

ARTIFICIAL
INTELLIGENCE
METHODS FOR
SOFTWARE
ENGINEERING

12360 9789811239915 tp.indd 112360 9789811239915 tp.indd 1 28/4/21 11:52 AM28/4/21 11:52 AM

B1948 Governing Asia

B1948_1-Aoki.indd 6B1948_1-Aoki.indd 6 9/22/2014 4:24:57 PM9/22/2014 4:24:57 PM

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank

NEW JERSEY • LONDON • SINGAPORE • BEIJING • SHANGHAI • HONG KONG • TAIPEI • CHENNAI • TOKYO

World Scientific

ARTIFICIAL
INTELLIGENCE
METHODS FOR
SOFTWARE
ENGINEERING

Editors

Meir Kalech
Ben-Gurion University of the Negev, Israel

Rui Abreu
University of Porto, Portugal

Mark Last
Ben-Gurion University of the Negev, Israel

12360 9789811239915 tp.indd 212360 9789811239915 tp.indd 2 28/4/21 11:52 AM28/4/21 11:52 AM

Published by

World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601
UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

This book has been partially funded by the Cyber Security Research Center at Ben-Gurion
University of the Negev and by ISF grant No. 1716/17. This material is based upon work
supported by Fundação para a Ciência e a Tecnologia (FCT), with the reference PTDC/CCI-COM/
29300/2017 and UID/CEC/50021/2019. The authors further would like to thank Roni Stern for being
a research partner.

ARTIFICIAL INTELLIGENCE METHODS FOR SOFTWARE ENGINEERING

Copyright © 2021 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance
Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy
is not required from the publisher.

ISBN 978-981-123-991-5 (hardcover)
ISBN 978-981-123-992-2 (ebook for institutions)
ISBN 978-981-123-993-9 (ebook for individuals)

For any available supplementary material, please visit
https://www.worldscientific.com/worldscibooks/10.1142/12360#t=suppl

Printed in Singapore

Steven - 12360 - Artificial Intelligence Methods for Software Engineering.indd 1Steven - 12360 - Artificial Intelligence Methods for Software Engineering.indd 1 14/6/2021 8:39:17 am14/6/2021 8:39:17 am

https://www.worldscientific.com/worldscibooks/10.1142/12360#t=suppl

May 19, 2021 16:34 ws-rv9x6-9x6 Book Title 12360-00a-dedication page v

To my lovely wife Ravit,

our children - Oran, David, Barak and Zohar, and

my parents Mira and Eliko.

M.K.

To my lovely wife Liliana, and our children

Duarte, Bernardo and Filipe.

R.A.

To my beloved wife Tami, my parents Rosa

and Isidore, and our children Dan, Iris, and Einat.

M.L.

B1948 Governing Asia

B1948_1-Aoki.indd 6B1948_1-Aoki.indd 6 9/22/2014 4:24:57 PM9/22/2014 4:24:57 PM

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank

May 21, 2021 9:53 ws-rv9x6-9x6 Book Title 12360-00b-preface page vii

© 2021 World Scientific Publishing Company
https://doi.org/10.1142/9789811239922 fmatter

Preface

Back in 2011, Marc Andreessen, co-founder and general partner of venture

capital firm Andreessen Horowitz, wrote an essay1 in The Wall Street Jour-

nal on the fact that “Software is eating the world.” A couple of years later,

in 2014, Dutch computer scientist and entrepreneur Erik Meijer, since 2015

a Director of Engineering at Facebook, co-authored a paper published in

the Communications of the ACM2 corroborating the same thought: “of the

top five fastest-growing companies with regard to market capitalization in

2014, three are software companies: Apple, Google, and Microsoft (in fact,

one could argue that Intel is also driven by software, making it four out of

five).” Arguably, over the last couple of decades, software technology has

been one of the primary drivers of economic growth in the world. Devel-

oping reliable software, however, remains far from trivial. A 2013 study3

from Cambridge University estimates that software bugs cost the global

software Industry a staggering $316 billion per year. As software becomes

one of the fundamental pillars of almost any company, following engineer-

ing concepts for software designing, creating, improving, and maintaining

software becomes of paramount importance.

Software Engineering as a discipline is still evolving (the field is a merely

shy of 50 years old4), with the emergence of agile practices, the need to con-

sider technology management, legacy software integration, organizational

management, as well as deployment and infrastructure issues instead of

a focus on just developing software code. Successful software projects,

1https://a16z.com/2011/08/20/why-software-is-eating-the-world/
2Erik Meijer and Vikram Kapoor. “The responsive enterprise: embracing the hacker
way.” Communications of the ACM 57.12 (2014): 38–43.
3Research by Cambridge MBAs for tech firm Undo finds software bugs cost the industry
$316 billion a year: https://goo.gl/mikn7P
4The NATO Software Engineering Conferences were held in 1968 and 1969, being at-
tended by international experts on computers who agreed on defining best practices for

software grounded in the application of engineering. The conferences played a major
role in gaining general acceptance for the term software engineering.

vii

https://doi.org/10.1142/9789811239922_fmatter

May 21, 2021 9:53 ws-rv9x6-9x6 Book Title 12360-00b-preface page viii

viii Artificial Intelligence Methods for Software Engineering

therefore, require more than just technical expertise: understanding the

real needs of different stakeholders, collaborating in a team (nowadays, po-

tentially globally distributed), managing complexity, mitigating risks, de-

livering projects on time and on budget, and determining when a software

product is good enough to be shipped are at least equally important topics

that often have a significant human component (the so-called soft skills).

As Alexander Pope stated: “to err is human” (following the famous

Latin proverb “errare humanum est” attributed to Hieronymus). Therefore,

software as a human-made component is naturally prone to errors and/or

inconsistencies. Ascertaining that no human errors creep into the different

phases of the software lifecycle is where artificial intelligence can be a game-

changer. It is already a fact that Artificial Intelligence can simplify several

tasks, ranging from interacting with our consumer electronic appliances

to playing our favourite music. Bringing together Artificial Intelligence

and Software Engineering has the potential to create high quality software

artifacts, hence reducing time-to-market, while maintaining high standards.

The history of the field of Artificial Intelligence dates back to the seminal

work of Turing and McCarthy. The gist of Artificial Intelligence is about

making machines intelligent in order for them to perform tasks that are

rather complex for humans. Software engineering is, in fact, one of the most

challenging of all engineering disciplines (despite it is often not recognised as

such). Therefore, researchers and industrialists alike have sought to apply

Artificial Intelligence methods to solve Software Engineering problems. In

fact, back in 1986, Simon argued that “it is not really a question of whether

we want to use artificial intelligence methods in software engineering: it is

a question of whether artificial intelligence is powerful enough to help us.”5

Currently, there are several developments in Artificial Intelligence meth-

ods and approaches that make them well suited to address software engi-

neering problems. The authors of the chapters of this book discuss the

advances in state-of-the-art of several software engineering problems by

leveraging Artificial Intelligence methods to techniques such as Natural

Language Processing (NLP), machine learning, fuzzy logic, multi-objective

search, and metaheuristics.

In particular, the chapters of this book cover several aspects of the

software engineering lifecycle (see image below), organized as follows:

5Herbert A. Simon. “Whether software engineering needs to be artificially intelligent.”
IEEE Transactions on Software Engineering 7 (1986): 726–732.

May 21, 2021 9:53 ws-rv9x6-9x6 Book Title 12360-00b-preface page ix

Preface ix

AI for Software Design

Interweaving AI and Behavioral Programming Towards Better Program-

ming Environments by Achiya Elyasaf, Moshe Weinstock and Gera Weiss;

AI Techniques for Software Requirements Prioritization by Alexander

Felfernig

Agent-Based Software Programming

Social Commitments for Engineering Interaction in Distributed Sys-

tems by Matteo Baldoni, Cristina Baroglio, Roberto Micalizio and Stefano

Tedeschi

Intelligent Agents are More Complex: Initial Empirical Findings by Gal

A. Kaminka and Alon T. Zanbar

AI for Software Development

Sequence-to-Sequence Learning for Automated Software Artifact Gener-

ation by Zhongxin Liu, Xin Xia and David Lo

Machine Learning to Support Code Reviews in Continuous Integration

by Miroslaw Staron, Miros law Ochodek, Wilhelm Meding, Ola Söder and

Emil Rosenberg

Software Fusion: Deep Design Learning With Deterministic Laplacian

Verification by Iaakov Exman

Using Artificial Intelligence for Auto-Generating Software for Cyber-

Physical Applications by Gregory Provan

May 21, 2021 9:53 ws-rv9x6-9x6 Book Title 12360-00b-preface page x

x Artificial Intelligence Methods for Software Engineering

AI for Software Testing

On the Application of Machine Learning in Software Testing by Nour

Chetouane and Franz Wotawa

Creating Test Oracles Using Machine Learning Techniques by Rafig Al-

maghairbe and Marc Roper

Intelligent Risk Based Analysis Methodology by Eli Menasheof

A Qualitative Reasoning Model for Software Testing, based on Combi-

natorial Geometry by Spyros Xanthakis and Emeric Gioan

AI for Software Debugging

AI-based Spreadsheet Debugging by Konstantin Schekotihin, Birgit

Hofer, Franz Wotawa and Dietmar Jannach

Artificial Intelligence Methods for Software Debugging by Wolfgang

Mayer and Franz Wotawa

This book focuses on the above topics since these are the building blocks

of every software. The AI techniques presented by the papers in this book

could leverage the design process by making it faster and more organized,

the development process more comfortable, and the testing and debugging

processes more reliable.

All chapters published in this book have undergone editorial review

as well as external anonymous peer review. We would like to thank all

contributors and reviewers for their diligent work in bringing together this

exciting book. We would also like to thank those who have helped us

putting this book together.

Meir Kalech, Associate Professor

Department of Software and Information Systems Engineering

Faculty of Engineering Sciences

Ben-Gurion University of the Negev

Israel

kalech@bgu.ac.il

Rui Abreu, Full Professor

Department of Informatics Engineering

Faculty of Engineering

University of Porto

Portugal

rui@computer.org

May 21, 2021 9:53 ws-rv9x6-9x6 Book Title 12360-00b-preface page xi

Preface xi

Mark Last, Full Professor

Department of Software and Information Systems Engineering

Faculty of Engineering Sciences

Ben-Gurion University of the Negev

Israel

mlast@bgu.ac.il

B1948 Governing Asia

B1948_1-Aoki.indd 6B1948_1-Aoki.indd 6 9/22/2014 4:24:57 PM9/22/2014 4:24:57 PM

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank

May 31, 2021 16:34 ws-rv9x6-9x6 Book Title 12360-00c-toc page xiii

© 2021 World Scientific Publishing Company
https://doi.org/10.1142/9789811239922 fmatter

Contents

Preface vii

AI for Software Design 1

1. Interweaving AI and Behavioral Programming Towards

Better Programming Environments 3

Achiya Elyasaf, Moshe Weinstock and Gera Weiss

2. AI Techniques for Software Requirements Prioritization 29

Alexander Felfernig

Agent-Based Software Programming 49

3. Social Commitments for Engineering Interaction in

Distributed Systems 51

Matteo Baldoni, Cristina Baroglio, Roberto Micalizio

and Stefano Tedeschi

4. Intelligent Agents are More Complex: Initial Empirical Findings 87

Gal A. Kaminka and Alon T. Zanbar

AI for Software Development 109

5. Sequence-to-Sequence Learning for Automated Software

Artifact Generation 111

Zhongxin Liu, Xin Xia and David Lo

xiii

https://doi.org/10.1142/9789811239922 fmatter

May 31, 2021 16:34 ws-rv9x6-9x6 Book Title 12360-00c-toc page xiv

xiv Artificial Intelligence Methods for Software Engineering

6. Machine Learning to Support Code Reviews in

Continuous Integration 141

Miroslaw Staron, Miroslaw Ochodek, Wilhelm Meding,

Ola Söder and Emil Rosenberg

7. Software Fusion: Deep Design Learning with

Deterministic Laplacian Verification 169

Iaakov Exman

8. Using Artificial Intelligence for Auto-Generating

Software for Cyber-Physical Applications 211

Gregory Provan

AI for Software Testing 241

9. On the Application of Machine Learning in Software Testing 243

Nour Chetouane and Franz Wotawa

10. Creating Test Oracles Using Machine Learning Techniques 269

Rafig Almaghairbe and Marc Roper

11. Intelligent Risk Based Analysis Methodology 305

Eli Menasheof

12. A Qualitative Reasoning Model for Software Testing,

based on Combinatorial Geometry 331

Spyros Xanthakis and Emeric Gioan

AI for Software Debugging 369

13. AI-based Spreadsheet Debugging 371

Konstantin Schekotihin, Birgit Hofer, Franz Wotawa

and Dietmar Jannach

May 31, 2021 16:34 ws-rv9x6-9x6 Book Title 12360-00c-toc page xv

Contents xv

14. Artificial Intelligence Methods for Software Debugging 401

Wolfgang Mayer and Franz Wotawa

Index 437

B1948 Governing Asia

B1948_1-Aoki.indd 6B1948_1-Aoki.indd 6 9/22/2014 4:24:57 PM9/22/2014 4:24:57 PM

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank

April 21, 2021 11:52 ws-rv9x6-9x6 Book Title 12360-00d-divider-1 page 1

AI for Software Design

B1948 Governing Asia

B1948_1-Aoki.indd 6B1948_1-Aoki.indd 6 9/22/2014 4:24:57 PM9/22/2014 4:24:57 PM

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank

June 2, 2021 15:23 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-01 page 3

© 2021 World Scientific Publishing Company
https://doi.org/10.1142/9789811239922 0001

Chapter 1

Interweaving AI and Behavioral
Programming Towards Better
Programming Environments

Achiya Elyasaf∗, Moshe Weinstock† and Gera Weiss‡

Ben-Gurion University of the Negev, Israel
∗achiya@bgu.ac.il, †moshewe@cs.bgu.ac.il, ‡geraw@cs.bgu.ac.il

1.1 Introduction

A key challenge in developing reactive systems like robots and smart ma-
chines is coping with the huge variety of scenarios that may arise when
the machine or the robot runs in a rich non-deterministic environment.
Scenario-based specification and programming techniques cope with this
challenge by providing engineers with the tools to specify independent pat-
terns and anti-patterns of behavior. These patterns are interwoven at run-
time to match the actual scenario that the robot or the machine has to deal
with. This approach has been proven to be useful in a variety of applica-
tion domains. A key feature of behavioral-based specifications is that the
resulting specification is often non-deterministic in the sense that it gives
the robot a “freedom of choice” in many situations, especially at early de-
velopment stages, when the library of patterns is not complete. Since it is
desirable to be able to explore the executions of the models, even in these
early stages, researchers and industry have proposed tools to resolve this
nondeterminism by means of synthesis, model-checking, planning, machine
learning, and priorities. The challenge here is to propose ways to make
informed decisions in limited time and to reuse data from earlier situations
when applicable.

In this chapter we present our ongoing work towards resolving the
nondeterminism in scenario-based specifications by running reinforcement

3

https://doi.org/10.1142/9789811239922_0001

June 2, 2021 15:23 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-01 page 4

4 Artificial Intelligence Methods for Software Engineering

learning and online evolutionary algorithms that traverse possible contin-
uations of execution. We describe mechanisms that, when the robot has a
choice of action, consider possible future actions of both the environment
and the robot, as well as decide on a “best” action for the robot. With these
mechanisms, programmers and other stakeholders can provide robots with
programs (scenario-based specifications) that specify most of the behavior
while leaving enough choice for the program to cope with the dynamicity
in the environment.

To demonstrate our approach, we outline our work on three case studies,
where in all cases, we developed a decisions making controller for a simu-
lated robotic software. Of course, while the examples demonstrate robotic
applications, our approach is general, intended to be used for any reactive
system. Moreover, the behavioral programming paradigm that we base our
approach on, has been used for modeling and programming other types of
reactive systems, such as smart-home automation [1], a satellite mission
controller [2], biological processes [3] and many more.

Unlike pure AI approaches, our goal is to support software engineers,
not to replace them. Specifically, in a software engineering context, where
it is mandatory that programmers have full control of the behavior of
the system, AI can only be used when its actions follow the commands
of the programmers. Our goal is to ease the job of the programmers by
relieving the pain of taking care of all the gory details. As an illustrative,
non-technical example, consider the difference between a car driver and a
coachwoman. The car driver must provide her car with precise steering
commands while the coachwoman has at her disposal an intelligent agent
(the horse) that can implement partial or incomplete steering commands.
Rephrasing this in a technical setting, we demonstrate in this chapter that
programmers of complex reactive systems can benefit from having an in-
telligent program execution mechanism that can execute partial behavioral
specifications. Specifically, programmers can specify behavioral patterns
and anti-patterns for enforcing critical safety requirements. This way, the
execution mechanism has enough room to take care of non-functional re-
quirements, based on cost functions and on a model of the environment.
Note that, as software engineers, we are not aiming at taking the control
out of the hands of the programmer. On the contrary, we envision an in-
cremental development, where each iteration consists of running the model
with the smart execution mechanism and of refining the program so that
it does what the programmer wants it to do, a process that resembles, in
some sense, the process of training a horse.

June 2, 2021 15:23 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-01 page 5

Interweaving AI and Behavioral Programming 5

1.2 Preliminaries

Our approach is based on a model-driven engineering paradigm, called be-
havioral programming. We begin with a general description of these terms
and their related work, and elaborate on the BP paradigm in Sec. 1.3.

1.2.1 Behavioral and Scenario-Based Programming

A widely accepted practice in software development is to formalize re-
quirements in the form of use-cases and scenarios [4]. The programming
approach termed behavioral programming (BP) extends this approach to
using scenarios for the actual coding of software (executable specifications).
Specifically, the method introduces scenario coding techniques and design
approaches for constructing reactive systems [5] incrementally from their
desired and undesired behaviors. The work on behavioral programming be-
gan with scenario-based programming, a way to create executable specifica-
tions of reactive systems, introduced through the language of live sequence
charts (LSC) and its Play-Engine implementation [6,7]. The initial purpose
was to enable testing and refining specifications and prototypes, and the
approach was later extended towards building actual systems [8]. To this
end, the underlying behavioral principles have also been implemented in
imperative programming languages, via, e.g., the BPJ package [8] adding a
more conventional programming point of view to that of requirement spec-
ification. Following this direction there are several tools supporting the
behavioral programming principles in other languages, such as Erlang [9],
C [10], and with graphical tools such as the Play-Engine [7], PlayGo [11],
and SBT [12]. Our approach to scenario-based specification is based on the
LSC language [6, 7]. It allows GUI-based or natural language-based play-
ing in of behavioral scenarios, and is multi-modal, allowing constraints (for
example, forbidden scenarios) to be part of the program. The approach
has been generalized and extended also to other languages, including Java,
C++, Erlang, JavaScript, and Blockly, and was termed behavioral pro-
gramming (BP) [13]. Research results cover, among others, run-time
lookahead (smart playout) [14], model-checking [15], compositional ver-
ification [16], synthesis [12], interactive analysis of unrealizable specifi-
cation [17], abstraction-refinement mechanism [17], automatic correction
tools [18], and synchronization relaxation tools [19]. In this chapter we
present our ongoing work, on extending the approach proposed in [14] to-
wards using self-reflection and a model of the environment in an execution
mechanism that allows for more robust and AI-based adaptive behavior.

June 2, 2021 15:23 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-01 page 6

6 Artificial Intelligence Methods for Software Engineering

1.2.2 Model-Driven Engineering

Model-driven engineering and software development [20, 21] is geared
to allow human stakeholders to develop and analyze a system using
abstractions and formalisms that are more closely aligned with their men-
tal models than standard programming language code. MDE is sup-
ported by many languages, platforms, and tools, including, among others,
UML [22] and SysML [23], AADL[Feiler2006ArchitectureAnalysis], MAT-
LAB Simulink [24], SCADE [25], Ptolemy II [26], and Eclipse Model-
ing Framework [27]. The models, built in modeling languages, including
domain-specific modeling languages and platforms, can be transformed into
running code through automated model transformations. In this chapter
we take these ideas further, along the lines outlined in, e.g., [28], to using
models also for online search and for self-reflection.

1.2.3 Search-Based Software Engineering (SBSE)

Many activities in software engineering can be stated as optimization prob-
lems. Search-based software engineering (SBSE) applies metaheuristic
search techniques, such as evolutionary algorithms, to software engineer-
ing problems. For instance, the following is an illustrative list of SE ques-
tions [28]:

(1) What is the smallest set of test cases that covers all branches in this
program?

(2) What is the best way to structure the architecture of this system to
enhance its maintainability?

(3) What is the set of requirements that balances software development
cost and customer satisfaction?

(4) What is the best allocation of resources to this software development
project?

(5) What is the best sequence of refactoring steps to apply to this system?

Though they may appear very different, they are all essentially optimiza-
tion problems. As such, they are typical of the kinds of problem for which
SBSE is well adapted and with which each has been successfully formulated
as a search-based optimization problem. Foremost among the techniques
used by SBSE practitioners is evolutionary computation, or evolutionary
algorithms.

June 2, 2021 15:23 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-01 page 7

Interweaving AI and Behavioral Programming 7

1.2.4 Evolutionary Computation

In the field of evolutionary computation (EC) ideas from evolutionary biol-
ogy — random variation and selection — are harnessed in algorithms that
are applied to complex computational problems. The origins of EC can be
traced back to the 1950s and 1960s but the field has come into its own over
the past two decades, proving successful in solving numerous problems from
highly diverse domains [29]. EC techniques are being increasingly applied
to difficult real-world problems, often yielding results that are not merely
academically interesting but also competitive with the work done by cre-
ative and inventive humans [30]. Evolutionary algorithms are an excellent
choice when the search space involved is huge and one wishes to search
it efficiently. Indeed, as mentioned above, within the field of SBSE (and
others), EC is perhaps the most-used technique. Moreover, states reoccur
with small changes during a BP run. Heuristics that work well for a certain
phase of the search may need some modifications over time. The funda-
mental EC behavior of individual improvement over generations may deal
with this problem seamlessly. With these considerations in mind, EC was
a natural choice for the current proposal.

An evolutionary algorithm is an iterative procedure that involves a pop-
ulation of individuals, each one represented by (perhaps) a finite string of
symbols, known as the genome, encoding a possible solution in a given
problem space. This space, referred to as the search space, comprises all
possible solutions to the problem at hand. The algorithm sets out with
an initial population of individuals that is generated at random or heuris-
tically. Every evolutionary step, known as a generation, the individuals
in the current population are decoded and evaluated according to some
predefined quality criterion, referred to as the fitness, or fitness function.
To form a new population, which will constitute the next generation, in-
dividuals are selected according to their fitness, and then transformed via
genetically inspired operators, of which the most well-known are crossover
and mutation. Simple crossover involves “mixing” two or more genomes
to form novel offspring, and simple mutation randomly flips bits in the
genomes. Continually iterating this procedure, and owing to the principle
of selection of the fittest, the evolutionary algorithm may eventually find
an acceptable solution, i.e., one with high fitness.

June 2, 2021 15:23 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-01 page 8

8 Artificial Intelligence Methods for Software Engineering

1.3 The Proposed Approach

Our approach is based on the Behavioral Programming (BP) paradigm and
on Artificial Intelligence (AI). The key new ingredient is an extension of
the BP execution mechanism with on-line heuristic search in program state
space that allows programmers to develop nondeterministic programs while
relying on a “smart” event selection mechanism to resolve nondeterminism
in a heuristic manner.

Our goal is to make SBSE accessible to modelers and programmers of
reactive systems, such as robotic applications and interactive applications,
as idioms that integrate with standard constructs in common modeling and
programming languages. This allows for natural, powerful derivation from
modeling languages (such as BP) to executable systems. Specifically, we
present tools and techniques that facilitate the following software develop-
ment methodology:

(1) Model aspects of the required behavior using non-determinism to spec-
ify free choices in execution.

(2) Run the system using an engine that resolves non-determinism heuris-
tically or synthesizes code.

(3) If unsatisfied with the execution’s choices, extend the model by formal-
izing more-refined requirements.

(4) Repeat steps 2 and 3 until the behavior is satisfactory.

In addition to the refinement idioms that already exist in BP, which
allow programmers to incrementally shape their software by adding mod-
ules that can both widen and narrow the set of possible behaviors of the
system, our approach allows BP-based models to also contain specifications
of fitness criteria for the heuristic search function that can also be refined
along the above development process. Our vision is that these will be used
by programmers for specifying nonfunctional requirements such as the need
to preserve energy and the need to accomplish a mission as fast as possible.
The execution mechanism will then try to optimize these measures within
the constraints posed by the base BP code that encodes functional, safety,
requirements such as “Never open the box when the robot is moving” or
“Always open the flaps when landing”. The specification of these fitness
criteria is done inside the scenarios that constitute the BP model, giving
programmers a unified language with which they can specify both hard
and soft rules that the application agnostic execution mechanism can weld
together into a reactive program.

June 2, 2021 15:23 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-01 page 9

Interweaving AI and Behavioral Programming 9

The idea of “smart” execution of scenario-based specifications started
in [14] and in [31] with proposals to apply, respectively, model-checking
and planning algorithms for running a single super-step (the part of the
run that spans between two consecutive external events) in LSC. We apply
similar mechanisms in the context of a behavioral programming library
embedded in an imperative programming language. Beyond running in a
different setting, the main addition of our approach, when compared to
these earlier contributions, is that it aims at running the “smart” event
selection mechanism at run-time, on real program code rather than on
a model or specification. Further more, the papers cited above dealt only
with synthesizing one super step at a time, i.e., they focused on planning the
next move of the system in a way that satisfies all the internal constraints.
Here we widen the horizon by synthesizing strategies that consider also the
possible reactions of the environment, the reactions of the system to these
reactions and so forth.

As said in [32], any intelligent system that operates in a complex unpre-
dictable environment must be reactive — that is, it must respond dynami-
cally to changes in its environment. For simple tasks in carefully engineered
domains, non-reactive behavior is acceptable; for more intelligent agents in
unconstrained domains, it is not. This chapter presents an architecture for
intelligent reactive systems. The advantages of the proposed environments
are in terms of modularity, awareness, and robustness defined in [32] as
follows:

Modularity: Systems are built incrementally from simple components
that are easy to implement and to understand.

Awareness: Systems are always aware of what is happening; they are
always be able to react to unexpected sensory data.

Robustness: Systems are built to behave plausibly in novel situations
and when some of their sensors are inoperable or impaired.

We believe that the best way to achieve these design goals is that pro-
grammers develop models that describe the choices for the robot and use
online and offline search techniques to make informed choices within these
models. To realize this goal, our approach integrates BP techniques with
two AI based techniques — evolutionary computation and reinforcement
learning.

June 2, 2021 15:23 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-01 page 10

10 Artificial Intelligence Methods for Software Engineering

1.4 Sandboxing

We use behavioral programming (BP) as defined in [8], as a formalism for
defining the behavioral patterns and anti-patterns model. In the context
of BP these patterns are called behavioral threads or b-threads. Since we
want to explore possible future executions of the code, we describe mech-
anisms to run the code in a simulation mode (sandbox) and to retract the
state when the search reaches the required depth. To this end, we use the
Rhino (http://www.mozilla.org/rhino/) tool that allows to control the ex-
ecution of JavaScript code from a host Java application. Specifically, the
main feature that we use in Rhino is the ability to traverse the state-space
of a given JavaScript program using continuations, as explained in more
details below. In [15], continuations were used for model-checking behav-
ioral programs. Unfortunately, this work relied on a Java package that was
discontinued (not available for versions of Java beyond 1.6). Therefore, we
developed an alternative tool using Rhino, called BPjs [33], and apply it,
beyond offline model-checking, to online heuristic search.

Figure 1.1 illustrates the sandboxing architecture that we propose:

Fig. 1.1 The sandboxing architecture for interweaving AI and BP. During search, the
environment events are simulated. When interacting with the real system, the simulation
is updated.

We rely on a switched system that operates in two modes. (1) In normal
mode: the application b-threads receive input from the environment. (2) In
search mode: the application b-threads get input from a simulator and their
output is fed only to the simulation b-threads, so that the environment is
not actuated. The figure shows the state of the switches in search mode.
When in normal mode, both switches are in their other mode, i.e., the right
switch is closed and the left switch is connecting ‘real input’ to ‘input’. The

June 2, 2021 15:23 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-01 page 11

Interweaving AI and Behavioral Programming 11

box labeled “Environment Model” in this diagram represents code that
programmers provide, which describes (an abstraction of) the environment
in which the robot operates. While this may be considered as an additional
burden on the programmers, we believe that it is a necessary artifact, even
without our tool, as it is needed for testing and for verification.

Note that the simulation of the environment does not have to be com-
plete: a good search mechanism should be able to make use even of an
abstract description of the environment, as we will demonstrate in the case
study described in the next section.

1.5 State Space Exploration

Programs in BP are comprised of b-threads and their states are an ag-
gregate of the independent state of each b-thread. Anything happening
inside a b-thread between b-sync calls — that is, between synchronization
points — is by definition internal to the b-thread, and so can be consid-
ered atomic to the program as a whole. Therefore, our search mechanism
can ignore these internal workings and focus on b-syncs, as only the states
at these synchronization points define the integrated system behavior. As
demonstrated with details in [33], this gives a significant reduction of com-
plexity when compared to direct code step analysis as done, e.g., by the
JavaPathfinder tool [4].

The programmatic construct that captures program execution in an
immutable, re-entrant object, as required by search algorithms, is a con-
tinuation [34, 35]. Continuations are representations of the program at a
given point in execution, which are available to the programmer, rather
than hidden by the runtime environment. Our proposal here is to use con-
tinuations to traverse the state space by ordinary program execution, as
they facilitate backtracking and resuming of execution from desired points
where they were captured. We can now formally define the state space for
the search using the terms proposed in [15]:

Definition: A bt-state represents the state of a specific b-thread in a
b-sync call during a run of the program. It is composed of the b-thread and
its captured continuation (program counter and values of all the variables).
A bp-state is captured at every call to b-sync. This ensures that once all
b-threads have reached a synchronization point, their continuation object
representing that state is updated, so that a complete state of the BP
system can be captured.

Definition: A bp-state represents the state of the whole program. It

June 2, 2021 15:23 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-01 page 12

12 Artificial Intelligence Methods for Software Engineering

is composed of the bt-states of all b-threads in the program, captured at a
b-sync.

When the execution engine is required to make a choice between multiple
events to trigger, it creates a bp-state as a root for the search. Expanding
search nodes is done by triggering events and capturing the new bp-states
created by the triggering. We propose to do this by executing the code
as in [15] (and not by running on an abstract model of the code as, e.g.,
in [17]) to ensure that there are no discrepancies between the code and
the search results. The bt-state and bp-state are the abstractions used by
the search algorithm directly such that all BP specific code is encapsulated
within those objects and is completely transparent to the search algorithm.

1.6 Heuristics and Smart Exploration

With the state space defined, we can now delve into the search mechanism
itself: how we are running programs in a sandbox. The sandbox is composed
of the environment simulator (input generator), a search algorithm, and a
heuristic function. An implementation of a look-ahead mechanism, beyond
one super-step, requires that the system be able to predict the actions of the
environment to some precision. For this, we need to ask programmers to
provide the search mechanism with an abstract model of the environment
(which can be probabilistic), and a simulator, to provide inputs to the
program while in the sandbox.

We implement the environment simulators as b-threads in the program
itself. In normal operation, a simulator b-thread b-sync is modified such
that its requested event sets are added to the waited-for events set, and its
requested event set is empty. This ensures the b-threads simulation is made
aware of all events relevant to it, so that it maintains a correct state for the
next use in simulation mode. When the BP infrastructure needs to search
for an event to trigger, the simulation b-threads are switched to simulation
mode in which they request events normally triggered by the environment
as modeled in their code. No manipulation of their event lists is done in
simulation mode. This approach provides robustness of the simulator and
program, while also allowing for a clear and unified programming interface.

An interface for sending inputs to the program and for examining its
outputs is also required. A convenient solution for this is defining the
interface to and from the program to be an event queue (similar to the input
queue introduced in [36]). This way the environment and the sandbox both
enqueue events for triggering within the program in the input queue and

June 2, 2021 15:23 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-01 page 13

Interweaving AI and Behavioral Programming 13

read the program’s output from its output queue. The program does not
directly performs actions on the environment — events from the output
queue are fed as actions back into the environment by an adapter, thus
enabling running in sandbox without extra code analysis.

Selecting the right search algorithm for a program can have great impact
on the results. The algorithms we have used in the work described below
are depth-limited A* and minimax [37] textbook implementations [38]. The
architecture of our solution is such that it is easy to introduce other search
algorithms, as there is no coupling between the algorithm itself and the BP
engine.

Our approach allows for any specification of heuristic functions: the
bp-state object passed to the function grants access to the entire program
without compromising speed or space. This includes the b-thread’s b-sync
event sets and public access methods. The programmer, then, is given
full power in the evaluation of program state, independent of the search
algorithm used. Our solution can incorporate domain-independent heuris-
tics such as abstraction and pattern-databases [37]. Alternatively, the pro-
grammer can write different domain-specific heuristic functions that reward
desired events and b-thread properties.

We propose to use an advanced search approach, based on the work
of [39, 40]. Within combinatorial optimization, the term hyper-heuristics
was first used in 2000 [41] to describe heuristics to choose heuristics. This
definition of hyper-heuristics was expanded later [42] to refer to an au-
tomated methodology for selecting or generating heuristics to solve hard
computational search problems. In the process of hyper-heuristics learn-
ing, heuristics are used as building blocks. These heuristics can be of high
level, usually complex and memory-consuming (e.g., abstraction and pat-
tern databases), or even low-level heuristics that are usually intuitive and
straightforward to implement and compute.

HH-Evolver is a hyper-heuristic generator for search domains [40]. The
HH-Evolver system receives as input: a domain, several heuristics for the
domain, and a dataset of domain instances to be used partly as training
set and partly as test set. HH-Evolver generates a population of random
hyper-heuristics and trains them over generations against the training set.
When used with a heuristic search algorithm, the individuals are required to
produce near-optimal solutions to the instances encountered. HH-Evolver
also seeks to reduce the search-size, i.e., the number of nodes encountered
during the search.

Traditional heuristic methods rely on a single high-level heuristic or a

June 2, 2021 15:23 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-01 page 14

14 Artificial Intelligence Methods for Software Engineering

combination (usually a maximization) of several high-level heuristics. Low-
level heuristics are disregarded as their input is less informative than the
former ones. While this is true, there are numerous examples (some of them
are listed in [40]) that using hyper-heuristic techniques, and HH-Evolver in
particular, allow to efficiently incorporate low-level heuristics into a high-
level heuristic. Moreover, in some domains producing a high-level heuristic
is a hard task while low level heuristics can be easily produced. Our idea
in applying HH-Evolver in an online is by maintaining a population of
hyper-heuristics. Each individual in the population incorporates high-level
heuristics as well as low-level ones, and simple domain knowledge. Over
the generations, the individuals learn the conditions (i.e., logic functions)
regarding when to apply each heuristic, or combinations thereof.

Beyond state exploration, we demonstrate in the examples below also
the utility of parameter-space exploration. In many cases, programmers
can specify the actions that their robot is required to perform, but they
cannot specify the exact parameters of those actions. To provide a simple
solution to this goal, we developed a programming style where some of the
parameters of certain behavioral threads are left open by the programmer,
assuming that they can best be assigned by an automatic solver. Specif-
ically, we showed that such parameters can be effectively resolved using
reinforcement learning. Using the infrastructure for simulation and back-
tracking, it is possible to run the system many times with many values for
the unknown parameters until the algorithm converges to values that best
achieve the goals that the programmers specified for the system.

1.7 Examples

To better understand the concepts of our approach, we now turn to present
three examples. We begin with an ongoing work on two domains, both
demonstrate the concept of state-space exploration. Next, we present a
work that demonstrates the concept of parameter-space exploration.

1.7.1 StarCraft

In the following paragraphs, we describe a case-study we are running in
programming virtual robots (bot) in a game called StarCraft which is a
multi-player strategy game where players manage an army with many units
of different types. We programmed a small aspect of the game having to
do with mineral harvesting, as follows.

June 2, 2021 15:23 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-01 page 15

Interweaving AI and Behavioral Programming 15

Fig. 1.2 A screenshot displaying our StarCraft example. The base is marked by the
larger green square. The smaller red square marks a Zerg hatchery.

Figure 1.2 shows an example of using BP with search for optimal worker
assignment to mineral fields in the game of StarCraft. We see a Zerg hatch-
ery (marked by a small red square) with Drones (worker units, large green
square) harvesting minerals (blue crystals). Drones collect and bring min-
erals to the hatchery, adding to the player’s credit. The purpose of the bot
is to assign drones to minerals in order to manage the harvesting process
effectively. While it is possible to program the commands to the drones
with standard programming languages, as many bot implementations do,
our initial experiment here was to examine the benefits of providing only
a partial implementation and to see how environment simulation can be
done. Our program, then, specified only that some commands has to be
given to each of the drones. The environment simulation specified roughly
how the drones are expected to carry their commands. We used a very
simple implementation of A* with hard-coded progress measure based on
the number of collected minerals.

An initial comparison of our implementation with other implementa-
tions of this part of the bot logic shows that we were able to implement
similar strategies but with much less code. The main reason for the slim-
ness of our code is because we only had to specify the core of the behavior
and the execution mechanism could adopt this core to the dynamic envi-
ronment automatically. Indeed, much of the code in the other bot that we
examined was about dealing with all kind of rare situations. This forms an
initial indication that the direction that we are showing has merits.

June 2, 2021 15:23 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-01 page 16

16 Artificial Intelligence Methods for Software Engineering

1.7.2 Robocode

Robocode [43] is a programming game, where the goal is to develop a robot
battle tank to battle against other tanks in Java or .NET (see Fig. 1.3). For
many years Robocode has been used for education and research at schools
and universities all over the world. The robot anatomy consists of three
parts that are independently controlled: the body, that can move to all
sides, and a gun and a radar, that can be rotated 360 degrees. Robocode
has different leagues with different set of rules or presets (e.g., code-size
limitations, one-on-one battles, battle royale, etc.), and users can test their
robots against known robots of each league.

Fig. 1.3 A screenshot displaying the Robocode game. We see five tanks divided to four
teams: blue, green, white and red. One of the green tanks is shooting at a red tank.
One of the blue tanks is scanning frontwards with its radar. The names of the tanks are
shown on the right.

The Robocode tutorial includes both basic and advanced robots, each
contains a strategy or a combination of strategies for winning the game. For
example, the Tracker is a robot that tracks and shoots the enemy, Walls
is a robot that moves against the walls and targets the enemy using a tar-
geting strategy called “head-on targeting”, and so on. In addition, many
strategies of top-rated robots are available as open source, allowing devel-
opers to test their robots against them. The plethora of strategies raises a
problem — how to combine these strategies efficiently? The combination

June 2, 2021 15:23 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-01 page 17

Interweaving AI and Behavioral Programming 17

must dynamically change according to the strategy of the enemies, their
location, their status, etc. Moreover, deciding which strategy to advance
at each phase has many considerations. Each action may advance more
than one strategy, block others, achieve some sub-goals (e.g., detecting the
enemy, dodging enemy fire, saving power, etc.) and block others. While ex-
perienced robot designers may have some intuitions regarding how to do it,
writing them and integrating them with the code is hard and non intuitive.

One approach for dealing with this complexity, is to simply ignore such
intuitions and domain knowledge, and utilize AI for learning new strate-
gies. Evolutionary algorithms for example, have been used for learning
many robots [44–46], each evolved with the main goal of outperforming
known hand-written robots. Another goal, for example, is to win a specific
category, e.g., [47] evolved robots for winning the HaikBot contest, which
limits the code length of the robot. While some of these works achieved
good results, integrating domain-expert knowledge with AI, may speed up
the learning process, lead to dynamic adaption of the robots to the environ-
ment, and save time for the programmers, as they will only need to “spill
out” intuitions, rather than explicitly define state-of-the-art policies.

In an ongoing work, we collected many strategies from different re-
sources (i.e., tutorials and open-source robots), and specified each as a
different set of b-threads. Next, we started “spilling out” the intuitions re-
garding which strategy to advance and added code that directs the execu-
tion engine using these intuitions. For that, we defined a set of sub-goals, as
attributes that we wish to maximize. At each synchronization point of each
strategy, we submitted a set of numbers between 0 to 1, each represents our
intuition regarding how close we are to achieving a certain sub-goal. If we
had no intuition — we submitted a NULL for that sub-goal. Finally, we used
HH-Evolver [40] for learning how to prioritize these intuitions in respect to
the current state of the game. We conducted two experiments so far, where
we trained our robot against a single robot in a one-on-one competition. In
the first experiment, we trained our robot against a “sitting-duck” robot,
that only fires ahead. Of course, our robot quickly learned how to destroy
its enemy. Next, we trained our robot against the crazy robot — a robot
that constantly moves and fires in a random manner. Surprisingly, this
robot is rated high among the sample robots [48]. Although the learning
rate here was a bit longer, the evolved robot managed to develop a strategy
for dodging the enemy’s fire and destroying it. A video of these experiments
can be viewed at https://www.youtube.com/watch?v=kcgS1BSooBE.

https://www.youtube.com/watch?v=kcgS1BSooBE

June 2, 2021 15:23 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-01 page 18

18 Artificial Intelligence Methods for Software Engineering

1.7.3 RoboSoccer

The following example was first presented in [49], where we demonstrated
how our extension can be used to develop a controller for a robot in a
virtual game called RoboSoccer (see Fig. 1.4). In this example we enhance
the smart-execution mechanism using reinforcement learning, without using
the sandboxing technique.

Fig. 1.4 A screenshot displaying our RoboSoccer example. Our model includes two
b-threads for driving the robot towards the ball and for spinning it to the ball. A
reinforcement learning mechanism handles the parameters tuning.

A simple model for driving the player (the red robot on the right) to the
ball is given in Listing 1.1. This is a very simple BP model that does not
integrate AI and consists of two b-threads, called move towards ball and
spin to ball .

The b-threads start by waiting for a state update of the game and acting
if the state matches the ball is free condition. The move towards ball b-
thread takes care of controlling the speed of approaching the ball. If the dis-
tance is such that a gradient approach is needed, it requests a move forward
event with a gradient computed by the gradient function. Otherwise, it
moves forward with full power. The spin to ball b-thread is responsible
for controlling the direction that the robot moves to by spinning to the ball.

