solutions offered 
in previous studies and machine learning methods implemented. 

There are gaps in aging in place research for resources that address how to handle 
or manage cybersecurity and ethical issues in age-tech [7]. It is important to preserve 
the security and privacy of the elderly people using smart devices considering that 
these devices have their personal data. For them to fully trust the device systems and 
utilize the different functionalities, the systems have to be secure and unobtrusive 
to protect their privacy. There are large amounts of data generated in the use of IoT 
devices for age-tech. In reference to the past few years, the data is increasing at 
a high magnitude. The use of artificial intelligence and machine learning requires 
focus on the security aspect of AIP data. There can be serious implications in terms 
of safety and health of the elderly if data privacy and protection is not taken care of 
[7]. Therefore, there is a need to put more focus on security and privacy in AIP and 
have an anomaly detection system that can establish when there is a security breach. 
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Detecting Malicious Attacks Using 
Principal Component Analysis 
in Medical Cyber-Physical Systems 

Wei Lu 

Abstract The recent rise of medical cyber-physical systems has rapidly changed 
the current healthcare industry, its widespread use in hospitals, however, has also 
paved a way for a large number of cybercriminal activities targeting these networked 
devices, raising serious security and privacy concerns when healthcare professionals 
deal with sensitive and life-critical medical information. Existing security solutions in 
this domain are mainly prevention-based and are highly insufficient due to the power 
consumption and costly resources when implementing computationally expensive 
solutions. As an alternative, we propose in this paper an anomaly detection system 
based on principal component analysis to assure the security of networked medical 
devices. We evaluate our approach with a publicly available dataset collected in a 
real-time medical cyber-physical system testbed network and the results show the 
proposed approach successfully detects malicious attacks with a high detection rate 
and an acceptable low false alarm rate. 

Keywords Malicious attack · Principal component analysis · Medical 
cyber-physical system · Anomaly detection · Intrusion detection system · Medical 
features 

1 Introduction 

The medical cyber-physical system (mCPS) refers to a connected networking infras-
tructure of medical devices, software applications, healthcare information systems, 
and digital health services, where the connected medical devices create, collect, 
analyze and transport health data information or medical images to either a cloud 
computing facility or internal servers via the healthcare provider networks. The 
recent rise of mCPS has rapidly changed the current healthcare industry, where the 
use of medical wireless sensors (e.g. smart pacemaker, smart blood glucose meter),
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actuators, and medical surgery robots not only improves patients’ quality of health 
but also enables personalized health services (e.g. Cardio-Pulmonary Resuscitation) 
[1–5]. In addition, health data collected by mCPS devices are stored and trans-
mitted to advanced cloud computing platforms such as IBM Watson [6], AWS [7], 
and Microsoft Azure cloud services [8], from which professionals in the medical 
domain can explore patients’ health-related data further to make accurate health 
prescriptions and decisions [9–11]. In this context, the mCPS has been proven to be 
a game-changer for the healthcare industry, heading us to a future of smarter and 
more accurate diagnoses with fewer mistakes and lower costs of care. 

On the other hand, the widespread use of mCPS devices in hospitals, however, has 
also paved the way for a large number of criminal activities to thrive. In March 2019, 
the FDA issued warnings on dozens of implantable cardioverter defibrillators that 
could be affected by various malicious attacks such as eavesdropping, message alter-
ation, fake data injection, ransomware, and distributed denial of service, leading to a 
compromise of patient security, safety, and availability of critical healthcare systems 
[12–15]. Due to poorly implemented security mechanisms, potential adversaries can 
easily obtain remote control or hijack a smart medical device by using malware or 
botnet (e.g. Echobot, Mirai, Emotet, Reaper, Necurs, and Gamut), and then manipu-
late the sensitive data by injecting fake health data or cause malfunctions by flooding 
the resource-constrained mCPS network with a large number of illegitimate requests 
(e.g. manipulating a smart pacemaker to give an abnormal shock to patients) [16–18]. 
This jeopardizes and threatens patients’ lives, thus hindering the wider deployment 
of mCPS devices [19–21]. Therefore, to achieve the maximum possible benefit and 
leverage the full potential of mCPS devices in healthcare, there is an urgent need, for 
novel security mechanisms to preserve the security of mCPS devices. 

Existing security mechanisms in this domain include dedicated password-based 
authentication, anomaly detection, access control mechanisms, encryption, and trust-
based security management for wearable, implantable, environmental, and portal 
medical devices [22–30]. Such prevention-based security solutions are highly insuf-
ficient mainly because (1) they can be easily circumvented by using widely avail-
able vulnerabilities of embedded operating systems and wired/wireless communica-
tion protocols deployed in mCPS devices; (2) mCPS devices are usually considered 
resource-constrained devices; implementing the computationally expensive security 
solutions inside the mCPS devices are challenging due to their limitations on power 
consumption and costly resources. As an alternative solution, we propose in this 
research a novel intrusion detection system to assure the security of mCPS devices 
and to detect malicious attacks from inside and outside of the healthcare context 
[31–34]. 

The rest of the paper is organized as follows. Section 2 introduces the concept 
of intrusion detection systems including both misuse detection and anomaly detec-
tion techniques. Section 3 presents the proposed detection approach based on the 
Principal Component Analysis (PCA). Section 4 is the experimental evaluation for 
our detection model with a publicly available dataset called WUSTL-EHMS-2020 
in which both the network traffic data and patients’ healthcare data are collected in
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a real-time Enhanced Healthcare Monitoring System (EHMS) testbed network [35]. 
Finally, in Sect. 5 we make some concluding remarks and discuss the future work. 

2 Concepts of Intrusion Detection Systems 

Traditionally, intrusion detection techniques are classified into two categories: misuse 
(signature-based) detection and anomaly detection. In misuse detection, the attacks 
are detected by matching actual behavior recorded in audit trails with known suspi-
cious patterns [36, 37]. While misuse detection is fully effective in uncovering known 
attacks, it is useless when faced with unknown or novel forms of attacks for which 
the signatures are not yet available [38]. Moreover, for known attacks, defining a 
signature that encompasses all possible variations of the attack is very challenging 
[39, 40]. Any mistakes in the definition of these signatures will increase the false 
alarm rate and decrease the effectiveness of the detection technique [41, 42]. 