We note, that we used predefined constants in the code, such as
TOO CLOSE and TOO FAR, that we calculated using a manual trial-
and-error. We will now show how we use a reinforcement learning (RL)
mechanism for this task. This setting allows the instructions to be simpler,

June 2, 2021 15:23 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-01 page 19

Interweaving AI and Behavioral Programming 19

def move_towards_ball():
while True:

m = yield {}
if not ball_is_free(m):

continue
dst = distance_from_player_to_ball(m);
if dst < TOO_CLOSE:

if dst < TOO_FAR:
m = yield {request: move_forward(gradient(dst))}

else:
m = yield {request: move_forward(MAX_POWER)}

else:
if dst > (2 * TOO_CLOSE - TOO_FAR):

m = yield {request: move_forward(gradient(dst))}
else:

m = yield {request: move_forward(-MAX_POWER)}

def spin_to_ball():
while True:

m = yield {}
if not ball_is_free(m):

continue
deg = degree_from_player_to_ball(m)
if deg > MAX_DEGREE:

m = yield {request: spin(MAX_SPIN)}
elif deg < -MAX_DEGREE:

m = yield {request: spin(-MAX_SPIN)}
else

m = yield {request: spin(0)}

more robust, and easier to maintain when the simulation changes. The idea
of merging BP with RL was first presented in [50]. Here, we show that with
a combination of a rich solver and deep networks, the approach can also
be used with multidimensional events and actions that contain numerical
fields.

RL is a computational approach for understanding and for automating
goal-directed learning and decision making. It is distinguished from other
computational approaches by its emphasis on learning by an agent from
direct interaction with its environment, without requiring exemplary su-
pervision or complete models of the environment [51]. In the standard RL
model, an agent is connected to its environment via perception and action,
as depicted in Fig. 1.5. On each step t of an interaction, the agent re-
ceives as input some indication of the current state, st, of the environment.
The agent then chooses an action, at, to generate as output. The action

June 2, 2021 15:23 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-01 page 20

20 Artificial Intelligence Methods for Software Engineering

changes the state of the environment, and the value of this state transition
is communicated to the agent through a reward signal, rt. The goal is to
find a policy, which is a function that gives the best action an agent can
take, given the state of the environment, such that the long term reward is
maximized.

Agent

Environment

atst rt

rt+1

st+1

Fig. 1.5 A standard RL model. An agent is connected to its environment via perception
and action.

In our setting, depicted in Fig. 1.6, the agent interacts with the b-
program, that encapsulates the environment, in our case — the RoboSoccer
game. The current state of the environment, st, consists of the player’s
position, compass, suction, and the ball’s position. The action chosen by the
agent, at, is used by the b-threads in order to modify the robot’s behaviour.
In this challenge, we targeted the task of grabbing the ball. As shown in
Listing 1.2, the reward in each step, rt, is defined by the get ball reward b-
thread. This general model allows high modelling flexibility and generality,
by allowing a model to be applied to various RL algorithms with different
parameters of the environment.

Agent

b-program

Environment

atst rt

rt+1

st+1

Fig. 1.6 A modified behavioral RL model. The environment is wrapped with a b-
program.

In order to assist with the task of ball grabbing, the b-threads that

June 2, 2021 15:23 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-01 page 21

Interweaving AI and Behavioral Programming 21

def get_ball_reward():
m = yield {block: reward != -0.01}
while True:

if is_ball_in_robot(m):
m = yield {block: reward != 1}

else:
m = yield {block: reward != -0.01}

are related for this task were simplified, by removing the exact conditions
and parameters for the different actions. Instead, the activation of the ac-
tions now depends on the agent’s commands. For example, in the modified
move towards ball presented in Listing 1.3, the following parameters for
the forward variable are controlled by the agent: half speed forward,
full speed forward, half speed backwards, and full speed backwards. The
spin to ball b-thread, which controls the direction of the spin, was modi-
fied in the same manner, as shown in Listing 1.4. Note that our goal is not
to provide an interface to RL, but rather to provide programmers with a
natural programming and modeling tool that applies RL under the hood.
The key takeaway here is that we demonstrate how an intelligent execution
mechanism can interpret more abstract commands that allow programmers
to better break their models into modules that are aligned with the behav-
ioral aspects that they perceive.

def move_towards_ball():
m = yield {}
while True:

if not is_ball_in_robot(m):
if half_speed_forward:

m = yield {request: forward == MAX_PWR/2}
if full_speed_forward:

m = yield {request: forward == MAX_PWR}
if half_speed_backwards:

m = yield {request: forward == -MAX_PWR/2}
if full_speed_backwards:

m = yield {request: forward == -MAX_PWR}
else:

m = yield {}

Learning to control agents directly from high-dimensional sensory in-
puts, like the simplified RoboCup-type simulation state, is one of the long-
standing challenges of reinforcement learning. Recent advances in deep

June 2, 2021 15:23 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-01 page 22

22 Artificial Intelligence Methods for Software Engineering

def spin_to_ball():
m = yield {}
while True:

if not is_ball_in_robot(m):
ang = angle_between_robot_and_ball(m)
if need_to_spin and ang > 0:

m = yield {request: spin > 0}
elif need_to_spin and ang < 0:

m = yield {request: spin < 0}
else:

m = yield {request: spin == 0}
else:

m = yield {}

learning have made it possible to extract high-level features from raw sen-
sory data, leading to breakthroughs in various domains [52]. In order for
these techniques to be beneficial for RL with sensory data, reinforcement-
learning approaches are augmented with deep neural networks (DRL). One
of the most successful DRL algorithms is Deep Q Network (DQN) [52].
In its raw form, DQN uses a multilayer perceptron network for the policy
function approximation.

In our implementation, which uses the DQN implementation of [53],
the simulation state is being fed into the network as input. The output
action of the DQN is then used by the move towards ball and spin to ball
b-threads in order to modify the game controller. Note that we are not
just using DRL to achieve automatic generation of a control strategy, our
goal in this work is to simplify the software-engineering practices for robots
software design. The end result of the example we have experimented
with, is that the programmer could only specify modes (half speed forward,
full speed forward, half speed backwards, and full speed backwards) and
have the execution engine decide automatically when to activate each of
them (based on a training session). Notice that this example shows how a
constraint solver, which allows rich events in BP, and DRL, which allows
learning from rich data, can complement each other.

1.8 Conclusions

In this chapter we outlined our approach for resolving the nondetermin-
ism in scenario-based specifications by running reinforcement learning and
online evolutionary algorithms that traverse possible continuations of ex-
ecution. Using our mechanisms, programmers and other stakeholders can

June 2, 2021 15:23 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-01 page 23

Interweaving AI and Behavioral Programming 23

provide reactive systems with programs (scenario-based specifications) that
specify most of the behavior while leaving enough choice for the execution
mechanism to cope with dynamicity in the environment.

References

[1] A. Elyasaf, A. Marron, A. Sturm and G. Weiss, A Context-Based Behav-
ioral Language for IoT, in Regina Hebig and Thorsten Berger (ed.), CEUR
Workshop Proceedings, Vol. 2245. CEUR-WS.org, Copenhagen, Denmark,
pp. 485–494 (2018), http://ceur-ws.org/Vol-2245.

[2] M. Bar-Sinai, A. Elyasaf, A. Sadon and G. Weiss, A Scenario Based On-
Board Software and Testing Environment for Satellites, in 59th Israel Annual
Conference on Aerospace Sciences, IACAS 2019, Vol. 2, ISBN 978-1-5108-
8278-2, pp. 1407–1419 (2019), ISBN 978-1-5108-8278-2.

[3] H. Lapid, A. Marron, S. Szekely and D. Harel, Using Reactive-System Mod-
eling Techniques to Create Executable Models of Biochemical Pathways,
in S. Hammoudi, L. F. Pires and B. Selic (eds.), Proceedings of the 7th
International Conference on Model-Driven Engineering and Software Devel-
opment, MODELSWARD 2019, Prague, Czech Republic, February 20–22,
2019. SCITEPRESS - Science and Technology Publications, pp. 454–464
(2019), doi:10.5220/0007572504560466.

[4] G. Lindstrom, P. C. Mehlitz and W. Visser, Model Checking Real Time
Java Using Java PathFinder, in D. A. Peled and Y. Tsay (eds.), Auto-
mated Technology for Verification and Analysis, Third International Sym-
posium, ATVA 2005, Taipei, Taiwan, October 4–7, 2005, Proceedings,
Lecture Notes in Computer Science, Vol. 3707. Springer, pp. 444–456 (2005),
doi:10.1007/11562948 33, https://doi.org/10.1007/11562948_33.

[5] D. Harel and A. Pnueli, On the Development of Reactive Systems, in Log-
ics and models of concurrent systems. Springer, pp. 477–498 (1985), doi:
10.1007/978-3-642-82453-1 17.

[6] W. Damm and D. Harel, LSCs: Breathing Life into Message Sequence
Charts, Formal Methods in System Design 19, 1, pp. 45–80 (2001), doi:
10.1023/A:1011227529550.

[7] D. Harel and R. Marelly, Come, Let’s Play: Scenario-Based Programming
Using LSCs and the Play-Engine. Springer Science & Business Media (2003),
ISBN 3-540-00787-3.

[8] D. Harel, A. Marron and G. Weiss, Programming Coordinated Behavior
in Java, in ECOOP 2010 – Object-Oriented Programming. Springer Berlin
Heidelberg, pp. 250–274 (2010), doi:10.1007/978-3-642-14107-2 12.

[9] G. Wiener, G. Weiss and A. Marron, Coordinating and Visualizing Inde-
pendent Behaviors in Erlang, in Proc. 9th ACM SIGPLAN Work. Erlang.
ACM, pp. 13–22 (2010).

[10] B. Shimony, I. Nikolaidis, P. Gburzynski and E. Stroulia, On Coordination
Tools in the PicOS Tuples System, in Proceedings of the 2nd Workshop on

http://ceur-ws.org/Vol-2245
https://doi.org/10.1007/11562948_33

June 2, 2021 15:23 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-01 page 24

24 Artificial Intelligence Methods for Software Engineering

Software Engineering for Sensor Network Applications. ACM Press, pp. 19–
24 (2011).

[11] D. Harel, S. Maoz, S. Szekely and D. Barkan, PlayGo: Towards a Compre-
hensive Tool for Scenario Based Programming, in ASE’10 - Proceedings of
the IEEE/ACM International Conference on Automated Software Engineer-
ing, ISBN 978-1-4503-0116-9, pp. 359–360 (2010), ISBN 978-1-4503-0116-9,
doi:10.1145/1858996.1859075.

[12] H. Kugler, C. Plock and A. Roberts, Synthesizing Biological Theories, in
CAV, pp. 579–584 (2011), doi:10.1007/978-3-642-22110-1 46, http://link.
springer.com/chapter/10.1007/978-3-642-22110-1_46.

[13] D. Harel, A. Marron and G. Weiss, Behavioral Programming, Commu-
nications of the ACM 55, 7, p. 90 (2012), doi:10.1145/2209249.2209270,
http://dl.acm.org/citation.cfm?doid=2209249.2209270.

[14] D. Harel, H. Kugler, R. Marelly and A. Pnueli, Smart Play-out of Behavioral
Requirements, in M. Aagaard and J. W. O’Leary (eds.), Formal Methods
in Computer-Aided Design, 4th International Conference, FMCAD 2002,
Portland, OR, USA, November 6–8, 2002, Proceedings, Lecture Notes in
Computer Science, Vol. 2517. Springer, pp. 378–398 (2002), doi:10.1007/
3-540-36126-X\ 23, https://doi.org/10.1007/3-540-36126-X_23.

[15] D. Harel, R. Lampert, A. Marron and G. Weiss, Model-Checking Behavioral
Programs, 2011 Proceedings of the Ninth ACM International Conference on
Embedded Software (EMSOFT), pp. 279–288 (2011).

[16] D. Harel, A. Kantor, G. Katz, A. Marron, L. Mizrahi and G. Weiss, On
Composing and Proving the Correctness of Reactive Behavior, in Proceedings
of the International Conference on Embedded Software (EMSOFT). IEEE,
pp. 1–10 (2013), doi:10.1109/emsoft.2013.6658591.

[17] S. Maoz and Y. Sa’ar, Counter Play-Out: Executing Unrealizable Scenario-
Based Specifications, in 2013 35th International Conference on Software En-
gineering (ICSE). IEEE, pp. 242–251 (2013), doi:10.1109/icse.2013.6606570.

[18] D. Harel, G. Katz, A. Marron and G. Weiss, Non-Intrusive Repair of Safety
and Liveness Violations in Reactive Programs, Transactions on Computa-
tional, pp. 1–33 (2014), doi:10.1007/978-3-662-45896-9 1.

[19] D. Harel, A. Kantor and G. Katz, Relaxing Synchronization Constraints
in Behavioral Programs, in Logic for Programming, Artificial Intelligence,
and Reasoning. Springer Berlin Heidelberg, pp. 355–372 (2013), doi:10.1007/
978-3-642-45221-5 25.

[20] M. Brambilla, J. Cabot and M. Wimmer, Model-Driven Software Engineer-
ing in Practice: Second Edition, Synthesis Lectures on Software Engineering
3, 1, pp. 1–207 (2017), doi:10.2200/s00751ed2v01y201701swe004.

[21] S. Kent, Model Driven Engineering, in M. J. Butler, L. Petre and K. Sere
(eds.), Integrated Formal Methods, Third International Conference, IFM
2002, Turku, Finland, May 15–18, 2002, Proceedings, Lecture Notes in
Computer Science, Vol. 2335. Springer, pp. 286–298 (2002), doi:10.1007/
3-540-47884-1\ 16, https://doi.org/10.1007/3-540-47884-1_16.

[22] M. Fowler and K. Scott, UML Distilled: A Brief Guide to the Standard
Object Modeling Language, The Addison-Wesley object technology series.
Addison-Wesley-Longman, Reading, Mass (2000), ISBN 978-0-201-65783-8.

http://link.springer.com/chapter/10.1007/978-3-642-22110-1_46
http://link.springer.com/chapter/10.1007/978-3-642-22110-1_46
http://dl.acm.org/citation.cfm?doid=2209249.2209270
https://doi.org/10.1007/3-540-36126-X_23
https://doi.org/10.1007/3-540-47884-1_16

June 2, 2021 15:23 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-01 page 25

Interweaving AI and Behavioral Programming 25

[23] L. Balmelli, The Systems Modeling Language for Products and Systems
Development, The Journal of Object Technology 6, 6, p. 149 (2007), doi:
10.5381/jot.2007.6.6.a5.

[24] D. Hanselman and B. Littlefield, Mastering Matlab 6: A Comprehensive
Tutorial and Reference. Pearson (2001).

[25] P. Caspi, A. Curic, A. Maignan, C. Sofronis, S. Tripakis and P. Niebert,
From Simulink to SCADE/lustre to TTA: a layered approach for distributed
embedded applications, in F. Mueller and U. Kremer (eds.), Proceedings
of the 2003 Conference on Languages, Compilers, and Tools for Embedded
Systems (LCTES’03). San Diego, California, USA, June 11–13, 2003. ACM,
pp. 153–162 (2003), doi:10.1145/780732.780754.

[26] C. Ptolemaeus, System Design, Modeling, and Simulation: Using Ptolemy
II, Vol. 1. Ptolemy. org Berkeley (2014).

[27] D. Steinberg, F. Budinsky, E. Merks and M. Paternostro, EMF: Eclipse
Modeling Framework. Pearson Education (2008).

[28] M. Harman, S. A. Mansouri and Y. Zhang, Search-based Software Engi-
neering: Trends, Techniques and Applications, ACM Comput. Surv. 45, 1,
pp. 11:1–11:61 (2012), doi:10.1145/2379776.2379787.

[29] M. Sipper, Machine Nature: The Coming Age Of Bio-Inspired Computing.
Tata Mcgraw-Hill Publishing Company Limited, New York (2002), ISBN
78-0071387040, https://books.google.co.il/books?id=L_JFPgAACAAJ.

[30] K. Kannappan, L. Spector, M. Sipper, T. Helmuth, W. G. L. Cava, J. Wis-
dom and O. Bernstein, Analyzing a Decade of Human-Competitive (“HU-
MIE”) Winners: What Can We Learn? in R. L. Riolo, W. P. Worzel
and M. E. Kotanchek (eds.), Genetic Programming Theory and Practice
XII, [GPTP 2014, University of Michigan, Ann Arbor, USA, May 8–
10, 2014]. Springer, pp. 149–166 (2014), doi:10.1007/978-3-319-16030-6\ 9,
https://doi.org/10.1007/978-3-319-16030-6_9.

[31] D. Harel and I. Segall, Planned and Traversable Play-out: A Flexible
Method for Executing Scenario-based Programs, in Proceedings of the
13th International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems, TACAS’07. Springer-Verlag, Berlin, Heidel-
berg, ISBN 978-3-540-71208-4, pp. 485–499 (2007), ISBN 978-3-540-71208-4,
http://dl.acm.org/citation.cfm?id=1763507.1763556.

[32] M. Georgeff, Reasoning about Actions & Plans. M. Kaufmann Publishers,
Los Altos, Calif (1987), ISBN 978-0-934613-30-9.

[33] M. Bar-Sinai, Extending Behavioral Programming for Model-Driven Engi-
neering, PhD Thesis, Ben-Gurion University of the Negev, Israel (2020).

[34] A. Assaf, A. Dı́az-Caro, S. Perdrix, C. Tasson and B. Valiron, Call-by-value,
Call-by-name and the Vectorial Behaviour of the Algebraic λ-calculus, Log-
ical Methods in Computer Science 10, 4 (2014), doi:10.2168/LMCS-10(4:
8)2014.

[35] J. C. Reynolds, The Discoveries of Continuations, Lisp and Symbolic Com-
putation 6, 3–4, pp. 233–248 (1993).

[36] D. Harel, A. Kantor, G. Katz, A. Marron, G. Weiss and G. Wiener, Towards
Behavioral Programming in Distributed Architectures, Science of Computer
Programming 98, pp. 233–267 (2015), doi:10.1016/j.scico.2014.03.003.

https://books.google.co.il/books?id=L_JFPgAACAAJ
https://doi.org/10.1007/978-3-319-16030-6_9
http://dl.acm.org/citation.cfm?id=1763507.1763556

June 2, 2021 15:23 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-01 page 26

26 Artificial Intelligence Methods for Software Engineering

[37] S. Russell and N. Peter, Artificial Intelligence: A Modern Approach, 4th
edn. Pearson Education (US) (2020), ISBN 0134610997,
https://www.ebook.de/de/product/33612120/stuart_russell_peter_
norvig_artificial_intelligence.html.

[38] S. Russell, Java Implementation of Algorithms from Russell and Norvig’s
Artificial Intelligence - a Modern Approach 3rd Edition. (2010),
https://github.com/aimacode/aima-java.

[39] A. Elyasaf, A. Hauptman and M. Sipper, Evolutionary Design of Freecell
Solvers, IEEE Transactions on Computational Intelligence and AI in Games
4, 4, pp. 270–281 (2012), doi:10.1109/TCIAIG.2012.2210423,
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=
2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=
WOS_CPL&KeyUT=WOS:000312561100003&KeyUID=WOS:
000312561100003http:
//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6249736

[40] A. Elyasaf and M. Sipper, HH-Evolver: A System for Domain-Specific,
Hyper-Heuristic Evolution, in GECCO 2013 - Proceedings of the 2013 Ge-
netic and Evolutionary Computation Conference Companion. ACM Press,
New York, New York, USA, ISBN 978-1-4503-1964-5, pp. 1285–1291
(2013), ISBN 978-1-4503-1964-5, doi:10.1145/2464576.2482707, http://dl.
acm.org/citation.cfm?doid=2464576.2482707.

[41] P. I. Cowling, G. Kendall and E. Soubeiga, A Hyperheuristic Approach
to Scheduling a Sales Summit, in E. K. Burke and W. Erben (eds.),
Practice and Theory of Automated Timetabling III, Third International
Conference, PATAT 2000, Konstanz, Germany, August 16–18, 2000, Se-
lected Papers, Lecture Notes in Computer Science, Vol. 2079. Springer,
pp. 176–190 (2000), doi:10.1007/3-540-44629-X\ 11, https://doi.org/10.
1007/3-540-44629-X_11.

[42] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Özcan and J. R. Wood-
ward, A Classification of Hyper-Heuristic Approaches, International Se-
ries in Operations Research & Management Science, Vol. 146, chap. 15.
Springer, Boston, MA, ISBN 978-1-4419-1665-5, pp. 449–468 (2010), ISBN
978-1-4419-1665-5, doi:10.1007/978-1-4419-1665-5 15, https://doi.org/
10.1007/978-1-4419-1665-5_15.

[43] F. N. Larsen, ReadMe for Robocode, Retrieved February 27, p. 2015 (2013).
[44] J. Eisenstein, Evolving Robocode Tank Fighters, Tech. Rep., Massachusetts

Institute of Technology Computer Science and Artificial Intelligence Labo-
ratory (2003).

[45] D. Wyatt and D. Klein, Genetic Programming for Robocode Strategy, Tech.
Rep., University of Washington (2003), https://courses.cs.washington.
edu/courses/cse573/03au/reports/team-dan.pdf.

[46] R. Harper, Evolving Robocode Tanks for Evo Robocode, Genetic Pro-
gramming and Evolvable Machines 15, 4, pp. 403–431 (2014), doi:10.1007/
s10710-014-9224-2.

[47] Y. Shichel, E. Ziserman and M. Sipper, GP-Robocode: Using Genetic
Programming to Evolve Robocode Players, in M. Keijzer, A. Tettamanzi,

https://www.ebook.de/de/product/33612120/stuart_russell_peter_norvig_artificial_intelligence.html
https://www.ebook.de/de/product/33612120/stuart_russell_peter_norvig_artificial_intelligence.html
https://github.com/aimacode/aima-java
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000312561100003&KeyUID=WOS:000312561100003 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6249736
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000312561100003&KeyUID=WOS:000312561100003 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6249736
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000312561100003&KeyUID=WOS:000312561100003 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6249736
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000312561100003&KeyUID=WOS:000312561100003 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6249736
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000312561100003&KeyUID=WOS:000312561100003 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6249736
http://dl.acm.org/citation.cfm?doid=2464576.2482707
http://dl.acm.org/citation.cfm?doid=2464576.2482707
https://doi.org/10.1007/3-540-44629-X_11
https://doi.org/10.1007/3-540-44629-X_11
https://doi.org/10.1007/978-1-4419-1665-5_15
https://doi.org/10.1007/978-1-4419-1665-5_15
https://courses.cs.washington.edu/courses/cse573/03au/reports/team-dan.pdf
https://courses.cs.washington.edu/courses/cse573/03au/reports/team-dan.pdf

June 2, 2021 15:23 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-01 page 27

Interweaving AI and Behavioral Programming 27

P. Collet, J. I. van Hemert and M. Tomassini (eds.), Genetic Programming,
8th European Conference, EuroGP2005, Lausanne, Switzerland, March 30–
April 1, 2005, Proceedings, Lecture Notes in Computer Science, Vol. 3447.
Springer, pp. 143–154 (2005), doi:10.1007/978-3-540-31989-4\ 13, https:
//doi.org/10.1007/978-3-540-31989-4_13.

[48] M. Nelson and F. N. Larsen, The Crazy Robot, (2017), https://robowiki.
net/wiki/Crazy.

[49] A. Elyasaf, A. Sadon, G. Weiss and T. Yaacov, Using Behavioral Program-
ming with Solver, Context, and Deep Reinforcement Learning for Playing
a Simplified RoboCup-Type Game, in 2019 ACM/IEEE 22nd International
Conference on Model Driven Engineering Languages and Systems Compan-
ion (MODELS-C). IEEE, pp. 243–251 (2019), doi:10.1109/models-c.2019.
00039.

[50] N. Eitan and D. Harel, Adaptive Behavioral Programming, in 2011 IEEE
23rd International Conference on Tools with Artificial Intelligence, IEEE.
pp. 685–692 (2011), doi:10.1109/ictai.2011.109.

[51] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Inroduction.
The MIT Press (2018), ISBN 9780262039246, https://www.ebook.de/de/
product/32966850/richard_s_sutton_andrew_g_barto_reinforcement_
learning.html.

[52] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra
and M. Riedmiller, Playing Atari with Deep Reinforcement Learning, (2013),
arXiv:1312.5602 [cs.LG].

[53] A. Hill, A. Raffin, M. Ernestus, A. Gleave, R. Traore, P. Dhariwal,
C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman,
S. Sidor and Y. Wu, Stable Baselines: A Set of Improved Implemen-
tations of Reinforcement Learning Algorithms Based on OpenAI, (2018),
https://github.com/hill-a/stable-baselines.

https://doi.org/10.1007/978-3-540-31989-4_13
https://doi.org/10.1007/978-3-540-31989-4_13
https://robowiki.net/wiki/Crazy
https://robowiki.net/wiki/Crazy
https://www.ebook.de/de/product/32966850/richard_s_sutton_andrew_g_barto_reinforcement_learning.html
https://www.ebook.de/de/product/32966850/richard_s_sutton_andrew_g_barto_reinforcement_learning.html
https://www.ebook.de/de/product/32966850/richard_s_sutton_andrew_g_barto_reinforcement_learning.html
http://arxiv.org/abs/1312.5602
https://github.com/hill-a/stable-baselines

B1948 Governing Asia

B1948_1-Aoki.indd 6B1948_1-Aoki.indd 6 9/22/2014 4:24:57 PM9/22/2014 4:24:57 PM

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank

June 1, 2021 9:18 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-02 page 29

© 2021 World Scientific Publishing Company
https://doi.org/10.1142/9789811239922 0002

Chapter 2

AI Techniques for Software
Requirements Prioritization

Alexander Felfernig

Institute of Software Technology

Graz University of Technology, Austria

2.1 Introduction

Limited resources, market demands, and technical restrictions regarding

the implementation of software features often demand for the prioritization

of requirements [1–4]. The focus of prioritization is the ranking and se-

lection of requirements that should be included in future software releases.

Intelligent decision support in prioritization is extremely important since

especially when dealing with large assortments of requirements, manual

prioritization processes tend to become very costly [5–8]. Potential sub-

optimal prioritizations can lead to different negative effects such as waste

of time due to a focus on irrelevant requirements, opportunity costs due

to the fact that the relevant features are not provided first, and missing

focus on market demands that could lead in the worst case to total loss [9].

In this context, prioritization can take place on the strategic level as well

as an on the operative level, which is typically associated with short-term

prioritization tasks [10,11]. The prioritization approaches discussed in this

chapter are based on AI techniques from the areas of constraint reason-

ing & optimization [12], utility-based recommendation [13], content-based

recommendation [14], matrix factorization [15], conflict detection [16], and

model-based diagnosis [17].

An overview of different prioritization tasks is given in Fig. 2.1. This

categorization is based on two dimensions. First, level of requirements

29

https://doi.org/10.1142/9789811239922_0002

June 1, 2021 9:18 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-02 page 30

30 Artificial Intelligence Methods for Software Engineering

Fig. 2.1 Prioritization variants in software development contexts.

specifies the granularity of requirements specifications, i.e., to which extent

these requirements can already be translated into corresponding detailed

software features. Second, inclusion of constraints refers to which extent

relationships between requirements and relationships to external factors are

taken into account in the prioritization process. Examples of constraints

(dependencies) between requirements are x requires y (x must not be imple-

mented before y) and x excludes y (only one of these requirements should

be implemented). Examples of external factors are the available budget

for a software project, available personnel resources, and specific prefer-

ences of stakeholders engaged in a software project. Along with these two

dimensions, there exist different prioritization approaches, which can be

differentiated with regard to the granularity level of requirements and the

degree of the inclusion of constraints.

Early requirements engineering is related to the idea of figuring out

the requirements that have the highest importance, for example, for the

market or specific customer communities. Prioritization tasks typically

refer to high-level requirements, furthermore, no specific constraints are

included. The major focus is to figure out the most relevant features of

a product with a market relevance. Requirements in such scenarios can

be regarded as high-level, for example, “the new e-learning software should

include a motivation functionality that persuades students to intensively

learn the course topics” or “the new e-learning software should support

natural language based interaction mechanisms”.

June 1, 2021 9:18 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-02 page 31

AI Techniques for Software Requirements Prioritization 31

A minimal viable product (MVP) should include a minimal set of fea-

tures that can be integrated as parts of a fully operable software offered

to customers. MVPs are a typical approach to get to the market as soon

as possible with the most relevant features of a software. In this context,

constraints play an important role since the prioritization of requirements

has to take into account constraints such as available personnel and budget

resources. Requirements can also be regarded as high-level and constraints

primarily refer to available budgets and personnel resources. Examples of

constraints are “motivation features of the new e-learning software should

solely include the aspect of social influence” and “for the first version of

the software, natural language interaction should support the answering of

multiple-choice questions with single correct answers”.

Basic release planning does not fully take into account further con-

straints such as available budget, personnel resources, and time restrictions

regarding the implementation of requirements. This type of prioritization

covers implementation scenarios where releases are planned on an oper-

ational level without taking into account in detail constraints regarding

available personnel and budget resources as well as time limitations. Ex-

amples of requirements in such contexts are “the basic scenario for a social

influence based persuasion is the following ... the user interface implemen-

tation of this function should look like as follows ...” or “the basic scenario

for supporting multiple choice questions in the context of natural language

interactions is the following ... the user interface implementation can be

sketched as follows ...”. On a technical level, basic release planning can be

performed using approaches similar to those used in the context of early

requirements engineering.

Finally, integrated release planning represents a full-fledged release plan-

ning [18,19] on the basis of detailed constraints representing organizational

data and rules. In this context, both, constraints regarding dependencies

between requirements as well as constraints related to external factors are

taken into account. Similar to basic release planning, requirements are

defined with fine granularity. A major difference between basic release

planning and integrated release planning is the availability of more detailed

constraint information, for example, integrated release planning is able to

take into account the individual availability of developers (in terms of en-

gagement in other projects and presence or absence during specific time

periods). Furthermore, dependencies between requirements can be taken

into account on a formal level.

June 1, 2021 9:18 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-02 page 32

32 Artificial Intelligence Methods for Software Engineering

On the level of prioritization techniques, there are two basic approaches

to support prioritization processes — see Achimugu et al. [1]. First, prior-

itization can be regarded as an optimization task where the objective is to

identify a prioritization that takes into account the preferences of individ-

ual stakeholders and also helps to optimize the prioritization with regard

to a set of predefined constraints [20]. On a technical level, optimization-

based prioritization is often based on a hybrid approach where the identi-

fication and aggregation of stakeholder preferences is supported by utility

analysis [21–23] and optimization is performed on the basis of constraint

reasoning [12,24].

Utility-based approaches focus on an analysis of the given requirements

with regard to a set of interest dimensions and less on automated opti-

mization. Different variants of this approach can be implemented, for ex-

ample, a utility-based ranking can be extended with the concepts of liquid

democracy [25]. Finally, social networks can be exploited as data sources

for the identification of new requirements, which are regarded as relevant

by the underlying social network [26]. In terms of the application of the

mentioned prioritization techniques, early requirements engineering and ba-

sic release planning focus more on utility-based prioritization approaches

whereas minimum viable product and integrated release planning focus on

optimization-based prioritization approaches.

The major contributions of this chapter are the following. First, we

provide an overview of existing techniques that help to improve the quality

of prioritization processes in requirements engineering. Second, we show the

application of these techniques in the context of working examples. Third,

in order to stimulate further work in related fields, we discuss relevant issues

for future work.

The remainder of this chapter is organized as follows. Sections 2.2–2.5

include a discussion of the application of AI techniques in the scenarios

of early requirements engineering, minimum viable products, basic release

planning, and integrated release planning. These sections include a de-

scription of the underlying scenarios and working examples. Section 2.6

provides insights how to support stakeholder selection, which is an impor-

tant issue when it comes to the assignment of requirement validation tasks.

Section 2.7 provides an overview of issues for future research. Finally, we

conclude the chapter with Section 2.8.

June 1, 2021 9:18 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-02 page 33

AI Techniques for Software Requirements Prioritization 33

2.2 Early Requirements Engineering

A basic means to support prioritization tasks in early requirements en-

gineering is to perform a utility analysis of a given set of requirements.

Utility-based prioritization is based on the concepts of multi-attribute util-

ity theory [27] — different variants thereof are possible. First, individual

requirements are evaluated with regard to interest dimensions (e.g., risk

level of a requirement and the commercial relevance of a requirement).

The utility of the requirement is then determined on the basis of the sum

of interest dimension specific utility values. Interest dimensions can be as-

sociated with a weight, for example, low risks are more important than high

profits. Utility-based prioritization can also be implemented on the basis

of analytic hierarchy process (AHP) [28]. A major disadvantage of this ap-

proach is that requirements have to be evaluated pairwise which does not

scale well when the number of requirements increases.

Interest dimensions, i.e., basic evaluation criteria for utility-based priori-

tization can differ depending on the underlying decision scenario. Examples

of such interest dimensions in company-related software projects are effort

to implement a requirement, risk of not being able to implement a require-

ment, and business relevance of a requirement (profit) [1]. In open source

settings, the dimensions can be different since open source contributors

have to decide individually on which requirement to work next. Examples

of related interest dimensions could be personal expertise of an open source

developer and importance of a requirement for the community [29].

Utility analysis supports stakeholders in the prioritization of require-

ments with regard to a set of interest dimensions D = {d1, d2, ..., dn}. The

underlying idea is that requirements are first analyzed by individual stake-

holders (also denoted as users) — see Tables 2.1–2.2. Such decisions are

often group decisions where stakeholders are in charge of prioritizing a set

of requirements [30].

In this simplified example, users are in charge of evaluating the require-

ments req1..req5 with regard to the interest dimensions business relevance

and risk. Thereafter, individual evaluations are aggregated to determine

the utility of requirements. In this context, Formula 2.1 can be used to

calculate the utility of a requirement with regard to a specific interest di-

mension d. Furthermore, Formula 2.2 is used to determine the overall utility

of a requirement.

June 1, 2021 9:18 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-02 page 34

34 Artificial Intelligence Methods for Software Engineering

Table 2.1 Evaluation of the dimension

relevance (high rating = high relevance).

user1 user2 user3 user4

req1 1 4 5 2

req2 10 6 1 7

req3 2 6 5 2

req4 1 1 3 7

req5 7 8 6 5

Table 2.2 Evaluation of the dimension

risk (high rating = low risk).

user1 user2 user3 user4

req1 2 7 3 2

req2 9 9 1 7

req3 2 10 3 2

req4 2 5 3 1

req5 3 2 3 5

utilityreq(req, d) =
Σu∈Userseval(req, d, u)

|Users|
(2.1)

utility(req) =
Σd∈Dimsutilityreq(req, d)× weight(d)

|Dims|
(2.2)

The determined utilities are then encoded in a ranking (see Table 2.3).

Table 2.3 Prioritization of requirements req1..req5 with
regard to the interest dimensions relevance (weight = 0.75)

and risk (weight = 0.25).

requirement reqi req1 req2 req3 req4 req5

utility(reqi) 4.63 5.75 4.06 2.94 4.56

priority(reqi) 2 1 4 5 3

The presented approach to group-based multi attribute utility analysis

[30] is based on the assumption that each stakeholder is able to provide

feedback on each of the given requirements. This might not be possible

for various reasons, for example, stakeholders are simply not available, i.e.,

do not have time or they might have issues in terms of missing knowledge

needed to evaluate a requirement. In such cases, mechanisms are needed to

be able to transfer votes in a flexible fashion. Such an approach to liquid-

democracy based prioritization is introduced in [25]. The major difference

June 1, 2021 9:18 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-02 page 35

AI Techniques for Software Requirements Prioritization 35

compared to the aforementioned approach is that individual stakeholders

are allowed to vote more than once and to transfer their votes to other

stakeholders.

An alternative approach to handle missing values in requirements eval-

uation is to apply machine learning concepts, which help to automatically

complete a potentially sparse rating matrix [15]. The automatically deter-

mined requirements evaluations can then be proposed to stakeholders and

can also serve as indicators of potential issues related to contradictory eval-

uations, which have to be resolved. Table 2.4 depicts a user-item matrix,

which includes a couple of missing evaluations (denoted with ”?”).

Table 2.4 Association of users with require-

ments req1..req5.
relevance user1 user2 user3 user4

req1 ? ? 5 ?

req2 10 ? 1 ?

req3 ? 6 ? 2

req4 ? ? 3 ?

req5 ? ? ? 5

Based on the information included in Table 2.4, we can perform so-called

dimensionality reduction and describe the relationship between users and

requirements in terms of two low-dimensional matrices U and R where the

former describes the relationship between users and abstract dimensions

(hidden features) (see Table 2.5) and the latter the relationship between

items and abstract dimensions (see Table 2.6).

Table 2.5 User × interest dimension (d1..d3) affinity matrix U .

user1 user2 user3 user4

d1 3,652807135 1,251029912 0,148850849 1,870385191

d2 2,406538532 1,830201936 1,766613942 0

d3 0,053547355 0,176813763 1,86544824 0,002507298

Table 2.6 Requirement × interest dimension (d1..d3)
affinity matrix R.

d1 d2 d3

req1 0,318390415 0,359262854 2,305033956

req2 2,527786478 0,3177104899 0,035500999

req3 1,072394897 2,524779729 0,126403403

req4 0,167185814 1,181561695 0,467019398

req5 2,665424355 0,109392275 0,008631143

June 1, 2021 9:18 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-02 page 36

36 Artificial Intelligence Methods for Software Engineering

The table entries can be learned on the basis of a matrix factorization

approach that is based on non-linear optimization. The optimization goal

is to find values for the low-dimensional tables, which help to predict the

missing table entries as good as possible. For a detailed discussion of matrix

factorization techniques we refer to [15].

Similar to the description of the relationship between users and hidden

features, we can describe the relationship between requirements and hid-

den features. The higher the value, the higher the corresponding affinity

between users (requirements) and the corresponding hidden features. We

want to emphasize that in the matrix factorization context features are

hidden, i.e., it is not clear if and which hidden feature corresponds to a

specific evaluation dimension (as discussed in the context of utility-based

prioritization).

The two low-dimensional matrices U and R can now be used to calcu-

late a prediction for an unspecified user × requirement pair denoted with

“?” (see Table 2.4). By applying matrix multiplication, we can, for exam-

ple, determine a prediction of the evaluation of requirement req1 by user1.

The corresponding table entry results from the expression 0, 318390415 ×
3, 652807135 + 0, 359262854 × 2, 406538532 + 2, 305033956 × 0, 053547355

which is 2, 151027154. Expecting predictions on a scale 0..10, the prediction

for the evaluation of requirement req1 by user1 appears to be rather low.

2.3 Minimum Viable Products

Minimum viable products (MVPs) represent products (in our case software

components) that include a minimum set of requirements applicable and

of value for a customer. In the context of software development, MVP

development is extremely important especially for start-up companies since

resources are often extremely limited and there is only one chance to develop

the right product for the customer community. Consequently, prioritization

support is extremely important in such scenarios. MVP development is

related to DevOps software processes which are characterized by extensive

automation and continuous updates [31]. Such processes support a more

in-depth customer integration into feedback and prioritization and — as a

consequence — help to increase the quality of prioritization due to deeper

insights into the progress of the project.

Prioritizations for minimum viable products typically have to deal with

high-level requirements, which do not describe specific functionalities but

rather generic features of the software. For these features, it should be

June 1, 2021 9:18 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-02 page 37

AI Techniques for Software Requirements Prioritization 37

made clear which are the most relevant ones that can realistically be im-

plemented. We can consider the task of selecting a subset of requirements

to be included in a minimal viable product as a utility-based prioritization

task where requirement utilities and time estimates are used as basic inputs

in a follow-up process that focuses on optimizing the selection of a bundle

of most relevant features (requirements). Thus, MVP-oriented prioritiza-

tion supports a kind of triage process [32] where the most important and

feasible requirements are implemented first.

Formula 2.3 restricts the available time resources, i.e., how much time

is available to implement the new MVP features. In typical start-up sce-

narios, this would reflect a situation where, for example, four persons to-

gether can spend around one month to implement market-relevant features

into an MVP. To make good use of the available time, resource planning

can be used to calculate an optimal subset of requirements to be included

(included(reqi)) in the MVP. An example of how to take into account time

restrictions is shown in Formula 2.3.

time(req1)× included(req1) + ..+ time(reqn)× included(recn) ≤ maxtime

(2.3)

The overall optimization objective of this resource planning task is ex-

pressed with Formula 2.4. The utility of the selected requirements (re-

quirements, which should be part of the MVP) should be maximized while

taking into account additional restrictions (see Formula 2.3).

max← utility(req1)× included(req1) + ..+ utility(reqn)× included(recn)

(2.4)

Table 2.7 Selecting the most relevant requirements under

given time conditions resulting in a maximum utility of

10.31 = utility(req2)+utility(req5).

requirement reqi req1 req2 req3 req4 req5

utility(reqi) 4.63 5.75 4.06 2.94 4.56

time(reqi) 3 4 4 3 5

selected 0 1 0 0 1

2.4 Basic Release Planning

Basic release planning follows a prioritization approach where requirements

formulated on a fine-granular level are selected with regard to their rele-

vance of being part of one of the next n releases — in the case of n = 1,

June 1, 2021 9:18 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-02 page 38

38 Artificial Intelligence Methods for Software Engineering

this scenario is also denoted as next release problem. In most of the cases,

such scenarios do not need the support of a high-sophisticated release plan-

ning solution. Example reasons for choosing a lightweight process are the

unavailability of resource data required by release planning tools (e.g., data

about resources already occupied in projects) and limited budgets and per-

sonnel resources to purchase and support a heavy-weight release planning

software and to integrate this software with resource-related data sources.

Basic release planning focuses on the prioritization of requirements for-

mulated on a fine-granular level. Initially, this process is often performed on

the basis of a utility analysis (see Section 2.2). On the basis of the results of

a utility analysis, stakeholders can propose assignments of requirements to

releases. If a company’s software process follows a next release strategy, i.e.,

the planning horizon is the next release, the corresponding selection task

is to figure out the most relevant requirements for the next release. Basic

release planning typically does not take into account constraints regarding

available resources — such constraints are taken into account informally.

Tools supporting basic release planning can help to repair inconsisten-

cies in the stakeholders’ preferences regarding the assignment of require-

ments to releases. A scenario in the context of basic release planning is

the following (see Table 2.8). Stakeholders (users) define their individual

preferences regarding the assignment of requirements to releases. Since

stakeholders can do this remotely and are initially often not allowed to

see the preferences of other stakeholders, conflicts regarding defined release

assignment preferences can occur [33].