Different from misuse detection, anomaly detection is dedicated to establishing 
normal activity profiles for the system [43, 44]. It assumes that all intrusive activi-
ties are necessarily anomalous [45]. Anomaly detection studies start by forming an 
opinion on what the normal attributes of the observed objects are and then decide 
what kinds of activities should be flagged as intrusions and how to make such partic-
ular decisions [46–49]. A typical anomaly detection model is illustrated in Fig. 1. It  
consists of four components, namely data collection, normal system profile, anomaly 
detection, and response. Normal user activities on mCPS devices are obtained and 
saved by the data collection component. Specific modeling techniques are used to 
create normal system profiles. The anomaly detection component decides how far 
the current activities deviate from the normal system profiles and what percentage 
of these activities should be flagged as abnormal. Finally, the response component 
reports the intrusion and possibly corresponding timing information. 

The primary advantage of anomaly detection is its capability to find novel attacks; 
as such it addresses the biggest limitation of misuse detection. Therefore, our 
proposed approach is based on the anomaly detection framework as illustrated in 
Fig. 1 in which the PCA technique is used to reconstruct patients’ normal behavior 
profiles.

timing 
information 

modify existing profile 

response 

data 
collection 

system 
profile 

anomaly 
detection 

generate new profile significantly 
deviant? 

Fig. 1 An mCPS anomaly detection system 
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3 PCA Based Anomaly Detection 

Principle Component Analysis (PCA) is one of the most popular and effective 
methods of lossy data compression that has been wildly used in the data science 
domain as a technique to reduce multidimensional data sets to lower dimensions 
for analysis. PCA uses an orthogonal transformation to convert a set of possibly 
correlated variables into a set of new variables of linearly uncorrelated, where the 
greatest variance by any projection of the data comes to lie on the first coordinate 
(called the first principal component), the second greatest variance on the second 
coordinate, and so on [50]. These new variables called Principal Components (PCs) 
are smaller than the original set of variables but also retain most of the sample’s infor-
mation. PCA is mainly used to reduce the dataset to a lower dimensions space and 
is computationally inexpensive. When applying it for detecting anomalies, we use 
inverse transformation to reconstruct the original dataset from the PCs. By observing 
how much the difference of reconstructed data deviated from the original data the 
anomaly is then identified. 

Given A to be an m×n matrix of m observations and m×n fi in an n-dimensional 
space in which m > n 

A = 

⎡ 

⎢⎢⎢⎢⎣ 

f1,1 f2,1 . . .  fm,1 

f1,2 f2,2 . . .  fm,2 
... 
... 
. . . 

... 

f1,n f2,n . . .  fm,n 

⎤ 

⎥⎥⎥⎥⎦ 

where 

fi =
(
fi,1, fi,2, . . . ,  fi,n

)
1 ≤ i ≤ m 

by using the singular value decomposition (SVD), we have three matrices of U ,
Σ

and W, such that 

AT = U
Σ

W T 

where U is an n × m matrix in which the columns are the left singular vectors of 
A,

Σ
is a m × m rectangular diagonal matrix whose diagonal contains the singular 

values of A (i.e. eigenvalues λi where λ1 ≥ λ2 ≥ . . .  λn ≥ 0) and W is a m × m 
matrix in which the columns are the right singular vector (eigenvectors) of A. 

The next step is to mean the center of the dataset A from which we have a new 
dataset N whose mean is zero:
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N = A − 

⎡ 

⎢⎢⎢⎣ 

µ1 µ1 . . .  . . .  µ1 

µ2 µ2 . . .  . . .  µ2 
... 
...  . . .  . . .  

... 

µm µm . . .  .  . .  µm 

⎤ 

⎥⎥⎥⎦ 

where 

µk = 
1 

n 

nΣ
i=1 

fi,k 1 ≤ k ≤ m 

based on N and W , the corresponding value of the observation in the new coordinate 
system of principle components can be derived in the following formula: 

PT = W T × N 

where the matrix P is the final data set in the principle components feature space 
with data items in rows and dimensions along with columns. 

4 Experimental Evaluations 

The WUSTL-EHMS-2020 dataset is a publicly available dataset developed by the 
Washington University in St. Louis for the purpose of evaluating the performance of 
applying machine learning algorithms for detecting intrusions in the medical CPS. 
The data is collected in an in-door testbed network called Enhanced Healthcare 
Monitoring System (EHMS), where four components are included, namely medical 
sensors, gateway, network, and control with visualization. The medical sensors are 
used to collect patients’ biometrics data and then send them to the gateway, where the 
network traffic data are also captured. Next both network traffic data and patients, 
biometrics data are then sent to a central server through switch and router. The 
front-end clients then retrieve data information from the server for visualization and 
display them to medical professionals. Two types of man-in-the-middle attacks are 
simulated in this environment, namely spoofing and data injection. The spoofing 
attack, representing a typical attack violating the patients’ data confidentiality, is 
used to sniff the packets transmitted between the gateway and the central server. The 
data injection attack, representing a typical attack violating the data integrity, is used 
to modify the packets in real-time during data transmission. The dataset includes 41 
features among which 32 features are collected from network flow metrics, 8 features 
are collected from patients’ bodies via medical sensors and one binary feature is about 
the label of data record where a value of 1 indicates an attack and 0 means normal. 
The details on feature names and their descriptions are illustrated in the following 
Tables 1, 2, 3, 4 and 5.
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Table 1 Nominal network flow features 

Feature name Description 

SrcAddr Source IP address 

DstAddr Destination IP address 

SrcMac Source hardware MAC address 

DstMac Destination hardware MAC address 

Table 2 Float based network flow features 

Feature name Description 

sIntPkt Interpacket arrival time (millisecond) from source to destination 

dIntPkt Interpacket arrival time (millisecond) from destination to source 

sIntPktAct Active interpacket arrival time (millisecond) from source to destination 

dIntPktAct Active interpacket arrival time (millisecond) from source to destination 

SrcJitter Source jitter (millisecond) 

DstJitter Destination jitter (millisecond) 

Dur Transaction record total duration 

Rate Number of packets per second

The total number of records we have in the dataset is 16,318 of which 2,046 are 
attacks. When preparing the data, we split the dataset into a training set including 
13,054 records of which 1639 are attacks, and a test dataset including 3264 records of 
which 407 are attacks. Figure 2 illustrates some examples of the descriptive statistics 
on features of the dataset.

PCA approach essentially reduces the data dimensions while minimizing recon-
struction error, giving us the flexibility to reconstruct our original features from the 
newly created features with an error as little as possible. In this case, it is important 
to define an anomalous score so we can calculate how anomalous each reconstruc-
tion is. The more anomalous the reconstruction of the data, the more likely the data 
record is malicious with an assumption that the attack is rare and looks very different 
from the majority of normal data records. As a result of our approach, we define the 
anomalous score for each data record as the sum of the squared differences between 
the original data matrix and the reconstructed matrix using the PCA algorithm. This 
sum of squared differences is then scaled by a max–min range of the sum of the 
squared differences for each entry in the entire dataset so all the anomalous scores 
will be within the range of zero to one, where zero means normal records and one 
means anomaly with the highest probability to be attacked. 

To explain intuitively the effectiveness of our approach we use the traditional 
confusion matrix to evaluate the performance as illustrated in Table 6. True positives 
(TP) is the number of records in which we predict the record is attacked and it does 
the attack. True negatives (TN) is the number of records in which we predict the 
record is normal and it does the normal. False positives (FP) is the number of records
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Table 3 Integer based network flow features 

Feature name Description 

Sport Source port number 

Dport Destination port number 

SrcBytes Number of bytes from source to destination 

DstBytes Number of bytes from destination to source 

SrcLoad Source to destination bits per second 

DstLoad Destination to source bits per second 

SrcGap Missing bytes from source to destination 

DstGap Missing bytes from destination to source 

sMaxPktSz Maximum packet size for traffic transmitted from source to destination 

dMaxPktSz Maximum packet size for traffic transmitted from destination to source 

sMinPktSz Minimum packet size for traffic transmitted from source to destination 

dMinPktSz Minimum packet size for traffic transmitted from destination to source 

Trans Aggregation packets count 

TotPkts Total transaction packets count 

TotBytes Total transaction bytes 

Load Total transaction bits per second 

Loss Packets retransmitted or dropped 

pLoss Percent of packets retransmitted or dropped 

pSrcLoss Percent of packets retransmitted or dropped from source to destination 

pDstLoss Percent of packets retransmitted or dropped from destination to source 

Table 4 Integer based medical features 

Feature name Description 

SpO2 Blood oxygen 

Pulse_Rate Pulse Rate in BPM 

SYS SYStolic blood pressure 

DIA DIAstolic blood pressure 

Heart_rate Heart Rate in Beats Per Minute (BPM) 

Resp_Rate Respiration Rate in BPM 

Table 5 Float based medical features 

Feature name Description 

Temp Temperature in degrees Celsius 

ST Electrically neutral area between ventricular depolarization (QRS complex) and 
repolarization (T wave) in millivolts (mv)
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Fig. 2 Descriptive statistics on features in the dataset

in which we predict the record is attack and it does the normal. False negatives (FN) is 
the number of records in which we predict the record is normal and it does the attack. 
Precision is when our system predicts the record is attack how often the prediction 
is accurate where we use the following formula to calculate it: 

Precision  = T P  

T P  + FP  

and Recall is when our system predicts the record is attack how many this kind of 
true attack the system can catch over the total number of actual attacks in the dataset, 
i.e. 

Recall = T P  

T P  + FN  

Figure 3 illustrates the precision-recall curve showing a trade-off between preci-
sion and recall in which the best precision our approach achieves is 88.5% where 
354 attacks are correctly identified when choosing a cut-off value of 400 predicted 
attacks.

Next, we conduct two more evaluations with the same PCA based approach, one is 
based on the patients’ biometrics only (i.e. Biometrics) and the other one is based on 
the combination of network flow metrics and patients’ Biometrics data (i.e. Netflow 
+ Biometrics) in which the best precision for Biometrics and the combination is 
16.3% and 59.5%, respectively, as illustrated in Table 7. Figures 4 and 5 illustrate 
the precision-recall curve accordingly.

Table 6 A confusion matrix Actual value Predicted value 

Attack Normal 

Attack True positive False negative 

Normal False positive Ture negative 
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Fig. 3 Precision-recall 
curve with network flow 
features

Table 7 Descriptive statistics 
on features in the dataset 

Precision (%) Number of PCs Cutoff 

Netflow 88.5 2 400 

Biometrics 16.3 2 400 

Netflow + 
biometrics 

59.5 16 400 

Fig. 4 Precision-recall 
curve with patients’ 
biometrics features 

Fig. 5 Precision-recall 
curve with both patients’ 
biometrics and network flow 
features
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5 Conclusions and Future Work 

Attacks on the mCPS devices have strong implications in the real world because 
these can cause potentially physical harm or life-threatening damage to patients, 
for example, overdosage of insulin when the medical insulin pumps are compro-
mised, or a malfunctioned cardiac device (e.g. pacemaker) to endanger a patient’s 
life. Existing security mechanisms in this domain include dedicated password-based 
authentication, access control mechanisms, encryption, and trust-based security 
management for wearable, implantable, environmental, and portal medical devices. 
Such prevention-based security solutions are highly insufficient mainly because (1) 
they can be easily circumvented by exploiting widely available vulnerabilities of 
embedded operating systems and wired/wireless communication protocols deployed 
in mCPS devices; (2) mCPS devices are usually considered as resource-constrained; 
implementing the computationally expensive security solutions inside the mCPS 
devices is challenging due to their limitations on power consumption and costly 
resources. In this chapter, we address this challenge from the perspective of the 
intrusion detection system with the technology of PCA-based anomaly detection in 
particular. The optimal attack detection accuracy the proposed approach can achieve 
is 88.5% by conducting an experimental evaluation with a publicly available dataset 
collected in an in-door testbed network. 