Table 2.8 Preferences of stakeholders

with regard to release assignments.
user1 user2 user3 user4

req1 1 1 2 1

req2 2 2 3 3

req3 3 3 3 3

req4 1 2 2 3

req5 4 1 1 1

In this context, constraint-based optimization can be applied to min-

imize the need of preference change per user (see Formula 2.7). We as-

sume the existence of variables ureqij with the domain 1..4 representing

the releases 1..4, for example, ureq11 = 1 indicates that user1 prefers the

assignment of req1 to release 1. Furthermore, we assume the existence

of variables ureq′ij , which represent the solution space. The constraint

June 1, 2021 9:18 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-02 page 39

AI Techniques for Software Requirements Prioritization 39

ureqcountij = abs(ureqij − ureq′ij) indicates whether a user preference has

to be adapted. Furthermore, we need to count the number of changes

needed per user i (see Formula 2.5). The number of preference changes per

user i is represented by variable chni (see Formula 2.5).

chni ← ureqcounti1 + .. + ureqcountin (2.5)

Furthermore, we want to assure consensus, i.e., each requirement j has

to be assigned to exactly one release (see Formula 2.6).

ureq′1j = .. = ureq′mj (2.6)

Given this knowledge, we can define an optimization problem with the

overall goal to minimize the number of changed release assignments while

at the same time being fair, i.e., it should not be the case that (in the

worst case) all needed changes are affecting a single stakeholder. This

criteria is represented by Formula 2.7. The underlying idea is that the

pairwise distance between stakeholders in terms of the number of needed

stakeholder-specific preference adaptations should be minimized.

min← abs(chn1 − chn2) + .. + abs(chnn−1 − chnn) (2.7)

Formula 2.8 represents an alternative optimization function where the

expected solution represents a tradeoff between fairness among stakehold-

ers in terms of a fair share of individual changes of preferences and mini-

mality in terms of the overall number of needed changes.

min← (abs(chn1 − chn2) + .. + abs(chnn−1 − chnn))× (chn1 + .. + chnn)

(2.8)

This kind of knowledge can be exploited by optimization features of

constraint solvers such as Choco.1

2.5 Integrated Release Planning

On top of the concepts of basic release planning, integrated release plan-

ning has a strong focus on integrating additional constraints related to

the dependency between requirements and constraints related to the avail-

ability of resources, limits of resource consumption, and the assignment of

stakeholders to individual tasks. Integrated release planning requires de-

tailed information about the assignment of employees to current projects

and their availability. Furthermore, project-specific release plans have to be

synchronized since employees can be assigned to multiple projects during
1choco-solver.org

June 1, 2021 9:18 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-02 page 40

40 Artificial Intelligence Methods for Software Engineering

the same time period. A special case are distributed project scenarios where

a large project is conducted by different independent teams that work on

some common features, which have to be taken into account in the release

plans of the individual project partners.

Table 2.9 provides a representative overview of modeling concepts that

can be used in the context of release planning. Requirements can be repre-

sented as basic components with associated properties represented as finite

domain variables. For example, req1.rel denotes requirement req1 with the

associated release req1.rel, which could be represented, for example, by the

domain 1..3, i.e., the look-ahead factor for releases would be 3. Another

example of a property which can be associated with a requirement reqi is

reqi.dur, which denotes the time estimate for requirement reqi.

Table 2.9 Examples of basic constraints used for defining release planning

tasks. In this context, reqi denotes a requirement, reqi.rel denotes the corre-

sponding release, and req.dur denotes the estimated development time for a
requirement.

Definition Description

reqi.rel = a reqi is assigned to release a

reqi.rel < reqj .rel reqi must be implemented before reqj
reqi.rel ≤ reqj .rel reqj must not be implemented before reqi
reqi.rel 6= reqj .rel reqi and reqj must have different releases

reqi.rel ≤ a implementation of reqi not after release a

reqi.rel ≥ a implementation of reqi not before release a

reqi.rel = n ∨ reqj .rel = n reqi or reqj not in release plan

¬(|reqi.rel − reqj .rel| > k) reqi and reqj must be implemented timely

|{r ∈ R : r = rel}| ≤ a not more than a requirements in release rel

Σr∈R∧r.rel=rel(r.dur) ≤ a not more than a hours bounded to rel

A simple example of the application of the modeling concepts shown

in Table 2.9 is given in Tables 2.10–2.11. Table 2.10 includes dependencies

between requirements that are considered correct and have to be taken into

account, i.e., the constraints are so-called hard constraints. For example

req1.rel < req2.rel denotes the fact that the implementation of req1 has to

be completed before the implementation of req2 can be started. Since these

constraints are assumed to be taken into account, they have to be consistent,

i.e., at least one solution should exist. Assuming a finite domain of 1..3

for each individual variable reqi.rel, a corresponding consistent variable

assignment (solution) is {req1.rel = 1, req2.rel = 2, req3.rel = 3, req4.rel =

3, req5.rel = 1}.
Please note that all constraint types shown in Table 2.8 can be either

June 1, 2021 9:18 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-02 page 41

AI Techniques for Software Requirements Prioritization 41

Table 2.10 Example requirements and set D of corresponding de-

pendencies. The domain of reqi.rel is assumed to be 1..3.
req1.rel req2.rel req3.rel req4.rel req5.rel

req1.rel - < - - -

req2.rel - - < - >

req3.rel - - - - -

req4.rel - - - - 6=
req5.rel - - - - -

Table 2.11 Example set S of (inconsistent)

stakeholder preferences.
user1 user2 user3 user4

req1.rel = 1 = 1 ≤ 2 = 1

req2.rel ≥ 2 ≥ 2 ≥ 2 ≥ 2

req3.rel ≤ 2 ≥ 2 = 3 ≤ 3

req4.rel ≥ 1 ≥ 1 ≥ 2 ≥ 2

req5.rel ≥ 2 = 1 = 1 ≤ 2

represented as hard constraints or as soft constraints — in the context of

our example, the entries of Table 2.10 are interpreted as hard constraints,

those of Table 2.11 as soft constraints, i.e., stakeholder preferences that

should be taken into account but could also be ignored in the case that not

all stakeholder preferences could be taken into account. On the basis of

the (hard) constraints shown in Table 2.10, stakeholders (users) can specify

their individual preferences (see Table 2.11). For simplicity, we restrict the

constraint type of user preferences to the form reqi.rel = a, reqi.rel < a,

reqi.rel > a, reqi.rel ≤ a, and reqi.rel ≥ a.

The stakeholder preferences S in Table 2.11 are inconsistent. Detailed

release planning can be regarded as an interactive process where stakehold-

ers define their preferences and then try to establish consensus with regard

to the final release plan. In the example shown in Table 2.11, the stakehold-

ers have defined inconsistent preferences with regard to the requirements

req3 and req5. More precisely, there is one set of conflicting preferences

with regard to req3 ({{user1 : (≤ 2), user3 : (= 3)}}) and two conflicting

preferences with regard to req5 ({{user1 : (≥ 2), user2 : (= 1)}, {user1 : (≥
2), user3 : (= 1)}}). Combinations of preferences that induce an inconsis-

tency are often denoted as conflict set [16, 17]. Conflict sets can be shown

to stakeholders to indicate open issues and to stimulate discussions on how

to resolve the existing inconsistencies. In our example, the inconsistent sit-

uation could be resolved if stakeholder user1 would agree to change both

June 1, 2021 9:18 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-02 page 42

42 Artificial Intelligence Methods for Software Engineering

of his (her) preferences. If we take into account both, the constraints in D

and the preferences in S, we can detect two singleton conflicts both induced

by the preferences of user1 ({{user1 : (≤ 2)}, {user1 : (≥ 2)}}).

2.6 Stakeholder Recommendation

An issue in different prioritization scenarios is to figure out who should be

in charge of validating a specific requirement since (s)he has the expertise

needed. The quality of stakeholder/requirement assignment can have enor-

mous impacts on the quality of a prioritization since sub-optimal evalua-

tions can lead to sub-optimal prioritizations. Specifically, missing expertise

can lead to situations where, for example, requirements of high relevance

are evaluated as less relevant and — as a consequence — are not consid-

ered as a potential candidate for early releases. A major issue is to identify

stakeholders who have the expertise and thus can provide reasonable eval-

uations of requirements. As sketched in Formula 2.9, expertise estimation

can be implemented on the basis of the similarity between requirements

already evaluated by a stakeholder and a set of new requirements.

Stakeholder expertise can be modeled in various ways. In the following,

we provide a basic example of how to exploit the concepts of content-based

recommendation [14] to propose reasonable assignments of stakeholders to

requirements. Table 2.12 contains a set of new requirements with a corre-

sponding set of keywords, which have been extracted from the requirement

description. For these requirements, we would like to figure out automati-

cally, which stakeholder would be the best one to work on this requirement,

for example, to evaluate the requirement. Furthermore, Table 2.13 shows a

list of stakeholders (users) and a corresponding list of keywords extracted

from requirements descriptions the stakeholder worked on in the past. In

order to estimate which stakeholder should work on which requirement,

we can apply the concepts of content-based recommendation [14]. We can

calculate the similarity between the keywords describing a stakeholder (see

Table 2.13) and the keywords describing a requirement (see Table 2.12).

This can be achieved by applying Formula 2.9 which helps to determine

the stakeholder × requirements similarity.

sim(user, req) =
2× |keywords(user) ∩ keywords(req)|

keywords(user) ∪ keywords(req)
(2.9)

The result of this similarity evaluation is summarized in Table 2.14.

For req1 and req5, users with an average similarity have been identified as

June 1, 2021 9:18 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-02 page 43

AI Techniques for Software Requirements Prioritization 43

Table 2.12 Requirements and keywords

extracted from their descriptions.
Requirements Keywords

req1 registration users

req2 basic payment

req3 credit card payment

req4 optimize user portfolio

req5 optimize database

Table 2.13 Stakeholders and keywords of requirements
they have validated.

Stakeholders Keywords

user1 registration feature database connection

user2 payment process

user3 credit card interfaces

user4 credit card portfolio optimize

Table 2.14 Content-based similarity be-
tween stakeholders and requirements.

user1 user2 user3 user4

req1 0.4 0 0 0

req2 0 0.66 0 0

req3 0 0.5 1.0 0.8

req4 0 0 0 0.8

req5 0.4 0 0 0.4

candidates for validating the requirements. A user with a stronger similar-

ity could be found for req2. Finally, there is a strong similarity between

requirements req3, req4, and user4. Overall, user4 seems to have a high

coverage with regard to the potential requirements assignments. Finally,

user3 has the highest expertise with regard to a single requirement (req3).

2.7 Research Issues

Derivation of Preferences from Social Networks. In the discussed prioriti-

zation scenarios, preference elicitation is still a manual process. Especially

in contexts where companies have established a social network representing

their user community, network contents, for example, in the form of tweets

can be exploited to infer new requirements and preferences with regard

to existing and future software features [26]. The automated integration

of community preferences into requirements prioritization is still an open

June 1, 2021 9:18 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-02 page 44

44 Artificial Intelligence Methods for Software Engineering

issue and extremely relevant for making related decision processes more

community-oriented and efficient. Beyond automated preference integra-

tion, quality assurance for preferences is an extremely important issue. [34]

show how a consequence-based evaluation of different choice alternatives

can help to improve the overall quality of release planning decisions.

Avoidance of Decision Biases. Decision biases are related to shortcuts in

decision making that can lead to sub-optimal decisions [35,36]. Being aware

of such biases helps to improve the overall quality of decisions processes. An

example of such a bias is anchoring where the item evaluations of one user

that are already visible to other users who haven’t evaluated the item up

to now, can have an impact on the evaluation behavior of other users [33].

For an overview of decision biases in recommender systems we refer to [35].

Many of the existing biases reported in the psychological literature have

not been evaluated up to now. This can be regarded as a major topic for

future research.

Transparency of Decisions. In order to increase trust, decisions have

to be made transparent. Transparency can be achieved on the basis of

explanations, which help to understand the reasons for a recommended de-

cision [30]. An important role of transparency is also related to the task

of avoiding manipulations in decision making [37]. An example thereof is a

situation where a user tries to adapt his/her rating in order to push his/her

preferred alternatives (push attack). As discussed in Trang et al. [37], a

very effective way of avoiding manipulations is to make the rating behav-

ior of individual users more transparent, i.e., making their rating behavior

visible to other users. A research issue in this context is to analyze in

detail which degree of transparency of rating behavior best helps to coun-

teract manipulations and which visualizations should be used to explain

the current status of a decision process.

Prioritization and Decision Making in Open Source Environments.

Open source development often takes place in the context of single user

(contributor) decision making, i.e., contributors can individually and inde-

pendently decide which requirement to implement next. Often, many new

requirements are potential candidates and the analysis of these candidates

is time-consuming. In this context, prioritization can help to automati-

cally rank new requirements in a contributor-specific fashion and thus to

significantly reduce related analysis efforts. An approach to support such

prioritization scenarios in the Eclipse open source environment is reported

in [29]. A research challenge in this context is to develop decision support

approaches that do not only determine recommendations for individuals

June 1, 2021 9:18 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-02 page 45

AI Techniques for Software Requirements Prioritization 45

but also to figure out which prioritization helps to make the open source

community as a whole more productive.

2.8 Conclusions

In this chapter, we provide an overview of prioritization scenarios that can

be differentiated with regard to the degree of underlying requirement gran-

ularity and whether constraints are used to describe a prioritization task.

These scenarios range from early requirements engineering (utility analysis

of high-level requirements), minimum viable product (selection of features

to be contained in a first version of a product), basic release planning (ini-

tial prioritization of requirements), to integrated release planning (detailed

prioritization of requirements with regard to a predefined set of releases).

To better show the application of related decision support techniques, we

introduce a couple of prioritization examples. This chapter is concluded

with an outline of open issues for future research.

Acknowledgment

The work presented in this chapter has been conducted within the scope of

the Horizon2020 OpenReq Project (funded by the European Union).

References

[1] P. Achimugu, A. Selamat, R. Ibrahim and M. Mahrin, A systematic liter-
ature review of software requirements prioritization research, Information
and Software Technology 56, 6, pp. 568–585 (2014).

[2] M. R. Karim and G. Ruhe, Bi-objective genetic search for release planning
in support of themes, in Proceedings Symposium on Search Based Software
Engineering. Springer, pp. 123–137 (2014).

[3] L. Lehtola, M. Kauppinen and S. Kujala, Requirements prioritization chal-
lenges in practice, in 5th International Conference On Product Focused Soft-
ware Process Improvement (PROFES). Kansai Science City, Japan, pp. 497–
508 (2004).

[4] B. Mobasher and J. Cleland-Huang, Recommender Systems in Requirements
Engineering, AI Magazine 32, 3, pp. 81–89 (2011).

[5] M. Alenezi and S. Banitaan, Bug reports prioritization: Which features and
classifier to use? in 12th International Conference on Machine Learning and
Applications, pp. 112–116 (2013).

[6] A. Perini, F. Ricca and A. Susi, Tool-supported requirements prioritization:
Comparing the AHP and CBRank methods, Information and Software Tech-
nology 51, 6, pp. 1021–1032 (2009).

June 1, 2021 9:18 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-02 page 46

46 Artificial Intelligence Methods for Software Engineering

[7] G. Ruhe, Software engineering decision support–a new paradigm for learn-
ing software organizations, in International Workshop on Learning Software
Organizations. Springer, pp. 104–113 (2002).

[8] J. Xuan, H. Jiang, Z. Ren and W. Zou, Developer prioritization in bug repos-
itories, in 34th International Conference on Software Engineering (ICSE).
Zürich, Switzerland, pp. 25–35 (2012).

[9] D. Firesmith, Prioritizing Requirements, Journal of Object Technology 3, 8,
pp. 35–47 (2004).

[10] D. Ameller, C. Farre, X. Franch, D. Valerio and A. Cassarino, Towards
continuous software release planning, in 24th IEEE International Conference
on Software Analysis, Evoluation and Reengineering (SANER), pp. 402–406
(2017).

[11] G. Ruhe and M. Saliu, The art and science of software release planning,
IEEE Software 22, 6, pp. 47–53 (2005).

[12] E. Tsang, Foundations of Constraint Satisfaction. Academic Press, London
(1993).

[13] A. Felfernig and R. Burke, Constraint-based recommender systems: Tech-
nologies and research issues, in ACM International Conference on Electronic
Commerce (ICEC08). Innsbruck, Austria, pp. 17–26 (2008).

[14] M. Pazzani and D. Billsus, Learning and revising user profiles: The identi-
fication of interesting web sites, Machine Learning 27, pp. 313–331 (1997).

[15] Y. Koren, R. Bell and C. Volinsky, Matrix factorization techniques for rec-
ommender systems, IEEE Computer 42, 8, pp. 30–37 (2009).

[16] U. Junker, QuickXplain: Preferred Explanations and Relaxations for Over-
Constrained Problems, in 19th National Conference on AI (AAAI04). San
Jose, CA, pp. 167–172 (2004).

[17] A. Felfernig, M. Schubert and C. Zehentner, An Efficient Diagnosis Algo-
rithm for Inconsistent Constraint Sets, Artificial Intelligence for Engineering
Design, Analysis, and Manufacturing (AIEDAM) 26, 1, pp. 175–184 (2012).

[18] M. Nayebi and G. Ruhe, Analytical product release planning, in The Art
and Science of Analyzing Software Data. Morgan Kaufmann, pp. 550–580
(2015).

[19] G. Ruhe, Product release planning: methods, tools and applications. CRC
Press (2010).

[20] F. Kifetew, A. Susi, D. Mutante, A. Perini, A. Siena and P. Busetta, To-
wards multi-decision-maker requirements prioritisation via multi-objective
optimisation, in Forum and Doctoral Consortium Papers Presented at the
29th International Conference on Advanced Information Systems Engineer-
ing (CAiSE’17). Essen, Germany, pp. 137–144 (2017).

[21] G. Adomavicius, N. Manouselis and Y. Kwon, Recommender Systems
Handbook, chap. Multi-Criteria Recommender Systems, 1st edn. Springer,
pp. 769–803 (2010).

[22] S. Huang, Designing utility-based recommender systems for e-commerce:
Evaluation of preference elicitation methods, Electronic Commerce Research
and Applications 10, 4, pp. 398–407 (2011).

[23] K. Wiegers, Software Requirements. Microsoft Press (2003).

June 1, 2021 9:18 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-02 page 47

AI Techniques for Software Requirements Prioritization 47

[24] G. Ninaus, A. Felfernig, M. Stettinger, S. Reiterer, G. Leitner, L. Weninger
and W. Schanil, Intellireq: Intelligent techniques for software requirements
engineering, in European Conference on Artificial Intelligence, Prestigious
Applications of Intelligent Systems (PAIS), pp. 1161–1166 (2014).

[25] M. Atas, T. Tran, R. Samer, A. Felfernig and M. Stettinger, Liquid democ-
racy in group-based configuration, in Workshop on Configuration. CEUR,
Graz, Austria, pp. 93–98 (2018).

[26] G. Williams and A. Mahmoud, Mining twitter feeds for software user require-
ments, in 25th International Requirements Engineering Conference (RE).
IEEE, Lisbon, Portugal, pp. 1–10 (2017).

[27] J. Dyer, Multi attribute utility theory, International Series in Operations
Research and Management Science 78, pp. 265–292 (1997).

[28] J. Karlsson and K. Ryan, A Cost-Value Approach for Prioritizing Require-
ments, IEEE Software 14, 5, pp. 67–74 (1997).

[29] A. Felfernig, M. Stettinger, M. Atas, R. Samer, J. Nerlich, S. Scholz, J. Tiiho-
nen and M. Raatikainen, Towards utility-based prioritization of requirements
in open source environments, in 26th IEEE Conference on Requirements En-
gineering. IEEE, Banff, Canada, pp. 406–411 (2018a).

[30] A. Felfernig, L. Boratto, M. Stettinger and M. Tkalcic, Group Recommender
Systems – An Introduction. Springer (2018b).

[31] L. Lwakatare, T. Kilamo, T. Karvonen, T. Sauvola, V. Heikkiläc, J. Itkonen,
P. Kuvaja, T. Mikkonen, M. Oivo and C. Lassenius, DevOps in practice: A
multiple case study of five companies, Information and Software Technology
114, pp. 217–230 (2019).

[32] A. Davis, The art of requirements triage, IEEE Computer 36, 3, pp. 42–49
(2003).

[33] M. Stettinger, A. Felfernig, G. Leitner and S. Reiterer, Counteracting
anchoring effects in group decision making, in 23rd Conference on User
Modeling, Adaptation, and Personalization (UMAP’15), LNCS, Vol. 9146.
Springer, Dublin, Ireland, pp. 118–130 (2015).

[34] M. Nayebi and G. Ruhe, Asymmetric release planning: Compromising satis-
faction against dissatisfaction, IEEE Transactions on Software Engineering
45, 9, pp. 839–857 (2018).

[35] A. Felfernig, Biases in decision making, in Proceedings of the International
Workshop on Decision Making and Recommender Systems 2014, Vol. 1278.
CEUR Proceedings, Bolzano, Italy, pp. 32–34 (2014).

[36] A. Felfernig, W. Maalej, M. Mandl, M. Schubert and F. Ricci, Recommen-
dation and decision technologies for requirements engineering, in ICSE 2010
Workshop on Recommender Systems in Software Engineering. Cape Town,
South Africa, pp. 1–5 (2010).

[37] T. Tran, A. Felfernig, V. Le, M. Atas, M. Stettinger and R. Samer, User
interfaces for counteracting decision manipulation in group recommender
systems, in 27th ACM Conference on User Modeling, Adaptation and Per-
sonalization (UMAP). Larnaca, Cyprus, pp. 93–98 (2019).

B1948 Governing Asia

B1948_1-Aoki.indd 6B1948_1-Aoki.indd 6 9/22/2014 4:24:57 PM9/22/2014 4:24:57 PM

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank

April 21, 2021 11:53 ws-rv9x6-9x6 Book Title 12360-02a-divider-2 page 49

Agent-Based Software Programming

B1948 Governing Asia

B1948_1-Aoki.indd 6B1948_1-Aoki.indd 6 9/22/2014 4:24:57 PM9/22/2014 4:24:57 PM

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank

May 31, 2021 17:50 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-03 page 51

© 2021 World Scientific Publishing Company
https://doi.org/10.1142/9789811239922 0003

Chapter 3

Social Commitments for Engineering
Interaction in Distributed Systems

Matteo Baldoni, Cristina Baroglio, Roberto Micalizio and Stefano Tedeschi

Università degli Studi di Torino Dipartimento di Informatica

3.1 Introduction

Multiagent Systems (MAS) [1] are an effective choice for the design and devel-
opment of distributed systems that involve components which act independently
(i.e., autonomously). The scenario, in fact, calls for the use of four major software
engineering techniques to cope with size and complexity — namely, modular-
ity, distribution, abstraction, and intelligence (i.e., flexibility) — and the MAS
paradigm encompasses all of them [2].

Nowadays, agent-oriented software engineers can choose from a substantial
number of agent platforms (see, e.g., [3] for an overview). Tools like JADE [4],
TuCSoN [5], DESIRE [6], and JaCaMo [7] all provide coordination mechanisms
and communication infrastructures. However, the limit of the best-established
platforms is a lack of abstractions for explicitly modeling interaction as a first-
class entity. All of them provide communication infrastructures, mainly as mes-
sage passing, but none of them encompass a mechanism to explicitly represent
and manipulate the relationships created by the agents during their interaction.
The lack of such a mechanism impairs the agents to reason on how to get their
goals by engaging with others. As noted in [8], MAS, by their nature, do not in-
clude a centralized control mechanism, and agents are expected to reason about
what interactions to engage with others. This peculiarity endows agents with a
significant flexibility of action, but the current platforms, instead of explicitly ac-
counting for a “society” layer [9], for regulating and norming how agents can act
and interact within the system, their constraints and the system laws, force the

51

https://doi.org/10.1142/9789811239922_0003

May 31, 2021 17:50 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-03 page 52

52 Artificial Intelligence Methods for Software Engineering

projection of the regulations directly inside the behaviors of the agents. As a con-
sequence, MAS infrastructures do not really preserve the agents’ autonomy and
they do not fit the high degree of decoupling which is expected of the agents. This
choice overly ties agent implementation with a negative impact on software reuse,
and also on the realization of open MAS, that is, MAS that agents, possibly hetero-
geneous and developed by independent parties, can dynamically join/leave. Thus,
when interaction is hard-coded as an exchange of messages, the advantage of hav-
ing autonomous agents is significantly reduced. Instead, if social relationships
are represented as first-class entities, that is, resources that agents can manipulate,
they also become synchronization tools, reducing coupling between agents and
improving flexibility (for a detailed discussion see [10]).

As a first contribution of this chapter, we illustrate the advantages of includ-
ing an explicit representation of the social relationships that tie the agents, and
in particular the positive impact such a new explicit representation would have
on code modularity and interaction flexibility. We practically demonstrate these
advantages when social relationships are modeled as social commitments [11] and
reified as resources in the environment. A social commitment is a promise that an
agent (debtor) makes to another one (creditor) to bring about some condition of
interest. It is, therefore, a relationship with a distributed nature, directed from the
debtor to the creditor. It engenders rights on both sides. For example, the creditor
has the right to complain if the commitment is not fulfilled and the debtor has
the right to expect its performance of the action concerned to be accepted as the
fulfilment of this commitment. So, social commitments have a normative power,
yielding obligations and expectations: by withdrawing from a social commitment,
an agent violates an obligation, and frustrates expectations and rights [8, 12].

In a system where interaction is ruled by a message-passing protocol, the par-
ties are designed so as to be compliant to the protocol. The expectations that
one party has on the others, as well as the corresponding obligations, are granted
“extra-program”, in the sense that they are yielded by the protocol (i.e., the stan-
dard) to which each of them declares to comply to. Social commitments capture
such a feature by their own nature (indeed, the above declaration is, by itself, the
commitment of the party to adhere to the protocol specification). Building upon
this and following the direction postulated in [13], in this work we use them as
building blocks for creating the interaction standards themselves — possibly in a
dynamic way, depending on the agent goals and on the context. Social commit-
ments, created by their debtors, are promises that such agents make to behave in a
way that complies to the achievement of the expressed condition, resulting into an
obligation for the involved agents. All the agents that can observe the commitment
will now expect something specific to occur sooner or later. The advantage of

May 31, 2021 17:50 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-03 page 53

Social Commitments for Engineering Interaction in Distributed Systems 53

social commitments, w.r.t. message-passing protocols, is that they are created by
the agents depending on their own objectives and decisions, this promotes some
important software engineering properties as we discuss below.

As a second contribution, we show that when commitments are realized as re-
sources, that can be manipulated directly by the agents, the system as whole can
gains some important benefits. In particular, agents can use commitments to rea-
son upon their interactions, and can determine how and when engaging with other
agents to achieve goals of their own interest. This is a significant contribution
for the MAS research area, where, despite one of the most important character-
istics of the MAS paradigm being agent situatedness, most studies are focussed
only on features of the agents. At the same time, those that put forward the need
of representing the environment typically do not provide a representation of the
process, by which data evolve, in a form that can be reasoned about. This ham-
pers interaction because agents are unable to create expectations on how others
will act upon data that are part of the environment. Proposals like [14, 15] intro-
duce first-class abstractions for the environment, to be captured alongside agents
themselves. In particular, [15] states that “the environment is a first-class abstrac-
tion that provides the surrounding conditions for agents to exist and that mediates
both the interaction among agents and the access to resources.” This proposal
brought to the Agents & Artifacts (A&A) meta-model [16], and its implemen-
tation CArtAgO [17]. A&A enables the agents to mediate their interactions by
means of shared computational resources — the artifacts — which can encapsu-
late information. Hence, they have the advantage of a clear separation between the
agent deliberative cycles and the data upon which this cycle is carried out. How-
ever, artifacts do not encompass a normative dimension, and this prevents agents
to create expectations about others.

A similar proposal has been put forward by [18] in the business process setting.
They propose business artifacts as business-relevant objects that are created and
evolve as they pass through business operations. Business artifacts include an
information model of the data, and a lifecycle model. The latter captures the
key states through which data evolve and their transitions, and it is used both
at runtime (to track the evolution of business artifacts), and at design time (to
distribute tasks among the processes that operate on a business artifact). Also
business artifacts, however, do not provide any link to a corresponding normative
understanding, thus making impossible for the agents (processes) to leverage this
knowledge for reasoning about how to act.

Last but not the least, social commitments, and their normative dimension,
allow one to define the agent programming patterns. The commitment lifecycle,
in fact, provides a clear direction on how agents participating to an interaction

May 31, 2021 17:50 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-03 page 54

54 Artificial Intelligence Methods for Software Engineering

should be implemented. We present four programming patterns that relate the in-
dividual agent’s goals with her role, as debtor or creditor, in a set of commitments.
These patterns help a programmer implement agents’ behaviors in the following
cases: create a new commitment to foster cooperation from others (entice), take
part into an interaction by moving a commitment towards its satisfaction (coop-
erate), withdraw an offer when it is no longer useful (withdraw), and release a
commitment when the made offer is not appealing (give up). Notably, these pat-
terns are independent of any specific agent platform because they only depend
on the standardized lifecycle of commitments. We exemplify the use of the pat-
terns for agent programming in the context of a realistic hiring scenario using the
JaCaMo+ platform [19].

The chapter is organized as follows. In Sec. 3.2 we exploit a motivating exam-
ple for positioning our contribution against the current approaches for dealing with
goal distribution and coordination of a number of independent execution threads.
Section 3.3 provides some background notions about commitments that are es-
sential for the proposal we present in Sec. 3.4, and highlights its advantages from
a software engineering perspective. Agent programming patterns driven by the
commitment lifecycle are presented in Sec. 3.5, followed by an example about the
use of these patterns in JaCaMo+ in Sec. 3.6.

3.2 Background on Goal Distribution and Coordination

Not always results can be achieved in isolation, but require an interaction with oth-
ers. This happens, for instance, when an agent must rely on an action performed
by another agent, for necessity or for convenience. However the two agents could
likely have different goals, which then have to be accommodated during the inter-
action. The possibility to reach each actor’s goal depends on the evolution of the
interaction and, thus, an effective coordination is crucial [2].

Example 3.1 (Item Purchase). Let us consider, as an illustrative example, a pur-
chase scenario, involving a customer willing to buy a given quantity of an item
from a merchant. The scenario is inspired from the well-known Netbill proto-
col [20]. When the customer requests a quote for the items from the merchant, the
latter must send the quote. If the customer accepts the quote, the merchant sends
the items, then waits for an electronic payment. We assume that the items cannot
be used without a decryption key, sent by the merchant after the payment together
with a receipt.

May 31, 2021 17:50 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-03 page 55

Social Commitments for Engineering Interaction in Distributed Systems 55

Coordination in Business Processes. A possible way to model Example 3.1 is
by representing the customer and the merchant as two interacting BPMN (Busi-
ness Process Model and Notation) Processes [21], each one pursuing a different
objective, as reported in Fig. 3.1. The progression of each process depends on the
other one, and requires coordination. In particular, the ultimate goal of the mer-
chant (i.e., to complete the purchase) depends on the reception of several messages
from the customer. However, the two processes are “separate”, even if interacting
(e.g. they might have been developed within different companies). For this reason
no assumption can be made on the actual behavior of the customer. This is the
reason why the customer’s process is not shown in Fig. 3.1.

Cu
st

om
er Customer

M
er

ch
an

t

Merchant

Request for
purchase
quotation

Put items
on sale

Quote
purchase

Purchase
quotation
rejection

Purchase
quotation

acceptance
Send
items

EPO

Emit receipt

Purchase
[Quotation
provided]

Purchase
[Quotation
rejected]

Purchase
[Quotation
accepted]

Purchase
[Items sent]

Purchase
[Items paid]

Purchase
[Receipt

delivered]

Purchase
[Quotation
requested]

Fig. 3.1: BPMN diagram of the Purchase scenario.

A substantial limitation of this approach is that it does not capture well how
the information relevant for the progression of the purchase evolves. Such in-
formation can be modeled as a data object, whose state evolves along with the
execution of the process, in order to support the data consistency, i.e. that the data
used in each step of the process does not contain contradictions w.r.t. the data used
and produced in the previous steps. However, this is not sufficient because neither
the process specification nor the data object specification include “causal” rela-
tionships between the actions of the various agents involved [22]. For instance, an
agent may know that by paying an item the purchase will change state to “paid”,
but this is not enough to allow the agent to have expectations about the item be-
ing shipped as a consequence of paying. So, why paying? It is not a goal of the
agent to make the purchase pass to the state “paid”, but rather to have the item
delivered. Paying is instrumental to delivery but delivery depends on other agents.
What we need here is something that allows the buyer agent to legitimately have
the expectation that the item will be delivered after paying. In business processes,
the interaction between the two processes is loosely modeled in terms of message
exchanges, thus not allowing each one to create expectations about other’s behav-
ior. When a business goal is split over a set of interacting processes, each of these

May 31, 2021 17:50 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-03 page 56

56 Artificial Intelligence Methods for Software Engineering

will realize only a part, and, in order to realize such a part, it will generally de-
pend on the achievement of sub-goals that are realized by other processes. The
synchronization realized in BPMN through message-passing or by the introduc-
tion of shared data storages does not capture coordination in high-level terms, that
enable the agents, that dynamically join the system, to understand the obligations
they can legitimately draw as consequences of their actions.

A more data-oriented approach is to model the purchase as a CMMN (Case
Management Model and Notation) Case [23], as illustrated in Fig. 3.2. CMMN
is a graphical notation used for capturing the handling of particular situations (i.e.
cases) requiring various activities that may be performed in an unpredictable order
in response to evolving situations. CMMN overcomes some of the limitations of
BPMN, allowing to model work efforts which are less structured and depend on
events, possibly occurring as a result of the evolution of data. A CMMN case
is represented as a set of activities, possibly depending one on another, to be
preformed in response to certain events. The activity execution makes the case
evolve, running across multiple milestones. Despite allowing to encompass the
evolution of data in the modeling of processes, CMMN still fails in explicitly
representing the mutual engagements between the actors involved in a distributed
processes.

A Purchase
Case

Purchase confirmation

Purchase quotation handling
Request for

purchase quotation

Quote
purchase

Purchase
quotation
provided

Purchase quotation rejection

Purchase
quotation
rejected

Purchase
quotation
accepted

Purchase quotation acceptance

Purchase
quotation
requested

Purchase shipping

Send items Purchase items
sent

EPO

Purchase items
paid Emit receipt

Purchase receipt
delivered

Purchase
completed

Opening

Put items
on sale Item on sale

Fig. 3.2: CMMN diagram of the Purchase scenario.

Coordination with Business Artifacts. An alternative approach to cope with
coordination is the adoption of business artifacts. Business artifacts add an infor-
mation layer concerning both the structure and the lifecycle of the data they en-
compass. Some authors [24] propose to use them as a means to combine process

May 31, 2021 17:50 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-03 page 57

Social Commitments for Engineering Interaction in Distributed Systems 57

engineering with data engineering. Still, as explained in [25], they do not support
coordination satisfactorily. To understand why, let us focus on the BALSA (Busi-
ness Artifacts with Lifecycle, Services, and Associations) methodology [26], that
we consider as a significant representative of the business artifacts approaches.
Here, coordination among of business processes is tackled by relying on chore-
ographies, regulating different business processes, which access to a same busi-
ness artifact. Choreographies realize a form of subjective coordination [27]. This
means that each business process needs to include also the “interaction logic”
of the choreography role it plays along with its business logic. In other words,
there is a strict coupling among the implementations of all the interacting pro-
cesses. Consequently, the design and implementation become more complex, and
the possibility of reusing the same process in different contexts is reduced.

Coordination in Multiagent Systems. Since the early proposals for MAS pro-
gramming, organizations have been seen as metaphors for modularizing the code.
Organizations, in fact, provide an overall abstraction of the task the agents have
to achieve. In Gaia [28, 29], for instance, organizations are characterized by two
features: a set of roles and a set of interactions among roles. Here interactions
are seen as protocol definitions; where a protocol is “an institutionalized pattern”,
namely, a pattern that has been formally defined [29]. The pattern, thus, defines
the rules (i.e., norms) through which an institutional reality, i.e. an interaction
scope delimiting these norms, takes shape and evolves [30]. This institutional re-
ality is the actual means of coordination of the agents: its constituent elements,
the institutional facts, have a social meaning, by way of norms, that is shared and
understood by all the agents participating to the interaction. Agents, thus, act so as
to bring about those institutional facts that represent their goals or duties towards
others. In other terms, when norms are explicitly represented and known by all
the participants, it is possible to create expectations about the behavior of others
in response to given messages, and this allows determining when and how to act.
Indeed, coordination is all about expectations: an activity can fruitfully be carried
out by many parties when there is a clear understanding on what each one should
do and when. So one party will wait for the completion of the task by another
party before starting its part. On the same grounds, the party who is first to act is
confident that another party will continue from where it stopped.

Tools. The development of MAS relies upon a number of frameworks. Ja-
CaMo [7] is a programming platform that integrates agents, environments and
organizations. It is built on top of Jason [31], an agent programming language,

May 31, 2021 17:50 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-03 page 58

58 Artificial Intelligence Methods for Software Engineering

CArtAgO [32] for programming environments, and MOISE [33] for program-
ming organizations. 2COMM [10, 34] is a middleware that provides functionali-
ties to reify social expectations as CArtAgO [32] artifacts, that are made available
to the agents in the environment where they are situated. Currently, 2COMM sup-
ports social relationship-based agent programming for JADE [4] and JaCaMo [7]
agents through two dedicated connectors. 2COMM provides the classes for rep-
resenting commitments, maintained into artifacts, as well as roles. Moreover, the
infrastructure automatically handles the commitment progressions according to
the events occurring in the environment. In particular, events that are relevant for
the progression of commitments are encoded as social facts. 2COMM maintains a
trace of all the social facts asserted in a given interaction and updates the involved
commitments accordingly.

3.3 Background on Social Commitments

We propose to model interaction explicitly by means of social commitments
[22,35], intended as first-class objects that can be used for agent programming. A
social commitment C(x, y, s, u) models the directed relation between two agents:
a debtor x and a creditor y. The debtor commits to its creditor to bring about
the consequent condition u when the antecedent condition s holds. Both condi-
tions are conjunctions or disjunctions of events and commitments, and concern
the observable behavior of the agents, as advocated in [36] for social relationships
among autonomous parties.

In this chapter we will assume that antecedent and consequent conditions are
expressed in precedence logic [37, 38], an event-based linear temporal logic for
modeling web services’ composition. It deals with occurrences of events along
runs (i.e., sequence of instanced events). Event occurrences are assumed to be
non-repeating and persistent: once an event has occurred, it has occurred for
the whole execution. The logic has three operators: “∨” (choice), “∧” (co-
occurrence), and “·” (before). The before operator allows constraining the order
with which two events must occur; e.g., a · b means that a must occur before b, but
the two events do not need to occur one immediately after the other.

Commitments are proactively created by debtors, who, by doing so, man-
ifest both the agent’s engagement to bringing about the consequent condition,
and the agent’s awareness of the condition (antecedent condition) after which
it will be held to bring about the consequent. Generally, the antecedent condi-
tion will be a condition of interest for the debtor. When the creditor has some
degree of control on such a condition, the commitment becomes a tool support-
ing the interaction. For instance, let us consider the commitment C(customer,

May 31, 2021 17:50 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-03 page 59

Social Commitments for Engineering Interaction in Distributed Systems 59

Expired Null Pending

Conditional Detached

Terminated Satisfied Violated

Active

create suspendreactivateantecedent fail

antecedent

cancel ∨
consequent fail

consequentcancel release

Fig. 3.3: Commitment life cycle [39].

merchant, purchaseItemsShipped, purchaseItemsPaid). Here, merchant, who
is interested in being paid, can leverage the commitment by customer to do so af-
ter the shipment: by making purchaseItemsShipped become true, the commitment
is detached and, then, customer is held to pay, thus making purchaseItemsPaid

become true.
Commitments have a standardized lifecycle, formalized in [39] and depicted

in Fig. 3.3. As soon as a commitment is created, it is active. Active commitments
can further be in two sub-states: conditional when neither the antecedent, nor the
consequent have occurred, and detached as soon as the antecedent becomes true.
A commitment is violated either when its antecedent is true, but its consequent
becomes false or when it is canceled by the debtor when detached. Conversely, it
is satisfied when the consequent occurs and the engagement is accomplished. It
is expired when it is no longer in effect; i.e., if the antecedent condition becomes
false. Finally, a commitment becomes terminated when the creditor releases the
debtor from it or when it is canceled, being still conditional.

Social commitments can be manipulated by the agents through some standard
operations: namely, create, cancel, release, discharge, assign, and delegate [35].
Create instantiates a commitment, changing its status from null to active. Only
the debtor of a commitment can create it. Conversely, cancel revokes the com-
mitment, setting its status to terminated or violated, depending on whether the
previous status was conditional or detached, respectively. Again, only the debtor
can cancel a commitment. The rationale is that a commitment debtor is allowed
to change its mind about the accomplishment of the consequent only until the an-
tecedent has not occurred, yet. Release, in turn, allows the creditor (and only the
creditor) to terminate an active commitment. Release does not mean success or

May 31, 2021 17:50 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-03 page 60

60 Artificial Intelligence Methods for Software Engineering

failure of the given commitment, but simply eliminates the expectation put on the
debtor. Discharge satisfies the commitment. In accordance with [35], we assume
that this operation is performed concurrently with the actions that lead to the con-
sequent occurrence. Delegate changes the debtor of a given commitment and can
be performed only by the new debtor. Assign, finally, transfers the commitment
to another creditor and can be performed only by the actual one. An active com-
mitment can be further suspended, i.e., put in the pending status, by means of the
suspend operation. Conversely, reactivate sets a pending commitment as active,
again.

Commitments have a normative value because the debtor of a detached com-
mitment is expected to bring about, sooner or later, the consequent condition of
that commitment otherwise it will be liable for a violation. The normative value
of commitments, i.e. the fact that debtors should satisfy them, creates social ex-
pectations on the agents’ behavior. A commitment is taken by a debtor towards a
creditor on its own initiative. Agents can decide whether satisfying the obligation
entailed by the commitment, once detached. An agent creates commitments to-
wards other agents while it is trying to achieve its goals (or precisely with the aim
of achieving its goals) [40]. The creation of a commitment starts an interaction
of the debtor with its creditor that coordinates, to some extent, the activities of
the two, thus supporting the achievement of goals that an agent alone could not
achieve. Considering interaction, the difference between obligations and commit-
ments, as norms, is that an obligation is a system level norm while a commitment
is an agent level norm. At system level, something happens and an obligation is
created on some agent. At the agent level, an agent creates a conditional social
commitment towards some other agent, based on its own beliefs and goals [40].
The creditor agent will detach the conditional commitment if and when it deems it
useful to its own purposes, thus activating the obligation of the debtor agent. So,
conditional commitments play a fundamental role in the realization of interactiv-
ity, intended as the fact that a message relates to previous messages and to the way
previous messages related to those preceding them [41]. In other words “there is
a causal path from the establishment of a commitment to prior communications
by the debtor of that commitment. Obligations by contrast can be designed in or
inserted by fiat” [22, Sec. 4.4].

Notably, social commitments are often used for attributing semantics to in-
teraction protocols (e.g. [42–47]). Differently from these works, we use commit-
ments to realize a relational representation of interaction, where agents, by their
own action, directly create normative binds (represented by social commitments)
with one another, and use them to coordinate their activities.

May 31, 2021 17:50 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-03 page 61

Social Commitments for Engineering Interaction in Distributed Systems 61

Agent
Business Artifact
with Commitments

Commitments

Facts

Agent

Environment

use/observe

use/observe

focus

focus

Fig. 3.4: Conceptual view of commitment mediated interaction.

3.4 Business Artifacts with Social Commitments

Figure 3.4 shows a conceptual schema of the proposed solution. Agents interact
by using and observing shared artifacts that, besides data (i.e. facts), also encap-
sulate the commitments created by the agent themselves. More precisely, when an
agent needs to interact with others, it is asked to focus on an appropriate artifact
available in the environment. Possibly, an agent can be focused on more artifacts
at the same time. As a consequence of the focus operation, the agent has access to
the state of the artifact, that is, all the information involving the existing commit-
ments and facts that have been asserted, so far, as a consequence of the operation
performed upon the artifact itself. Indeed, the focus gives also the agent the ca-
pability of acting upon the artifact by creating new commitments or by making
other existing commitments progress by asserting facts that corresponds to their
antecedent/consequent conditions. By focusing on an artifact, the agent will be
notified of any change occurring in the artifact state, such as the assertion of new
facts, and the progression of the state of some commitments.

To make this discussion more concrete, let us consider again our simple pur-
chase scenario. We show that when the interaction between the merchant and the
customer is expressed in terms commitments, the agents have the means for rea-
soning upon their engagements, and hence can deliberate the proper operations
for making the interaction progress towards the result they are interested to.

First of all, the environment encompasses a Purchase artifact, see Fig. 3.5.
Both the merchant and the customer need to include such artifact in their scope
for having access to it and also for being notified of the changes occurred to it
(focus). Each agent has its own goal. The merchant aims at gaining some money,

May 31, 2021 17:50 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-03 page 62

62 Artificial Intelligence Methods for Software Engineering

Merchant Purchase Artifact

{c1, c2, c3, c4}

Customer

Environment

use/observe

use/observe

focus

focus

Fig. 3.5: The conceptual view of the purchase scenario.

whereas the customer aims at having some needed items. The Purchase artifact
represents the medium through which the interaction between the two agents can
take form. The expectations about the interaction are shaped as an evolving set
of commitments. So, for instance, by committing to pay for the items, should the
merchant deliver them, the customer makes clear which expectations the merchant
can legitimately draw on its counterpart of the interaction. The created commit-
ment is stored within the Purchase artifact. This is exactly the kind of information
that is missing in approaches based on (business) artifacts where the normative di-
mension is not explicitly represented. Agents just react to signals or state changes,
but cannot figure out a global picture of the interaction and take advantage of this
picture for deciding how to intervene. By relying on commitments as manipulable
resources, instead, the agents have the means for creating expectations on how the
others will behave as a consequence of their actions, and hence can decide the best
course of action that brings them to their goal.

The normative power of commitments emerges not only by the possibility of
creating expectations, but also by detecting when these expectations are not met,
causing thus a commitment violation. In fact, when the customer commits to pay
for the goods, the merchant gains the right to claim against the customer in case
the payment is not performed. In other terms, the actions the merchant does upon
the Purchase artifact may put obligations on the customer, who is pushed to act so
as to satisfy her commitments lest incur in violations which may lead to sanctions.

The whole purchase can be effectively modeled by the following set of com-
mitments:

• c1 : C(merchant, customer, c2, purchaseItemsShipped)
• c2 : C(customer,merchant, purchaseItemsShipped, purchaseItemsPaid)

May 31, 2021 17:50 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-03 page 63

Social Commitments for Engineering Interaction in Distributed Systems 63

• c3 : C(merchant, customer, purchaseQuotationRequested, purchaseQuotationProvided)
• c4 : C(merchant, customer, purchaseItemsPaid, purchaseReceiptDelivered)

Commitments c1, c3 and c4 are to be created by the merchant at the beginning
of the interaction. In particular, c1 is a nested commitment, that is, a commitment
that includes other commitments in its conditions. Specifically, c1 expresses the
promise, by the merchant, of delivering the items in case the customer promises
to pay for them (commitment c2). When the customer actually creates c2, on
the one side c1 is detached, and consequently the merchant is driven to ship the
items; on the other hand, the customer promises to the merchant to pay when
these items will be delivered. Commitment c3 is used to model the negotiation
phase, it expresses that, should the customer request a quotation for the purchase,
the merchant will answer with the quotation. Finally, c4 is the commitment from
the merchant to the customer to send the receipt upon the payment. Note that
the events mentioned in the antecedent and consequent of the commitments, are
indeed facts (i.e., data) asserted within the artifact state as a consequence of pre-
defined operations made available to the agents by the artifact itself. Therefore,
by acting upon the Purchase artifact, both merchant and customer have the chance
not only to create commitments, but also the make them progress along their life-
cyle. In the example, the commitments completely shape the expected evolution
of the interaction between the involved agents by making explicit the behavior
they are expected to stick to. As such, commitments provide a standard to define
patterns of interaction mediated by the environment in which agents are situated.

Objective Coordination and Decoupling. Interaction is surely one of the most
critical dimension to be addressed in distributed systems. To cope with the prob-
lem, message passing protocols are widely used in many multiagent platforms (see
e.g., JaCaMo and JADE), and even in BPMN. A disadvantage of message proto-
cols, however, is that the interaction logic is intermingled with the agent control
logic. That is, the coordination is modeled in a subjective way. This lack of con-
cern separation hampers software modularity and reuse. For promoting software
modularity, coordination should be implemented on the side of the callee [48].
Namely, the coordination should be implemented outside the agents, in a class/re-
source that is accessed concurrently by the agents being coordinated.

Our proposal, on the contrary, enables a form of objective coordination
[27, 49], where coordination is addressed outside the interacting agents. Objec-
tive coordination enables a clear separation between the implementations of the
business logic and of the coordination logic by explicitly representing the environ-
ment where the agents operate. In our proposal, we meet this property by reifying

May 31, 2021 17:50 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-03 page 64

64 Artificial Intelligence Methods for Software Engineering

commitments, that possess a normative power, inside a dedicated coordination
artifact, which is external to the agents. The interaction logic is thus encoded
into a single component (i.e., the coordination artifact), and is not distributed and
intermingled within the agents’ code. A positive consequence is that the imple-
mentation of environment resources (i.e., artifacts) and of the agents’ processes
can be carried out and verified in isolation. That is, not only agents are strongly
decoupled with each other, as their interaction is mediated by an artifact, but there
is also a form of decoupling between agents and artifacts. The interaction logic
encoded within an artifact can in fact be changed without the need to change the
agents as far as the artifact interface (i.e., the set operations), remains unchanged.
For instance, in the purchase scenario, it may be possible to change the interaction
logic by adding a timeout on the detachment of commitment c1. The rationale
would be to release the merchant if the customer does not accept within a finite
time interval (which is considered an anomalous situation). This, however, is a
characterization of the Purchase artifact that has no a direct impact on the partici-
pants.

Decoupling enables also the development and verification of agents and arti-
facts in isolation (see below).

Flexibility. Some approaches rely on automata to model the stages through
which an interaction progresses. For instance, the interaction component [50,51],
for the JaCaMo platform, enables both agent-to-agent and agent-to-environment
interaction, providing guidelines of how a given organizational goal should be
achieved, with a mapping from organizational roles to interaction roles. Guide-
lines are encoded in an automaton-like shape, where states represent protocol
steps, and transitions between states are associated with (undirected) obligations:
the execution of such steps creates obligations on some agents in the system,
which can concern actions performed by the agents in the environment, messages
that an agent sends to another agent, and events that an agent can perceive (i.e.,
events emitted from objects in the environment). Business artifacts [18] are an-
other example where the lifecycle of data are represented as automata. By acting
upon these artifacts, processes cause automata state changes. The specification
of interaction via automata, however, shows a rigidity that prevents agents from
taking advantage of the opportunities and of handling exceptions in dynamic and
uncertain multiagent environments [52, 53]. Agents are, in fact, confined to the
execution sequences provided by the automaton.

On the contrary, commitments do not impose any strict ordering. As far as
any detached commitment progresses to satisfaction, the interaction can be con-
sidered successful. It must be noticed that a commitment could even be satisfied

May 31, 2021 17:50 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-03 page 65

Social Commitments for Engineering Interaction in Distributed Systems 65

before its detachment, this opens the way to deal with “cases” more flexibly and
in a way that is paralleling CMMN. Let us suppose, for instance, that we want
to capture an emergency situation where some medical equipment is needed ur-
gently. The customer may create commitment c2 even before knowing the asked
quote. That is, there is not a strict ordering between first asking for a quote and
then accepting it, as it may happen in an automaton-based model. More interest-
ing, the merchant, knowing the emergency conditions, and trusting the customer,
may ship the equipment even before the customer creates commitment c2. This
means for the merchant to bring about the consequent condition of a commitment
that has not even been detached. When eventually the customer creates c2, such a
commitment is already detached, and hence the customer pays for the equipment.

Commitments, thus, when used as directly manipulable resources, enable the
agents to decide how and when be engaged in an interaction, in ways that are sub-
stantially more flexible than approaches based on message passing and automata.

Comparison with Existing Frameworks. We now briefly compare the pro-
posed approach with two of the most established frameworks for multi-agent sys-
tems, namely JADE and JaCaMo, already introduced in Sec. 3.2.

A first positive consequence of an explicit, directly manipulable, representa-
tion of social commitments is that agents can be programmed by following a uni-
form schema that is agent-platform independent. This is not, however, the unique
advantage. Table 3.1 synthesizes a comparison between JADE and JaCaMo, high-
lighting aspects that are improved or added by an explicit representation of com-
mitments.

Table 3.1: Comparison among JADE, JaCaMo, and improvements provided by commit-
ments.

JADE JaCaMo Social Commitments
Programmable interaction means X X X

Notification of social relationships of interaction X X X

Interaction/agent logic decoupling X X X

Reasoning on expected behaviors X X X

Definition of structured schemas for interaction X X X

Runtime interaction monitoring X X X

Agent programming aware of social relationships X X X

• Programmable interaction means: The reification of social commitments
as artifacts embodied in the environment significantly improves JADE,
where programmable interaction means are missing. On the other hand,

May 31, 2021 17:50 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-03 page 66

66 Artificial Intelligence Methods for Software Engineering

JaCaMo already integrates the CArtAgO component and, hence, already
includes programmable artifacts used as means of interaction.
• Notification of social relationships of interaction: Our proposed business

artifacts implement the commitment lifecycle. Any change of state in the
artifact, thus, corresponds to a change in the interaction state. For this
reason, a form of automatic notification to the agents of such changes
(concerning social relationships) is enabled. This is not provided by
JADE nor by JaCaMo.
• Interaction/agent logic decoupling: In JADE and JaCaMo, no specific

abstractions are used for modeling and implementing the interaction
logic. In JADE, agents interact by exchanging messages. In JaCaMo,
agents can modify an artifact for communicating with others. In both
cases, however, the semantics of the message or of the artifact operation
must be encoded within the interacting agents. With dedicated artifacts
encapsulating commitments, when an agent acts upon the environment,
the meaning, and implications, of such an action is modeled via a state
change occurring in a specific commitment. It follows that the logic of
the interaction is not spread inside the agent code, but within the artifacts.
• Reasoning on expected behaviors: As we have said, commitments have a

normative power. Neither JADE nor JaCaMo can rely upon an analogous
mechanism.
• Definition of structured schemas for interaction: The commitment life-

cycle allows relying on a general schema for programming agents that is
independent of the agent-platform.
• Runtime interaction monitoring: Although we will not discuss this aspect

in detail, the use of dedicated artifacts facilitates the implementation of
monitors that supervise the whole interaction occurring in the system.
It would be sufficient, in fact, to have an agent monitoring each artifact
of and hence capturing every change of state in the commitments. Of
course, this is a direct consequence of having social relationships ex-
plicitly modeled as first-class elements and not implicitly modeled via
message passing as in JADE. In JaCaMo, a monitor could also be imple-
mented as an observer of the artifacts in the environment.
• Agent programming aware of social relationships: The proposed ap-

proach guides a programmer in developing an agent that is aware and
compliant with its engagements, as we will show in detail in the follow-
ing section.

May 31, 2021 17:50 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-03 page 67

Social Commitments for Engineering Interaction in Distributed Systems 67

3.5 Patterns for Programming Agents with Social Relationships

Commitments bring along advantages also from the point of view of agent soft-
ware development. In fact, their standardized lifecycle can be used as a reference
for developing agents that use them. Intuitively, an agent involved in a com-
mitment, either as debtor or as creditor, should act so as to make the commit-
ment state progress toward satisfaction w.r.t. its lifecycle (consequent condition
achievement). Thus, the lifecycle can provide a hint to the programmer on what
agent behaviors she needs to implement. We can think of the commitment lifecy-
cle as a sort of bank of programming patterns, that can be defined taking also into
account the goals the two commitment participants aim at. The relation between
goals and commitments has been deeply studied in [40, 54], where the authors
propose several rules of practical reasoning that agents can use to determine, e.g.,
when it is convenient to create a commitment, or detach an existing one, when
they should act to satisfy a commitment, and so on. Intuitively, these practical
rules help agents to align their intentions by means of commitments, so as that all
the agents participating to an interaction can achieve their desired goal by exploit-
ing the cooperation of the others.

We take advantage of these practical rules, and propose some agent program-
ming patterns where, by means of the direct use of commitments as interaction
resources, an agent can induce the cooperation from others

The aim of the following patterns is, thus, to implement one (or more) social
behaviors that allows an agent ag to achieve a goal G by cooperating with other
agents. In the following, we assume that an agent has already focused on an
artifact of interest, and use the term social state for denoting the state of such an
artifact, that is, the collection of commitments and facts (data) maintained within
the artifact.

(1) Entice:

• Intent: Finding the cooperation of another agent by making an offer.
• Applicability: When, by inspecting the social state, the agent does not

discover cooperation offers by other agents that support the achievement
of its goal adequately, then the agent creates an offer itself.
• Implementation: Implement a behavior that creates a commitment
C(ag, other,G, q), where ag is the help-seeking agent, other is another
agent focused on the artifact, and q is a condition that ag can bring about,
either directly or via the cooperation with others.

May 31, 2021 17:50 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-03 page 68

68 Artificial Intelligence Methods for Software Engineering

(2) Cooperate:

• Intent: taking part to a collaboration by making a commitment progress
towards satisfaction.
• Applicability: when the agent is either the debtor or the creditor of an

active commitment.
• Implementation:

– When ag is the creditor: implement a behavior that is triggered by
the creation of a commitment c : C(other, ag, p,G) and that brings
about p, so as to detach c.

– When ag is the debtor: implement a behavior that is triggered by
the detachment of a commitment c : C(ag, other,G, q) and that
brings about q so as to satisfy c.

(3) Withdraw offer

• Intent: Retire an offer of cooperation that is no longer needed. Agent
ag has tried to entice the cooperation of some other agent by creating
C(ag, other,G, q), but now it realizes that G is no longer needed. Re-
tiring the offer, ag avoids to consume resources for achieving q in ex-
change of the undesired G.
• Applicability: When goal G is no longer necessary (local decision mak-

ing of ag), and C(ag, other,G, q) is still conditional in the social state.
• Implementation: Implement a behavior that cancels the conditional com-

mitment C(ag, other,G, q) currently stored in the social state.

(4) Give up

• Intent: Release the obligation upon the achievement of a goal, when
such a goal is no longer desired. Agent ag has taken part to cooperation
by detaching commitment c : C(other, ag, p,G). The original intent of
ag was to get G, and by performing p it has caused the detachment of c.
Now the obligation of bringing about G is pending on other. While c

is detached, however, ag may realize that G is no longer needed. It may
even been deleterious, and so can decide to release the commitment, that
is, can remove the obligation on other to bring about G. More generally,
a creditor can release a commitment even when the commitment is still
conditional: ag is not interested in the offer made by the debtor and
brings the commitment to a terminal state.

• Applicability: When goal G is no longer necessary, and the active (i.e.,
either conditional or detached) commitment c : C(other, ag, p,G) is
stored in the social state.

• Implementation: Implement a behavior that releases commitment c.

May 31, 2021 17:50 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-03 page 69

Social Commitments for Engineering Interaction in Distributed Systems 69

It’s worth noting that the applicability of the Withdraw offer and Give up pat-
terns is the same. The two patterns represents different ways in which debtor and
creditor can leverage an existing commitment. Being the commitment still condi-
tional, should the debtor be not interested anymore in the antecedent, it can cancel
it by means of Withdraw Offer. Conversely, should the creditor be not interested
in the consequent, it can release the debtor from its commitment by means of Give
up.

The above patterns relate agent goals with the engagements the agent is in-
volved in. In particular, Entice, Withdraw offer and Give up, are patterns “from
goal to commitment”, that is, on the necessity of achieving or dropping a goal, an
agent acts directly on a commitment by means the operations create, cancel, and
release, respectively. Pattern Cooperate encompasses both a stance “from goal
to commitment” when an agent is creditor and acts upon a commitment to bring
about the antecedent condition, so as to detach it. And it has also a “commitment
to goal” stance when the agent is a debtor and react to the detachment of a com-
mitment by adding the consequent condition among the goals it has to pursue. Of
course, the patterns we have introduced cover just a subset of the possible state
transitions in a commitment lifecycles. Other patterns leading to the violation of
a commitment or to its suspension are possible, but for the purpose of the present
paper we have focused on those patterns that promote coordination and lead to the
satisfaction of a commitment.

Let us explain how these patterns are applied to the previously introduced
Purchase scenario. For the sake of simplicity, we use an abstract language based
on ECA rules (Event, Condition, Action), for expressing the agents’ behaviors. In
Sec. 3.6 we will show an actual implementation in JaCaMo+ [19] (i.e. JaCaMo
extended with 2COMM [10, 34]). Here, we adopt the following syntax for ECA
rules: ON event IF condition THEN action. The event denotes the trigger
for activating such a rule, in general it is a goal that the agent wants to achieve or
an event that must be properly treated by the agent. The condition is a contextual
circumstance that must hold for the rule to be actually fired. Finally, the action is a
course of operations that modify the environment so as to obtain a desired effect.

Let us take the merchant’s perspective, whose ultimate goal is to conclude
the purchase and get paid. It can do so by exploiting the Entice schema, in such
a way to create commitments c1, c3 and c4, defined in Sec. 3.4, to make an offer
to the potential customer. This behavior could be captured by the following ECA
rule:

May 31, 2021 17:50 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-03 page 70

70 Artificial Intelligence Methods for Software Engineering

ON needMoney IF haveItemsToSell

DO create(c1 : C(merchant, customer, c2, purchaseItemsShipped));

create(c3 : C(merchant, customer, purchaseQuotationRequested, purchaseQuotationProvided));

create(c4 : C(merchant, customer, purchaseItemsPaid, purchaseReceiptDelivered)).

The use of the Entice pattern is strictly connected to the use of the Cooperate
one (as debtor), to tackle the relevant commitment state changes (i.e. their detach-
ment). For c1, the corresponding ECA rule would be:

ON detached(c1) DO ...ship... assert(purchaseItemsShipped).

The triggering event is the detachment of commitment c1, that is, customer has
confirmed the purchase by creating c2. As a reaction, the agent asserts the social
fact denoting that the items have been shipped. That is, the effect of the behavior
would be the satisfaction of commitment c1. By applying the Cooperate pattern,
the customer can be provided with those behaviors needed to handle the detach-
ment of c3 and c4, as well.

The merchant could also want to withdraw the items from the sale, thereby
closing the purchase, for instance if the customer does not react within three days
(because it’s a limited-time offer). In this case, the commitments will still be in
the state Conditional, a fact that we denote through conditional(.). We can model
such a behavior by means of the Withdraw offer pattern, as follows:

ON threeDaysPassed IF conditional(c1) ∧ conditional(c3) ∧ conditional(c4);

DO cancel(c1 : C(merchant, customer, c2, purchaseItemsShipped));

cancel(c3 : C(merchant, customer, purchaseQuotationRequested, purchaseQuotationProvided));

cancel(c4 : C(merchant, customer, purchaseItemsPaid, purchaseReceiptDelivered)).

In this case the commitments made by the merchant are no longer needed, and
can be canceled.

Let us now take the customer’s perspective, which has several possibilities.
For instance, being interested in buying a large amount of items, upon creation
of c3, the agent could apply the Cooperate pattern (as creditor), and request a
quotation.

ON create(c3) IF interestedInLargeAmount DO assert(purchaseQuotationRequested).

Otherwise, if it is not interested in receiving a quotation (maybe because it’s a
regular buyer who knows the price in advance), it could simply confirm the pur-
chase, both applying the Entice and Cooperate patterns w.r.t. the creation of c2
and subsequent detachment of c1.

ON create(c1) IF interestedInItems DO create(c2).

Also in this case, upon creation of c2, the customer should be equipped with the
behavior(s) needed to handle its detachment.

May 31, 2021 17:50 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-03 page 71

Social Commitments for Engineering Interaction in Distributed Systems 71

ON detached(c2) IF true DO ...send EPO... assert(purchaseItemsPaid).

The satisfaction of c2 by customer, finally allows the merchant to satisfy its
original goal. Conversely, should customer be not interested in the merchant’s
offer, it could decide to release the latter from its engagement coming from c1, by
applying the Give up pattern.

ON create(c1) IF not interestedInItems DO release(c1).

3.6 The Hiring Process Scenario

We exemplify the proposal in a scenario which is well-known in the field of busi-
ness processes.

Example 3.2 (Hiring Process [55]). A hirer opens a call for a job position for
which many candidates will likely apply over a time period. As long as the posi-
tion remains open, each candidate is called for an interview, and then evaluated.
The evaluation of a single candidate takes time, even weeks. Two processes are
involved, namely Hiring Process and Evaluate Candidate. They are synchronized
by means of a data store representing the job status in a database. Hiring Pro-
cess updates the data store when the job is opened, filled or abandoned. Evaluate
Candidate queries it immediately upon instantiation. Hiring Process just waits
for a message from Evaluate Candidate, indicating that an applicant has been se-
lected for the position, and has accepted the offer. Evaluate Candidate has many
instances, each of which carries out the evaluation of a single candidate. Once the
job is filled new applicants just receive a position closed message, and any still
running instances of evaluate candidate are terminated.

The scenario is an instance of the one-to-many pattern of coordination between
process instances [24, 55], occurring when the multiplicity of an activity is not in
accordance with the multiplicity of another one. In this case, it is necessary to
separate them into different interacting processes.

Figure 3.6 shows the solution proposed by Silver, consisting of a Hiring Pro-
cess, each of whose instances tackles a single job opening, an Evaluate Candidate
process, whose instances tackle each a different candidate, and an Applicant Pro-
cess, whose instances amount to candidates. While the relationship between the
instances of Evaluate Candidate and Applicant is one-to-one, the relationship be-
tween the instances of the Hiring Process and those of the Evaluate Candidate
process is inherently one-to-many. The states of all these processes are to be coor-
dinated and, in particular, the Hiring Process must have a way to enable Evaluate
Candidate when a new job is opened, and to disable its running instances when

May 31, 2021 17:50 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-03 page 72

72 Artificial Intelligence Methods for Software Engineering
Ap

pl
ic

an
t

Ev
al

ua
te

 C
an

di
da

te

Evaluate Candidate

Receive
resume

Check job
status

Open?

Screen and
interview

Position
closed

Make offer?

Rejected

Make offer
Accept? Accepted

Offer rejected

Cancel
Evaluation

H
ir

in
g

Pr
oc

es
s

Hiring Process

Post job

3 months

Receive acceptance

Update job
status Filled

Update job
status

Abandoned

Position filled

Position unfilled

Signal cancels in-
fight instances of
Evaluate
Candidate

Job status

Re
su

m
e

yes
no

Po
si

tio
n

cl
os

ed

Re
je

ct
io

n
no

tic
e

yes

O
ff

er

no

Re
sp

on
se

yes

no

Po
si

tio
n

cl
os

ed
Acceptance

Fig. 3.6: The Hiring Process scenario represented in BPMN [55].

the job position has been assigned. To this end, a data storage is introduced, which
is external to the processes, but to which all of them have access, supporting syn-
chronization and data consistency. Silver’s solution highlights the limitations of
BPMN in modeling the coordination, already discussed in Sec. 3.2. In fact, with
reference to Fig. 3.6, the BPMN representation only suggests that the Hiring Pro-
cess should update the status of a job opening after receiving the acceptance of
an offer by some candidate, and that this will let Evaluate Candidate know that it
accomplished its task for that opening.

We now explain how to use social commitments to realize the Hiring Process.
In Fig. 3.7, hi (hirer), evi (evaluator), and i (candidate) represent the agents of
this scenario, that observe and use artifacts in a shared environment. For each
available position, there will be just one agent playing the hirer role, whereas
many evaluators and candidates will be possible. For simplicity, we assume
that each candidate i will be evaluated by a specific evaluator evi; this does not

May 31, 2021 17:50 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-03 page 73

Social Commitments for Engineering Interaction in Distributed Systems 73

hi positionCA

{c1, c4}

applicationCA

{c2, c3}

i

evi

Environment

use

uselink

use use

focus

focus

focus focus

Fig. 3.7: The Hiring Process scenario. Commitments c1 − c4 refer to the set in Fig. 3.8.

exclude, however, that the same agent be an evaluator for different candidates.
The workspace includes also two business artifacts extended with social commit-
ments. Each of them stores both the social commitments and the facts that are
relevant for the application. The artifact positionCA, in particular, maintains the
state of the position, it is instantiated just once, and it is only accessed by the hirer
and the evaluators. Instead, the artifact applicationCA is instantiated once for each
candidate, each instance keeping track of the status of the application made by
that specific candidate.

The Business Artifacts extended with Social Commitments. The normative
layer of the two artifacts is expressed by the commitments listed in Fig. 3.8. In
particular, c1 and c4 will characterize positionCA, while c2 and c3 will be main-
tained inside applicationCA. By operating on the two artifacts agents can make the
interaction evolve following the lifecycle of the four commitments. For instance,
hi can open the position by creating c4, thereby enticing an interaction with evi.
The two artifacts are linked, so the operations performed by the agents make the
commitments maintained in both artifacts progress. The meanings of the commit-
ment are as follows.

• Commitment c1. It encodes that evi is committed to carry out the evalua-
tion for the application by candidate i according to a predefined procedure.
The procedure, outlined in evaluate-candidateevi , is equivalent to the Eval-
uate Candidate process in Fig. 3.6. The sequence position-filledhi · msg-
position-closedevi , describes that the evaluator informs candidate i that the
position is closed as soon as the position is assigned by hi. On the BPMN

May 31, 2021 17:50 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-03 page 74

74 Artificial Intelligence Methods for Software Engineering

c1 : C(evi, hi, post-jobhi · applyi, post-jobhi · applyi · evaluate-candidateevi
)

c2 : C(evi, i, post-jobhi · applyi, post-jobhi · applyi · inform-outcomeevi
)

c3 : C(i, evi, make-offerevi , make-offerevi · (response-yesi ∨ response-noi))

c4 : C(hi, evi, post-jobhi · (acceptedevi
∨ timeout 3monthshi), post-jobhi · hiringhi)

Where:

evaluate-candidateevi
≡ position-filledhi · msg-position-closedevi

∨

(screen-interviewevi
· (msg-rejection-noticeevi

∨ make-offerevi ·

(response-yesi · acceptedevi
∨ response-noi · offer-rejectedevi

)))

inform-outcomeevi
≡ (msg-position-closedevi

∨ msg-rejection-noticeevi
∨ make-offerevi)

hiringhi ≡ (acceptedevi
· position-filledhi) ∨ (timeout 3monthshi · position-abandonedhi)

Fig. 3.8: The set of commitments included in the normative layer for the Hiring Process
scenario.

process, this is equivalent to the Check Job Status activity and the conse-
quent message sending in case the position has already been assigned, and
it also models the capturing of signal position filled sent by the hirer while
this evaluator is still processing an application. The rest of the condition,
(screen-interviewevi

. . . offer-rejectedevi
) encodes all the possible branches in

the execution of process Evaluate Candidate, including the messages sent to
and received from other roles. It is important to note the shape of the an-
tecedent and of the consequent conditions of c1, among which a temporal
relation is captured. Indeed, evi’s commitment is detached (and hence the
agent will have to bring about the evaluation process) only when a job posi-
tion has been posted, and a candidate has applied for it. In order to model
that evi is expected to evaluate candidate i only after this has applied for the
position, the antecedent condition (i.e., post-jobhi · applyi) occurs as a prefix
in the consequent condition. A similar pattern is used also in the following
commitments.
• Commitment c2. Evaluator evi takes also commitment c2 towards candidate
i to take into account the application and to provide i with an answer for the
application. Such a commitment has the same antecedent condition of c1.
The answer can either be a message informing that the position has already
been closed, a rejection notice, or even an offer for the job. Also in this case,
applyi is used in order to make inform-outcomeevi

follow the satisfaction of
the antecedent condition.

May 31, 2021 17:50 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-03 page 75

Social Commitments for Engineering Interaction in Distributed Systems 75

• Commitment c3. This commitment is pretty interesting from our point of view.
It represents candidate i’s promise to answer either “yes” or “no” to an even-
tual offer made by evi. The BPMN in Fig. 3.6 does not specify the inter-
nal behavior of the candidate, so an answer for the offer cannot be taken for
granted. Indeed, the candidate may never answer; the evaluator would not be
able to detect this anomalous situation, and may, thus, await indefinitely. In
our opinion, this example highlights the weaknesses of BPMN in modeling
the coordination of independent processes. Certainly, one could enrich the
evaluator’s process so as to wait a predefined time interval for an answer. But
this is just a way for handling the exception. With commitments, instead, our
major concern is to stimulate the agents to act so as to make the interaction
progress. evi, for instance, could create c2 only after the creation of c3. In
this way, the evaluator could legitimately expect an answer, should an offer
be made. When candidate i is offered the job, it is stimulated to answer ei-
ther “yes” or “no” due to the existence of commitment c3. Any anomalous
situations in which the candidate does not answer is clearly detected by the
violation of c3. The evaluator process does not need to capture this eventuality
directly.

• Commitment c4. Finally, commitment c4 represents the engagement of the
hirer towards the evaluator, and in particular describes the process carried
out by the hirer in Fig. 3.6. The antecedent condition expresses the start
event of the process (i.e., post-jobevi) followed by two alternative events
that enables the hirer to complete the process. Such a commitment is to be
created by the hirer to entice the cooperation of the evaluator as soon as a
job is posted. The first event is acceptedevi

, meaning that an evaluator has
found a suitable candidate. The second event is timeout 3monthshi, which
stands for the complementary event to position-filledevi . Therefore, after a pe-
riod of three months, when timeout 3monthshi occurs, the position cannot be
assigned anymore. The consequent condition of c4 describes how the hirer
completes the process depending on what event has satisfied the antecedent
condition. In case of event acceptedevi , hi assign the position and notify this
to all the evaluators possibly still running (position-filledevi

). Notably, this al-
lows the evaluators still active to bring about event msg-position-closedevi

so
as to discharge both commitments c1 and c2. In case the antecedent has been
satisfied by event timeout 3monthshi, instead, the position status is updated to
abandoned.

As an illustration, we now show how it is possible to develop agents amounting
to hirer, evaluators, and candidates leveraging the programming patterns presented

May 31, 2021 17:50 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-03 page 76

76 Artificial Intelligence Methods for Software Engineering

in Sec. 3.5. To this end we rely on the 2COMM platform, already introduced in
Sec. 3.2, and we discuss a realization of the agents written in JaCaMo1.

Programming the Agents. JaCaMo extended with 2COMM [10,34] allows im-
plementing agents through the Jason language, as sets of plans expressed as ECA-
like rules. In particular, each agent has a belief base, a set of ground (first-order)
atomic formulas which represent the state of the world according to the agent’s vi-
sion, and a plan library. Moreover, it is possible to specify achievement (operator
‘!’) and test (operator ‘?’) goals. A Jason plan is specified as triggering event :

context ← body, where the triggering event denotes the event the plan handles
(which can be either the addition or the deletion of some belief or goal), the con-
text specifies the circumstances when the plan could is applicable, and the body is
the course of action that should be taken. With 2COMM, the triggering event can
be a state change occurring in some commitment.

We realize the three processes hi, evi, and i as Jason agents. Listing 3.1
reports the implementation fo hi. The first plan, at Line 1, means that when hi

has the goal of posting a job position (and eventually finding a suitable candidate),
it entices the cooperation of evi by creating commitment c4. Indeed, condition
acceptedevi

, the hirer would like to become true, cannot be met by hi on its own.
It needs the cooperation of some evaluator, to take care of the applications. The
evaluator will create commitment c1, and the hirer (being c1’s creditor) will then
be in condition to apply the first case of the cooperate pattern, by contributing
to making the antecedent condition of c1 become true. This is done by posting a
job (Line 3). For detaching the commitment it is necessary that some candidate
applies for the position. The last plan, at Line 6, is instead realized by using the
second case of the cooperate pattern: the hirer, being c4’s debtor, has to properly
react as soon as the commitment gets detached. So, hi updates the position status
depending on the events that have occurred (acceptance or timeout), satisfying
the antecedent. It’s worth noting that the first and the last plan are strictly linked.
The latter allows the agent to satisfy the commitment created in the former, once
detached. The absence of the second would make the agent unable to fulfill its
engagement, and, thus, liable in case of violation.

The code of the evaluator (see in Listing 3.2) is a bit more complex since it
encompasses the whole evaluation process. The first plan, at Line 1, follows both
the cooperate (as creditor) and entice patterns. By reacting to the creation c4, the
agent creates c1 establishing its availability to perform an evaluation. The sec-
ond plan, in turn, is triggered when the candidate entices an interaction with the
1A running implementation of the Hiring Process in JaCaMo, together with the source code of

2COMM and other examples can be found at http://di.unito.it/2comm.

http://di.unito.it/2comm

May 31, 2021 17:50 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-03 page 77

Social Commitments for Engineering Interaction in Distributed Systems 77

1 +! post − job <− createC4 [a r t i f a c t i d (posi t ionCA)] .
2

3 +cc (evi , hi , post-job · apply , post-job · apply · evaluate-candidate , CONDITIONAL)
4 <− postJob [a r t i f a c t i d (posi t ionCA)] .
5

6 +cc (hi , evi , post-job · (accepted ∨ timeout3months) , post-job · hiring , DETACHED)
7 : Resul t
8 <− updatePos i t ion (Resul t) [a r t i f a c t i d (posi t ionCA)] .

Listing 3.1: Hirer hi.

1 +cc (hi , evi , post-job · (accepted ∨ timeout3months) , post-job · hiring , CONDITIONAL)
2 <− createC1 [a r t i f a c t i d (posi t ionCA)]
3

4 +cc (i , evi , make-offer , make-offer · (response-yes ∨ response-yes) , CONDITIONAL)
5 <− createC2 [a r t i f a c t i d (app l ica t ionCA)]
6

7 +cc (evi , hi , post-job · apply , apply · evaluate-candidate , DETACHED)
8 <− screen In te rv iew [a r t i f a c t i d (app l ica t ionCA)] ;
9 / / . . . Choice ; ! o f f e rOrRe jec t (Choice) .

10 +! o f fe rOrRe jec t (Choice) : Choice == yes
11 <− makeOffer [a r t i f a c t i d (app l ica t ionCA)] .
12 +! o f fe rOrRe jec t (Choice) : Choice == no
13 <− r e j e c t i o n N o t i c e [a r t i f a c t i d (app l ica t ionCA)] ; releaseC2 .
14

15 +responseYes : cc (evi , hi , post-job · apply , apply · evaluate-candidate , DETACHED)
16 <− of ferAccepted [a r t i f a c t i d (posi t ionCA)]
17 +responseNo : cc (evi , hi , post-job · apply , apply · evaluate-candidate , DETACHED)
18 <− o f fe rRe jec ted [a r t i f a c t i d (posi t ionCA)] .
19

20 +cc (evi , hi , post-job · apply , apply · evaluate-candidate , DETACHED)
21 : position-filled | position-abandoned
22 <− pos i t ionClosed [a r t i f a c t i d (app l ica t ionCA)] ; releaseC3 .
23

24 + pos i t i on − f i l l e d
25 : cc (evi , i , post-job · apply , post-job · apply · inform-outcome , CONDITIONAL)
26 <− cancelC2 ; releaseC3 .
27 + pos i t i on −abandoned
28 : cc (evi , i , post-job · apply , post-job · apply · inform-outcome , CONDITIONAL)
29 <− cancelC2 ; releaseC3 .

Listing 3.2: Evaluator evi.

1 +! f i nd − job <− createC3 .
2

3 +post − job <− apply [a r t i f a c t i d (app l ica t ionCA)] .
4

5 +cc (candidatei , evi , make-offer , response-yes ∨ response-no , DETACHED)
6 <− / / . . . Choice ; ! response (Choice) .
7 +! response (Choice) : Choice == yes
8 <− responseYes [a r t i f a c t i d (app l ica t ionCA)] .
9 +! response (Choice) : Choice == no

10 <− responseNo [a r t i f a c t i d (app l ica t ionCA)] .

Listing 3.3: Candidate i.

May 31, 2021 17:50 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-03 page 78

78 Artificial Intelligence Methods for Software Engineering

evaluator by creating c3. In this case the evaluator reacts creating c2, so as to
encourage the candidate to send an application. The third plan, in which the eval-
uator reacts to the detachment of commitment c1 by interviewing the candidate,
provides the agent with the ability to handle the evolution of c1, likely bring-
ing it to satisfaction. To this end, the agent acts upon applicationCA by executing
screenInterview. After this operation, the evaluator comes up with a Choice, either
accept the candidate or reject it. This choice will, thus, activate a proper behavior
(see the plans at Lines 10–13). It is worth noting that, in case of rejection, the
agent can also apply the give up pattern, by releasing candidate i from its engage-
ment due to c3. Since an offer won’t be made, a response is no longer needed.
Plans at Lines 15–18 are, instead, used to react to a candidate’s answer, either
“yes” or “no”, to a possible offer. Accordingly, the evaluator performs an opera-
tion on positionCA so as to complete the evaluation process and, then, discharge
its commitment c1. The plan starting at Line 20 captures the situation in which
the evaluator is held to inform the candidate as soon as the position gets filled.
Interestingly, no specific rule is requested for treating commitment c2 because
whenever such a commitment gets detached, the evaluator satisfies it by satisfy-
ing c1. However, at a normative layer, commitment c2 is fundamental to detect the
misbehavior of the evaluator towards the candidate. Should the position be filled
or abandoned with c2 still conditional, the evaluator can also be equipped with
those plans to cancel its commitment no longer needed, following the withdraw
offer pattern (see Lines 24 and 27).

Finally, Listing 3.3 sketches the pseudocode of a candidate. As soon as the
agent has a goal of finding a job, it can create c3, so as to entice the cooperation
of the evaluator. Then, when a job is posted candidate i can decide to send an
application (see the plan at Line 3). The last three plans are needed to react to the
detachment of commitment c3 by answering either “yes” or “no” to an offer.

3.7 Conclusions

In this chapter we have addressed one of the challenges in engineering distributed
systems: the development of high-level abstractions for modeling interaction.
The distribution of goals over a number of interacting and independent execution
threads, in fact, demands for special interaction abstractions that allow complex
systems to scale up effectively.

In this chapter, we explain the adoption of commitments, which enjoy several
interesting properties, for explicitly modeling interaction at a higher level than
message passing protocols. Commitments have a normative power, and hence
enable agents to create expectations about the behaviors of others. They can be

May 31, 2021 17:50 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-03 page 79

Social Commitments for Engineering Interaction in Distributed Systems 79

created and manipulated directly by the agents via a standard set of operations,
and this allows agents to reason on how to act upon commitments in order to
coordinate with others. Recent proposals, see [56], exploit commitments to en-
able the design of socio-technical systems, composed of both social (people and
organizations) and technical (computers and networks) elements, that satisfy the
stakeholders’ requirements, and their refinement through design patterns.

We have seen that commitments can be reified in interaction resources, and
that they can be manipulated by the agents in autonomy. From a software engi-
neering point of view, there are several advantages. First of all, the modularity
is substantially improved since there is a clear separation between the interaction
logic, encapsulated within a proper artifact, and the agent logic. This, in turn, pro-
motes software reuse. More importantly, the standard lifecycle of commitments
can be the base for developing a number of agent programming patterns. The
rationale is that an agent involved in a commitment should possess at least those
behaviors for making that commitment evolve toward satisfaction.

Also in the context of industrial applications, multiagent systems proved to be
effective in enabling adaptability and flexibility of automated production systems
(see, e.g., [57]). Agent platforms are nowadays widely used in industrial domains,
ranging from smart environments to logistics. Some of them were developed in
industrial settings, as is the case of JADE, which was developed at TIM TILab,
the research center of the main Italian telecommunication company. The proposed
commitment-based approach, being implemented as a library that can easily be
adapted to multiple agent-frameworks, paves the way for a fruitful exploitation of
the advantages coming from an explicit representation of social relationships in
several application domains.

Although property verification falls outside the scope of this chapter, there are
a number of solutions that can be exploited thanks to the use of commitments.
Indeed, as a consequence of the induced decoupling, one can verify the correct-
ness of both agents and artifacts in isolation. On the artifact side, it is possible to
verify general properties on the commitments that may be possibly created by the
agents. For instance, [58] presents the 2CL methodology, an approach for spec-
ifying business protocols in a declarative way with social commitments. Being
a formal language, 2CL enables several forms of verification. For instance, it is
possible to analyze the space of all possible evolutions of a set of commitments
in order to determine risky situations. That is, conditions where commitments are
likely to be violated. In [42], the authors propose a methodology for checking, at
design time, whether a commitment protocol satisfies a predefined set of generic
properties such as consistency, effectiveness and robustness. A commitment alge-
bra is presented in [59], where it provides a conceptual basis for reasoning about

May 31, 2021 17:50 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-03 page 80

80 Artificial Intelligence Methods for Software Engineering

protocols in terms of notions like refinement or aggregation, and includes the op-
erators merge and choice and a subsumption relation for protocols.

On the agent side, similar automatic verification techniques can be used to
assess the compliance of an agent to a given commitment protocol; see for instance
[60]. Moreover, commitments can used as the basis of a dynamic, agent type-
checking system which, at execution time, can assess whether an agent is equipped
with a set of behaviors that is appropriate for carrying out an interaction [61].