In the future work, we will compare the current detection model with some 
other dimensionality reduction methods, such as sparse PCA, kernel PCA, Gaus-
sian random projection and sparse random projection, with the same testbed bench-
mark. The current 88.5% detection rate is acceptable considering the system catches 
the malicious attacks without a prior knowledge on the attack type. To improve its 
performance further, we will investigate a hybrid approach integrating all types of 
dimension reduction based detection agents in our detection framework, including 
studies of theoretical foundation of detection [51], the architecture and implemen-
tation of the system [52], new performance metrics for evaluation criteria [53], the 
response to detected intrusions [54], traffic collection [55] and alert correlation to 
reduce false alarms [56]. 
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Activity and Event Network Graph 
and Application to Cyber-Physical 
Security 

Paulo Gustavo Quinan, Issa Traoré, and Isaac Woungang 

Abstract The Activity and Event Network (AEN) is a new large graph model that 
enables describing and analyzing continuously in real-time key security relevant 
information about the operations of networked systems and data centers. The model 
allows identifying long-term and stealthy attack patterns, which may be difficult to 
capture using traditional approaches. The current chapter focuses on defining the 
model elements and the underlying graph construction algorithms, and presents a 
case study based on a cyberphysical security dataset. 

Keywords Activity and event network · AEN graph · Graph model · Long-term 
attack · Attack patterns · Stealthy attack · Graph construction algorithm ·
Cyber-physical security · Probability model · Framework · Architecture 

1 Introduction 

Recently, it was discovered that a state-sponsored hacker group has been infiltrating 
the European Union’s (EU) diplomatic communications network for years, down-
loading thousands of sensitive cables. The attack ran undetected for a three-year 
period and targeted more than 100 organizations and institutions, such as the United 
Nations and ministries of foreign affairs and finance. The attack is a type of emerging 
threat consisting of targeted and long-term campaigns delivered by skilled hackers 
who have clearly defined objectives and relentlessly work towards achieving their 
aims. These breaches can go undetected for a long period of time because of the 
hackers’ ability to adapt to and escape defensive methods. 
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Noticeably, there has been an evolution from volume-based attacks towards stealth 
like low and slow style attacks. Although volumetric attacks often occur within a set 
time frame, low and slow attacks rely on an ongoing stream of malicious requests and 
have no distinct beginning or end. This makes their detection by current Intrusion 
Detection Systems (IDSs) and Security Information and Event Management (SIEM) 
tools challenging. 

The Activity and Event Network (AEN) graph model is a new security knowledge 
graph whose goal is to spearhead the development of a new generation of security 
data analytics techniques that can gain better situational awareness of the threat 
environment and allow detecting, responding and investigating sophisticated and 
stealthy attacks using data from both the traditional security ecosystem and beyond 
the organization perimeter. It leverages the large dynamic uncertain multigraph theory 
to coherently express and analyse security data across various heterogeneous data 
sources and meaningfully link seemingly innocuous and unrelated events to expose 
hidden and long-term attack patterns. The purpose of the current chapter is to define 
the AEN graph model elements and corresponding graph construction algorithms. 
Furthermore, a cyberphysical security dataset is used to illustrate some of the threat 
detection capability of the AEN model. One of the prime targets of long term attacks 
are cyber-physical systems, where quite often security is treated as an afterthought 
in system design and configuration. 

The remainder of the chapter is structured as follows. Section 2 defines the theoret-
ical foundation of the AEN graph model. Section 3 presents the data sources used to 
construct the graph. Section 4 defines the AEN graph model elements by presenting 
the node and edge types involved. Section 5 gives an outline of the AEN underlying 
probability model. Section 6 gives an overview of the AEN framework architecture 
and present a case study based on BoT-IoT cyberphysical security dataset. Section 7 
makes some concluding remarks. 

2 AEN Graph Theoretic Model 

To start describing the AEN model, it is important to consider the most basic con-
stituent elements of a network of interconnected devices like hosts, how they com-
municate with one another and that those elements have their own characteristics. 
The model, therefore, needs to incorporate those pieces of information. However, 
the data used to extract them might be incomplete, noisy or simply incorrect. That 
means the model must also be able to describe said uncertainty. 

Also of importance is the network’s dynamism: At any moment devices or hosts 
can be added or removed from the network; they can start or stop exchanging data; 
IP addresses can be recycled; devices can be infected and later be fixed, patched or 
updated etc. It follows that to be able to track the past existence of elements and 
their relationships through time, the model needs to maintain information on the 
time spans in which each element has existed. The dynamic graph model defined by 
Casteigts et al. [1] is used to formalize this control, with two changes: the first is
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that the model is expanded to combine probabilistic and temporal existence, while 
the second is the exclusion of latencies since they are negligible in the scope of this 
work. With that, important chronological relationships can be identified. 

To summarize, the graph model has the following characteristics: 

• Nodes have their own attributes. Thus nodes are labelled; 
• Nodes can have multiple relationships at the same time. Thus nodes can have 
multiple edges between them; 

• Relationships have a source and a destination. Thus edges are directed; 
• Relationships have their own properties. Thus edges are labelled; 
• Both relationships and nodes can be uncertain. Thus nodes and edges are weighed 
by probabilities of correctness, that is, that the information they represent is correct; 

• Nodes and edges change through time and have an existence time span; 
• Changes occur continuously; 
• Processing times and latencies are negligible. 

Those characteristics define the graph as a Dynamic Uncertain Directed Multigraph. 
Formally, it is defined as the 11-tuple 

G = (N , E, s, t, ΣN , ΣE , 	ℓN , 	ℓE , T , πN , πE ) (1) 

where 

• N is the set of all nodes of the graph as mentioned above; 
• E is the set of edges representing relationships between nodes; 
• s : E → N , which assigns edges to their source nodes; 
• t : E → N , which assigns edges to their target nodes; 
• ΣN is a finite alphabet of available node labels; 
• ΣE is a finite alphabet of available edge labels; 
• 	ℓN : N → ΣN is a map describing the labels of nodes; 
• 	ℓE : E → ΣE is a map describing the labels of edges; 
• T ⊆ R+, that is, the time domain of the graph is in the positive real numbers; 
• πN : N × T → (0, 1], which assigns correctness probability values to nodes over 
time; 

• πE : E × T → (0, 1], which assigns conditional correctness probability values to 
edges over time given their endpoints. 

3 AEN Data Sources 

To construct the graph, heterogeneous data sources are used to extract data features 
capable of identifying nodes, relationships and their attributes. These involve both 
data sources available within the security perimeter as well as external data sources 
available through third-party services. Examples of internal data sources include
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network traffic logs, flow data, system logs, firewall logs, IDS alerts, anti-virus (AV) 
logs and email security logs, while examples of external data sources include Domain 
Name Server (DNS) queries and WHOIS. Of special note are the data sources which 
report security events or suspicious activity, like IDSes or SIEMs. Generically they 
are called detectors and their reports or logs are generically called alerts. 

The features extracted from the data sources can be divided into two categories 
related to how they are collected: 

1. First-order features, which are collected directly from the sources; 
2. Second-order features which are derived from the available data either by actively 

using different tools and services or by mining them into aggregates. 

First-order features can be further divided into two groups according to where they 
are sourced from: 

• Network, which are the more traditional data used by IDS derived by analysis 
of the network traffic. Its features are: IP Address, Transport Protocol, Transport 
Port, and Content-Type. 

• Application, which are the data collected from log analysis of known applica-
tions in the network and from service calls either to or from said applications 
in case those applications are programmed to provide such functionality. This 
would include data sources like hypervisor logs, syslogs and IDS alerts. Its fea-
tures are: Application, User, Authentication State, Attack Type, Alert Confidence, 
and Device fingerprint. 

Second-order features can also be further divided into two groups: 

• Third-Party, which are collected by actively contacting external services or per-
forming scans in order to collect more data about a certain entity. Its features 
are: Domain name, IP Address, Name server, Autonomous System Number (ASN), 
Location, Name, Email, and Operating System (OS). 

• Aggregates, which are mined from the aforementioned features and from the 
model itself and may consist of temporal or spatial aggregates. 

4 Graph Model Elements 

In this section, we present the AEN graph model elements, specifically the node and 
edge types involved, and provide some illustrative examples. By analyzing the first 
and second-order features described in the preceding section, it is possible to identify 
some distinguishable characteristics in them that give clues into how the graph can 
be constructed. The first one is how each feature can be better used to model the 
network. Some of them, like IP addresses and domain names, can form relationships 
among themselves. These features are the nodes of the graph and their relationships
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are the edges. On the other hand, features like protocol and port are better employed 
as descriptors of said relationships and, therefore, are used to define attributes of 
either nodes or edges. 

More generally, the nodes of the model are defined by any feature for which 
useful relationships could be formed, and the edges of the graph are defined by those 
relationships and their direction. The remaining features are used to define attributes 
of either nodes or edges. 

4.1 AEN Nodes 

Nodes can be classified into two distinct groups: 

• Active nodes: Also called actors, active nodes are nodes that can be a source, a 
target, or a stepping stone (i.e., intermediary) in an attack. Examples of actors are 
hosts (either labelled by IP addresses or domain names), users (usually identified 
by authenticators like user name and email address) and devices. Active nodes can 
be further divided into: 

– Internal actors, which belong to or are under the control of the organization; 
– External actors, which are located outside the perimeter of the organization. 

• Passive nodes: Nodes that carry some information or granular attributes for actors 
like DNS derived domain names and location nodes. 

There are different types of nodes with each type having different features, as follows: 

• Account: Represents an account in a system or application. It is derived from 
application and system logs and has the following properties: 

– Identifier 
– Application 

• Alert Group: Aggregation of related detector alerts, called raw alerts internally, 
that might be generated in a short time frame thus associated to a single event or 
attack. It has the following properties: 

– Protocol 
– Source IP 
– Source port 
– Destination IP 
– Destination port 
– Service 
– Classification 
– Start time 
– Stop time
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– Severity 
– Confidence 
– Alert count 

• Domain: Represents the domain name of an IP address. It is derived from a reverse 
DNS lookup of an IP address. When an IP address is identified, a DNS Reverse DNS 
lookup cycle is formed until the complete Domain/IP relationship is found. This 
is useful to identify attacks using Fast-Flux DNS and Algorithmically Generated 
Domains (AGDs). It has the following property: 

– Name 

• Host: Represents a network host that communicates with other hosts in the net-
work. It is an active node type and it is the most important node type of the model, 
from which almost all other elements originate. It is derived from different data 
sources like network data (packets or flow data), logs and alerts. It may be labelled 
with host-specific aggregates and historical information like if it was ever part of 
an attack, etc. It has the following property: 

– Identifier: Piece of information that can be used to consistently and uniquely 
identify a host though time, like IP address, MAC address, fingerprint or just a 
generic identifier value. Note that the IP address is not the ideal identifier for 
this case but given its ubiquity, it is used when other identifiers are not available. 

• IP Address: Represents an individual IP address. It can be a first-order feature, 
derived from network data, logs or alerts, or a second-order feature when it is 
derived from DNS lookups or Network Address Translation (NAT) table conver-
sions. It has the following property: 

– IP address 

• IP Range: Represents a range of IP addresses. It is derived from WHOIS queries 
and has the following property: 

– Classless Inter-Domain Routing (CIDR) block 

• Location: Represents a geographical location. It is derived from WHOIS queries 
or from IP geolocation services. It is useful to correlate hosts from similar locations 
and attribute attacks. It has the following property: 

– Tag: a combination of city, state/province, region and country according to what 
is available on the result of the query 

• Organization: Represents an organization which controls a range or IP addresses 
or owns domain names. It is derived from WHOIS queries and has the following 
property: 

– Name
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• Person: Represents a person who is listed as being an administrator or owner of a 
range of IP addresses, organization or domain names. It is derived from WHOIS 
queries and has the following properties: 

– Name 
– Email 

4.2 AEN Edges 

Each node type has different types of edges originating from and terminating in them. 
The different types of edges and their features (when applicable) are as follows: 