The approach presented in this chapter sets the basis for an important further
development: the scaling from commitment to accountability. Accountability has
a very broad range of interpretations. Briefly, we can think of accountability as a
directed relationship from an account-giver to an account-taker, that results from
an agreement between the parties. When an accountability relationships is es-
tablished, the account-taker can legitimately ask, under some agreed conditions,
an account about a process of interest to the account-giver. On the other hand,
the account-giver is legitimately required to provide the account to the account-
taker. There are several differences between social commitments and account-
ability. First of all, a social commitment results from the initiative of its debtor
and does not require the agreement of its creditor.2 In addition, social commit-
ments imply liability, i.e., when a social commitment is violated the creditor is
legitimated to complain against the debtor [63]. However, the creditor has no
right to ask for an explanation about the violation. This hampers the transmission
of information that the creditor could use to deal with the unexpected situation
brought about by the violation. We deem that a computational model of account-
ability [64–67] is the key to develop feedback/reporting frameworks, similarly to
what is often done in human organizations, that can be exploited for handling both
anomalous conditions and new opportunities. In [68] an early conceptual view on
how accountability can be the means to reach robustness is discussed. Specifi-
cally, the idea is that accountability relationships can be used, at design time, to
model feedback channels through which information can be conveyed from the
agent who produces it, to the agent who can exploit such information in its in-
ternal deliberative cycle. This general principle is at the basis of robustness in
distributed systems, since it provides the information they need to properly handle
a perturbation.

2The notion of commitments introduced by [62] does require acceptance from its creditor, but this is
not the interpretation we have used in this paper which is aligned with the view presented in [35].

May 31, 2021 17:50 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-03 page 81

Social Commitments for Engineering Interaction in Distributed Systems 81

References

[1] M. J. Wooldridge, Introduction to multiagent systems. Wiley (2002), ISBN 978-0-
471-49691-5.

[2] M. N. Huhns and L. M. Stephens, Multiagent Systems and Societies of Agents,
chap. 2. MIT Press, ISBN 0262232030, pp. 79–120 (1999), ISBN 0262232030.

[3] R. H. Bordini, L. Braubach, M. Dastani, A. E. Fallah-Seghrouchni, J. J. Gomez-Sanz,
J. Leite, G. M. P. O’Hare, A. Pokahr and A. Ricci, A survey of programming lan-
guages and platforms for multi-agent systems, Informatica 30, 1, pp. 33–44 (2006).

[4] F. L. Bellifemine, F. Bergenti, G. Caire and A. Poggi, JADE - A Java Agent Develop-
ment Framework, in Multi-Agent Programming: Languages, Platforms and Applica-
tions, Multiagent Systems, Artificial Societies, and Simulated Organizations, Vol. 15.
Springer, pp. 125–147 (2005).

[5] A. Omicini and F. Zambonelli, TuCSoN: a coordination model for mobile informa-
tion agents, in Proc. of IIIS’98. IDI – NTNU, Trondheim (Norway), pp. 177–187
(1998).

[6] F. M. T. Brazier, B. M. Dunin-Keplicz, N. R. Jennings and J. Treur, Desire: Modelling
Multi-Agent Systems in a Compositional Formal Framework, Int. J. of Cooperative
Information Systems 06, 01, pp. 67–94 (1997).

[7] O. Boissier, R. H. Bordini, J. F. Hübner, A. Ricci and A. Santi, Multi-agent oriented
programming with JaCaMo, Science of Computer Programming 78, 6, pp. 747–761
(2013).

[8] I. J. Timm, T. Scholz, O. Herzog, K. Krempels and O. Spaniol, From agents to mul-
tiagent systems, in Multiagent Engineering, Theory and Applications in Enterprises.
Springer, pp. 35–51 (2006).

[9] I. Sommerville, D. Cliff, R. Calinescu, J. Keen, T. Kelly, M. Z. Kwiatkowska,
J. A. McDermid and R. F. Paige, Large-scale complex IT systems, Communica-
tions of the ACM 55, 7, pp. 71–77 (2012), doi:10.1145/2209249.2209268, http:
//doi.acm.org/10.1145/2209249.2209268.

[10] M. Baldoni, C. Baroglio and F. Capuzzimati, A Commitment-based Infrastructure for
Programming Socio-Technical Systems, ACM Transactions on Internet Technology
14, 4, pp. 23:1–23:23 (2014).

[11] M. P. Singh, A social semantics for agent communication languages, in Issues in
Agent Communication, Lecture Notes in Computer Science, Vol. 1916. Springer,
pp. 31–45 (2000).

[12] C. Castelfranchi, Principles of Individual Social Action. Kluwer, pp. 163–192 (1997).
[13] A. K. Chopra, A. Artikis, J. Bentahar, M. Colombetti, F. Dignum, N. Fornara,

A. J. I. Jones, M. P. Singh and P. Yolum, Research directions in agent communi-
cation, ACM Transactions on Intelligent Systems Technology 4, 2, pp. 20:1–20:23
(2013), doi:10.1145/2438653.2438655, https://doi.org/10.1145/2438653.2438655.

[14] Y. Demazeau, From interactions to collective behaviour in agent-based systems, in
Proceedings of the 1st. European Conference on Cognitive Science. Saint-Malo,
pp. 117–132 (1995).

[15] D. Weyns, A. Omicini and J. Odell, Environment as a first class abstraction in multi-
agent systems, JAAMAS 14, 1, pp. 5–30 (2007).

http://doi.acm.org/10.1145/2209249.2209268
http://doi.acm.org/10.1145/2209249.2209268
https://doi.org/10.1145/2438653.2438655

May 31, 2021 17:50 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-03 page 82

82 Artificial Intelligence Methods for Software Engineering

[16] A. Omicini, A. Ricci and M. Viroli, Artifacts in the A&A meta-model for multi-agent
systems, Autonomous Agents and Multi-Agent Systems 17, 3, pp. 432–456 (2008).

[17] A. Ricci, M. Piunti and M. Viroli, Environment programming in multi-agent systems:
an artifact-based perspective, Autonomous Agents and Multi-Agent Systems 23, 2,
pp. 158–192 (2011).

[18] A. Nigam and N. S. Caswell, Business artifacts: An approach to operational specifi-
cation, IBM Systems Journal 42, 3, pp. 428–445 (2003).

[19] M. Baldoni, C. Baroglio, F. Capuzzimati and R. Micalizio, Commitment-based Agent
Interaction in JaCaMo+, Fundamenta Informaticae 159, 1–2, pp. 1–33 (2018).

[20] M. A. Sirbu, Credits and debits on the internet, IEEE Spectrum 34, 2, pp. 23–29
(1997).

[21] Object Management Group (OMG), Business Process Model and Notation (BPMN),
Version 2.0, OMG Document Number formal/2011-01-03 (https://www.omg.org/
spec/BPMN/2.0/PDF) (2011).

[22] M. P. Singh, Commitments in multiagent systems some controversies, some
prospects, in The Goals of Cognition. Essays in Honor of Cristiano Castelfranchi,
chap. 31. College Publications, London, pp. 601–626 (2011).

[23] Object Management Group (OMG), Case Management Model and Notation
(CMMN), Version 1.1, OMG Document Number formal/2016-12-01 (https://www.
omg.org/spec/CMMN/1.1/PDF) (2016).

[24] M. Dumas, On the convergence of data and process engineering, in Proc. of Advances
in Databases and Information Systems, LNCS, Vol. 6909. Springer, pp. 19–26 (2011).

[25] M. Baldoni, C. Baroglio, F. Capuzzimati and R. Micalizio, Objective Coordination
with Business Artifacts and Social Engagements, in Business Process Management
Workshops, Lecture Notes in Business Information Processing, Vol. 308. Springer,
pp. 71–88 (2018).

[26] K. Bhattacharya, R. Hull and J. Su, A data-centric design methodology for business
processes, Handbook of Research on Business Process Modeling. IGI Publishing,
pp. 503–531 (2009).

[27] A. Omicini and S. Ossowski, Objective versus subjective coordination in the engi-
neering of agent systems, in AgentLink, LNCS, Vol. 2586. Springer, pp. 179–202
(2003).

[28] F. Zambonelli, N. R. Jennings and M. Wooldridge, Developing multiagent systems:
The Gaia methodology, ACM Trans. Softw. Eng. Methodol. 12, 3, pp. 317–370
(2003).

[29] M. Wooldridge, N. R. Jennings and D. Kinny, The GAIA methodology for agent-
oriented analysis and design, Autonomous Agents and multi-agent systems 3, 3,
pp. 285–312 (2000).

[30] M. de Brito, J. F. Hübner and O. Boissier, A conceptual model for situated artificial
institutions, in Computational Logic in Multi-Agent Systems. Springer, pp. 35–51
(2014).

[31] R. H. Bordini, J. F. Hübner and M. Wooldridge, Programming Multi-Agent Systems
in AgentSpeak Using Jason. John Wiley & Sons (2007), ISBN 0470029005.

[32] A. Ricci, M. Piunti, M. Viroli and A. Omicini, Environment Programming in
CArtAgO. Springer US, Boston, MA, ISBN 978-0-387-89299-3, pp. 259–288 (2009),
ISBN 978-0-387-89299-3.

https://www.omg.org/spec/BPMN/2.0/PDF
https://www.omg.org/spec/BPMN/2.0/PDF
https://www.omg.org/spec/CMMN/1.1/PDF
https://www.omg.org/spec/CMMN/1.1/PDF

May 31, 2021 17:50 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-03 page 83

Social Commitments for Engineering Interaction in Distributed Systems 83

[33] J. F. Hubner, J. S. Sichman and O. Boissier, Developing organised multiagent systems
using the MOISE+ model: Programming issues at the system and agent levels, Int. J.
Agent-Oriented Softw. Eng. 1, 3/4, pp. 370–395 (2007).

[34] M. Baldoni, C. Baroglio, R. Micalizio and S. Tedeschi, Programming agents by their
social relationships: A commitment-based approach, Algorithms 12, 4, p. 76 (2019).

[35] M. P. Singh, An ontology for commitments in multiagent systems, Artif. Intell. Law
7, 1, pp. 97–113 (1999).

[36] M. Dastani, D. Grossi, J. C. Meyer and N. A. M. Tinnemeier, Normative multi-agent
programs and their logics, in Normative Multi-Agent Systems, 15.03.–20.03.2009,
Dagstuhl Seminar Proceedings, Vol. 09121. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, Germany (2009).

[37] M. P. Singh, Distributed Enactment of Multiagent Workflows: Temporal Logic for
Web Service Composition, in The Second International Joint Conference on Au-
tonomous Agents & Multiagent Systems, AAMAS 2003, July 14–18, 2003, Melbourne,
Victoria, Australia, Proceedings. ACM, pp. 907–914 (2003).

[38] E. Marengo, M. Baldoni, C. Baroglio, A. Chopra, V. Patti and M. Singh, Commit-
ments with regulations: reasoning about safety and control in REGULA, in Proc. of
the 10th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS), Vol. 2,
pp. 467–474 (2011).

[39] P. R. Telang and M. P. Singh, Specifying and Verifying Cross-Organizational Busi-
ness Models: An Agent-Oriented Approach, IEEE Trans. Services Computing 5, 3,
pp. 305–318 (2012).

[40] P. R. Telang, M. P. Singh and N. Yorke-Smith, Relating Goal and Commitment Se-
mantics, in Post-proc. of ProMAS, LNCS, Vol. 7217. Springer (2011).

[41] S. Rafaeli, Sage Annual Review of Communication Research: Advancing Communi-
cation Science: Merging Mass and Interpersonal Processes, chap. (Chapter 4) Inter-
activity: From new media to communication. Sage (1988).

[42] P. Yolum and M. P. Singh, Commitment Machines, in Intelligent Agents VIII, 8th Int.
WS, ATAL 2001, LNCS, Vol. 2333. Springer, pp. 235–247 (2002).

[43] N. Fornara and M. Colombetti, Defining Interaction Protocols using a Commitment-
based Agent Communication Language, in Proc. of the Second International Joint
Conference on Autonomous Agents & Multiagent Systems (AAMAS 2003). ACM,
pp. 520–527 (2003).

[44] A. K. Chopra, Commitment Alignment: Semantics, Patterns, and Decision Pro-
cedures for Distributed Computing, Ph.D. thesis, North Carolina State University,
Raleigh, NC (2009).

[45] P. Torroni, F. Chesani, P. Mello and M. Montali, Social Commitments in Time: Sat-
isfied or Compensated, in Declarative Agent Languages and Technologies VII, 7th
International Workshop (DALT 2009), Vol. 5948, pp. 228–243 (2010).

[46] M. El-Menshawy, J. Bentahar and R. Dssouli, Verifiable semantic model for agent
interactions using social commitments, in Languages, Methodologies, and Develop-
ment Tools for Multi-Agent Systems, Second International Workshop, LADS 2009,
Torino, Italy, September 7–9, 2009, Revised Selected Papers, no. 6039 in Lecture
Notes in Computer Science. Springer, pp. 128–152 (2009).

[47] M. Baldoni, C. Baroglio, E. Marengo and V. Patti, Constitutive and Regulative
Specifications of Commitment Protocols: a Decoupled Approach, ACM Trans. on

May 31, 2021 17:50 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-03 page 84

84 Artificial Intelligence Methods for Software Engineering

Intelligent Sys. and Tech., Special Issue on Agent Communication 4, 2, pp. 22:1–
22:25 (2013).

[48] M. Philippsen, A survey of concurrent object-oriented languages, Concurrency -
Practice and Experience 12, 10, pp. 917–980 (2000).

[49] M. Schumacher, Objective Coordination in Multi-agent System Engineering: De-
sign and Implementation. Springer-Verlag, Berlin, Heidelberg (2001), ISBN 3-540-
41982-9.

[50] M. R. Zatelli, A. Ricci and J. F. Hübner, Integrating interaction with agents, environ-
ment, and organisation in JaCaMo, IJAOSE 5, 2/3, pp. 266–302 (2016).

[51] O. Boissier, R. H. Bordini, J. F. Hübner and A. Ricci, Dimensions in programming
multi-agent systems, The Knowledge Engineering Review 34, p. e2 (2019).

[52] P. Yolum and M. P. Singh, Flexible protocol specification and execution: applying
event calculus planning using commitments, in The First International Joint Confer-
ence on Autonomous Agents & Multiagent Systems, AAMAS 2002, July 15–19, 2002,
Bologna, Italy, Proceedings. ACM, pp. 527–534 (2002).

[53] M. Winikoff, W. Liu and J. Harland, Enhancing commitment machines, in Declar-
ative Agent Languages and Technologies II, Second International Workshop, DALT
2004, New York, NY, USA, July 19, 2004, Revised Selected Papers, no. 3476 in Lec-
ture Notes in Computer Science. Springer, pp. 198–220 (2004).

[54] P. Telang, M. Singh and N. Yorke-Smith, A coupled operational semantics for goals
and commitments, Journal of Artificial Intelligence Research 65, pp. 31–85 (2019).

[55] B. Silver, BPMN Method and Style, with BPMN Implementer’s Guide, 2nd edn.
Cody-Cassidy Press, Aptos, CA, USA (2012).

[56] Ö. Kafali, N. Ajmeri and M. P. Singh, DESEN: specification of sociotechnical sys-
tems via patterns of regulation and control, ACM Trans. Softw. Eng. Methodol. 29, 1,
pp. 7:1–7:50 (2020).

[57] VDI, VDI/VDE 2653 Blatt 1 - Multi-agent systems in industrial automation - Fun-
damentals, Tech. Rep., VDI - The Association of German Engineers - Department of
Industrial Information Technology (2018).

[58] M. Baldoni, C. Baroglio, E. Marengo, V. Patti and F. Capuzzimati, Engineer-
ing commitment-based business protocols with the 2CL methodology, Autonomous
Agents and Multi-Agent Systems 28, 4, pp. 519–557 (2014).

[59] A. U. Mallya and M. P. Singh, An algebra for commitment protocols, Auton. Agents
Multi Agent Syst. 14, 2, pp. 143–163 (2007).

[60] D. D’Aprile, L. Giordano, A. Martelli, G. L. Pozzato, D. Rognone and D. Theseider
Duprè, Information Systems: Crossroads for organization, management, account-
ing and engineering, chap. Business process compliance verification: An annotation
based approach with commitments, pp. 563–570 (2012).

[61] M. Baldoni, C. Baroglio, F. Capuzzimati and R. Micalizio, Type Checking for Pro-
tocol Role Enactments via Commitments, Journal of Autonomous Agents and Multi-
Agent Systems 32, 3, pp. 349–386 (2018).

[62] C. Castelfranchi, Commitments: From Individual Intentions to Groups and Organi-
zations, in Proceedings of the First International Conference on Multiagent Systems
(ICMAS). The MIT Press, San Francisco, California, USA, pp. 41–48 (1995).

[63] A. K. Chopra and M. P. Singh, From social machines to social protocols: Software
engineering foundations for sociotechnical systems, in Proc. of the 25th Int. Conf. on
WWW (2016).

May 31, 2021 17:50 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-03 page 85

Social Commitments for Engineering Interaction in Distributed Systems 85

[64] M. Baldoni, C. Baroglio, K. M. May, R. Micalizio and S. Tedeschi, Computa-
tional Accountability, in Deep Understanding and Reasoning: A challenge for Next-
generation Intelligent Agents, URANIA 2016, Vol. 1802. CEUR, Workshop Proceed-
ings, pp. 56–62 (2016).

[65] M. Baldoni, C. Baroglio, O. Boissier, K. M. May, R. Micalizio and S. Tedeschi, Ac-
countability and Responsibility in Agents Organizations, in PRIMA 2018: Principles
and Practice of Multi-Agent Systems, no. 11224 in Lecture Notes in Computer Sci-
ence. Springer, pp. 261–278 (2018).

[66] M. Baldoni, C. Baroglio, K. M. May, R. Micalizio and S. Tedeschi, MOCA: An
ORM MOdel for Computational Accountability, Journal of Intelligenza Artificiale
13, 1, pp. 5–20 (2019a).

[67] M. Baldoni, C. Baroglio, O. Boissier, R. Micalizio and S. Tedeschi, Engineering
Business Processes through Accountability and Agents, in Proceedings of the 18th
International Conference on Autonomous Agents and MultiAgent Systems, AAMAS
’19, Montreal, QC, Canada, May 13–17, 2019. International Foundation for Au-
tonomous Agents and Multiagent Systems, pp. 1796–1798 (2019b).

[68] M. Baldoni, C. Baroglio and R. Micalizio, Fragility and Robustness in Multiagent
Systems, in To appear in the 8th International Workshop on Engineering Multi-Agent
Systems (EMAS 2020) @ AAMAS 2020, 8–9 May 2020, Auckland, New Zealand
(2020).

B1948 Governing Asia

B1948_1-Aoki.indd 6B1948_1-Aoki.indd 6 9/22/2014 4:24:57 PM9/22/2014 4:24:57 PM

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank

June 2, 2021 15:25 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-04 page 87

© 2021 World Scientific Publishing Company
https://doi.org/10.1142/9789811239922 0004

Chapter 4

Intelligent Agents are More Complex:
Initial Empirical Findings

Gal A. Kaminka∗ and Alon T. Zanbar†

Bar-Ilan University, Israel
∗galk@cs.biu.ac.il, †atzanbar@gmail.com

4.1 Introduction

For many years, significant research efforts have been spent on investigating

methodologies, tools, models and technologies for engineering autonomous

agents software. Research into agent architectures and their structure, pro-

gramming languages specialized for building agents, formal models and

their implementation, development methodologies, middleware software,

have been discussed in the literature, encompassing multiple communities

of researchers, with at least partial overlaps in interests and approaches.

The fundamental assumption underlying these research efforts is that

such specialization is needed, because autonomous agent software poses en-

gineering requirements that may not be easily met by more general (and

more familiar) software engineering and programming paradigms. Special-

ized tools, models, programming languages, code architectures and abstrac-

tions make sense, if the software engineering problem is specialized.

A broad overview of the literature reveals that for the most part, the

truth of this assumption has been supported by qualitative arguments and

anecdotal evidence. Agent-oriented programming [1] is by now a famil-

iar and accepted programming paradigm, and countless discussions of its

merits and its distinctiveness with respect to other programming paradigms

(e.g., object-oriented programming, aspect-oriented programming) are com-

monly found on the internet. Agent architectures are commercially avail-

able as development platforms and are incorporated into products. Indeed,

agent-oriented software development methodologies are taught and utilized

in and out of academic circles [2–5].

87

https://doi.org/10.1142/9789811239922_0004

June 2, 2021 15:25 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-04 page 88

88 Artificial Intelligence Methods for Software Engineering

However, there is a disturbing lack of quantitative, empirical evidence

for the distinctiveness of autonomous agent software. Lacking such evi-

dence, agent software engineers rely on intuition, experience, and philo-

sophical arguments when they evaluate or advocate specialized methods.

This paper provides the first empirical evidence for the distinctiveness

of autonomous agent software, compared to other software categories. We

quantitatively analyze over 500 software projects: 140 autonomous agent

and robotics projects (from RoboCup, the Agent Negotiations Competi-

tions, Chess, and other sources), together with close to 400 automatically

selected software projects from github, of various types. With each, we

utilize general source code metrics, such as Cyclomatic Complexity, Cohe-

sion, Coupling, and others used by general software engineering researchers

to quantify meaningful characteristics of software (over 250 measures, see

below).

We conducted both statistical and machine-learning analysis, to deter-

mine (1) whether agents emerge as a distinguishable sub-group within the

pool, and (2) whether there are clear distinguishing measures. We find

that agent software is clearly and significantly different from other types

of software of comparable size. This result appears both when using man-

ual statistical analysis, as well as machine learning methods. Specifically,

autonomous agents software is significantly more complex (in the sense of

control flow complexity) than other software categories. We discuss poten-

tial implications of these results.

4.2 Background

There is vast literature reporting on software engineering of autonomous

agents: agent architectures, agent-oriented programming languages, formal

models and their implementation, development methodologies, middleware

software, and more. We cannot do justice to these efforts for lack of space.

For brevity, we use the term agent-oriented software engineering (AOSE)

to refer to the combined research area, encompassing the collective efforts

of the various communities engaged in relevant research. We emphasize no

bias in the selection of this name, and With due apologies to all the different

threads of work whose unique contributions are blurred by our choice.

AOSE is a thriving area of research, with at least one dedicated annual

conference/workshop and a specialized journal1 [1, 2, 6–9]. For the most

part, the arguments for the study of AOSE as distinct from general software
1International Journal of Agent-Oriented Software Engineering.

June 2, 2021 15:25 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-04 page 89

Intelligent Agents are More Complex: Initial Empirical Findings 89

engineering are well argued philosophically, and qualitatively pointing out

inherent conceptual differences between the software engineering of agents.

To the best of our knowledge, little quantitative empirical evidence — cer-

tainly not at the scale detailed below — has been offered to support these

important conceptual arguments.

Closely related, pioneering works into software engineering in robotics

(e.g., [10–16] similarly argue qualitatively for distinguishing software en-

gineering in robotics. Some emphasize specific middleware frameworks

(e.g., [10–12, 17–19]), while others focus on critical capabilities or ap-

proaches [20–23]). These are detailed and well-reasoned arguments, how-

ever the underlying implicit assumption is similar to those in AOSE: that

robotics software is sufficiently different from general software, that it mer-

its distinct methodologies and tools to ease software development. Indeed,

we report below that robot code is similar in some aspects to autonomous

agents code, but is not as easily distinguished from general software.

The rarity of quantitative investigations in AOSE (see below for notable

exceptions) is not for lack of quantitative methods in general software en-

gineering. Beginning with the 1970s pioneering research on Cyclomatic

Complexity [24] and Halstead measures [25] there have been many inves-

tigations both proposing quantitative metrics of software constructs, and

relating the measurements to software quality, development effort, software

type, and other attributes of interest [26–28]. For example, metrics such as

Cyclomatic Complexity, Coupling, and Cohesion — generated from anal-

ysis of the software source code and the program control flow graph —

have been shown to correlate with defects [24, 29, 30]. Maintaining their

values within specific ranges (or below some thresholds) tends to lower the

expected defect creation rate, and improve other measures of software qual-

ity. Development and exploration of software metrics continues today, e.g.,

for paradigms such as aspect-oriented programming [31]. See [32] for a

comprehensive survey.

Software metrics have been used to classify software, or cluster together

software based on measured characteristics, as we do in this paper [33]. For

example, De Souza and Maia defined software metric thresholds based on

context ([34]). [35] showed this approach is applicable for Android projects.

Another example can be found in [36], who found linkage between the size

and complexity of open source projects, to attractiveness of the project for

contributors.

Surprisingly, despite the prevalence and usefulness of software metrics

as noted above, the use of software metrics in intelligent agent and robot

June 2, 2021 15:25 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-04 page 90

90 Artificial Intelligence Methods for Software Engineering

software remains limited, and is not generally reported in relevant litera-

ture. Perhaps this is due to lack of data, or the relative novelty of prod-

ucts, which leads to sparse and relative rare expertise in commercial-grade

development. AOSE-specific software metrics, specialized to agent pro-

gramming paradigms and languages, have been proposed in AOSE research

circles [37–40], often specific to agent-oriented programming languages (e.g.,

2/3APL, JASON). Because of their specialized use cases, which prohibit

their use in general software, we were reluctant to use them in this study,

which uses general metrics to contrast software from many different cate-

gories.

4.3 Software Project Data Collection and Curation

We begin with an overview of the data collection and curation process. The

data collected will be used in the analysis processes described in Secs. 4.4–

4.5.

4.3.1 Data Sources

RoboCup. RoboCup is one of the oldest and largest annual global

robotics competition events in the world — taking place since 1997. The

event is organized in several different divisions. Within each division, there

are multiple leagues, with their own rules. For example, within the soccer

division, there were over the years up to three different simulation-based

leagues (2D, 3D, and coach), and several physical robot competitions (stan-

dard platform, small-size, mid-size, and two humanoid leagues). The com-

petitions themselves are between completely autonomous agents/robots; no

human in the loop. In most cases, the agents run in completely distributed

fashion, without a centralized controller.

The bulk of the code in the various leagues is written by graduate stu-

dents and researchers in robotics and artificial intelligence, some from top

universities in these fields. The simulation leagues follow an internal rule,

which requires all teams to release a binary version of their code within

a year following the competition. Source code release is not required, but

strongly encouraged. Indeed, we use the source code from many 2D simu-

lation league teams, downloaded from their repository server. In addition,

we used source code from other RoboCup soccer leagues, gathered from the

internet.

June 2, 2021 15:25 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-04 page 91

Intelligent Agents are More Complex: Initial Empirical Findings 91

Automated Negotiating Agent Competition (ANAC). The annual

International Automated Negotiating Agents Competition (ANAC) is used

by the automated negotiation research community to benchmark and eval-

uate its work and to challenge itself. The benchmark problems and evalua-

tion results and the protocols and strategies developed are available to the

wider research community. ANAC has similar properties to the RoboCup

in the sense of emphasizing autonomous agents. It is a popular competition

for software agent researchers, maintains a requirement that all the sources

of the agents participating in the competition are made available for re-

search. We collected ANAC software agent projects from the competition

web site.

Additional data. We additionally found open source robotics projects

from the DARPA Grand and Urban challenges, and from industrial projects

where our lab was involved in research.

4.3.2 Automatic Data Harvesting

From the sources above, we first collected agent and robot software

projects — all we could find and use: 2D RoboCup teams for which

source code is available, the ANAC agent projects, robotics software from

RoboCup and the other sources described above. We extended the search

for relevant software to github projects tagged chess, as problem solving is

a close AI domain.

GitHub has more than 24 million users and more than 67 million code

repositories. It is the largest repository of open source projects in the world.

GitHub exposes robust API for finding repositories using extensive query

language, which we used to find relevant project for analysis. Repositories

in GitHub are categorized by users using tags, which we used to categorize

software projects.

The process of collecting and filtering of repositories from GitHub was

automatic, as described in Fig. 4.1. The primary constraint in selecting

software projects is comparability. The source code collected for agents

uses C, C++, and Java, and so we restricted ourselves to projects in these

languages, to prevent language-specific bias in the metrics. Similarly, we

restricted ourselves to software size (measured in lines of code — LOC) in

comparable ranges.

• Programming languages : C, C++, Java

June 2, 2021 15:25 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-04 page 92

92 Artificial Intelligence Methods for Software Engineering

• high Level of maturity

• Distinct classification in github (for github projects)

• Size > 900 lines of code (LOC)

As a control group to the software projects above (focusing on AI and

agents), we similarly harvested software projects in domains very different

from agents or AI. Table 4.1 shows a breakdown of the number and cate-

gories of the harvested software projects in the dataset (almost a terabyte).

In total, there were 118 projects generally classified as autonomous agents

for software or virtual environments, 20 projects classified as autonomous

robots, and 377 projects in other categories. Table 4.2 lists the minimum,

maximum and median project size in each domain, measured in LOC.

Table 4.1 Software project data breakdown.

Classification Source Software Domain Size Maturity Indicator

Autonomous
Agents

RoboCup 2D simulation Virtual Robots 64 Qualification for RoboCup

ANAC Negotiating Agents 26 Qualification for ANAC

GitHub Chess-Playing Engines 28 > 5 GitHub stars

General GitHub

Audio 54

> 5 GitHub stars

Education 50

Finance 26
Games 34

Graphics 60

IDE 53
Mobile Applications 42

Security 58

Robots

DARPA Challenges Autonomous Car 2 Qualification for Challenge

RoboCup competition Soccer Physical Robots 15
Applied R&D Projects Robots 3

June 2, 2021 15:25 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-04 page 93

Intelligent Agents are More Complex: Initial Empirical Findings 93

Fig. 4.1 Automatic flow of selecting GitHub projects.

June 2, 2021 15:25 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-04 page 94

94 Artificial Intelligence Methods for Software Engineering

Table 4.2 Software projects min, max, and median LOC.

Software Domain Min, Max, Median Size in LOC

Virtual Robots 1010, 153661, 23495
Negotiating Agents 1031, 102816, 1352
Chess-Playing Engines 1084, 59108, 5311

Audio 1065, 1912860, 17010
Education 1026, 393360, 6933

Finance 1136, 450524, 10455

34 1393, 185784, 5064
Graphics 1168, 385036, 18769

IDE 1457, 401897, 32486

Mobile Applications 1210, 129366, 4658
Security 1214, 164228, 10341

Autonomous Car 117848, 117848, 117848

Soccer Physical Robots 15335, 793966, 54895
Robots 3131, 64028, 10588

4.3.3 The Measurement Pipeline

The essence of the process is the measurement, i.e., the generation of mea-

surements from applying code metrics to the software. We focus on source

code metrics in this paper. The source code of each project was processed

to extract two different data structures: a control flow graph, and a code

statistics database. These, in turn, are used to calculate several different

metrics. Additionally we save information on the context of the repository

(name, location, category) and other information like source code language,

competition results, the year in which the code was deployed, etc.

We used two different tools, independently, to allow validation of the

results: CCCC2 and Analizo.3 The two tools were run on two 24-core

XEON servers, each with 76GB of ram. Total CPU time is more than a

month.

The measurement tools provide the following general software metrics,

for different level of analysis (see [32] for detailed descriptions). As with the

restriction on choice of language, we are restricted to using general metrics

as they allow for measuring non-agent code. Otherwise, we’d be able to

use code metrics specific to AOSE [37–40], and specialized languages (e.g.,

2/3APL, JASON).

2http://cccc.sourceforge.net/.
3http://www.analizo.org/.

June 2, 2021 15:25 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-04 page 95

Intelligent Agents are More Complex: Initial Empirical Findings 95

Summary & Project Level Metrics:

• Total Lines of Code (total loc)

• Total Number of Modules (total modules)

• Total Number of Methods (total nom)

Module Level Metrics:

• Afferent Connections per Class (ACC)

• Average Cyclomatic Complexity per Method (ACCM)

• Average Method Lines of Code (AMLOC)

• Average Number of Parameters (ANPM)

• Coupling Between Objects (CBO)

• Coupling Factor (COF)

• Depth of Inheritance Tree (DIT)

• Lack of Cohesion of Methods (LCOM4)

• Lines of Code (LOC)

• Number of Attributes (NOA)

• Number of Children (NOC)

• Number of Methods (NOM)

• Number of Public Attributes (NPA)

• Number of Public Methods (NPM)

• Response for Class (RFC)

• Structural Complexity (SC)

We collected not only the raw metrics above, but also their aggregation in

various ways, so as to minimize the inherent loss of information. Thus for

each metric, we also computed its mean, mode, minimum value, maximum

value, quantiles (lower, max, median, min, ninety five, upper), standard

deviation, variance, skewness, and kurtosis. All in all, each software project

was represented by more than 250 measurements.

4.4 Statistical Analysis

We conducted two separate analysis efforts which had common general

goal. This section details the results of a statistical analysis, while the

next section presents the use of machine-learning analysis. The focus in

both is to reveal differences, if they occur, between the different software

categories, as expressed in the measurements of different metrics.

June 2, 2021 15:25 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-04 page 96

96 Artificial Intelligence Methods for Software Engineering

Every project is represented by approximately 250 different metrics. As

such, it is difficult to attempt to find differentiating metric by hand. We

therefore used a heuristic procedure to assist in finding promising features.

Algorithm 1 describes the procedure. We emphasize that this is a heuristic

procedure, to draw human attention to features of interest, not for statis-

tical inference.

The idea is to iterate over the software domains. For each domain

r, we separate it out from the others, and then use a two-tailed t-test to

contrast the distribution of the metric values in the domain and in all others.

For example, one iteration of the algorithm would run two-sample t-test

between the values of accm mean of projects in the RoboCup 2D against

the values of accm mean of all projects in the control group (tagged as ‘non

agent’).

A lower p value from the t-test is used as a heuristic, indicating that

potentially a good differentiating feature has been detected. We collect all

the domains differentiated by the metric f into a common set indexed by

f . We then look for sets larger than two. We use a threshold to avoid

distractions from a metric that may distinguish a specific domain from all

others, by chance.

Algorithm 1 Common differentiator algorithm

1: for all r ∈ Domains do

2: others← (Domains− {r})
3: for all f ∈ metrics do

4: if 2-tailed t-test(rf , othersf) < 0.05 then

5: CommonSetf ← CommonSetf
⋃
r

6: for all f ∈ metrics do

7: if |CommonSetf | >= 3 then . 3 or more clustered together?

8: selectedf ← CommonSetf
return all selectedf

Table 4.3 shows the output of the algorithm for each individual metric,

when listed in increasing order of probability (i.e., in order of decreasing

indication of separation power). The top four metrics are the ACCM mean

and its upper and median quantiles, and the Coupling Factor (CoF) met-

ric, which measures coupling between modules. These four metrics clearly

distinguish between the agent domains (RoboCup 2D Simulation, Chess,

ANAC agents).

June 2, 2021 15:25 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-04 page 97

Intelligent Agents are More Complex: Initial Empirical Findings 97

Table 4.3 The top distinguishing features in descending order, and the software

domains they cluster together.

Metric Repositories p Value

accm mean [RoboC-2D, Chess, ANAC] 1.18E-04
accm quantile upper [RoboC-2D, Chess, ANAC] 8.78E-04

accm quantile median [RoboC-2D, Chess, ANAC] 1.17E-03

total cof [RoboC-2D, Chess, ANAC] 1.19E-03
noa skewness [RoboC-2D, IDE, Graphics] 2.59E-03

nom quantile upper [RoboC-2D, ANAC, Audio] 6.27E-03

amloc quantile upper [RoboC-2D, Chess, ANAC, ...] 7.99E-03
nom mean [RoboC-2D, ANAC, Graphics, Audio] 1.07E-02

anpm quantile upper [RoboC-2D, ANAC, Graphics] 1.14E-02
noa kurtosis [RoboC-2D, Ide, Games, Graphics] 1.28E-02

We use the p value in Table 4.3 as a heuristic indicator for the human

analyst. It gives an indication of the strength of the clustering, independent

of the content of the cluster. Even if the agent domains could be distin-

guished from the others, we could easily expect other software domains

to be so clustered. However, the fact is that the strongest distinguishing

metrics put autonomous agents together, apart from other domains.

We then moved to examining the results visually, using box-plots to

display the distribution of specific metrics of each software domain. We

seek features which, as clearly as possible, distinguish the three classes of

domains.

Indeed some metrics clearly are different between domains. For example,

Fig. 4.2 show the box-plot distribution of the Lack-of-Cohesion (LCOM4)

metric, which received generally low rank by the heuristic procedure (i.e., a

relative high p value). Here, we clearly see that the RoboCup-Other-Leagues

group stands out, compared to the other software domains. However, it is

the only domain in the cluster, and does not distinguish the agents or robots

domains from others.

Other metrics may sometimes cluster together more than one domain,

but are not able to distinguish agents from non-agents code. For example,

Fig. 4.3 show the distribution of the Structural Complexity metric. We can

see that the inner-quantile range and median are similar between RoboCup

2D and Other RoboCup Leagues, suggesting some commonality in behavior

of the structure of classes and objects. However, it reveals no commonality

between the different domains of the same class (Agents, Robots, or General

Software). In other words, it distinguishes some domains from others (to

an extent) but does not cluster together domains that come from the same

software class.

June 2, 2021 15:25 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-04 page 98

98 Artificial Intelligence Methods for Software Engineering

Ro
bo
cup

-2D An
ac

Ch
ess

Au
tod
riv
ers

Ro
bo
-Pr
oje
cts

Ro
bcu

p-O
the
r-L
ea
gu
es

Gra
ph
ics

Se
cur
ity

Ro
bo
t-S
im
ula
tio
n
Ga
me
s

Au
dio Ide

Mo
bile

Ed
uca

tio
n

Fin
an
ce

2

4

6

8

10

12

Fig. 4.2 Box plot distribution of LCOM4 means. The vertical axis range is 0–12.

Ro
bo
cup

-2D An
ac

Ch
ess

Au
tod
riv
ers

Ro
bo
-Pr
oje
cts

Ro
bcu

p-O
the
r-L
ea
gu
es

Gra
ph
ics

Se
cur
ity

Ro
bo
t-S
im
ula
tio
n
Ga
me
s

Au
dio Ide

Mo
bile

Ed
uca

tio
n

Fin
an
ce

0

10

20

30

40

Fig. 4.3 Box plot distribution of the Structural Complexity metric for software domains.

The vertical axis range is 0–40. RoboCup 2D simulation and RoboCup-Other-Leagues
have larger variance and higher values than all other software domains.

In contrast, metrics that were ranked high by Alg. 1 visually show much

more promise. For example, Table 4.3 suggests the mean ACCM is and the

MLOC upper quartile are promising, in terms of their ability to distinguish

between agents and non-agent software. Figures 4.4 and 4.5 show the box

June 2, 2021 15:25 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-04 page 99

Intelligent Agents are More Complex: Initial Empirical Findings 99

Ro
bo
cup
-2D An

ac
Ch
ess

Au
tod
riv
ers

Ro
bo
-Pr
oje
cts

Ro
bcu
p-O
the
r-L
ea
gu
es

Gra
ph
ics

Se
cur
ity

Ro
bo
t-S
im
ula
tio
n
Ga
me
s
Au
dio Ide

Mo
bile

Ed
uca
tio
n

Fin
an
ce

1

2

3

4

5

6

7

analizo_accm_mean

Fig. 4.4 Box plot distribution of mean ACCM of software domains. The vertical axis

range is 0–8.

Ro
bo
cup

-2D
Ch
ess An

ac

Ro
bcu

p-O
the
r-L
ea
gu
es

Ro
bo
-Pr
oje
cts

Au
tod
riv
ers

Se
cur
ity

Mo
bile

Ed
uca

tio
n Ide

Ga
me
s

Fin
an
ce

Gra
ph
ics

Ro
bo
t-S
im
ula
tio
n
Au
dio

0

20

40

60

80

amloc_quantile_upper

Fig. 4.5 Box plot distribution of AMLOC upper quantile. The vertical axis range is
0–40.

plot distributions these metrics. Visually, in both figures, the box-plots

for the Agents class (RoboCup 2D, ANAC, Chess) are clearly prominent

relative to other software domains.

June 2, 2021 15:25 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-04 page 100

100 Artificial Intelligence Methods for Software Engineering

Interim Summary. We defer a discussion of the meaning of these find-

ings to Sec. 4.6. For now, based on the manual analysis procedure de-

scribed, we only state the hypothesis that ACCM and AMLOC metrics are

different between autonomous agents software and general software in other

domains. Moreover, it seems robotics code lies somewhere in between, in

terms of these metrics.

4.5 Machine Learning Analysis

A second approach for our investigation uses machine learning techniques,

to complement the manual analysis. Humans detect patterns in visualiza-

tions that computers may miss, yet may also fall prey to misconceptions.

Thus an automated analysis can complement the manual process.

We attempted to use several different machine learning classifiers to dis-

tinguish agent and non-agent software domains, with the goal of analyzing

successful classification schemes, to reveal the metrics, or metric combina-

tions, which prove meaningful in the classification.

Pre-processing the data. We filtered outliers at the top and bottom 3%

of the data (i.e., within the 3–97 percentiles). Aggregated features (total,

median, etc.) were removed to minimize the effect of project size on the

model, and to reduce the number of features (standing originally at around

250). The data was divided into a training (85%) and testing (15%) sets.

Classification procedure. We choose one vs many classification strat-

egy, similarly to the manual analysis above. Iterating over all software

classes, we trained a binary classifier to differentiate between samples of

one software domain (ex. Audio) to all other software classes. This cre-

ates an inherent imbalance in the number of examples presented, which we

alleviated by using random over-sampling of the minority class.

For classification, we used the following classification algorithms: Sup-

port Vector Machines, Logistics Regression, and Gradient-Boosted Decision

Trees. The implementations are open-source packages (scikit-learn4 and

XGBoost5). The performance of classifiers was carried out using two scor-

ing functions, familiar to machine learning practitioners: F1 and AUC (area

under the ROC curve). In both, a greater value indicates better perfor-

mance. Each of the tables below (Tables 4.4–4.6) shows the top classifiers

4https://scikit-learn.org/.
5https://github.com/dmlc/xgboost.

June 2, 2021 15:25 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-04 page 101

Intelligent Agents are More Complex: Initial Empirical Findings 101

Table 4.4 SVM top five scoring software domain classifiers.

Class Repositories F1 Score Feature Ranking

Agent Robocup-2D 0.67 [accm quantile median, accm quantile upper, noc mean]

Agent ANAC 0.62 [accm quantile lower, noa quantile lower, noc mean]
General IDE 0.33 [acc quantile lower, dit mean, noc quantile upper]

General Mobile 0.32 [acc quantile lower, acc quantile median, accm quantile lower]

General Graphics 0.20 [accm quantile lower, dit quantile lower, dit quantile median]

Table 4.5 Logistic Regression top scoring software classes.

Class Repositories AUC F1 Feature Ranking

Agent ANAC 0.99 0.80 [accm quantile upper, noa quantile lower, rfc quantile lower]

Agent Robocup-2D 0.97 0.70 [amloc quantile upper, noc mean, npa mean]
Robot Robcup-Other-Leagues 0.87 0.50 [amloc quantile lower, cbo mean, nom mean]

General IDE 0.77 0.44 [amloc quantile median, anpm mean, npa mean]

General Graphics 0.76 0.24 [anpm mean, lcom4 mean, mmloc mean]

built using the classification algorithms. In each, we list the top classifica-

tion results of a single domain versus all others. Our interest, however, is

not so much on being able to classify a specific domain, but instead in the

metrics used as features when classifying Agent software. The last column

of each table lists the most informative 3–4 features (metrics) used by the

classifier. Frequent recurrence may hint at important metrics.