• Authentication Attempt Account → Host : Represents an authentication 
attempt of an account into a host. It has the following properties: 

– Timestamp 
– Source IP 
– Successful: Whether the authentication was successful or not 

• Triggered By AlertGroup → Host : Describes the source of an alert group 
• Used Host  → I P  Address: Expresses that a host used an IP address to send data 
• IP Located At I P  Address  → Location: Links an IP address to its location as 
defined by the WHOIS or geolocation query performed when the IP address was 
first added to the graph or when the relationship was considered stale 

• Part Of I P  Address  → I P  Range: Links an IP address with its IP range as 
defined by the WHOIS query performed when the IP address was first added to 
the graph or when the relationship was considered stale 

• Resolved To I P  Address  → Domain: Links an IP with its domain name as 
returned by the reverse DNS query performed when the IP address was first added 
to the graph or when the relationship was considered stale 

• Controls Organization → I P  Range: Expresses that an organization controls 
an IP Range as described by the WHOIS queries performed when the IP Range 
was first added to the graph or when the relationship was considered stale 

• Organization Located At Organization → Location: Links an IP address to 
its location as defined by the WHOIS query performed when the first IP belonging 
to the organization was first added to the graph or when the relationship was 
considered stale 

• Owns Person  → Domain: Represents an ownership relationship between a per-
son and a domain as described by the WHOIS query performed when an IP that 
resolved to this Domain was first added to the graph or when the relationship was 
considered stale 

• Session Host  → Host : Represents a communication session between two hosts 
on the same protocol, ports and within a certain activity time window. Its direction
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is based on who initiated the connection. It is primarily an aggregation of network 
data, but data from other sources like logs and alerts that can be used to identify 
such communication is also used in order to fill up possible gaps in the network 
data available. It has the following properties: 

– Start time 
– Stop time 
– Protocol 
– Source port 
– Destination port 
– Source size: Sum of the length of all packets from source to destination 
– Destination size: Sum of the length of all packets from destination to source 
– TCP state: Only applicable for TCP packets, it describes the state of the TCP 
connection as of the last packet belonging to this session, that is, if the connection 
has been established (handshake completed), finished or has only ever started 
but not been established 

– Packet count: The number of packets exchanged between the hosts as part of 
the session 

– Fragmented packet count: The number of fragmented packets exchanged 
between the hosts as part of the session 

– Alert count: The number of alerts generated as part of the session 

5 AEN Probability Model 

5.1 Probability Model Definition 

The basic probability assignment involved in the AEN model consists of the proba-
bility of correctness, π , for graph elements (nodes and edges) and feature confidence. 
At inception, each graph element is assigned an correctness probability which stems 
from the originating data. 

Most graph elements are derived from data that in some way can be categorized 
as deterministic; like when packets related to a TCP handshake between two hosts 
are received, the model can be certain that those two hosts are communicating and 
in what direction, or when an application reports that an authentication attempt was 
made for a certain account there is no doubt regarding the application or the account 
being used. In these cases, π is trivial and set to 1, or more technically to 1 − ∈, 
where ∈ represents the inherent probability the data injected into the system has been 
faked, tampered or corrupted. 

On the other hand, a few data sources are inherently imperfect, which introduces 
a layer of uncertainty to the nodes, relationships and attributes they generate and thus 
must be taken into consideration. Examples of these data sources include IDSes or 
other detectors, user/device fingerprinting schemes, geolocation services etc. More
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Fig. 1 Example of probability modelling in the AEN graph and the resulting most probable sub-
graph derivation 

than that, in some cases the data have a higher probability of being faked or spoofed, 
like a stray IP packet not part of a established communication between two hosts 
which is more likely to have a spoofed source address. In these cases, the correctness 
probability for the graph elements will correspond to the expected accuracy of the 
data. 

As an example, consider the hypothetical scenario where the geolocation service 
assigns for a given IP address 90% probability of it being from Hungary and 10% 
probability of it being from Poland at a given point in time t ∈ T . Based on that, one 
IP Address node and two Location nodes will be added to the graph. The two countries 
exist beyond any doubt so their π are set to 1. Likewise, the IP address, at least as 
a member of the set of all possible IP addresses, also exists, and is therefore also 
assigned π = 1. From there, one edge between the IP Address and each of the two 
Location nodes constrained to t are also added with their probability of correctness 
being set to the respective probability returned by the geolocation service. In such a 
manner, both possible, but conflicting, relationships can be modelled and, at a later 
point, used as part of different inference processes. 

Figure 1 depicts a sample graph based on the above scenario with (a) showing the 
full graph representing the 2 conflicting relationships and (b) showing the resulting 
“most probable graph” derivation. Future data might result in updated values and 
thus different derivation results. 

In the above scenario, all probabilities are equivalent to probabilities of existence, 
however, that is not always the case. Consider now an alert added to the graph. Short 
of an attacker being able to inject a false alert into the system, the model can be sure 
that the alert exists and was generated by the detector. Therefore, its probability of 
existence is equal to 1 − ∈. That, however, doesn’t properly represent the uncertainty 
regarding the alert. Instead, what is important in this case is describing the probability 
of the alert being correct, that is, not a false alarm. 

Generally, a detector can be considered as a binary classifier that classifies events 
as either malicious (or at least suspicious) or benign and generates alerts when an 
event is classified as malicious. As a classifier, the detector has an accuracy which 
underpins the probability of correctness of the alerts it generates. Moreover, some 
detectors will also provide a confidence score for the alert which can be used to 
further refine the alert’s probability.
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Therefore, to calculate π for an alert, we first need to define its expected accu-
racy. There are different levels of granularity that can be used when performing the 
accuracy calculation. The coarsest grain (and simplest) calculation would be to cal-
culate the precision (Positive Predicted Value—PPV) of the detector as a whole by 
evaluating it against different datasets and use that as the surrogate. The precision is 
used in this case because it describes the ratio of true positives among all predicted 
positive elements, in other words, it is congruent to the probability of a predicted 
positive observation (an alert in our case) being a true positive. 

This is simple but the values obtained may be too generic and thus not as useful. 
A finer grained approach would be to group alerts based on a common factor and 
calculate the accuracy for each group separately. The grouping can be done in several 
different ways like by severity, by family of attacks, by individual attack type inside 
a family or even by individual rules or anomaly metrics. These would provide more 
specific probability values but on the other hand would require much more data in 
order to be calculated meaningfully. If there are no examples or not enough examples 
of a given alert in the datasets, then the respective values cannot be calculated using 
this approach or at least not calculated meaningfully. In these cases, the general 
detector accuracy would have to be used. 

In cases where a confidence score is available, we compute the alert probability 
by combining the detector accuracy and the confidence score into a probability value 
through score calibration. The score calibration process is described in more detail 
in a separate report [10]. 

Finally, recall that alerts are not added directly to the graph, instead, similar alerts 
of the same type, origin and target that occur in a short time frame are grouped into 
alert groups. In most cases, all alerts of the same type will have the same π , hence, 
the probability of any alert can be used as the probability of the group. The exception 
to that is cases where different alerts have different confidence scores. In those cases, 
to obtain π of an alert group A from it’s constituent alerts Ai we pick the probability 
of the alert with the highest confidence. Formally, π( A) is defined as: 

π(A) = n 
max 
i=1 

π(Ai ) (2) 

The probability of correctness serves as a starting point to inferences, derivation or 
other types of analyses in the graph as seen in the following sections. 

5.2 Probability Model Usage and Application 

It is expected that the basic probability assignment (i.e. alert probability) will be fed 
to the model by leveraging the threat detection systems (IDSes, AVs, anti-phishing 
systems) already available in the organization. However, this is not required. Regard-
less of whether there are some pre-existing IDSes in the organization, the AEN will 
provide independently its own threat detection schemes which encompass attack fin-



Activity and Event Network Graph and Application … 227

gerprinting, graph clustering and unsupervised statistical threat detection and that 
will be fed back to the model. As a result, the AEN threat detection scheme will 
also provide some of the classification schemes mentioned in the above probability 
model. As new threats are discovered by the AEN threat detection schemes, alerts 
will be generated and incorporated in the graph model along with the alerts gener-
ated by other pre-existing schemes if applicable. Although the AEN threat detection 
schemes could leverage the alerts generated by pre-existing schemes, it is our goal, 
currently, to keep them separate to ensure the independence of the AEN schemes. In 
future work, we will explore how pre-existing alerts information can be leveraged 
by the AEN threat detection schemes for detection purpose. 

Currently, we use the AEN probability model mainly for threat assessment and 
visualization, and providing underlying context and explanatory information. This 
is based on the concept of threat horizon and reverse threat horizon. 

The horizon of node u can be understood to be the set of all possible nodes which 
u could have affected or exchanged data with. In the case of an attack, all the nodes 
for which a direct journey exists are nodes that the attacker could have compromised 
directly, even if only temporarily. On the other hand, nodes for which only indirect 
journey exists can only have been compromised if somewhere along the journey the 
attacker was able to permanently compromise the system either through some kind 
of outbound connection to its servers or through the installation of an automated 
malware. 

That demonstrates the importance and capacity of the horizon in regards to the 
forensic analysis of the network. It provides a complete view of the network from the 
point of view of the originating node and defines what could possibly be within its 
reach should it be a threat to the network. In other words, the horizon can be viewed 
as the subset of nodes which can be threatened by another node. 

Under this optics, the horizon of a node u is here defined as its Threat Horizon, 
denoted as 

−−→
T Hu , and defined as the subset of N in which all elements are reachable 

from u. Formally: 

−−→
T Hu ⊆ N , −−→

T Hu = {w ∈ N : u ↝ w} (3) 

Inversely, the Reverse Threat Horizon of a node v, denoted as 
←−−
T Hv , identifies, from 

the point of view of a target node, which network nodes could have attacked and 
compromised it. It is defined as the subset of N in which all elements can reach v. 
Formally: 

←−−
T Hv ⊆ N , ←−−

T Hv = {w ∈ N : w ↝ v} (4) 

The Threat Horizon can be used as a starting point of any node specific analysis. 
The first step is to select the best source node for the Threat Horizon, which is 
characterized by its power to link distinct attacks together. Therefore, the selection, 
when available, of owners, common domains or users might result in a combined 
Threat Horizon of multiple attacks.



228 P. G. Quinan et al.

The same applies for identifying the target node of the Reverse Threat Horizon. 
Generically, those nodes are called the focal points of analysis. 

By using the basic probability model defined above for the AEN model we can 
derive probability measures for the threat horizon and reverse threat horizon, and use 
these values to guide threat assessment, visualization, and forensic analysis. This is 
an ongoing work that will be presented in more details in future papers. 

6 Graph Construction and Framework Implementation 

6.1 Framework Architecture 

The system architecture of the AEN framework is depicted in Fig. 2. 
The central component of the system is the AEN Engine, which is responsible for 

maintaining the AEN graph. It provides key functionalities like processing and aggre-
gating incoming data through data receivers, attack fingerprint matching, proactive 
third-party data collection to supplement other incoming data, anomaly detection 
and the probabilistic model underlying the AEN graph. 

The engine stores the graph in a custom-made, in-memory, graph database with 
capabilities to add, update, remove and search for graph elements. Persistence is 
obtained via frequent storage of snapshots which can be reloaded from the disk 
in case of a failure or to review a previous graph state. These snapshots can also 
be shared with other tools and systems that provide other auxiliary operations or 
functionalities like visualization of the graph or scalability via read replicas. 

Both the engine and the graph database are implemented in Java and are executed 
in a single process which allows for direct memory access of the graph elements, 
thus avoiding any extra serialization overhead. 

The engine provides two operation modes. The first one is the online mode, in 
which real-time data is continuously collected from external machines and devices 
by a client application which then pre-processes and sends the live data to the engine. 