Table 4.4 shows the top results from the SVM classifiers, in decreasing

order of performance. SVM classification output is only “Hard decision”

without probability distribution of the different classes and thus the AUC

score is not available for it. We used the default SVM parameters in the

implementation. The F1 scores in the table are far from indicating great

success, yet we note the presence of the mean ACCM metric in the list

of features important for classification for the repositories belongs to the

“Agent” class.

We next used classifiers built using Logistic Regression (LR). We used

L2 regularization, and stopping criteria of 100 iterations. The top LR

classifiers are reported in Table 4.5. In general their scores are lower than

the SVM classifiers reported above.

Finally, we used Gradient-Boosted Decision Tree classifiers. The idea

in this technique is to use an ensemble of decision trees based on subsets of

the samples and features, to lower the risk of over-fitting while maintaining

high accuracy. The classifiers were built using the XGBoost package, using

the default parameters. The results are shown in Table 4.6. Overall, the

results are much better than the other two classification attempts. Some

individual domain classifiers achieve high scores.

June 2, 2021 15:25 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-04 page 102

102 Artificial Intelligence Methods for Software Engineering

Table 4.6 Gradient Boosted Decision Trees top scoring soft-

ware classes, in decreasing order of F1 scores.

Agent/General Class (Domain) AUC F1

Agent Robocup-2D 0.97 0.85
Agent ANAC 0.98 0.67

Agent Chess 0.84 0.44

Robot Robcup-Other-Leagues 0.89 0.40
General Graphics 0.65 0.31

General Security 0.76 0.27

General Mobile 0.80 0.22
General Games 0.49 0.00

General Audio 0.56 0.00

General Robot-Simulation 0.66 0.00
General Education 0.66 0.00

General Finance 0.73 0.00
General IDE 0.75 0.00

Robot Robo-Projects 0.86 0.00

Most importantly, however, we note that the top performing classi-

fiers (1) are those that are able to distinguish agent software from other

types of software, and (2) utilize the mean ACCM and AMLOC metrics

in their classification decisions. These results concur with the conclusions

of the manual analysis described earlier. We also observe that software

from physical robots participating in RoboCup (domain: Robocup-Other-

Leagues) has also been classified successfully, using the AMLOC metric

(among other metrics).

4.6 Discussion

Ultimately, our goal in this investigation is not only finding out if there is

a difference between agent or robot software, and other software domains,

but also to uncover the nature of this difference. This section discusses the

results presented above, and attempts to draw conclusions, lessons, and

hypotheses for future investigations.

ACCM and Control Complexity of Agents. First, it is clear that the

ACCM measure is a recurring metric in successful classification schemes

distinguishing agent software from other software. This is true both in

the manual analysis, as well as in classifiers generated by machine learning

algorithms. In general, Agent software seems to have high ACCM mea-

surements, compared to other software domains. Robot software does have

June 2, 2021 15:25 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-04 page 103

Intelligent Agents are More Complex: Initial Empirical Findings 103

higher ACCM (on average) than non-agent software, but the difference is

much less pronounced than between Agent and general software. It is there-

fore immediately interesting to better understand what the ACCM actually

measures.

ACCM — Average Cyclomatic Complexity per Method — is a more

modern variant of the Cyclomatic Complexity (CC) metric introduced by

McCabe in 1976 [24]. Briefly, the cyclomatic complexity of software is a

measure of the number of possible execution paths through its control flow

graph. The more branching points, conditional loops, and decision points

in the software, the greater its CC. The ACCM measures the CC value at

the method level, for all methods within a module. It then computes the

mean of these measurements to introduce a single value which represents

the complexity of the module as a whole.

Cyclomatic Complexity has been generally shown to be inversely corre-

lated to code quality and defect frequency. Greater CC is correlated with a

greater number of defects in the software, persistent bugs, and other indica-

tions of poor design and code quality. Indeed, the correlation is sufficiently

accepted, that there exists recommended practices for the maintenance of

CC values of new software within accepted safe range, below the ACCM

measurements we generally see here.

Is Agent Software Inherently More Complex? (In short: YES!)

There are alternative explanations for the higher ACCM values we observe

in agent software: (1) that agent software is just inherently more complex,

because the tasks tackled by the software requires greater complexity in the

control flow of the software. Or, (2) that the agent code is just more buggy,

or written by programmers who are not as well-trained, e.g., too academic?

We offer evidence that the first explanation is the correct one, i.e., that

agent software is inherently more complex. One benefit of using competition

software in this study is that alongside the software metrics, we also have

clear quality metrics in terms of the success of the software. Specifically,

we show below (Fig. 4.6) a plot of the ACCM measure from a subset of

RoboCup software agent, vs the code effectiveness as measured by the mean

goal difference of the agents in competitions. We see a clear inverse relation

between the two: higher ACCM is associated with poor performance, just

as it is in other software domains. However, the ACCM of winning agents

is still higher than standard practice in software.

June 2, 2021 15:25 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-04 page 104

104 Artificial Intelligence Methods for Software Engineering

Fig. 4.6 ACCM (Average Cyclomatic Complexity per Module, vertical axis) vs Effec-
tiveness (here, measured by mean goal difference per game — horizontal axis, larger

is better). The goal difference was extracted automatically from log files of individual
games.

What about other measures? A critical look at the results of this

study raises the issue of other measures. It is true that ACCM is a clear

distinguishing characteristic of agent vs non-agent code. However, it is

not so clear that the machine learning classifiers can use it, ignoring other

metrics. Indeed, some very successful classifiers do not use ACCM at all.

Indeed, we saw also that the AMLOC measure is also a potentially good

metric from this respect, as well as the MMLOC measure.

While we do not refute the possibility that other metrics may be as good

as ACCM or complement it, we point out that many metrics are known to

be correlated in practice (see, e.g., [41]), and thus it may be that a machine

learning classifier using a particular metric could have also worked as well

with a different one, that is highly correlated. In particular, in our own

study here, we found that the Pearson correlation between AMLOC and

ACCM is 0.84, and the correlation between MMLOC and ACCM is 0.90.

So a preference for one metric over another does not necessarily mean that

the other metric was not as useful.

4.7 The Big Picture and Future Directions

This paper offers the first empirical evidence that agent software is in-

deed inherently different from other types of software, intended for other

domains. The empirical evidence was collected by analyzing hundreds of

June 2, 2021 15:25 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-04 page 105

Intelligent Agents are More Complex: Initial Empirical Findings 105

software projects of comparable sizes, using two different types of analysis.

In particular, we find that agent software has greater control flow complex-

ity in general, which conjecture to be inherent to the types of tasks agents

are deployed to solve — tasks that require autonomy in decision-making,

and thus careful deliberation over many possibilities.

Given this conclusion, it becomes clear that agent-oriented software

engineering can increase their impact by providing tools, methodologies,

and frameworks that directly tackle the issue of complexity. For instance,

agent architectures may be so successful because they assist in breaking

down the inherent complexity of tasks. We leave this question for future

work.

References

[1] Y. Shoham, Agent-oriented programming, Artif. Intell. 60, 1, pp. 51–92
(1993), http://dx.doi.org/10.1016/0004-3702(93)90034-9.

[2] L. Padgham, J. Thangarajah and M. Winikoff, Prometheus Research Direc-
tions, in Agent-Oriented Software Engineering. Springer, Berlin, Heidelberg,
ISBN 978-3-642-54431-6 978-3-642-54432-3, pp. 155–171 (2014), ISBN 978-3-
642-54431-6 978-3-642-54432-3, https://link.springer.com/chapter/10.
1007/978-3-642-54432-3_8.

[3] S. A. DeLoach, O-MaSE: An Extensible Methodology for Multi-agent Sys-
tems, in Agent-Oriented Software Engineering. Springer, Berlin, Heidelberg,
ISBN 978-3-642-54431-6 978-3-642-54432-3, pp. 173–191 (2014), ISBN 978-3-
642-54431-6 978-3-642-54432-3, https://link.springer.com/chapter/10.
1007/978-3-642-54432-3_9.

[4] J. J. Gomez-Sanz, Ten Years of the INGENIAS Methodology, in
Agent-Oriented Software Engineering. Springer, Berlin, Heidelberg, ISBN
978-3-642-54431-6 978-3-642-54432-3, pp. 193–209 (2014), ISBN 978-3-
642-54431-6 978-3-642-54432-3, https://link.springer.com/chapter/10.
1007/978-3-642-54432-3_10.

[5] O. Boissier, R. H. Bordini, J. F. Hübner and A. Ricci, Unravelling
Multi-agent-Oriented Programming, in Agent-Oriented Software Engineer-
ing. Springer, Berlin, Heidelberg, ISBN 978-3-642-54431-6 978-3-642-54432-
3, pp. 259–272 (2014), ISBN 978-3-642-54431-6 978-3-642-54432-3, https:
//link.springer.com/chapter/10.1007/978-3-642-54432-3_13.

[6] N. R. Jennings, On agent-based software engineering, Artificial Intelli-
gence 117, 2, pp. 277–296 (2000-03-01), http://www.sciencedirect.com/
science/article/pii/S0004370299001071.

[7] A. Sturm and O. Shehory, Agent-Oriented Software Engineering: Re-
visiting the State of the Art, in Agent-Oriented Software Engineering.
Springer, Berlin, Heidelberg, ISBN 978-3-642-54431-6 978-3-642-54432-3,
pp. 13–26 (2014), ISBN 978-3-642-54431-6 978-3-642-54432-3, https://

link.springer.com/chapter/10.1007/978-3-642-54432-3_2.

http://dx.doi.org/10.1016/0004-3702(93)90034-9
https://link.springer.com/chapter/10.1007/978-3-642-54432-3_8
https://link.springer.com/chapter/10.1007/978-3-642-54432-3_8
https://link.springer.com/chapter/10.1007/978-3-642-54432-3_9
https://link.springer.com/chapter/10.1007/978-3-642-54432-3_9
https://link.springer.com/chapter/10.1007/978-3-642-54432-3_10
https://link.springer.com/chapter/10.1007/978-3-642-54432-3_10
https://link.springer.com/chapter/10.1007/978-3-642-54432-3_13
https://link.springer.com/chapter/10.1007/978-3-642-54432-3_13
http://www.sciencedirect.com/science/article/pii/S0004370299001071
http://www.sciencedirect.com/science/article/pii/S0004370299001071
https://link.springer.com/chapter/10.1007/978-3-642-54432-3_2
https://link.springer.com/chapter/10.1007/978-3-642-54432-3_2

June 2, 2021 15:25 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-04 page 106

106 Artificial Intelligence Methods for Software Engineering

[8] E. Platon, N. Sabouret and S. Honiden, An architecture for exception man-
agement in multiagent systems, International Journal of Agent-Oriented
Software Engineering 2, 3, p. 267 (2008), http://www.inderscience.com/
link.php?id=19420.

[9] M. Winikoff, Future Directions for Agent-Based Software Engineering, Int.
J. Agent-Oriented Softw. Eng. 3, 4, pp. 402–410 (2009), http://dx.doi.

org/10.1504/IJAOSE.2009.025319.
[10] B. P. Gerkey, R. T. Vaughan and A. Howard, The player/stage project:

Tools for multi-robot and distributed sensor systems, in Proceedings of the
International Conference on Advanced Robotics (2003), http://cres.usc.
edu/cgi-bin/print_pub_details.pl?pubid=288.

[11] R. T. Vaughan and B. P. Gerkey, Really Reusable Robot Code and the
Player/Stage Project, in Brugali, D. (ed.), Software Engineering for Exper-
imental Robotics, p. 24 (2006).

[12] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler and A. Ng, ROS: an open-source Robot Operating System, in
International Conference on Robotics and Automation, p. 6 (2009).

[13] D. Brugali, Software Engineering for Experimental Robotics. Springer (2007),
ISBN 978-3-540-68951-5, google-Books-ID: DEpsCQAAQBAJ.

[14] D. Brugali and P. Scandurra, Component-based robotic engineering (Part
I), IEEE Robotics Automation Magazine 16, 4, pp. 84–96 (2009).

[15] D. Brugali and A. Shakhimardanov, Component-Based Robotic Engineering
(Part II), IEEE Robotics Automation Magazine 17, 1, pp. 100–112 (2010).

[16] D. Brugali, Model-Driven Software Engineering in Robotics: Models Are
Designed to Use the Relevant Things, Thereby Reducing the Complexity
and Cost in the Field of Robotics, IEEE Robotics Automation Magazine 22,
3, pp. 155–166 (2015).

[17] D. Calisi, A. Censi, L. Iocchi and D. Nardi, Openrdk: A modular framework
for robotic software development, in IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 1872–1877 (2008).

[18] A. Elkady and T. Sobh, Robotics Middleware: A Comprehensive Literature
Survey and Attribute-Based Bibliography, Journal of Robotics 2012, pp. 1–
15 (2012), http://www.hindawi.com/journals/jr/2012/959013/.

[19] E. Tsardoulias and P. Mitkas, Robotic frameworks, architectures and mid-
dleware comparison, arXiv:1711.06842 [cs] (2017), http://arxiv.org/abs/
1711.06842, arXiv: 1711.06842.

[20] M. Montemerlo, N. Roy and S. Thrun, Perspectives on standardization in
mobile robot programming: the Carnegie Mellon Navigation (CARMEN)
Toolkit, in Proceedings 2003 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS 2003) (Cat. No 03CH37453), Vol. 3,
pp. 2436–2441 (2003).

[21] N. T. Dantam, K. B�ondergaard, M. A. Johansson, T. Furuholm and
L. E. Kavraki, Unix Philosophy and the Real World: Control Software for
Humanoid Robots, Frontiers in Robotics and AI 3 (2016).

[22] H. Bruyninckx, Open robot control software: the OROCOS project, in Pro-
ceedings 2001 ICRA. IEEE International Conference on Robotics and Au-
tomation (Cat. No. 01CH37164), Vol. 3, pp. 2523–2528 (2001).

http://www.inderscience.com/link.php?id=19420
http://www.inderscience.com/link.php?id=19420
http://dx.doi.org/10.1504/IJAOSE.2009.025319
http://dx.doi.org/10.1504/IJAOSE.2009.025319
http://cres.usc.edu/cgi-bin/print_pub_details.pl?pubid=288
http://cres.usc.edu/cgi-bin/print_pub_details.pl?pubid=288
http://www.hindawi.com/journals/jr/2012/959013/
http://arxiv.org/abs/1711.06842
http://arxiv.org/abs/1711.06842

June 2, 2021 15:25 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-04 page 107

Intelligent Agents are More Complex: Initial Empirical Findings 107

[23] N. T. Dantam and M. Stilman, Ach: IPC for Real-Time Robot Control,
Technical Report GT-GOLEM-2011-001, Georgia Institute of Technology
(2011).

[24] T. J. McCabe, A complexity measure, IEEE Transactions on Software En-
gineering SE-2, 4, pp. 308–320 (1976).

[25] M. H. Halstead, Elements of Software Science (Operating and Programming
Systems Series). Elsevier Science Inc. (1977), ISBN 978-0-444-00205-1.

[26] A. J. Albrecht, Measuring application development productivity, in IBM Ap-
plications Development Joint SHARE/GUIDE Symposium. Monterey, Cali-
fornia, pp. 83–92 (1979).

[27] C. Jones, Applied Software Measurement: Global Analysis of Productivity
and Quality, 3rd edn. McGraw-Hill, New York (2008).

[28] B. W. Boehm, Software Engineering Economics, 1st edn. Prentice Hall PTR,
Upper Saddle River, NJ, USA (1981), ISBN 0138221227.

[29] S. R. Chidamber and C. F. Kemerer, A metrics suite for object oriented de-
sign, IEEE Transactions on Software Engineering 20, 6, pp. 476–493 (1994-
06).

[30] R. V. Hudli, C. L. Hoskins and A. V. Hudli, Software metrics for object-
oriented designs, in Proceedings 1994 IEEE International Conference on
Computer Design: VLSI in Computers and Processors, pp. 492–495 (1994-
10).

[31] E. K. Piveta, A. Moreira, M. S. Pimenta, J. Araújo, P. Guerreiro and
R. T. Price, An empirical study of aspect-oriented metrics, Science of
Computer Programming 78, 1, pp. 117–144 (2012-11), http://linkinghub.
elsevier.com/retrieve/pii/S0167642312000287.

[32] N. Fenton and J. Bieman, Software Metrics: A Rigorous and Practical Ap-
proach, Third Edition. CRC Press (2014-10-01), ISBN 978-1-4398-3823-5,
google-Books-ID: lx OBQAAQBAJ.

[33] R. V. Kumar and R. Chandrasekaran, Classification of software projects
using k-means, discriminant analysis and artificial neural network, Interna-
tional Journal of Scientific & Engineering Research 4, 2, p. 7 (2013).

[34] L. B. L. De Souza and M. D. A. Maia, Do software categories impact coupling
metrics? in Proceedings of the 10th Working Conference on Mining Soft-
ware Repositories, MSR ’13. IEEE Press, ISBN 978-1-4673-2936-1, pp. 217–
220 (2013), ISBN 978-1-4673-2936-1, http://dl.acm.org/citation.cfm?

id=2487085.2487128.
[35] M. Stojkovski, Thresholds for Software Quality Metrics in Open Source An-

droid Projects, Master’s thesis, NTNU (2017).
[36] P. Meirelles, C. Santos Jr., J. Miranda, F. Kon, A. Terceiro and C. Chavez,

A study of the relationships between source code metrics and attractive-
ness in free software projects, in 2010 Brazilian Symposium on Software
Engineering. IEEE, ISBN 978-1-4244-8917-6, pp. 11–20 (2010), ISBN 978-
1-4244-8917-6, http://ieeexplore.ieee.org/document/5631691/.

[37] I. Garćıa-Magariño, M. Cossentino and V. Seidita, A Metrics Suite for
Evaluating Agent-oriented Architectures, in Proceedings of the 2010 ACM
Symposium on Applied Computing, SAC ’10. ACM, New York, NY,

http://linkinghub.elsevier.com/retrieve/pii/ S0167642312000287
http://linkinghub.elsevier.com/retrieve/pii/ S0167642312000287
http://dl.acm.org/citation.cfm?id=2487085.2487128
http://dl.acm.org/citation.cfm?id=2487085.2487128
http://ieeexplore.ieee.org/document/5631691/

June 2, 2021 15:25 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-04 page 108

108 Artificial Intelligence Methods for Software Engineering

USA, ISBN 978-1-60558-639-7, pp. 912–919 (2010), ISBN 978-1-60558-639-
7, doi:10.1145/1774088.1774278, http://doi.acm.org/10.1145/1774088.

1774278, event-place: Sierre, Switzerland.
[38] F. Alonso, J. L. Fuertes, L. Mart́ınez and H. Soza, Measuring the Pro-

Activity of Software Agents, 2010 Fifth International Conference on Soft-
ware Engineering Advances, pp. 319–324 (2010), doi:10.1109/ICSEA.2010.
55.

[39] F. Alonso, J. L. Fuertes, L. Martinez and H. Soza, Towards a set of Mea-
sures for Evaluating Software Agent Autonomy, in 2009 Eighth Mexican
International Conference on Artificial Intelligence, pp. 73–78 (2009), doi:
10.1109/MICAI.2009.15.

[40] M. Cossentino, C. Lodato, S. Lopes, P. Ribino and V. Palermo, Metrics
for Evaluating Modularity and Extensibility in HMAS Systems, in AAMAS
(2015).

[41] G. Jay, J. E. Hale, R. K. Smith, D. Hale, N. A. Kraft and C. Ward,
Cyclomatic complexity and lines of code: Empirical evidence of a stable
linear relationship, Journal of Software Engineering and Applications 02,
3, pp. 137–143 (2009), http://www.scirp.org/journal/doi.aspx?DOI=10.
4236/jsea.2009.23020.

http://doi.acm.org/10.1145/1774088.1774278
http://doi.acm.org/10.1145/1774088.1774278
http://www.scirp.org/journal/doi.aspx?DOI=10.4236/ jsea.2009.23020
http://www.scirp.org/journal/doi.aspx?DOI=10.4236/ jsea.2009.23020

April 21, 2021 11:54 ws-rv9x6-9x6 Book Title 12360-04a-divider-3 page 109

AI for Software Development

B1948 Governing Asia

B1948_1-Aoki.indd 6B1948_1-Aoki.indd 6 9/22/2014 4:24:57 PM9/22/2014 4:24:57 PM

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank

May 31, 2021 14:1 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-05 page 111

© 2021 World Scientific Publishing Company
https://doi.org/10.1142/9789811239922 0005

Chapter 5

Sequence-to-Sequence Learning for
Automated Software Artifact

Generation

Zhongxin Liua, Xin Xiab and David Loc

aZhejiang University, China
bMonash University, Australia

cSingapore Management University, Singapore

5.1 Introduction

During the development and maintenance of a software system, developers

produce many digital artifacts besides source code, e.g., requirement docu-

ments, code comments, change history, bug reports, etc. Such artifacts are

valuable for developers to understand and maintain the software system.

However, creating software artifacts can be burdensome and developers

sometimes neglect to write and maintain important artifacts [1, 2]. This

problem can be alleviated by software artifact generation tools, which can

assist developers in creating software artifacts and automatically generate

artifacts to replace existing empty ones.

There have been many approaches proposed to automatically gener-

ate software artifacts. Some of them rely on manually derived templates

and rules for generation, namely, templated-based approaches [3–5]. Some

other approaches generate software artifacts by leveraging Information Re-

trieval (IR) techniques to retrieve and reuse existing artifacts, i.e., IR-based

approaches [6–8]. Recently, researchers proposed to adopt sequence-to-

sequence (seq2seq) learning to automate software artifact generation. For

example, there were many studies focusing on generating summaries for

code snippets, i.e., code summarization, by learning from code-comment

pairs using seq2seq models [9–12]. Some work adopted seq2seq models to

111

https://doi.org/10.1142/9789811239922_0005

May 31, 2021 14:1 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-05 page 112

112 Artificial Intelligence Methods for Software Engineering

“translate” code changes to their corresponding commit messages [13, 14].

Several researchers also investigated the effectiveness of seq2seq models in

generating pull request descriptions [2] and app review responses [15].

The focus of this chapter is automated software artifact generation

(hereon, SAG) using seq2seq learning. This research direction is inspired

by the similarities between natural language generation (NLG) and SAG

and the effectiveness of seq2seq models on NLG tasks. When applied to

SAG, seq2seq models are able to automatically learn generation patterns

from massive software artifact data and adaptively adopt such learned pat-

terns for generation. Compared to template-based and IR-based techniques,

seq2seq-model-based approaches do not require expensive manual efforts

to summarize and implement templates or rules, are not limited to term-

based summaries, are able to produce novel expressions and can be more

general. In addition, seq2seq learning is developing rapidly and there are

more and more publicly available software artifacts on the Internet, which

make seq2seq-model-based SAG a timely and promising research direction.

This chapter aims to provide a comprehensive introduction to this re-

search direction, i.e., seq2seq-model-based SAG. Specifically, we first in-

troduce the preliminary knowledge of seq2seq models, including the RNN,

the encoder-decoder model, the attention mechanism, and some commonly-

used evaluation metrics for SAG (Sec. 5.2). Next, three case studies, i.e.,

code comment generation, pull request description generation, and app re-

view response generation, are presented to illustrate how to build SE-task-

specific parallel corpora for seq2seq models and how to customize seq2seq

models in a SE-task-specific way (Secs. 5.3–5.5). These case studies cover

three important types of software artifacts, i.e., documents of source code,

documents of code changes and responses for user feedback. Each of them

presents the state-of-the-art result in a specific task. Then, we summa-

rize the features of the tasks covered in the three case studies and make a

comparison of the cases with respect to such features (Sec. 5.6). Finally,

the challenges and opportunities of this research direction are discussed in

Sec. 5.7 and we conclude this chapter in Sec. 5.8. This chapter can serve as

a starting point for researchers and practitioners interested in this research

area. Hopefully, it can inspire experts in this area to propose more advanced

seq2seq models for generating diverse software artifacts and encourage and

guide practitioners to apply these generative models in practice.

May 31, 2021 14:1 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-05 page 113

Seq2Seq Learning for Automated SAG 113

5.2 Preliminary Knowledge of Seq2Seq Learning

Attentional RNN-based encoder-decoder models are an effective and popu-

lar family of seq2seq models. Much work on SAG is based on such models.

5.2.1 Recurrent Neural Network (RNN)

The recurrent neural network (RNN) is a kind of neural network specialized

for processing sequential data [16, 17]. It recurrently uses the same cell to

process each element of a sequence, hence it can efficiently handle variable-

length sequences.

To process a sequence of tokens x = {x1, x2, ..., x|x|}, we first need to

map each token xi into a real-value vector ei (usually through a learnable

lookup table named embedding layer). Then at each time step i, the RNN

takes as input ei and the previous hidden state hi−1 to compute the current

hidden state hi as follows:

hi = f(hi−1, ei) (5.1)

Long short-term memory (LSTM) [18] and gated recurrent unit (GRU) [19]

are two popular implementations of f , which are capable of preserving long-

term dependencies in sequences through gating mechanisms. hi is expected

to adaptively capture the information of x1 to xi, and can be regarded as

xi’s representation.

Some tasks, such as part-of-speech tagging in NLP, require xi’s repre-

sentation to capture information from the whole sequence instead of only

the subsequence before xi. Bidirectional RNNs [20] were invented to meet

this need, which calculate not only the forward state hi from left to right,

but also a backward state gi from right to left, as follows:

gi = f ′(gi+1, ei)

f ′ is another RNN cell. The hidden state hbi of a bidirectional RNN at time

step i is then constructed by concatenating hi and gi:

hbi = [hi : gi] (5.2)

5.2.2 Encoder-Decoder Model

The encoder-decoder model can be used to “translate” a source sequence

to a target sequence. It consists of two components, namely encoder and

decoder, which are usually two distinct RNNs. The encoder is responsible

for encoding the source sequence: It first maps each source token xi into a

May 31, 2021 14:1 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-05 page 114

114 Artificial Intelligence Methods for Software Engineering

vector ei using an embedding layer. At each encoding step i, xi’s hidden

state hi is calculated using Eq. (5.1) (RNN) or Eq. (5.2) (Bidirectional

RNN). The last hidden state h|x|, which can be regarded as the intermediate

representation of the source sequence, is input into the decoder as its initial

hidden state s0.

The decoder is trained to generate the target sequence by sequentially

predicting each target token yi conditioned on the current hidden state st
and an input token ŷt−1:

p(yt|y<t,x) = g(ŷt−1, st) (5.3)

where ŷt−1 is the previous reference token yt−1 when training or the previ-

ously generated token when testing. Specifically, ŷt−1 is first mapped to its

embedding êt. Next, the hidden state st is computed using Eq. (5.1) with

st−1 and êt as input. Then, st is projected to the vocabulary distribution

Pvocab of this step as follows:

Pvocab = softmax(W vst + b) (5.4)

where W v and b are learnable parameters. Pvocab is used to decide which

token to generate, which means:

p(yt|y<t,x) = Pvocab(yt) (5.5)

The probability of generating y given x is hence calculated as:

p(y|x) =

|y|∏
t=1

p(yt|y<t,x)

The negative log-likelihood function is commonly used as the loss func-

tion and is defined as:

lossnll = − 1

N

N∑
n=1

log(p(y|x)) (5.6)

where N is the number of training samples. The parameters in the model

can be estimated by minimizing lossnll through an optimization algorithm

such as stochastic gradient descent (SGD).

5.2.3 Attention Mechanism

One fixed-dimension vector h|x| may not be powerful enough to capture all

relevant information in a source sequence. Due to this problem, attention

mechanisms were proposed to enhance the encoder-decoder model [21]. The

goal of attention mechanisms is to adaptively derive a context vector ct

May 31, 2021 14:1 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-05 page 115

Seq2Seq Learning for Automated SAG 115

from encoder’s hidden states at each decoding step t so that the decoder

can better capture source-side information.

A commonly used attention mechanism named additive attention [21]

works as follows: at each decoding step t, it takes as input all encoder

hidden states {h1, ...,h|x|} and the previous decoder hidden state st−1,

and computes ct as the weighted sum of {h1, ...,h|x|}:

ct =

|x|∑
i=1

αtihi (5.7)

The weight αti is defined as:

αti =
exp(eti)∑|x|
k=1 exp(etk)

(5.8)

where eti can be regarded as the importance score of xi with respect to the

current output token and is computed by an alignment model :

eti = v>e tanh(W est−1 +U ehi) (5.9)

where ve, W e and U e are the weight matrices jointly learned with the

model.

Figure 5.1 presents the structure of the attentional encoder-decoder

model. In such a model, ct is also used to calculate the probability of

generating yt, so Eq. (5.3) is modified as:

p(yt|y<t,x) = g(ŷt−1, st, ct)

x1

e1

h1

x2

e2

h2

x3

e3

h3h0

<s> ŷ1 ŷ2

ê1

s1

Pvocab

y1

ê2

s2

Pvocab

y2

ê3

s3

Pvocab

y3

s0

c3

Fig. 5.1 The structure of the attentional encoder-decoder model. The encoder
and decoder use two distinct RNNs. xi and yi refer to the ith source and target tokens,

respectively. ei and êi are word embeddings. The representation hi of xi is calculated

by the encoder. At decoding step t (this figure presents the snapshot where t = 3), the
decoder takes as input the previous target token ŷt−1, calculates the hidden state st and

the context vector ct, and then predicts the current target token yt based on them.

May 31, 2021 14:1 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-05 page 116

116 Artificial Intelligence Methods for Software Engineering

5.2.4 Evaluation Metrics for Software Artifact Generation

Though accurate and convincing, human evaluation is expensive and time-

consuming for evaluating SAG systems. For quick and automatic evalua-

tion, researchers borrowed the automatic evaluation metrics designed for

natural language generation tasks [9,13,22]. These metrics are quick, inex-

pensive, reasonably accurate, and shown to be highly correlated with human

judgments. Three metrics are widely used to evaluate SAG systems, i.e.,

BLEU [23], METEOR [24,25] and ROUGE [26].

BLEU is one of the de facto standards for machine translation evalua-

tion. It measures the similarity of a hypothesis h (in our case, a generated

artifact) and its corresponding (one or more) references R using an aver-

age modified n-gram precision with a penalty for overly short sentences.

Specifically, given a corpus T with a number of hypothesis-references pairs,

the (corpus-level) modified n-gram precision is defined as:

pn =

∑
(h,R)∈T

∑
ng∈h

Cclip(ng, h,R)∑
(h′,R′)∈T

∑
ng′∈h′

C(ng′, h′)

where ng is an n-gram, C(ng, h) calculates ng’s count in h and

Cclip(ng, h,R) is defined as follows:

Cclip(ng, h,R) = min(C(ng, h),max
i
C(ng, Ri))

The BLEU score on T is then calculated as follows:

BLEU = BP · exp

(
N∑
n=1

wn log pn

)
N is the maximum n-gram order. wn is the weight of pn. BP is the brevity

penalty factor, defined as:

BP =

{
1 if lh > lr

e1−lr/lh if lh ≤ lr
where lh is the sum of the lengths of all hypotheses and lr is calculated

by summing the lengths of each hypothesis’s best-matched reference. In

practice, wn is usually set to 1/N . N is usually set to 4, and the corre-

sponding BLEU score is referred to as BLEU-4 score. In SE, BLEU has

been used to evaluate code comment generation systems [9, 10, 12, 27, 28],

commit message generation methods [8, 13, 14], API sequence generation

approaches [22], etc.

May 31, 2021 14:1 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-05 page 117

Seq2Seq Learning for Automated SAG 117

METEOR is another popular evaluation metric for machine translation.

Different from BLEU, METEOR leverages multiple matchers, including

exact, stem, synonym and paraphrase matchers, to accurately match words

and phrases between a hypothesis and its corresponding reference. Also, it

considers recall by calculating an F-score and combines the F-score with a

fragmentation penalty to account for gaps and differences in word order.

Researchers have used it to evaluate code comment generation methods [10,

12,28] in SE.

ROUGE is a set of metrics proposed by [26] to evaluate text summa-

rization systems. Similar to BLEU, ROUGE relies on co-occurrences of

n-grams, word sequences and word pairs between hypotheses and refer-

ences. But it values recall more because a text summarization system is

required to generate or retrieve as much important information as possi-

ble. ROUGE-N (N = 1, 2) and ROUGE-L are the most commonly used

ROUGE metrics, which are based on n-gram co-occurrences and longest

common subsequences, respectively. Some work in SE leveraged ROUGE

to assess the quality of generated code comments [12] and generated pull re-

quest descriptions [2]. For the specific formulas of METEOR and ROUGE,

we refer readers to the papers of METEOR and ROUGE.

5.3 Automated Generation of Code Comments

Good comments can improve the efficiency of program comprehension ac-

tivities [4] and hence can save developers’ time. However, writing comments

can be cumbersome for developers, especially when the schedule is tight.

Therefore, comments are often mismatched, missing and outdated in some

projects.

Many code comment generation approaches are proposed to alleviate

this problem, which can be divided into three categories. The first category

of work generates comments using manually defined templates [4, 29–31].

For example, [4] proposed to generate Java method comments based on

the Software Word Usage Model (SWUM) and manually-crafted templates.

Another line of research leverages Information Retrieval (IR) techniques for

generation [6, 7, 32]. For instance, ColCom, a tool proposed by [7] gener-

ates comments for code snippets based on code clone detection techniques.

These approaches are promising but have two main limitations: 1) rely-

ing on well-named identifiers in source code. 2) requiring the existence of

similar code snippets, which is not always true.

Recently, the third category of approaches, which uses probabilistic

May 31, 2021 14:1 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-05 page 118

118 Artificial Intelligence Methods for Software Engineering

models to generate comments, emerges and attracts a lot of atten-

tion [9, 10, 12, 27, 28, 33]. Different from rule-based and IR-based methods,

these approaches first train generative models on code-comment pairs, and

then directly predict comments from code using trained models. One of

the early work in this category is CODE-NN [27], which jointly performs

content selection and surface realization, i.e., comment generation, through

an attentional RNN model.

In this section, we describe an approach named Hybrid-DeepCom [10],

which is one of the state-of-the-art seq2seq-model-based techniques for gen-

erating code comments, as a case study.

5.3.1 Problem and Challenges

Hybrid-DeepCom aims to automatically generate high-level descriptions

for Java methods. Formally, given a Java method x and its corresponding

high-level description y, the aim is to find a function f so that y = f(x).

[10] regarded this problem as a machine translation problem based on the

insight that the transition between source code and comments is similar to

that between different natural languages. Naturally, as the state-of-the-art

methods for machine translation, seq2seq models were adopted by them to

solve this problem. However, to model source code using seq2seq models,

several challenges need to be addressed:

(1) How to take advantage of the syntactic information of source code?

Natural language text is weakly structured. In contrast, programming

languages are formal languages and source code written in them are

unambiguous and structured [34]. Therefore, considering syntactic in-

formation may boost the effectiveness of seq2seq models on source code.

(2) How to fuse the lexical information and the syntactic information? On

the one hand, comment tokens may be extracted or distilled from code

identifiers. On the other hand, the syntactic structure of code may help

seq2seq models capture the semantic information of code and generate

better comments. So, the lexical and the syntactic information should

be combined in a proper way to make seq2seq models more effective.

(3) How to deal with the out-of-vocabulary (OOV) tokens in source code?

Seq2seq models model and generate sequences based on the vocabulary

of sequence tokens. The tokens not included in the given vocabulary,

i.e., out-of-vocabulary (OOV) tokens, cannot be properly handled. In

code corpus, developer-named identifiers are pervasive and may result

May 31, 2021 14:1 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-05 page 119

Seq2Seq Learning for Automated SAG 119

in many OOV tokens if the vocabulary size is limited. This issue should

be properly addressed to guarantee the effectiveness of seq2seq models

on code corpus.

5.3.2 The Seq2Seq Model: Hybrid-DeepCom

The framework of Hybrid-DeepCom is presented in Fig. 5.2. Hybrid-

DeepCom is based on the attentional encoder-decoder model we mentioned

in Sec. 5.2.2 and Sec. 5.2.3, but enhances it in several ways to handle

the challenges mentioned above. First, it uses two encoders, namely code

encoder and AST encoder, to encode code tokens and AST nodes, respec-

tively. Second, it customizes the attention mechanism to adaptively fuse

the lexical information and the syntactic information extracted by the two

encoders. Third, Hybrid-DeepCom reduces the number of OOV tokens by

splitting identifiers into common words.

e1

x1

h1

e2

x2

h2

e3

x3

h3h0

c3

h′
2h′

1 h′
3

e′1

node1

e′2

node2

e′3

node3

h′
0

ê1

<s>

ê2

ŷ1

ê3

ŷ2

s1

Pvocab

y1

s2

Pvocab

y2

s3

Pvocab

y3

Code Encoder

AST Encoder

Fig. 5.2 The framework of Hybrid-DeepCom. The differences between
Hybrid-DeepCom and the basic attentional encoder-decoder model are: First, Hybrid-
DeepCom leverages two encoders to represent code tokens and AST nodes, respectively.

Second, the decoder calculates two context vectors based on the output of the two en-

coders and concatenates them as the final context vector ci. Third, identifiers are split
into common words before being processed. nodei refers to the ith element of the node

sequence output by the SBT method.

May 31, 2021 14:1 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-05 page 120

120 Artificial Intelligence Methods for Software Engineering

5.3.2.1 Capture Syntactic Information of Source Code

We can process a code snippet using a seq2seq model by simply representing

the code as a sequence of tokens. However, the model may miss capturing

the structural information of the code in this way. Source code can also

be parsed into ASTs, which explicitly present the syntactic information.

To help seq2seq models capture such syntactic information, an intuitive

way is converting ASTs into sequences of AST nodes and then directly

inputting them into an encoder. However, node sequences produced by

classic traversal methods, e.g., pre-order traversal, are lossy because they

cannot be recovered to the original ASTs. The ambiguity of such sequences

also means samples (in this case, Java methods) with different labels (in

this case, comments) may be mapped to the same representation, which

may confuse the neural network.

To tackle this problem, Hybrid-DeepCom proposes a Structural-Based

Traversal method, namely SBT, to produce node sequences. Given a tree

where each node i is of type Ti, the SBT method outputs its node sequence

as follows: 1) It traverses the tree in pre-order. 2) Before visiting node i,

it outputs “(Ti”; after visiting node i, it outputs “)Ti” to mark the end

of node i. For example, the sequence produced for the tree in Fig. 5.3 is

“T1((T2)T2(T3(T4)T4(T5)T5(T6)T6)T3)T1”. As we can see, by leveraging a

pair of brackets to mark the tree structure, SBT makes the node sequences

lossless.

1

2 3

4 5 6

Fig. 5.3 A simple tree for illustrating the Structural-Based Traversal (SBT)

method.

5.3.2.2 Fuse Lexical and Syntactic Information

Hybrid-DeepCom learns to capture lexical information from code token

sequences using the code encoder and syntactic information from AST node

sequences through the AST encoder. The hidden states of all encoders need

to be projected into a shared space to calculate the distribution p(yt|y<t,x).

To meet this requirement, Hybrid-DeepCom computes a context vector for

May 31, 2021 14:1 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-05 page 121

Seq2Seq Learning for Automated SAG 121

each encoder according to Eqs. (5.7), (5.8) and (5.9). Then the final context

vector is defined as the sum of the two vectors:

ct = ccodet + castt

ct is expected to contain both lexical and syntactic information of source

code, hence it can better guide the generation of comments.

5.3.2.3 Reduce OOV tokens

To model and generate sequences, seq2seq models need to build the vocabu-

lary of sequence tokens. Due to the pervasive developer-named identifiers in

source code, a small vocabulary will result in a large number of OOV tokens

and make it difficult for seq2seq models to distinguish different identifiers,

while a large vocabulary requires more training data, time and computation

memory. Based on the observation that most identifiers are composed of

several subtokens that are usually common words, Hybrid-DeepCom allevi-

ates this issue by splitting identifiers into several words. Consequently, the

code encoder only needs to model common words instead of rare identifiers.

As a result, this strategy reduced the number of unique tokens in source

code by 90%.

5.3.3 Dataset

A good dataset is critical for a data-driven approach. To evaluate Hybrid-

DeepCom, [10] built a parallel corpus of <method, comment> pairs as

follows: They first collected the Java projects created from 2015 to 2016

with more than 10 stars from GitHub and obtained 9,714 projects. Then,

they parsed these Java projects, extracting Java methods and the corre-

sponding Javadocs. Only the first sentences of the Javadocs were kept as

method summaries. To reduce noise, <method, comment> pairs of which

the comments only contain one word or the methods are setters, getters,

constructors or tests were removed. In addition, the overridden Java meth-

ods were also excluded since they usually implement the same functional-

ity and may cause unwanted repetition. Furthermore, to better suit the

seq2seq model, [10] set the maximum lengths of Java methods and com-

ments as 200 and 30, respectively, based on the statistics of their collected

data. Finally, [10] constructed a dataset with 485,812 <method, comment>

pairs.

May 31, 2021 14:1 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-05 page 122

122 Artificial Intelligence Methods for Software Engineering

5.3.4 Evaluation

Hybrid-DeepCom was evaluated on the above-mentioned dataset in terms

of BLEU, METEOR and some IR metrics. The BLEU score and the ME-

TEOR of Hybrid-DeepCom are reported as 34.51 and 24.46, which improve

over CODE-NN by 61.9% and 35.6%, respectively. It can outperform the

basic attentional encoder-decoder model by 15.6% and 11.0% in terms of

the two metrics. Also, the human evaluation conducted by [10] confirmed

the better performance of Hybrid-DeepCom compared to CODE-NN. In

summary, by customizing the attentional encoder-decoder model to address

task-specific challenges, Hybrid-DeepCom achieves better performance than

the baselines on code comment generation.

5.4 Automated Generation of Pull Request Descriptions

After making a code change, developers can attach a free-form descrip-

tion to illustrate what was changed and/or why to change. Change de-

scriptions can help developers gain quick and adequate understandings of

code changes without digging into the details, hence are valuable for pro-

gram comprehension and software maintenance tasks. However, similar

to code comments, change descriptions sometimes are neglected by de-

velopers due to tight schedules [2]. To address this problem, some ap-

proaches have been proposed to automatically generate descriptions for

code changes [2, 3, 13,35].

According to granularity, code changes fall into three types: commits,

pull requests and releases. Commits can be regarded as the basic unit

of code changes. Researchers have proposed to automatically document

commits based on diverse inputs [3, 8, 13, 36–39]. For example, [3] pro-

posed a tool named DeltaDoc to generate commit messages based on

symbolic execution and manually crafted templates. Seq2seq models were

first adopted by [13] to automatically generate commit messages from corre-

sponding diffs. A release is a large change with a number of commits and/or

pull requests. Some work has also explored the automatic generation of re-

lease notes [35, 40]. As an example, [40] proposed a tool named ARENA,

which combines several techniques and manually defined templates to gen-

erate release notes from code change history and other software artifacts,

e.g., bug reports.

At present, the pull-based development model is very popular. As the

communication medium between developers and project maintainers, pull

May 31, 2021 14:1 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-05 page 123

Seq2Seq Learning for Automated SAG 123

requests (PRs) are the key to this development model. A PR usually con-

tains one or more interrelated commits and is usually far smaller than a

release. In a recent work, [2] found that pull request descriptions (PR de-

scriptions) sometimes are also ignored by developers. They proposed to

regard the generation of PR descriptions as a text summarization problem

and first attempted to generate PR descriptions through a seq2seq model.

In this section, we introduce this work in detail. For convenience, we refer

to the model proposed by [2] as PRSummarizer.

5.4.1 Problem and Challenges

[2] aimed to generate a PR description from the commits in the correspond-

ing PR. They noticed that the information appearing in a PR description

usually can be found in the commit messages and the added code comments

in this PR. Therefore, they proposed to regard this task as a text summa-

rization task, where the commit messages and the added code comments

in a PR are combined as the “article” and the description of this PR is

treated as the “summary”. Considering the advances on text summariza-

tion tasks after using seq2seq models, [2] also chose to leverage a seq2seq

model to generate “summaries” (the target sequence) from “articles” (the

source sequence).

However, they found that the basic attentional encoder-decoder model

is not enough for solving this problem because of two main challenges:

(1) Out-of-vocabulary (OOV) tokens. As mentioned in Sec. 5.3.1, OOV

tokens are pervasive in source code. In fact, they are also common

in software documents. Different from code summarization, this task

cares more about the effective generation of OOV tokens than their

representation.

(2) The gap between the training objective and the real quality of generated

PR descriptions. The objective of a seq2seq model is usually minimizing

the negative log-likelihood loss presented in Eq. (5.6). This loss function

requires a generated text to be literally the same as the corresponding

reference. However, two different texts may convey the same meaning.

Thus, there are gaps between the commonly-used loss function and

human judgments, which may make the trained model with the least

loss not be the model with the best performance.

May 31, 2021 14:1 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-05 page 124

124 Artificial Intelligence Methods for Software Engineering

5.4.2 The Seq2Seq Model: PRSummarizer

The framework of PRSummarizer is presented in Fig. 5.4, which is also

based on the attentional encoder-decoder model. A copy mechanism named

pointer generator [41] is adopted to deal with the OOV tokens. To bridge

the gap between the training objective and human evaluation, PRSumma-

rizer directly optimizes ROUGE during training through a reinforcement

learning (RL) technique.

e1

x1

h1

e2

x2

h2

e3

x3

h3h0

c3

ê1

<s>

ê2

ŷ1

ê3

ŷ2

s1

Pvocab

y1

s2

Pvocab

y2

s3

Pvocab

y3

s0

Pcopy

loss = γlossrl + (1− γ)lossnll

Fig. 5.4 The framework of PRSummarizer. Different from the basic attentional

encoder-decoder model, PRSummarizer applies the pointer generator to handle OOV

tokens by copying from the source sequence and uses a reinforcement-learning-based loss
to better guide the optimization of the model. Pcopy refers to the vocabulary distribution

calculated by the pointer generator.

5.4.2.1 Pointer Generator

Based on the observation that the OOV tokens in a PR description can

often be found in the “article”, i.e., the commit messages and the added

comments in this PR, PRSummarizer integrates the pointer generator with

the attentional encoder-decoder model. With this component, the output

tokens can be generated by selecting from the fixed vocabulary or “copying”

from the source sequence.

In detail, at decoding step t, a generation probability is calculated based

on the embedding êt of the current decoder input ŷt, the decoder state st
and the context vector ct:

pgent = σ(w>c ct +w>s st +w>e êt + bgen)

May 31, 2021 14:1 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-05 page 125

Seq2Seq Learning for Automated SAG 125

where wc, ws, we and bgen are learnable parameters, and σ is the sigmoid

function. pgent is expected to measure the probability that yt is generated

from the fixed vocabulary. Therefore, the conditional probability of gener-

ating yt is modified from Eq. (5.5) to:

p(yt|y<t,x) = pgent Pvocab(yt) + (1− pgent)Pcopy(yt)

where Pcopy(yt) is the probability of “copying” yt from the source sequence

and is computed based on the attention weights defined in Eq. (5.8):

Pcopy(yt) =
∑

i|xi=yt

αti

We can see that when yt is an OOV token, Pvocab(yt) will be zero, but if

yt appears in the “article” x, the decoder can also generate yt according to

Pcopy(yt). In this way, OOV token issue can be alleviated.

5.4.2.2 RL Loss

Due to the gap between the training loss and human judgments, researchers

usually use ROUGE, which is flexible and shown to highly correlate with

human assessments, to evaluate the quality of generated summaries. An

intuitive idea to bridge this gap is directly optimizing for ROUGE during

training. However, ROUGE is discrete, which means the model’s parameter

gradients cannot be calculated from ROUGE scores. To tackle this issue,

PRSummarizer leveraged a reinforcement learning technique named self-

critical sequence training (SCST) [42] and adopted a special loss function

named RL loss.

The generation of PR descriptions can be described using RL terminol-

ogy. The encoder’s output and the decoder’s input compose the “environ-

ment”. The decoder is the “agent” which takes an “action”, i.e., generates

a token, at each decoding step according to a “policy” πθ. The policy is in-

deed the neural network of the decoder and θ is its parameters. ROUGE-L

is used as the “reward” function. Therefore, after the decoder produces a

PR description ŷ, a reward can be calculated as follows:

r(ŷ) = ROUGE-L(ŷ,y)

where y is the ground truth. The objective of this RL problem is defined

to maximize the expected reward, i.e., minimize the negative expectation:

L(θ) = −Eys∼πθ [r(y
s)]

where ys is a PR description sampled from πθ.

May 31, 2021 14:1 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-05 page 126

126 Artificial Intelligence Methods for Software Engineering

According to the SCST algorithm, the expected gradient of L(θ) can be

computed as:

∇θL(θ) = −((r(ys)− r(yb))∇θ log p(ys|x)

where yb is the baseline sequence generated by πθ through greedy decoding,

i.e., outputting the token with the highest probability at each step. Based

on this gradient, a special loss named RL loss is defined as:

lossrl = − 1

N

N∑
n=1

((r(ys)− r(yb)) log p(ys|x)

where r(ys) and r(yb) are regarded as constants during gradient calculation.

We can see that lossrl can be considered as a normalized version of lossnll
(defined in Eq. (5.6)). If ys is better than yb, i.e., r(ys) − r(yb) > 0,

minimizing lossrl is equivalent to maximizing the probability of generating

ys, and vice versa.

PRSummarizer used a hybrid training loss by combining the lossnll
and the lossrl to bridge the above-mentioned gap without reducing the

readability of generating PR descriptions, as follow:

loss = γlossrl + (1− γ)lossnll

5.4.3 Dataset

To evaluate the effectiveness of PRSummarizer, [2] built a parallel corpus of

which the source sequence is the commit messages and the added comments

in a PR and the target sequence is the description of this PR. They first

selected the top 1000 engineered Java projects from GitHub according to

the number of merged PRs. For each project, at most 1000 merged PRs

are downloaded. The description, commit messages and added comments

in each merged PR are parsed and extracted. In total, 333,001 merged PRs

are collected.

The preprocessing of PR data is troublesome since some texts in a PR

are irrelevant to answering what was changed in this PR or why this change

happened. To filter out such texts as many as possible, [2] applied a pro-

cedure P to carefully process all kinds of texts, i.e., the description, the

commit messages and the added comments, in a PR. Given a text, this

procedure first removes all HTML contents and “checklist” paragraph in

it. The text is then split into sentences, and sentences with URLs, in-

ternal references (e.g., “#123”), signatures (e.g., “signed-off-by”), emails,

May 31, 2021 14:1 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-05 page 127

Seq2Seq Learning for Automated SAG 127

“@name” and markdown headlines are filtered out. Finally, the texts with

more than 50% non-ASCII tokens are marked as “non-ASCII”.

Give a PR, its commit messages were preprocessed using the procedure

P and were combined as the commit message paragraph. As for the added

comments in each commit, copyright comments, license comments, function

signatures in Java docs and comments with only punctuation were deleted.

The remaining comments are combined as the comment paragraph of this

commit. Each comment paragraph is also preprocessed by the procedure

P. The commit message paragraph and the comment paragraphs are con-

catenated as the source sequence, or the “article”.

The target sequence, or the “summary”, only contains the PR descrip-

tion and was simply processed by the procedure P. After that, the “sum-

maries” marked as “non-ASCII”, containing less than 5 tokens or only

consist of punctuation are regarded as trivial “summaries”.

Finally, the PRs with empty or trivial “summaries” or with less than

2 or more than 20 valid commits are removed from the dataset. The max

lengths of “articles” and “summaries” are set 400 and 100, respectively,

and PRs with long “articles” or long “summaries” are also removed.

As a result, a dataset with 41,932 PRs is constructed.

5.4.4 Evaluation

PRSummarizer was evaluated on the dataset mentioned above in terms

of ROUGE. The ROUGE-1, ROUGE-2 and ROUGE-L scores of PRSum-

marizer are 34.15, 22.38 and 32.41, respectively, which improves over two

baselines, i.e., LeadCM and LexRank, by 11.57% to 25.40%. An ablation

study presented that the pointer generated and the RL loss are effective

and helpful for boosting PRSummarizer effectiveness. [2] also conducted a

human evaluation which showed their approach performs better than the

baselines and can generate more high-quality PR descriptions. In summary,

the customized seq2seq model is shown to be effective for PR description

generation.

5.5 Automated Generation of App Review Responses

Mobile apps have become an integral part of people’s daily life. The rat-

ings and reviews of an app in app stores reflect its user experience and

quality, and can affect potential users positively or negatively. Currently,

both Apple’s App Store and Google Play provide a review response system

May 31, 2021 14:1 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-05 page 128

128 Artificial Intelligence Methods for Software Engineering

through which developers can manually respond to user feedback. In re-

sponses, developers can explain apps’ functionalities, describe the roadmap

of requested features, or simply express gratitude for users’ opinions. Pre-

vious studies have shown that responding to app reviews can enhance app

development and improve user experience [43, 44]. However, reading and

responding to a large and ever-increasing number of reviews is a heavy bur-

den for developers, if not impossible. Therefore, more automation in user

review responses is important and necessary for developers.

There exist a number of works focusing on automatic user review analy-

sis. A popular direction is classifying app reviews and identifying complaint

topics in reviews [45–48]. For example, [45] designed MARA to retrieve

feature requests from reviews based on linguistic rules. [47] leveraged NLP

techniques and clustering algorithms to extract feature requests and sug-

gestions from app reviews. Identifying and extracting user sentiments from

app reviews is another direction [49,50]. For instance, [49] extracted users’

sentiments to different app features from app reviews based on topic mod-

eling techniques.

However, there is limited work aiming to automate the generation of

review responses. Recently, [15] took the first step by exploring the usability

of seq2seq models in the app review-response dialogue scenario. This section

details this work as another case study of seq2seq-model-based SAG.

5.5.1 Problem and Characteristics

The dialogue generation problem is generally regarded as a seq2seq learning

problem. In the app review-response dialogue scenario, the source sequence

x is a user view and the target sequence y is the corresponding response

Although the basic seq2seq model is effective on social conversation genera-

tion, [15] argued that it is not suitable for review response generation since

the app review-response dialogue has different characteristics from social

conversations:

(1) The purpose of the dialogue is to further understand users’ complaints

and try to solve their requests, but social conversations are mainly gen-

erated for entertainment. This concern requires the model to precisely

identify the problems users complain and clearly explain the solutions

or express appreciation/apologies.

(2) The sentiment behind a review should be accurately identified. A re-

view’s sentiment has a significant impact on the content of its response.

May 31, 2021 14:1 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-05 page 129

Seq2Seq Learning for Automated SAG 129

For example, the response of a positive review may express apprecia-

tion, while that of a negative review may need to apologize.

(3) Most app review-response dialogues are one-round dialogue and the

reviews are usually short in length. These imply the text of a review

may not provide enough information for response generation.

5.5.2 The Seq2Seq Model: RRGen

Considering the above-mentioned characteristics, [15] proposed a novel ap-

proach named RRGen to automatically generate responses from app re-

views. The overall framework of RRGen is presented in Fig. 5.5. RRGen is

grounded in the basic encoder-decoder model, but explicitly integrates two

kinds of context information, i.e., the high-level attributes and the keywords

of reviews, in the seq2seq model.

h1

ew1

x1

eκ1

κ1

h2

ew2

x2

eκ2

κ2

h3

ew3

x3

eκ3

κ3

h0

c3

ê1

<s>

ê2

ŷ1

ê3

ŷ2

s1

Pvocab

y1

s2

Pvocab

y2

s3

Pvocab

y3

hτ

τ

hl

l

hr

r

hs

s

Fig. 5.5 The framework of RRGen. RRGen enhances the basic attentional

encoder-decoder model by explicitly extracting and integrating the high-level attributes

and the keywords of reviews. κi refers to the keyword type of xi. ewi and eκi are the
embeddings of xi and κi respectively, and they are concatenated before being input into

the encoder’s RNN. τ , l, r and s refer to app category, review length, rating and senti-

ment, respectively. Their representations, i.e., hτ , hl, hr and hs, are used to compute
the decoder’s initial state.

5.5.2.1 Integrating High-Level Attributes

RRGen considers four high-level attributes: app category, review length,

rating, and sentiment. App category is app-level information. The major

topics of different app categories are different and may affect the content

and focuses of review responses. Review length, rating, and sentiment are

May 31, 2021 14:1 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-05 page 130

130 Artificial Intelligence Methods for Software Engineering

review-level information. The length of a user review reflects whether the

review is informative or not. The rating and the sentiment directly affect

how developers should respond to it.

Given a user review of an app, the extraction of app category, review

length, and rating are straightforward. To extract its sentiment, RRGen

first divides the review into sentences. Then, it calculates each sentence’s

sentiment score using [49]’s method. The sentiment of the review is defined

as the rounded average sentiment score of all sentences in this review.

To integrate the four attributes into the seq2seq model, RRGen first

converts them into their categorical forms and represents the categorical

values into continuous vectors using multilayer perceptions (MLPs), i.e.,

a fully connected neural layer. Such continuous vectors are referred to as

attribute embeddings. As an example, the embedding of app category τ is

calculated as follows:

hτ = tanh(W τEmb(τ)),∀τ = 1, 2, ..., Nτ

whereW τ is the parameter matrix of the MLP, Emb is a general embedding

layer. Other attribute embeddings are computed in the same way using

different MLPs and embedding layers. The four attribute embeddings and

the last hidden state h|x| of the encoder are concatenated as the initial

hidden state of the decoder, as follows:

s0 = tanh(W h[h|x| : hτ : hl : hr : hs])

where W h are learnable parameters and hτ , hl, hr, hs are the embeddings

of app category, review length, rating and sentiment, respectively.

5.5.2.2 Integrating Keywords

The keywords in a user review are generally related to the topics of this

review. RRGen also integrates keyword information in user reviews to help

the decoder decide which word to attend to during response generation.

RRGen adopts the keyword dictionary built by [46] to identify keywords

and their corresponding topics in user reviews. In detail, [46] manually sum-

marized 12 topics that are commonly covered by user reviews and built the

keyword dictionary based on WordNet [51]. For each topic, the dictionary

provides a bunch of keywords related to it.

To integrate keyword information, RRGen constructs a keyword se-

quence κ based on the identified keywords and topics. The keyword token

κi of token xi is the topic that xi belongs to. For example, the keyword

sequence of the user review “lot of ad !” is “<O> <O> <C> <O>”,

May 31, 2021 14:1 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-05 page 131

Seq2Seq Learning for Automated SAG 131

where “ad” is a keyword for topic contents and hence is marked by sym-

bol “<C>”. Other source tokens are non-topical words and are labeled as

“<O>”. Given a user review, each keyword token κi is first mapped into

a continuous vector, i.e., an embedding, through an MLP, as follows:

eκi = tanh(W κEmb(κi)),∀i = 1, 2, ..., |κ|
Next, the keyword-enhanced embedding of each input token xi is learned

through another MLP with the concatenation of its keyword embedding eκi
and its word embedding ewi as input, as follows:

ei = tanh(W e[e
κ
i : ewi])

ei is then input into the encoder’s RNN for further processing.

5.5.3 Dataset

To build the dataset to train and evaluate RRGen, [15] first selected the

most popular 100 free apps in 2016 from Google Play. Then, they removed

the apps that are not available in Google Play in April 2018 and the apps

with less than 100 user reviews, and obtained 72 apps. The user reviews

and responses of these apps from April 2016 to April 2018 are crawled by a

Google Play crawler. In total, they collected 318,973 review-response pairs.

User reviews and their corresponding responses may contain noisy

words, e.g., URLs, email addresses and misspelled words, which can affect

the performance of seq2seq models. To deal with such noisy words, [15]

first lowercased and lemmatized the tokens in user reviews and developer

responses. Then, digits, email addresses, URLs, app names and user names

were replaced with special tokens and repetitive words and misspelled words

were rectified through manually summarized rules. After removing reviews

with empty or one-alphabet texts, 309,246 review-response pairs are ob-

tained to construct the dataset.

5.5.4 Evaluation

RRGen was first evaluated using BLEU and obtained a BLEU-4 score

of 36.17. It outperforms three baselines, i.e., Random Selection, an IR-

based method named NNGen [8], and the basic attentional encoder-decoder

model by large margins. [15] also conducted an ablation study, which

showed that each context information integrated into RRGen, i.e., the four

high-level attributes and the keywords, is beneficial on its own, and the

combination of all context information achieves the highest improvements.

May 31, 2021 14:1 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-05 page 132

132 Artificial Intelligence Methods for Software Engineering

Moreover, a human evaluation further confirmed the better performance

of RRGen compared to the baselines. In summary, by incorporating task-

specific context information into the basic seq2seq model, RRGen is shown

to be effective and powerful on the automatic generation of app review

responses.

5.6 Case Study Comparison

The three case studies focus on different SAG tasks, i.e., the generation of

code comments, PR descriptions and app review responses. These tasks

have different sets of features. To handle the task features and perform

effective generation, the approach described in each case enhances and cus-

tomizes the basic attentional encoder-decoder model in its own way. Ta-

ble 5.1 summarizes the task features covered in the case studies and presents

how the aforementioned approaches deal with them.

We can see that some features are shared among multiple tasks. For ex-

ample, all three tasks require the corresponding approaches to process and

fuse multiple input information. In detail, for code comment generation,

Hybrid-DeepCom needs to fuse the lexical and syntactic information of

code. The input of PRSummarizer contains both the commit messages and

the added comments in a PR, which are combined as a compound source

sequence for processing. To generate app review responses, RRGen needs

to take into account user reviews, keyword information, and the high-level

attributes of reviews.

Another point is that even for the same feature, different tasks may

have different preferences, hence the corresponding approaches may handle

the feature in different ways. As an example, to generate code comments,

Hybrid-DeepCom pays more attention to the representation of OOV tokens

and reduces OOV tokens by splitting identifiers. But PRSummarizer fo-

cuses more on the generation of OOV tokens and thus adopts the pointer

generator. This difference mainly results from the different input of the

two tasks. The input of the code comment generation task is source code,

which contains plenty of developer-named identifiers, while the PR descrip-

tion generation task takes as input commit messages and code comments,

where usually only a few identifiers may appear. So, reducing OOV to-

kens is not as crucial to PRSummarizer as to Hybrid-DeepCom. However,

the two ways to handle OOV tokens are not competing but complementary.

Thus, an approach that both splits identifiers and adopts pointer generators

may achieve better performance than existing ones.

M
ay

3
1

,
2

0
2

1
1

4
:1

w
s-b

o
o

k
9

x6
A

rtifi
cia

l
In

tellig
en

ce
M

eth
o

d
s

for
S

o
ftw

are
E

n
g

in
eerin

g
1

2
3

6
0

-0
5

p
a

g
e

1
3

3

S
eq2

S
eq

L
ea

rn
in

g
fo

r
A

u
to

m
a

ted
S

A
G

1
3
3

Table 5.1 How different approaches deal with different features of software artifact generation tasks.

Features Hybrid-DeepCom PRSummarizer RRGen

Handling OOV tokens Split identifiers Pointer Generator /

Capturing syntactic information of
code

SBT / /
AST encoder

Fusing multiple input information
Two encoders Compound source sequence Keyword-enhanced source sequence

Fused attention Special decoder initial state

Bridging training and evaluation

gaps

/ RL loss /

Identifying sentiments
/ / Sentiment Analysis

Special decoder initial state

May 31, 2021 14:1 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-05 page 134

134 Artificial Intelligence Methods for Software Engineering

Also, we find that a task may have unique features. For instance, only

Hybrid-DeepCom needs to capture syntactic information of code, because

other approaches do not take source code as input. Another example is that

sentiment analysis is only critical for generating app review responses, since

source code, code comments and change documents are usually neutral.

These findings can further answer the question that why these tasks

cannot be solved by the same model: because they have different input

and output and thus have different feature sets. A technique or a neural

component that is useful for tackling one task may be unnecessary or even

harmful to address another one. Therefore, before using seq2seq models to

generate software artifacts, it is important to analyze the characteristics of

the specific task.

5.7 Challenges and Opportunities

The aforementioned case studies show that seq2seq models are promising for

automatically generating code comments, pull request descriptions and app

review responses. Based on them, we also notice the following challenges

and opportunities in this direction:

5.7.1 Challenges

(1) Limited Accuracy. Because incorrect information in software arti-

facts may mislead developers to introduce bugs, a generative model

should be quite accurate before being applied in practice. However,

existing seq2seq-model-based approaches are still not powerful enough

(usually, BLEU<40 and ROUGE<40) for practical applications.

(2) Lack of uniform datasets. For many SAG tasks, there do not exist

uniform datasets that are widely acknowledged as high quality and

standard. Researchers usually need to build a task-specific dataset

from the beginning, which may prevent the advances of this direction.

(3) Long code and long texts. Existing seq2seq models and hardware,

e.g., GPUs, are not powerful enough to deal with long sequences. Cur-

rently, the works in this direction always focus on modeling and gener-

ating short software artifacts. How to handle long code and long texts

using seq2seq models is still an open problem.

May 31, 2021 14:1 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-05 page 135

Seq2Seq Learning for Automated SAG 135

5.7.2 Opportunities

(1) Abundant and diverse open data. With the popularity of open

source culture and collaborative coding platforms (e.g., GitHub), one

can freely access more and more software artifacts. Moreover, for an

open source project, almost all the artifacts produced throughout its

whole life cycle are publicly available. Such open data provide great

opportunities for data-driven approaches. For example, it is possible to

collect and build datasets of larger orders of magnitude for diverse SAG

tasks, which can help to train deeper and advanced seq2seq models and

bring in performance improvement. In addition, it would be interesting

to recover and take advantage of connections among large-scale and

different kinds of artifacts to enhance existing generative models.

(2) Better artifact representations based on unsupervised pre-

training and transfer learning. Learning good representations of

source code and/or software documents is critical for seq2seq-model-

based SAG. Most existing works relied on labeled data, e.g., code-

comment pairs, to learn such representations from scratch. On the one

hand, the amount of labeled data for a specific task may be limited, re-

stricting the effectiveness of trained seq2seq models. On the other hand,

large unlabeled text corpora and source code corpora are abundant, and

good text representations learned from unlabeled texts have shown

to be useful for improving performance on many NLP tasks [52–54].

Therefore, it can be promising to learn to represent software docu-

ments or source code from large-scale unlabeled data, such as GitHub

repositories, and transfer learned representations to diverse SAG tasks.

As an example, BERT [54] is a breakthrough encoder which is first

pre-trained on a large corpus of unlabeled text and can be effectively

applied to diverse NLP tasks through supervised fine-tuning. For SAG,

we can also pre-train BERT-like models on large unlabeled corpora of

software documents and source code. Such pre-trained models can be

used as encoders, concatenated with diverse decoders, and fine-tuned

using the parallel corpus of the target SAG task. The fine-tuned en-

coders, or in other words, representations, can be expected to boost

performance on diverse SAG tasks.

(3) Combining rule-based, IR-based and probabilistic-model-

based approaches. The three types of approaches have been used

to generate software artifacts. Rule-based methods require manual ef-

forts to design templates and rules, but can achieve high accuracy and

May 31, 2021 14:1 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-05 page 136

136 Artificial Intelligence Methods for Software Engineering

may be able to deal with long texts. IR-based methods cannot handle

samples that are not similar to any training sample, but work well for

similar samples. Probabilistic-model-based methods, such as seq2seq

models, are not accurate enough for now and can hardly handle long

sequences, but they are capable of learning patterns from data and are

more general. In the future, combining different kinds of methods would

be a promising direction. For example, to generate commit messages

by combining rule-based and probabilistic-model-based approaches, we

can first manually summarize the common templates of commit mes-

sages, such as “This commit is for A, adds B, deletes C and modifies

D”. Probabilistic models are then leveraged to choose the most proper

template and replace each placeholder in such template by generating

the corresponding content from the commit, e.g., generating phases to

replace “A”, “B”, “C” and “D” in the aforementioned template.

5.8 Summary

Software artifacts, such as code comments and commit messages, are valu-

able for program comprehension and software maintenance. However, de-

velopers sometimes neglect writing or maintaining them. This problem can

be alleviated by automated software artifact generation. This chapter in-

troduces the research direction of sequence-to-sequence-model-based auto-

mated software artifact generation. We describe the preliminary knowledge

of sequence-to-sequence learning, demonstrate how to adopt and customize

sequence-to-sequence models to tackle specific software artifact generation

tasks through three case studies, summarize and discuss the features of

the tasks handled in these case studies, and point out several challenges

and opportunities of this research area. Hopefully, this chapter can inspire

researchers and developers to learn generation patterns for more software

artifacts using sequence-to-sequence models, to propose more powerful and

accurate sequence-to-sequence models for software artifact generation, and

to apply these generative models in practice to help developers write soft-

ware artifacts and understand software.

References

[1] R. Dyer, H. A. Nguyen, H. Rajan and T. N. Nguyen, Boa: A language
and infrastructure for analyzing ultra-large-scale software repositories, in

May 31, 2021 14:1 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-05 page 137

Seq2Seq Learning for Automated SAG 137

Proceedings of the International Conference on Software Engineering. IEEE,
pp. 422–431 (2013).

[2] Z. Liu, X. Xia, C. Treude, D. Lo and S. Li, Automatic generation of pull
request descriptions, in Proceedings of the International Conference on Au-
tomated Software Engineering. IEEE, pp. 176–188 (2019).

[3] R. P. Buse and W. R. Weimer, Automatically documenting program changes,
in Proceedings of the International Conference on Automated software engi-
neering, pp. 33–42 (2010).

[4] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock and K. Vijay-Shanker, To-
wards automatically generating summary comments for java methods, in
Proceedings of the International Conference on Automated software engi-
neering, pp. 43–52 (2010).

[5] M. Linares-Vásquez, B. Li, C. Vendome and D. Poshyvanyk, Documenting
database usages and schema constraints in database-centric applications, in
Proceedings of the International Symposium on Software Testing and Anal-
ysis, pp. 270–281 (2016).

[6] S. Haiduc, J. Aponte, L. Moreno and A. Marcus, On the use of automated
text summarization techniques for summarizing source code, in Proceedings
of the Working Conference on Reverse Engineering. IEEE, pp. 35–44 (2010).

[7] E. Wong, T. Liu and L. Tan, Clocom: Mining existing source code for
automatic comment generation, in Proceedings of the International Confer-
ence on Software Analysis, Evolution, and Reengineering. IEEE, pp. 380–389
(2015).

[8] Z. Liu, X. Xia, A. E. Hassan, D. Lo, Z. Xing and X. Wang, Neural-machine-
translation-based commit message generation: how far are we? in Proceed-
ings of the International Conference on Automated Software Engineering,
pp. 373–384 (2018).

[9] X. Hu, G. Li, X. Xia, D. Lo and Z. Jin, Deep code comment generation,
in Proceedings of the Conference on Program Comprehension, pp. 200–210
(2018).

[10] X. Hu, G. Li, X. Xia, D. Lo and Z. Jin, Deep code comment generation with
hybrid lexical and syntactical information, Empirical Software Engineering,
pp. 1–39 (2019).

[11] A. LeClair, S. Jiang and C. McMillan, A neural model for generating natural
language summaries of program subroutines, in Proceedings of the Interna-
tional Conference on Software Engineering. IEEE, pp. 795–806 (2019).

[12] Y. Wan, Z. Zhao, M. Yang, G. Xu, H. Ying, J. Wu and P. S. Yu, Improving
automatic source code summarization via deep reinforcement learning, in
Proceedings of the International Conference on Automated Software Engi-
neering, pp. 397–407 (2018).

[13] S. Jiang, A. Armaly and C. McMillan, Automatically generating commit
messages from diffs using neural machine translation, in Proceedings of
the International Conference on Automated Software Engineering. IEEE,
pp. 135–146 (2017).

[14] Q. Liu, Z. Liu, H. Zhu, H. Fan, B. Du and Y. Qian, Generating commit
messages from diffs using pointer-generator network, in Proceedings of the

May 31, 2021 14:1 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-05 page 138

138 Artificial Intelligence Methods for Software Engineering

International Conference on Mining Software Repositories. IEEE, pp. 299–
309 (2019).

[15] C. Gao, J. Zeng, X. Xia, D. Lo, M. R. Lyu and I. King, Automating app
review response generation, in Proceedings of the International Conference
on Automated Software Engineering. IEEE, pp. 163–175 (2019).

[16] D. E. Rumelhart, G. E. Hinton and R. J. Williams, Learning representations
by back-propagating errors, Nature 323, 6088, pp. 533–536 (1986).

[17] I. Goodfellow, Y. Bengio and A. Courville, Deep learning. MIT press (2016).
[18] S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural com-

putation 9, 8, pp. 1735–1780 (1997).
[19] K. Cho, B. van Merriënboer, D. Bahdanau and Y. Bengio, On the properties

of neural machine translation: Encoder–decoder approaches, in Proceedings
of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statis-
tical Translation, pp. 103–111 (2014).

[20] M. Schuster and K. K. Paliwal, Bidirectional recurrent neural networks,
IEEE transactions on Signal Processing 45, 11, pp. 2673–2681 (1997).

[21] D. Bahdanau, K. Cho and Y. Bengio, Neural machine translation by jointly
learning to align and translate, in Proceedings of the International Con-
ference on Learning Representations (2015), http://arxiv.org/abs/1409.
0473.

[22] X. Gu, H. Zhang, D. Zhang and S. Kim, Deep api learning, in Proceed-
ings of the SIGSOFT International Symposium on Foundations of Software
Engineering, pp. 631–642 (2016).

[23] K. Papineni, S. Roukos, T. Ward and W.-J. Zhu, Bleu: a method for auto-
matic evaluation of machine translation, in Proceedings of the Annual Meet-
ing on Association for Computational Linguistics. Association for Compu-
tational Linguistics, pp. 311–318 (2002).

[24] S. Banerjee and A. Lavie, Meteor: An automatic metric for mt evalua-
tion with improved correlation with human judgments, in Proceedings of the
Acl Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine
Translation and/or Summarization, pp. 65–72 (2005).

[25] M. Denkowski and A. Lavie, Meteor universal: Language specific transla-
tion evaluation for any target language, in Proceedings of the Workshop on
Statistical Machine Translation, pp. 376–380 (2014).

[26] C.-Y. Lin, ROUGE: A package for automatic evaluation of summaries, in
Text Summarization Branches Out. Association for Computational Linguis-
tics, pp. 74–81 (2004), https://www.aclweb.org/anthology/W04-1013.

[27] S. Iyer, I. Konstas, A. Cheung and L. Zettlemoyer, Summarizing source
code using a neural attention model, in Proceedings of the Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 2073–2083 (2016).

[28] X. Hu, G. Li, X. Xia, D. Lo, S. Lu and Z. Jin, Summarizing source code
with transferred api knowledge, in Proceedings of the International Joint
Conference on Artificial Intelligence, Vol. 19, pp. 2269–2275 (2018).

[29] G. Sridhara, L. Pollock and K. Vijay-Shanker, Automatically detecting and
describing high level actions within methods, in Proceedings of the Interna-
tional Conference on Software Engineering. IEEE, pp. 101–110 (2011).

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://www.aclweb.org/anthology/W04-1013

May 31, 2021 14:1 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-05 page 139

Seq2Seq Learning for Automated SAG 139

[30] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock and K. Vijay-
Shanker, Automatic generation of natural language summaries for java
classes, in Proceedings of the International Conference on Program Com-
prehension. IEEE, pp. 23–32 (2013).

[31] P. W. McBurney and C. McMillan, Automatic documentation generation
via source code summarization of method context, in Proceedings of the
International Conference on Program Comprehension, pp. 279–290 (2014).

[32] P. Rodeghero, C. McMillan, P. W. McBurney, N. Bosch and S. D’Mello,
Improving automated source code summarization via an eye-tracking study
of programmers, in Proceedings of the International Conference on Software
engineering, pp. 390–401 (2014).

[33] M. Allamanis, H. Peng and C. Sutton, A convolutional attention network for
extreme summarization of source code, in Proceedings of the International
Conference on Machine Learning, pp. 2091–2100 (2016).

[34] M. Allamanis, E. T. Barr, P. Devanbu and C. Sutton, A survey of machine
learning for big code and naturalness, ACM Computing Surveys 51, 4, pp. 1–
37 (2018).

[35] L. Moreno, G. Bavota, M. Di Penta, R. Oliveto, A. Marcus and G. Canfora,
Automatic generation of release notes, in Proceedings of the ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pp. 484–
495 (2014).

[36] S. Rastkar and G. C. Murphy, Why did this code change? in Proceedings of
the International Conference on Software Engineering. IEEE, pp. 1193–1196
(2013).

[37] L. F. Cortés-Coy, M. Linares-Vásquez, J. Aponte and D. Poshyvanyk, On
automatically generating commit messages via summarization of source code
changes, in Proceedings of the International Working Conference on Source
Code Analysis and Manipulation. IEEE, pp. 275–284 (2014).

[38] M. Linares-Vásquez, L. F. Cortés-Coy, J. Aponte and D. Poshyvanyk,
Changescribe: A tool for automatically generating commit messages, in Pro-
ceedings of the International Conference on Software Engineering, Vol. 2.
IEEE, pp. 709–712 (2015).

[39] J. Shen, X. Sun, B. Li, H. Yang and J. Hu, On automatic summariza-
tion of what and why information in source code changes, in Proceedings of
the Annual Computer Software and Applications Conference, Vol. 1. IEEE,
pp. 103–112 (2016).

[40] L. Moreno, G. Bavota, M. Di Penta, R. Oliveto, A. Marcus and G. Canfora,
Arena: an approach for the automated generation of release notes, IEEE
Transactions on Software Engineering 43, 2, pp. 106–127 (2016).

[41] A. See, P. J. Liu and C. D. Manning, Get to the point: Summarization
with pointer-generator networks, in Proceedings of the Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 1073–1083 (2017).

[42] S. J. Rennie, E. Marcheret, Y. Mroueh, J. Ross and V. Goel, Self-critical
sequence training for image captioning, in Proceedings of the Conference on
Computer Vision and Pattern Recognition, pp. 7008–7024 (2017).

May 31, 2021 14:1 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-05 page 140

140 Artificial Intelligence Methods for Software Engineering

[43] S. McIlroy, W. Shang, N. Ali and A. E. Hassan, Is it worth responding to
reviews? studying the top free apps in google play, IEEE Software 34, 3,
pp. 64–71 (2015).

[44] S. Hassan, C. Tantithamthavorn, C.-P. Bezemer and A. E. Hassan, Studying
the dialogue between users and developers of free apps in the google play
store, Empirical Software Engineering 23, 3, pp. 1275–1312 (2018).

[45] C. Iacob and R. Harrison, Retrieving and analyzing mobile apps feature
requests from online reviews, in Proceedings of the Working Conference on
Mining Software Repositories. IEEE, pp. 41–44 (2013).

[46] A. Di Sorbo, S. Panichella, C. V. Alexandru, J. Shimagaki, C. A. Visaggio,
G. Canfora and H. C. Gall, What would users change in my app? summa-
rizing app reviews for recommending software changes, in Proceedings of the
SIGSOFT International Symposium on Foundations of Software Engineer-
ing, pp. 499–510 (2016).

[47] F. Palomba, P. Salza, A. Ciurumelea, S. Panichella, H. Gall, F. Ferrucci
and A. De Lucia, Recommending and localizing change requests for mobile
apps based on user reviews, in Proceedings of the International Conference
on Software Engineering. IEEE, pp. 106–117 (2017).

[48] C. Gao, W. Zheng, Y. Deng, D. Lo, J. Zeng, M. R. Lyu and I. King, Emerg-
ing app issue identification from user feedback: experience on wechat, in
Proceedings of the International Conference on Software Engineering: Soft-
ware Engineering in Practice. IEEE, pp. 279–288 (2019).

[49] E. Guzman and W. Maalej, How do users like this feature? a fine grained
sentiment analysis of app reviews, in Proceedings of the International Re-
quirements Engineering Conference. IEEE, pp. 153–162 (2014).

[50] X. Gu and S. Kim, “What parts of your apps are loved by users?”(t), in
Proceedings of the International Conference on Automated Software Engi-
neering. IEEE, pp. 760–770 (2015).

[51] G. A. Miller, Wordnet: a lexical database for english, Communications of
the ACM 38, 11, pp. 39–41 (1995).

[52] Y. Qi, D. Sachan, M. Felix, S. Padmanabhan and G. Neubig, When and
why are pre-trained word embeddings useful for neural machine transla-
tion? in Proceedings of the Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technolo-
gies, Volume 2 (Short Papers), pp. 529–535 (2018).

[53] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu and
P. Kuksa, Natural language processing (almost) from scratch, Journal of
Machine Learning Research 12, ARTICLE, pp. 2493–2537 (2011).

[54] J. Devlin, M.-W. Chang, K. Lee and K. Toutanova, Bert: Pre-training of
deep bidirectional transformers for language understanding, in Proceedings
of the Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pp. 4171–4186 (2019).

June 2, 2021 17:14 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-06 page 141

© 2021 World Scientific Publishing Company
https://doi.org/10.1142/9789811239922 0006

Chapter 6

Machine Learning to Support Code
Reviews in Continuous Integration

Miroslaw Starona, Miroslaw Ochodekb, Wilhelm Medingc,

Ola Söderd and Emil Rosenberge

aChalmers University of Gothenburg
bPoznan University of Technology

cEricsson AB
dAxis Communications

eSaab AB

6.1 Introduction

The paradigm shift from simple Agile practices to Continuous Integration

(CI) brought a different dynamics into software development [1, 2]. Five

to ten years ago, software companies focused heavily on CI, initiating, and

monitoring, activities aimed at getting the CI machinery working. Ac-

tivities involved e.g. efficient use of new tools, (e.g. SonarQube, Gerrit,

Kubernetes), high focus on code reviews, and change of ways-of-working to

adapt to the efficient set-up and working of the CI machinery. Agile teams,

together with the CI team, program managers, releases managers, tools

team and more, all coordinated their effort to enable their organization to

become a CI efficient organization.

The last few years the focus has widened to include CDs (i.e. continuous

deliveries and continuous deployments). At the same time, (former) new

technologies as cloud, 5G, containerization, microservices and more has put

141

https://doi.org/10.1142/9789811239922_0006

June 2, 2021 17:14 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-06 page 142

142 Artificial Intelligence Methods for Software Engineering

a whole new attention and focus on CI, since CI is the very prerequisite for

CI/CD. For CI, being efficient and having good quality, is far from enough.

Reality today demands that the main branch holds such quality, that the

main branch is always open for deliveries from the agile teams and it is

always available for deliveries to customers. This puts a lot of pressure on

the organization using the CI flow. For instance, testing must be automated

and cover all possible aspects [3], and the code reviews have to be frequent

and effort-consuming.

Keeping high quality of the code base entails the use of a number of

quality assurance steps, between the check-ins of the code by the designers

and its integration into the main branch [4]. These steps include static

analysis of the code (e.g. using Lint, [5]) and manual code reviews [6]. De-

spite their obvious benefits, these methods have several downsides. Manual

reviews are time consuming, effort intensive and often reviewer-dependent.

Even Linus Torvalds, the creator of Linux, identifies the need for coding

review as one of the crucial activities, at the same time acknowledging that

it is a time and effort consuming activity [7]. Therefore, automation of this

process is called for by the software engineering industry in general, and by

our industrial case companies in particular.

In our previous work (Ochodek et al. [8]) we studied how to find ar-

bitrary, company-specific, coding violations and using examples to train

machine learning classifiers to find similar code fragments. The scenario

was to find examples of good and smelly code, use these examples to train

a machine learning classifier and look for more examples of the smelly code.

The limitation, however, was the need to create a sufficient number of ex-

amples for each type of smell in the code and to maintain the examples as

the organization evolved.

Therefore, in this chapter, we present a method that addresses this

limitation. Instead of manually creating the examples and label the code

fragments based on whether the example shows good code or a code smell,

we use review comments from code review tools to label the code. In

particular, we address the research problem of how to automatically process

the large number of code patches submitted in CI flows, extract the rules for

coding guidelines automatically and recommend code fragments/lines for

manual reviews from the perspective of software designers. Mostly, these

are code reviews done by experienced designers and reviewers in tools like

Gerrit [9].

This chapter is based on our experiences from a number of research

projects, conducted according to the action research methodology [10].

June 2, 2021 17:14 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-06 page 143

ML to support code reviews... 143

During the project we had the unique opportunity to work with two or-

ganizations, where we studied their code reviews and suggested changes.

The chapter uses the same techniques and methods, but is based on the

data from open source repositories to provide the readers with the oppor-

tunity to replicate the study and to reuse the tools and the data.

The main contribution of the chapter is the hands-on, step-by-step pre-

sentation of the method and the demonstration of its potential. It shows

how the modularity of the method can be utilized to develop even more

complex code analysis tools and how to use the method in reader’s own

context.

The remaining of the chapter is structured as follows. Firstly, Sec. 6.2

presents how code review processes work in modern CI toolchains. Sec-

tion 6.3 describes the workflow for automated review analysis and recom-

mendation. Sections 6.4, 6.5, 6.6 and 6.7 present the details of our approach.

Section 6.9 presents a full example from the open source wireshark protocol

implementation. Section 6.10 discusses the customization of the workflow

with more classifiers, different source systems and different feature extrac-

tion techniques. Section 6.11 presents further reading in this area, for the

readers who would like to get more in-depth understanding of the tech-

niques and methods presented in the study. Finally Sec. 6.12 presents the

conclusions and further work from our study.