Fig. 2 AEN system architecture
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Table 1 Bot-IoT files used in experiment 

Type Name 

Data exfiltration IoT_Dataset_data_theft__00002_20180618111101.pcap 

Data exfiltration IoT_Dataset_data_theft__00013_20180618112736.pcap 

OS scan IoT_Dataset_OSScan__00001_20180521140502.pcap 

OS scan IoT_Dataset_OSScan__00003_20180521150020.pcap 

Service scan IoT_Dataset_ServiceScan__00007_20180515133133.pcap 

Service scan IoT_Dataset_ServiceScan__00007_20180521224912.pcap 

UDP DDos IoT_Dataset_UDP_DDoS__00019_20180604180729.pcap 

The second one is the offline mode, in which previously collected data is added to 
the graph directly. In both cases, AEN Engine uses data ingestion queue which sorts 
the data chronologically and controls the flow of data. 

The current implementation supports network traffic data, either raw or flow data, 
some syslogs, IDS alert logs from Snort, Zeek and custom alerts derived from Kit-
sune’s anomaly detection output and pre-collected IP addresses information derived 
from DNS and WHOIS queries, which the engine can also actively query for if the 
data is not available. 

6.2 Case Study Based on a Cyperphysical Security Dataset 

To better demonstrate the functionalities and capabilities of the AEN Graph, we 
performed an experiment using the BoT-IoT dataset [2–7], provided by the Cyber 
Range Lab of the University of New South Wales (UNSW) Canberra, which consists 
of legitimate and simulated Internet of Things (IoT) network traffic, along with 
different botnet attacks. 

The graph was generated using a subset of the dataset with 1.4 GB of pcap data 
comprising part of the available UDP-based DDoS, OS scans, service scans and data 
exfiltration attacks. Table 1 lists the selected files. This data resulted in a graph with 
236 nodes, including 56 hosts, and 337, 349 edges, including 337, 073 sessions. 

Figure 3 shows a zoomed out visualization of most of the resulting graph. Blue 
nodes are hosts while the edges between them are sessions. To help visualization, 
multiple edges between the same nodes are combined into a single, thicker, edge. 
Note how the graphical representation of the data clearly shows a cluster of activ-
ity around a few hosts with high inter-connectivity and outside of that a host with 
high centrality that initiated connections to several different hosts. It’s those kind of 
patterns that can be identified by matching algorithms to expose otherwise hard to 
identify relationships between hosts and anomalous or known malicious behaviours. 

By zooming in and adding labels to the graph elements, it is possible to see in 
more detail how the different node types are interconnected through the different 
edges. Figure 4 shows that visualization.
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Fig. 3 Zoomed out AEN graph sample derived from the BoT-IoT dataset 

Fig. 4 Zoomed in AEN graph sample derived from the BoT-IoT dataset 

To label the graph, we derived host labels from the dataset’s flow-level labels such 
that any host is labelled as malicious if it originated any flow labelled as being part 
of an attack. Out the 56 hosts in the graph, 8 are labelled as malicious, a prevalence 
of 14.3%. 

As a base of comparison, we first ran the data used to build the graph through 
Snort IDS using the rules available on its website for registered users. To classify 
hosts, we followed a similar rule based on the Snort alerts, with hosts that were the 
source of any alert being classified as malicious by Snort. 

The results show a high number of errors, with it only being able to correctly 
classify 4 out of the 8 malicious hosts and 34 out of the 48 benign hosts. A high 
number of type II errors is expected given that Snort is a signature based IDS but on 
the other hand, the high number of false positives (type I errors) was not expected 
for the same reason. Table 2 presents the resulting confusion matrix.
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Table 2 Confusion matrix of the Snort IDS 

Predicted 

Malicious Benign 

Actual Malicious 4 (50%) 4 (50%) 
Benign 14 (29%) 34 (71%) 

Table 3 Confusion matrix of the AEN’s anomaly detection algorithms 

Predicted 

Malicious Benign 

Actual Malicious 8 (100%) 0 (0%) 
Benign 4 (8%) 44 (92%) 

More specifically, the performance of the Snort IDS for the dataset is thus: Sen-
sitivity of 50%, specificity of 71%, precision of 22% and negative prediction rate of 
89%. That gives a F1-score of 0.3 and a Matthews Correlation Coefficient (MCC) 
of 0.15. 

Afterwards, we executed the anomaly detection algorithms of the AEN [9] against  
the generated graph and followed the simple classification rule in which each host 
identified as anomalous was classified as malicious. 

The anomaly detection algorithms were able to identify all 8 hosts as anomalous 
but also identified further 4 benign hosts as anomalous. Table 3 presents the resulting 
confusion matrix. 

Compared to the results obtained by Snort, our algorithms exhibited a much higher 
performance with a sensitivity of 100%, specificity of 92%, precision of 67% and 
negative prediction rate of 100%. Furthermore, the F1-score is 0.8 and the MCC is 
0.78. 

Finally, we also performed matches against our attack fingerprint database as 
described in [8]. As in the other cases, host classification adhered to the simple rule 
where a host was classified as malicious if it was reported as matching by the detector. 
In this case, that meant the host was identified as being the source of an attack pattern 
that matched any of the stored fingerprints. 

Like Snort, the fingerprint were able to correctly classify the same 4 out of the 8 
malicious hosts. However, it did not misclassify any of the 48 benign hosts, which is 
expected given that (a) it is by nature signature based and (b) only a few fingerprints 
are available. Table 4 presents the resulting confusion matrix. 

Compared to the results obtained by Snort, the fingerprint matching also showed 
a much higher performance with a sensitivity of 50%, specificity of 100%, precision 
of 100% and negative prediction rate of 92%. Furthermore, the F1-score is 0.67 and 
the MCC is 0.68.
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Table 4 Confusion matrix of the fingerprint matching 

Predicted 

Malicious Benign 

Actual Malicious 4 (50%) 4 (50%) 
Benign 0 (0%) 48 (100%) 

When compared with the anomaly detection, it showed a better false positive 
rate compared to a worst false negative error which is natural given their different 
characteristics and shows they can be complimentary. 

7 Conclusion 

The AEN graph model is a new paradigm that allows the capture and analysis of the 
activities and events involved in the operation of networked systems and data centers. 
In the current chapter, we have defined the graph model elements and provided an 
overview of the underlying probability model. While the focus of the current chapter 
is on graph construction only, future papers will present in more detail our approaches 
for threat detection using the AEN graph model. 
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