6.2 Code review in CI

Modern code reviews have evolved from being a physical meeting between

the reviewer and the author to a collaborative activity supported by ded-

icated tools [11]. Figure 6.1 presents a typical code review workflow in a

continuous integration context. The grey background in the figure shows

which activities were in the scope of the automated code review support

described in this chapter.

Step 1: Software designer clones the repository, thus copies the original

code base to own workstation.

Step 2: Once done with adding new feature/bug fix, the designer commits

the code to the integration.

Step 3: Gerrit executes project-specific static analysis checks and exe-

cutes tests according to the test plan.

June 2, 2021 17:14 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-06 page 144

144 Artificial Intelligence Methods for Software Engineering

Change in a
code fragment

Diff between two
versions of code

Software
designer’s
workflow

Gerrit’s review
workflow

Main branch workflow

Original code
base

Reviewers comment and
discuss

Reviewers vote on the
commit

New code base

Software designer clones the repository, thus copies the
original code base to own workstation.

Once done with adding new feature/bug fix, the
designer commits the code to the integration.

Gerrit finds the difference between the original and
modified code and prepares a view for the reviewers.

Static analysis and tests
are executed

Gerrit executes project‐specific static analysis checks
and executes tests according to the test plan.

Reviewers read the code and comment on the problems
or give positive feedback on the code. They can discuss
with each other and/or with the author of the code.

Each reviewer provides a vote for the code, from ‐2 (low
quality code, should not be integrated) to +2 (go ahead
with the integration).

The code is integrated to the main branch and is not
part of the original code base.

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Fig. 6.1: A typical code review workflow in continuous integration projects.

Step 4: Gerrit finds the difference between the original and modified code

and prepares a view for the reviewers. The standard set-up of the tools

identifies all changes (added, removed and modified code) and presents that

the to reviewers. The modifications vary from small (a few lines modified

in a single file) to quite extensive (multiple code fragments added, removed

and modified in multiple files).

Step 5: Reviewers read the code and comment on the problems or give

positive feedback on the code. They can discuss with each other and/or with

the author of the code. The process of reading the code, if done properly,

requires the designers to read the commit messages to understand what was

done (e.g. which feature was implemented or which defect was fixed). The

extensive code commits are thus effort intensive and time consuming, which,

together with scarce documentation, can lead to long review durations.

Pinpointing “suspicious” code fragments could reduce the effort required

and thus the duration.

Step 6: Each reviewer provides a vote for the code, from −2 (low quality

code, should not be integrated) to +2 (go ahead with the integration).

The voting is done for the entire commit, but provides the basic view on

the code quality — good quality code is up-voted and low quality code is

down-voted. As the voting is mandatory for all commits, this presents the

June 2, 2021 17:14 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-06 page 145

ML to support code reviews... 145

opportunity to analyze and understand what good and bad quality means

in terms of code constructs.

Step 7: The code is integrated to the main branch and is not part of the

original code base.

Steps 3–6 are often repeated several times until the reviewers are satis-

fied with the changes. In practice this can mean that these steps can take

over four iterations. So, even small improvements in that loop can bring

significant savings. Our focus on the three greyed steps is also dictated by

the fact that these activities are dependent on human reviewers and there-

fore can be affected by external factors. For example, the reviewer can be

unavailable due to his/her commitments to other projects, or the reviewers

may not fully agree on the proposed change. These factors can play a sig-

nificant role when the number of code commits is large and therefore the

effort required from the reviewers is high. Reducing the number of man-

ual reviews would help to optimize the process and therefore lead to the

improvement of the overall speed and quality of software development [12].

Our industrial partners identified the following challenges which need

to be addressed in this process:

(1) Human involvement from the beginning — not all commits require

manual review, but involving human reviewers leads to, paradoxically,

lower review quality; human reviewers often miss important code frag-

ments in the constant inflow of the patches. Not enough focus on things

that really matters, things that don’t go away as soon as the compiler

has done its job. Filtering out the commits that do not require manual

review would have a positive effect, both on product quality and the

spreading of knowledge from senior to junior developers.

(2) Frustration in the iterative process — since steps 3–6 can be repeated

several times, code authors and code reviewers can discuss for a long

time with long breaks between each discussion comment, which slows

down feature development and leads to frustration in the team.

(3) Company specific coding rules are costly to maintain — the set of rules

might be huge, they might change all the time. Even worse, some of the

languages used in large scale, highly specialized software organizations,

might be domain specific, or consist of an unholy mix of established

languages that of the shelf tools can’t handle.

(4) The review process that’s used for code is often used for other types of

machine readable “text” as well — configuration files and so on. This

June 2, 2021 17:14 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-06 page 146

146 Artificial Intelligence Methods for Software Engineering

is also something that’s hard to manage with conventional of the shelf

tools.

However, the full automation of the review process is not desired. The

process of reviewing code in CI is also a process of learning — knowledge

from the experienced designers is transferred to the junior ones. The code

and design decisions are discussed and therefore improved, or at least the

tradeoffs are taken responsibly and after impact analyses. Therefore, we

use the following metaphor of the review automation stairway in our work,

Fig. 6.2. The staiway is inspired by the organizational performance stairway

[13] and symbolizes how an organization can elevate its competence in code

reviewing without jeopardizing the organizational learning process.

Measuring review
speed

Automated
violation analysis

Automated
violation
extraction

Automated
recommendation

Automated code
reviews

Review speed
measurement

Automated Automated Automated Automated Automated

Review data
extraction

Manual Automated Automated Automated Automated

Rule definition Manual Manual Assisted Automated Automated

Code analysis Manual Manual Assisted Automated Automated

Feedback Manual Manual Manual Manual Automated

Fig. 6.2: Stairway in Automation of Code Review Processes in studied

companies.

The first stage of is measuring review speed, where the organization

automates the measurement of speed of the review process [12]. The other

activities are manual:

• Review data extraction: exporting the review comments, their meta-

data (e.g. timestamps) and the reviewed code fragments from the code

review system to a database or a file which can be used in statistical

analyses (e.g. using R).

• Rule definition: defining which reviews should be considered as pos-

itive and negative, which review comments should be discarded (e.g.

June 2, 2021 17:14 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-06 page 147

ML to support code reviews... 147

unambiguous) and which review comments should be considered as

coding guidelines.

• Code analysis: analyzing the source code of new commits and providing

the results to the code authors.

• Feedback: providing the code reviewers with proposal for the comments

for a given code fragment.

The second stage of automated violation analysis is when the orga-

nization starts to codify their specific coding guidelines into automated tools

and use these tools to analyze the code. For example, when organizations

write their own static analysis rules or style checkers. The organization

automatically analyze the code fragments, but the process of defining the

rules and code analyses are still manual [12].

In the third stage of automated violation extraction, the rule defi-

nition and code analysis is assisted. This means that the automated code

review tool provides automated suggestions which review comments are

repetitive and the designers can write a static analysis rule to be automat-

ically checked. The tool can also provide examples of code fragments to

which these review comments belong.

Subsequently, in the stage of automated recommendations, the rule

definition and the code analyses are automated. This means that the system

can analyze the code and provide the code authors which an annotation

whether a specific code fragment violates any rules or not.

Finally, in the stage of automated code reviews, the system can also

provide the insight which code review comments are most often used when

commenting similar code fragments. Since this is the most interesting, and

the most beneficial, approach, we focus on the automated code reviews in

this paper.

6.3 Code analysis toolchain

Extracting code reviews and the code linked to these comments is a process

which is organized into three parts:

(1) Exporting raw data from the source system.

(2) Extracting features from code and comments.

(3) Classification and recommendation.

These parts are depicted in Fig. 6.3. The flow in the figure starts with

the raw data export from the Gerrit review system, which is done using

June 2, 2021 17:14 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-06 page 148

148 Artificial Intelligence Methods for Software Engineering

Raw data exporting

featurized_lines.csv sentimented_comments.csv

Featurizer Sentiment analyzer

Line labeller

train_lines.csv

StandardScaler

AdaBoost

trained_model

Gerrit

Gerrit exporter

Classification

Feature extraction

exported_comments_and_code.csv

Fig. 6.3: Code analysis flow — training the classifier.

Python scripts and the JSON API to the system. Then, the flow continues

to the feature extraction, which is based on the bag-of-words algorithm

and finally it ends with the training of the classifier — the result is the

trained ML model, which we can apply to recognize violations on new code

fragments.

Figure 6.4 presents how the trained model is applied on the new code

base. The flow is similar to the analysis, except that there is no sentiment

analysis (as there are not comments on the new code yet) and the classifier

have the new input — the trained model.

One observation to take from these diagrams is the change of complex-

ity — in the training flow, the complexity is mostly around the concept

of feature extraction and labelling of lines. In the recognition of the new

code violation, the complexity is shifted toward the classification part —

the classifier needs to take the trained model as the input.

In the figures we use one example of a data source — Gerrit code review

system — which is one of the most popular tools. We can exchange this

June 2, 2021 17:14 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-06 page 149

ML to support code reviews... 149

Raw data exporting

featurized_lines.csv

Featurizer

StandardScaler

AdaBoost

classified_lines

Gerrit

Gerrit exporter

Classification

Feature extraction

exported_code.csv

trained_model

Fig. 6.4: Code analysis flow — recognizing violations on new code.

tool for others (e.g. GitLab, GitHub, Visual Studio Team System) leaving

the other parts intact. The classifiers used in the figure — AdaBoost — are

also an example, and can be exchanged to neural networks or other types

of classifiers.

6.4 Code extraction

Before we move to the description of the algorithm, let us look at an example

of how a code review looks like in a typical code review tool — Fig. 6.5. The

example shows a comment related to the code in a patch that is committed

to the main branch. The figure is drawn manually to emphasize the link

between the comment and the code, and to abstract away the cluttering

details of a code review tool. However, it is based on how Gerrit and Git

present the review comments.

The figure illustrates an important design consideration — which lines

are labelled as “good” and which are labelled as “bad”. In our studies, we

June 2, 2021 17:14 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-06 page 150

150 Artificial Intelligence Methods for Software Engineering

Do not use ”temp” as variable
name, use something more
informative, e.g. swapper

Good that you return the
swapped value.

Fig. 6.5: An example of a review comment.

found that we need to export all comments and label only the lines that

are commented. We experimented with exporting all lines and labelling the

lines that were not commented as “good”, but this is not accurate as:

(1) Reviewers unwillingly repeat their comments, instead the write com-

ments like this “You use too many temp variables, I will not comment

on every one instance, please fix it throughout the code.”

(2) In large commits, the reviewers often focus on “sensitive” code frag-

ments and tend to comment on them. The rest of the lines is not

commented, but this does not mean they are correct or proper, it could

just mean that the reviewer was pressed on time.

The script that extracts the lines and their comments uses the API of

the code review tool. In our case, we use Gerrit, as it is a tool that is both

popular and has a straightforward JSON API. Code in Fig. 6.6 presents a

JSON API call to get the IDs of submitted and reviewed patches.

Fig. 6.6: JSON API call to retrieve a batch of patch information.

The code returns a JSON string which we can process as a collection in

the subsequent part of the script — processing each patch and extracting

the comments. The code is presented in Fig. 6.7.1

1For the sake of the simplicity of the example, we omit error handling, e.g. timeouts
and missing elements of the JSON string.

June 2, 2021 17:14 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-06 page 151

ML to support code reviews... 151

Fig. 6.7: Python code to process each patch — extract lines and comments.

Lines 8–9 call the Gerrit API and retrieve a comment for each revision in

the current patch. The look starting in line 13 processes each comment and

each file. Each comment has a start and end line, referenced as numbers,

which we extract in lines 20–23. Each comment has a reference to the

file which is commented, which we extract in line 29. We use the JSON

API again to extract the content of the commented file in lines 30–31. In

lines 35–37, we extract the source code lines to which the review comment

belongs. In lines 39–46, we save the line and the comment to the .csv file

for further processing — feature extraction.

June 2, 2021 17:14 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-06 page 152

152 Artificial Intelligence Methods for Software Engineering

6.5 Feature extraction

The feature extraction step uses two algorithms — bag-of-words for the

source code analysis and sentiment analysis for the comments. The bag-of-

words extraction of features is based on the work we used in our previous

studies [3, 8, 14]. For the analysis of comments we use a lexicon-based

sentiment analysis [15].

6.5.1 Bag-of-words analysis of source code

The bag-of-words model (BoW) is a simplified representation of text fre-

quently used in machine learning. It extracts features by counting occur-

rences of tokens or sequences of tokens (n-grams) in the passage of text (in

our case, a line of code). The method requires a vocabulary that can be

automatically derived from the text or explicitly provided by the user (we

can also mix these two approaches).

In Fig. 6.8, we present a snippet of code in Python that can be to

extract BoW features from lines of code. In lines 5–12, we define a cus-

tom tokenizer that split lines of code using characters that have special

meaning in many programming languages. In contrast to the typical im-

plementations of BoW used for natural language processing, these splitting

characters are preserved and included in the vocabulary. In lines 14–18, we

use the CountVectorized class available in the sklearn library to train the

BoW model. The class offers multiple parameters that can be set to con-

trol how the model is created. In the provided example, we use automatic

vocabulary creation and limit the size of vocabulary to 100 most frequently

appearing features. We can also control the size of n-grams extracted from

the text. W show how changing the ngram range parameter affects the

extracted features. Finally, in the lines 20–22 of the snippet, we show how

to prepare a two-dimensional array storing the extracted features.

In our previous studies [3, 8, 14], we proposed some extensions to the

standard BoW model that help applying it to code analysis. For instance,

we proposed to convert tokens being out of the vocabulary to so-called token

signatures. Such signatures are created by firstly replacing each uppercase

letter with “A”, each lowercase letter with “a”, and each digit with “0”

and then shrunking each subsequence of the same characters into a single

character only (e.g., aaa to a or to). Finally, the process is repeated

for pairs and triples of characters (e.g., AaAa is converted to Aa). Using

token signatures can help reducing the size of vocabulary and preventing

June 2, 2021 17:14 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-06 page 153

ML to support code reviews... 153

ngram_range=(1,1)

ngram_range=(1,2)

Fig. 6.8: Using the bag-of-words model to extract features from code.

from overfitting models to specific names of variables or methods in the

training code.

6.5.2 Sentiment analysis of review comments

The first part of the sentiment analysis is the configuration of the algorithm.

The configuration is a list of positive and negative sentiments, as shown in

Fig. 6.9.

Fig. 6.9: Definition of the lexicon for the analysis of code review comments.

June 2, 2021 17:14 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-06 page 154

154 Artificial Intelligence Methods for Software Engineering

In our case, we used a simple lexicon, which we derived by reading

ca. 200 code review comments. The analysis of every review comment is

presented in Fig. 6.10. Lines 10–11 and 13–14 are the main loops that

calculate the number of words from the lexicon for positive and negative

sentiments. Lines 16–17 calculate the quotinent, which is necessary as

the number of lexicon words can differ between the positive and negative

sentiments. Line 19 calculates the sentiment and lines 24–27 recalculate it

to a class for the machine learning algorithm in the next step.

Fig. 6.10: Function to analyze the sentiment and turn this into a “class”

that is used for the machine learning algorithms in the next step.

We chose this method for sentiment analysis due to its simplicity and our

ability to control what is considered as positive and negative comment. By

re-configuring the lexicon we can calibrate the method based on our needs.

For example, we can calibrate the lexicon for the specific vocabulary used

by the project team or by the entire company.

The result of the sentiment analysis provides us with the classification of

each comment — positive (1) or negative (0). This is used in the labelling of

the lines that are commented. Each line is labelled as 1 when the comment

is positive and 0 when the comment is negative. In the next step, we train

a machine learning classifier to recognize lines belonging to these classes.

June 2, 2021 17:14 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-06 page 155

ML to support code reviews... 155

More precisely, we train the classifier to assign a label to each line — 1 or 2.

6.6 Model development

We use supervised learning classifiers to develop the model as we have the

labelled data to train the model. In our studies, we experimented with two

types of models — whitebox models based on decision trees and blackbox

models based on convolutional neural networks. The innerworkings of the

models are significantly different, but for the purpose of classifying lines,

they are interchangeable, i.e. we can plug-in and out different models into

the same workflow.

The features extracted from the source code are often many (over 1,000

features) as they need to capture the variability of the source code, but

the classes are only two. This means that the classifier needs to be robust

to multidimensional data and needs to be able to capture the variability.

We use the AdaBoost classifier with multiple decision trees as the classifier

which provides a good trade-off between the time needed for training, the

data required and the resulting classification performance.

Figure 6.11 presents the code for the training of the classifier with its

10-fold cross-validation.

Fig. 6.11: Code to train the AdaBoost classifier based on CART decision

trees.

Lines 1–7 define the classifier, which is organized into a pipeline. The

first step is to use the StandardScaler, which is a pre-processing algo-

rithm that scales features by removing the mean and scaling to unit vari-

ance. The second step is the AdaBoost algorithm, which is based on the

DecisionTreeClassifier. The DecisionTreeClassifier is a Python im-

plementation of the CART decision tree algorithm [16]. The algorithm is

well-known and robust, providing a good platform for the building the Ad-

aBoost ensemble classifier [17].

June 2, 2021 17:14 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-06 page 156

156 Artificial Intelligence Methods for Software Engineering

The important parameter is the number of decision trees in the classifier,

which is line 4. In this case, we have 600 trees. This is a large number and

it depends on the number of features in the data set. For this code, we

ended-up with over 2,000 features, which justified such a large number of

trees. Based on our experiments, we recommend to set the parameter to

be ca. 30% of the number of features.

Line 9 is the code that executes the training and validation process. It

randomly splits the data set into train and test parts, then training the

classifier 10 times (cv parameter). The result is the trained model, which

is stored in the ab pipeline variable.

The trained classifier is ready to help us to make predictions whether a

specific line should be reviewed manually or not.

6.7 Making a recommendation

Making the recommendation is based on the application of the trained

classifier, which is programmed using a single line of code — y pred ab =

ab pipeline.predict(X test). In this line, we provide the input to the

classifier, X test, which is a feature vector of one line. The result is the

predicted class, y pred ab, which is either a 0 for the line that violates the

programming practice or 1 for the line which does not.

Since our classifier was trained based on the classes obtained from the

sentiment analysis, this predicted class 0 means, essentially, that “if this

line was reviewed by a reviewer, the reviewer would react negatively to

this line”. Having this knowledge we can continue building systems on top

of this, e.g. looking for similar lines in the training set, identifying their

comments and providing the recommendation to the reviewers based on

this identified comment.

In this workflow, however, we do not work with the semantics of the

comments and therefore we should be careful with the automated recom-

mendations. The comments can irrelevant for the context of the new line.

We recommend to provide the context of the comment together with the

suggested recommendation. The recommendation could be in the following

form: “Previously, the reviewers identified a similar line <similar line from

the training set> and provided the following comment <comment from the

training set>.”

June 2, 2021 17:14 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-06 page 157

ML to support code reviews... 157

6.8 Visualization of the results

In the visualization, the most important part is to show which lines of

code the reviewer should focus on. This can be done in different ways —

augmenting the code with comments, highlighting the code in Gerrit, high-

lighting the code directly in the IDE or creating a separate report.

When introducing this tool to the organization we recommend to check

the way in which the team wants to set it up. In our case, we use the

dashboard selection model for this purpose [?, 18]. The presentation of

results is a kind of report, so augmenting the code in the Gerrit tool is the

best visualization. However, this has the potential of cluttering the view, as

this information will add more colors/annotations to the already cluttered

user interface.

Therefore, a simple report with the lines recommended is often sufficient

for the introductory stage. The code which is used for that is presented in

Fig. 6.12.

Fig. 6.12: Code to visualize the results as an HTML report.

We also recommend to conduct an assessment of which kind of algo-

rithms and types of machine learning should be adopted for the particular

company [19].

6.9 Full example

In the remaining of this chapter, let us explore one example of classification

and discuss the results. The code for our tool can be found at https:

//github.com/miroslawstaron/auto_code_reviewer on GitHub. In this

example, we use the open source project Wireshark. The repository is

available at https://code.wireshark.org/review.

The goal is to illustrate the output of each of the steps of the analysis

and discuss them, not to obtain a perfect classification. We discuss the

design decisions that can affect the performance of the classifiers as we

proceed with the example.

https://github.com/miroslawstaron/auto_code_reviewer
https://github.com/miroslawstaron/auto_code_reviewer
https://code.wireshark.org/review

June 2, 2021 17:14 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-06 page 158

158 Artificial Intelligence Methods for Software Engineering

The first step is the export. By executing the code exporting the data

from the wireshark repository, we obtain the following output, as a .csv

file. The head of the file is presented in Table 6.1.

The table contains lines of code that were commented and their corre-

sponding comments. The first and the third comments are asking discussing

the solution, whereas the second one is a confirmation that something has

been done as a response to the comment.

Once we exported the raw data, we need to process it — use sentiment

analysis on the comment messages and bag of words for source code lines.

The application of the sentiment analysis for the comments results in the

following sentiment results, presented in Table 6.2.

In order to validate the sentiment analysis, we manually labelled com-

ments and compared that to the sentiment analysis. Figure 6.13 presents a

confusion matrix and the accuracy scores for the validation. The high accu-

racy score (0.91) shows that even the simplistic, keyword-based sentiment

analysis is rather good for our purposes.

Fig. 6.13: Confusion matrix for the validation of sentiment analysis.

Ju
n

e
2

,
2

0
2

1
1

7
:1

4
w

s-b
o

o
k

9
x6

A
rtifi

cia
l

In
tellig

en
ce

M
eth

o
d

s
for

S
o

ftw
are

E
n

g
in

eerin
g

1
2

3
6

0
-0

6
p

a
g

e
1

5
9

M
L

to
su

p
po

rt
cod

e
review

s...
1
5
9

Table 6.1: Raw data exported from gerrit.

ch–

id

rev–

id

filename line startL endL LOC message

1 r1 epan/dissectors

packet-tls-utils.c

6061 0 0 tvb, offset,

next offset – off-

set, [truncated])

since you are not adding any

extra information here, perhaps

drop the [truncated] text here

and rely on the label of the field

in packet-tls-utils.h. And use

proto item set generated to get

the [and] effect.

2 r2 epan/dissectors

packet-tls-utils.c

6061 0 0 tvb, off-

set, next offset

– offset, ”[trun-

cated]”)

Done

3 r3 epan/dissectors/

packet-afs.c

420 0 0 ” char

*version type ”

const char * Can you

also squash some trivial patches?

Changing a typo in a comment

can probably be done while you

are modifying other code.

June 2, 2021 17:14 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-06 page 160

160 Artificial Intelligence Methods for Software Engineering

Table 6.2: Results of the sentiment analysis.

Message Sentiment

since you are not adding any extra information here,

perhaps drop the [truncated] text here and rely on

the label of the field in packet-tls-utils.h. And use

proto item set generated to get the [and] effect.

0

Done 1

const char * Can you also squash some trivial patches?

Changing a typo in a comment can probably be done while

you are modifying other code.

1

Table 6.3: Bag of words features per line.

line (tab) (space) ! “ # $ % ... a able
tvb, offset, next offset – offset,
”[truncated]”)

0 25 0 2 0 0 0 ... 0 0

tvb, offset, next offset – offset,
”[truncated]”)

0 25 0 2 0 0 0 ... 0 0

char *version type ” 1 1 0 0 0 0 0 ... 0 0

Table 6.4: Raw data exported from gerrit.

line (tab) (space) ! “ # $ % ... class value
tvb, offset, next offset –
offset, ”[truncated]”)

0 25 0 2 0 0 0 ... 0

tvb, offset, next offset –
offset, ”[truncated]”)

0 25 0 2 0 0 0 ... 1

char *version type ” 1 1 0 0 0 0 0 ... 1

In parallel to the sentiment analysis, we also analyze the code and create

the feature vector based on the bag of words analysis. The results are

presented in Table 6.3. The table contains an excerpt of all the features

identified, as the algorithm has identified 633 features.

Once we have both the sentiment for each comment and the feature

vector for the line, we can merge them and create a matrix which we can

use in the next step to train a machine learning model. The results are

presented in Table 6.4.

Now that we have the lines labelled, we can use the AdaBoost algorithm

to classify the lines. However, let us first create a diagram where we explore

whether the classes are balanced, i.e. whether there is the same number of

positive and negative instances. Figure 6.14 presents the results.

June 2, 2021 17:14 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-06 page 161

ML to support code reviews... 161

Fig. 6.14: Number of instances per class.

The diagram shows that the positive comments are fewer than the neg-

ative ones (which is quite common in code reviews). Therefore, we need to

balance the classes, which is part of the toolchain described in this chapter.

Finally, we can train the machine learning classifier. The results of the

trained classifier can be presented in different ways, here as a confusion

matrix in Fig. 6.15.

Fig. 6.15: Confusion matrix.

The results show that the classifier predicts most lines to be negative,

June 2, 2021 17:14 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-06 page 162

162 Artificial Intelligence Methods for Software Engineering

i.e. that they require manual reviews. This is caused by the example data

set. We used a small data set for this example — ca. 400 lines — which is

quite small for the classification. Since the code base of Wireshark signifi-

cantly larger, over 2.8 million lines in different languages, using 400 lines to

train the classifier is too little in practice, but ok for the illustration of the

problem. To make it work in practice, the readers should modify the code

provided in https://github.com/miroslawstaron/auto_code_reviewer

to export all comments and then train the classifier. The results will be

much better, i.e. more accurate.

We can present the results as shown in Fig. 6.16. The figure presents

an example of how this is visualized in an off-line manner, i.e. outside of

the Gerrit review tool. Our future work is to create a plug-in to Gerrit to

be able to highlight the lines for review in the Gerrit’s user interface.

Presenting the results outside of the Gerrit’s user interface is useful

for the companies as this provides them with the possibility to review the

entire code base, not only focus on a single patch. This helps the presented

technology to get wider applicability than CI.

6.10 Using other techniques in the workflow

The workflow presented in this chapter, and depicted in Fig. 6.3, can be

customized. We can exchange the source system, the feature extraction

techniques and the classifiers. In our studies, we analyzed the following

customizations:

(1) Exchanging the source tools with GitLab — we modified the export

raw data script to use the GitLab API. The sentiment classification,

bag-of-words and the classifier were not modified.

(2) Exchanging the feature extraction with own feature extraction tech-

niques. We can exchange the bag-of-words with extractors that base

on the keywords (e.g. if), tokens (e.g. a0 instead of all variables that

are named with small letters and numbers — variable1 or temp3).

We can even use more advanced techniques like word embeddings, but

then we need to change the classifier to be a neural network.

(3) Exchanging the classifiers with neural networks. In the presented work-

flow we used the decision trees, but we can use more advanced algo-

rithms. We can, for example, use convolutional neural networks. The

advantage with deep learning techniques is that we can scale up the

https://github.com/miroslawstaron/auto_code_reviewer

June 2, 2021 17:14 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-06 page 163

ML to support code reviews... 163

Fig. 6.16: Number of instances per class.

feature vectors to very large, we can also process much larger data sets

(we experimented with products over 10 million LOC).

(4) Exchanging the sentiment analysis method. We used a simplistic sen-

timent analysis method, which is 91% accurate. However, it has its

limitations and cannot capture sophisticated comments. To improve

that, we can use natural networks for sentiment analysis and capture

the details of the comments.

We recommend the companies and researchers to experiment with own

techniques to get the most out of the presented work. The code base is

provided in GitHub as open source under the GPL v.3 license.

June 2, 2021 17:14 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-06 page 164

164 Artificial Intelligence Methods for Software Engineering

6.11 Related work

The ideas of mining software data from existing repositories was populated

by the seminal work of Zimmermann et al. [20]. The authors demonstrated

how using past software design data, mined from software repositories,

could help to improve the quality of software.

Liang et al. [21] expanded the work of Zimmermann et al. and analyzed

patterns of involvement of designers in code reviews. The work opened up

important alleys, but was not done in the context of continuous integration,

which is the focus of our work. Bernhard et al. [22, 23] indicated that the

Agile software development introduces changes in the way that software

reviews work (compared to the non-Agile and non-CI ways of working).

Chatley and Jones [24] developed a tool for generating review com-

ments, which is similar to what we wanted to achieve. However, the major

difference is that we provide the designers with the freedom to interpret

the code fragments, not generating the reviews. The important difference

is that we provide the possibility for the organizations to learn, i.e. taking

into consideration the human factors [25].

These human aspects are important when considering code reviews in

larger industrial contexts [26]. There, learning and understanding code is

important, as well as the need to discussions about the design solutions in

the code. In such contexts even the softer aspects are important, e.g. code

ownership [27].

Our work on data management is follows similar principles as the work

of Menzies et al. [28]. Menzies et al. provided a comprehensive work on

the use of big data in software engineering. We complement their work

by contributing with a modern method for extracting code reviews from

automated tools like Gerrit.

Another important position, which our research complement, is the work

by Bird et al. [29], which focuses on mining software repositories. We can

consider Gerrit to be one type of software repository and our methods help

to mine the data, analyze it automatically, and use the new knowledge to

help software engineers in their work.

In the area of code review, Pascarella et al. [30] studied what kind of

needs the designers have in modern code reviews. The results show that the

designers need to understand the usage of methods and design guidelines.

Our work contributes to the automation of the review process and therefore

complements this work, but opening up for automated matching between

code fragments and comments.

June 2, 2021 17:14 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-06 page 165

ML to support code reviews... 165

Ebert et al. [31] studied the code reviews in more depth and observed a

similar trend as we — that the comments often can be misinterpreted. The

work of Ebert can be used to reduce the ambiguity in the sentiment analysis

and therefore lead to more accurate results of the code classification, thus

complementing our work.

Finally, a recent systematic mapping from Badampudi et al. [32] indicate

that the current state-of-the-art in this area is focused on the tool support

for the review process, but not in the automation of the code review, where

our work fits.

6.12 Conclusions

Machine learning and artificial intelligence has risen in popularity for the

past few years. These methods, which allow for automated handling of large

quantities of data, seem to be a perfect match for the modern challenges

of software engineering. In this chapter, we addressed one of the challenges

in modern software engineering industry — achieving high quality software

in the high velocity continuous integration pipelines.

By using machine learning, we designed a system that can learn from

previous code reviews by abstracting both the reviewed code and the com-

ments. The system illustrates how convenient machine learning is to solve

software engineering problems. It also illustrates how to work with the data

management workflows in this context.

Out further work is based on the defining a specific language model

for comments in software engineering, which can provide the ability to

automatically analyze the reviews with more accuracy.

References

[1] P. M. Duvall, S. Matyas and A. Glover, Continuous integration: improving
software quality and reducing risk. Pearson Education (2007).

[2] M. Meyer, Continuous integration and its tools, IEEE software 31, 3, pp. 14–
16 (2014).

[3] K. Al-Sabbagh, M. Staron, R. Hebig and W. Meding, Predicting test case
verdicts using textual analysis of commited code churns, (2019).

[4] A. Debbiche, M. Dienér and R. B. Svensson, Challenges when adopting con-
tinuous integration: A case study, in International Conference on Product-
Focused Software Process Improvement. Springer, pp. 17–32 (2014).

[5] C. Sadowski, E. Aftandilian, A. Eagle, L. Miller-Cushon and C. Jaspan,
Lessons from building static analysis tools at google, (2018).

June 2, 2021 17:14 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-06 page 166

166 Artificial Intelligence Methods for Software Engineering

[6] F. Zampetti, G. Bavota, G. Canfora and M. Di Penta, A study on the
interplay between pull request review and continuous integration builds, in
2019 IEEE 26th International Conference on Software Analysis, Evolution
and Reengineering (SANER). IEEE, pp. 38–48 (2019).

[7] ZDNet, Linus Torvalds: I’m not a programmer anymore, ZDNet magazine,
(2019).

[8] M. Ochodek, R. Hebig, W. Meding, G. Frost and M. Staron, Recogniz-
ing lines of code violating company-specific coding guidelines using machine
learning, Empirical Software Engineering 25, 1, pp. 220–265 (2020).

[9] L. Milanesio, Learning Gerrit Code Review. Packt Publishing Ltd. (2013).
[10] M. Staron, Action Research in Software Engineering: Theory and Applica-

tions. Springer Nature (2019).
[11] I. Fronza, A. Hellas, P. Ihantola and T. Mikkonen, Code reviews, software

inspections, and code walkthroughs: Systematic mapping study of research
topics, in International Conference on Software Quality. Springer, pp. 121–
133 (2020).

[12] M. Staron, W. Meding, O. Söder and M. Bäck, Measurement and impact
factors of speed of reviews and integration in continuous software engineer-
ing, Foundations of Computing and Decision Sciences 43, 4, pp. 281–303
(2018).

[13] H. H. Olsson, H. Alahyari and J. Bosch, Climbing the “stairway to
heaven” — a mulitiple-case study exploring barriers in the transition from
agile development towards continuous deployment of software, in 2012 38th
euromicro conference on software engineering and advanced applications.
IEEE, pp. 392–399 (2012).

[14] M. Ochodek, M. Staron, D. Bargowski, W. Meding and R. Hebig, Using
machine learning to design a flexible loc counter, in 2017 IEEE Workshop
on Machine Learning Techniques for Software Quality Evaluation (MaL-
TeSQuE). IEEE, pp. 14–20 (2017).

[15] M. Taboada, J. Brooke, M. Tofiloski, K. Voll and M. Stede, Lexicon-based
methods for sentiment analysis, Computational linguistics 37, 2, pp. 267–307
(2011).

[16] P. H. Swain and H. Hauska, The decision tree classifier: Design and potential,
IEEE Transactions on Geoscience Electronics 15, 3, pp. 142–147 (1977).

[17] C. Ying, M. Qi-Guang, L. Jia-Chen and G. Lin, Advance and prospects of
adaboost algorithm, Acta Automatica Sinica 39, 6, pp. 745–758 (2013).

[18] M. Staron, K. Niesel and W. Meding, Selecting the right visualization of in-
dicators and measures–dashboard selection model, in Software Measurement.
Springer, pp. 130–143 (2015).

[19] R. Rana, M. Staron, J. Hansson, M. Nilsson and W. Meding, A framework
for adoption of machine learning in industry for software defect prediction, in
2014 9th International Conference on Software Engineering and Applications
(ICSOFT-EA). IEEE, pp. 383–392 (2014).

[20] T. Zimmermann, A. Zeller, P. Weissgerber and S. Diehl, Mining version
histories to guide software changes, IEEE Transactions on Software Engi-
neering 31, 6, pp. 429–445 (2005).

June 2, 2021 17:14 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-06 page 167

ML to support code reviews... 167

[21] J. Liang and O. Mizuno, Analyzing involvements of reviewers through min-
ing a code review repository, in 2011 Joint Conference of the 21st Interna-
tional Workshop on Software Measurement and the 6th International Con-
ference on Software Process and Product Measurement. IEEE, pp. 126–132
(2011).

[22] M. Bernhart, A. Mauczka and T. Grechenig, Adopting code reviews for agile
software development, in 2010 Agile Conference. IEEE, pp. 44–47 (2010).

[23] M. Bernhart and T. Grechenig, On the understanding of programs with
continuous code reviews, in 2013 21st International Conference on Program
Comprehension (ICPC). IEEE, pp. 192–198 (2013).

[24] R. Chatley and L. Jones, Diggit: Automated code review via software repos-
itory mining, in 2018 IEEE 25th International Conference on Software Anal-
ysis, Evolution and Reengineering (SANER). IEEE, pp. 567–571 (2018).

[25] S. Ruangwan, P. Thongtanunam, A. Ihara and K. Matsumoto, The impact
of human factors on the participation decision of reviewers in modern code
review, Empirical Software Engineering 24, 2, pp. 973–1016 (2019).

[26] Y. Tao, Y. Dang, T. Xie, D. Zhang and S. Kim, How do software engineers
understand code changes? an exploratory study in industry, in Proceedings
of the ACM SIGSOFT 20th International Symposium on the Foundations of
Software Engineering, pp. 1–11 (2012).

[27] L. P. Hattori, M. Lanza and R. Robbes, Refining code ownership with syn-
chronous changes, Empirical Software Engineering 17, 4–5, pp. 467–499
(2012).

[28] T. Menzies, L. Williams and T. Zimmermann, Perspectives on data science
for software engineering. Morgan Kaufmann (2016).

[29] C. Bird, T. Menzies and T. Zimmermann, The art and science of analyzing
software data. Elsevier (2015).

[30] L. Pascarella, D. Spadini, F. Palomba, M. Bruntink and A. Bacchelli, Infor-
mation needs in contemporary code review, Proc. ACM Hum.-Comput. In-
teract. 2, CSCW (2018), doi:10.1145/3274404, https://doi.org/10.1145/
3274404.

[31] F. Ebert, F. Castor, N. Novielli and A. Serebrenik, Confusion in code re-
views: Reasons, impacts, and coping strategies, in 2019 IEEE 26th In-
ternational Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, pp. 49–60 (2019).

[32] D. Badampudi, R. Britto and M. Unterkalmsteiner, Modern code reviews-
preliminary results of a systematic mapping study, in Proceedings of the
Evaluation and Assessment on Software Engineering, pp. 340–345 (2019).

https://doi.org/10.1145/3274404
https://doi.org/10.1145/3274404

B1948 Governing Asia

B1948_1-Aoki.indd 6B1948_1-Aoki.indd 6 9/22/2014 4:24:57 PM9/22/2014 4:24:57 PM

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank

© 2021 World Scientific Publishing Company

https://doi.org/10.1142/9789811239922_0007

169

Chapter 7

Software Fusion: Deep Design Learning

with Deterministic Laplacian Verification

Iaakov Exman

Department of Software Engineering

The Jerusalem College of Engineering – JCE – Azrieli,

Jerusalem, Israel

iaakov@jce.ac.il

7.1 Introduction

Automatic software generation is potentially a powerful tool to assure

software correctness. It could be of utmost importance for critical systems,

to avoid accidents with dire material consequences and human life losses.

As a recent example, airplanes of the Boeing 737 Max 8 type were

grounded after two accidents with hundreds of fatalities. The accident

causes in the embedded avionics software, were not amenable to

correction within a short time.

The large investments in driverless autonomous vehicles, by cars and

trucks industries, are another example of the growing importance of

software correctness in everyday life. They are being justified by the

higher reliability of software driven steering relative to human drivers.

This has not been yet achieved, but potentially it could be true.

Software correctness is also important for non-safety-critical systems.

Very large software systems used on a routine basis, such as transaction

payments and travel reservation systems, among others, must be bug-free,

for evident reasons.

https://doi.org/10.1142/9789811239922_0007

170 Artificial Intelligence Methods for Software Engineering

7.1.1 Software Design Generation instead of

Lower-Abstraction Assets

The overwhelming majority of previous research efforts to generate

software by Deep Learning neural networks have been directed towards

lower-level abstraction software implementation assets, such as runnable

code and comments. These efforts focused on lower-level abstraction

software assets because the needed neural networks architectures —

mainly sequential RNN (Recurrent Neural Networks) variants — were

available and easily applied. Programming language statements are indeed

sequential. But the obtained results were fragile. They are not easily

amenable to robust correctness, due to the probabilistic nature of the neural

nets, followed by traditional trial-and-error human debugging.

This chapter describes Software Fusion, a novel and original approach,

aiming at the higher-abstraction Software Design. It is based upon more

flexible GCN (Graph Convolutional Networks), whose graph structures

can represent any software system, at the design level. For instance, UML

class diagrams can be viewed as graphs, with nodes standing for classes

and edges standing for any relationships such as composition or

inheritance, in object-oriented parlance.

Rigorous verification of graphs obtained by Deep Learning is essential

to attain software correctness. Higher-level abstraction is robust due to

deterministic correctness verification. It uses spectral methods upon

Laplacian matrices — an algebraic software design representation within

Linear Software Models [11] — fitting the respective graphs.

Software Fusion is Software system design done by fusion of two

complementary mathematical tools, as shown in Fig. 7.1:

 Software Fusion: Deep Design with Laplacian Verification 171

Fig. 7.1. Software Fusion — Software Design Schematic Architecture — It consists of the

interaction of two complementary mathematical tools. In the picture left-hand-side (blue

background) one sees the 1st Tool — Probabilistic Deep Learning, including the GCN

classifier and its preceding trainer. In the picture right-hand-side (green background) one

sees the 2nd Tool — Deterministic Laplacian matrix Spectral verification. Final Results

contain Graphs verified to be correctly labelled. Graphs incorrectly labelled by the GCN

classifier, can be corrected, and reused to improve training, by “Active Learning”.

• 1st Tool — Probabilistic Deep Learning generation of design graphs

by GCN — it starts with training of the GCN with a suitable number

of a priori labelled graphs. Then the GCN classifies test cases,

outputting their labelled graphs.

• 2nd Tool — Deterministic Laplacian matrix Spectral Verification of

the output of the 1st Tool. If the latter labelled graphs are correctly

verified these are included in the Final Results of software design

generation. If not, mistaken labels can be corrected and reused to

improve the GCN training, in an “active learning” [35] fashion.

7.1.2 Experimental Results Obtained

Modularity is a basic concept of well-designed software systems. A whole

software system is hierarchically built from modular — i.e. well-defined

and separable — sub-systems, which in turn are built from modular sub-

sub-systems, and so on, down to architectural units assumed indivisible by

the software engineer, typically classes in object-oriented design.

The purpose of Graph Convolutional Networks experiments is:

172 Artificial Intelligence Methods for Software Engineering

• to test that the labelling behavior of the GCN classifier had the expected

functional dependence on the input parameters of the experiments. For

instance, classifier labelling accuracy improves with increasing sizes

of the modules. Sensible functional dependence is essential for

successful deterministic verification and automated correction of

software design.

Results of the experiments with the GCN classifier, demonstrate:

(a) the classifier dependence on the input parameters fits to the expected

functionality; (b) the classifier distinguishes well-designed modular

software systems from software design generated systems of lesser

quality, e.g. having undesirable “outlier” units coupling potential modules.

The Laplacian Spectral Verifier experiments purpose was to show,

beyond its theoretical correctness [7], [17], its applicability in practice to

software design. Experiments submitted the Laplacian Verifier to a wide

variety of sub-systems, with and without outliers, to test its reliability.

7.1.3 Chapter Organization

This chapter argues for higher-abstraction to generate software design by

Deep Learning, aiming at software correctness. It is organized as follows:

• Section 7.2 points out to Deep Learning fragility of sequential lower-

level software assets, as program code, comments, and documentation.

Typically, these use RNN (Recurrent Neural Networks) [40] variants.

• Section 7.3 explains the source of design robustness, due to Linear

Software Models [14], detailing the steps from an UML class diagram

to the deterministic spectral Laplacian verification of software design.

• Section 7.4 introduces Graph Convolutional Networks (GCN) and

specializations applied to higher-abstraction levels of software design.

These are suitable for bipartite graphs derived from class diagrams.

• Section 7.5 illustrates software system modular design using GCN, by

means of Case Study experiments and their results.

• Section 7.6 mentions Related Work relevant to this chapter topics.

• Section 7.7 ends the chapter with a Discussion of foundational issues.

 Software Fusion: Deep Design with Laplacian Verification 173

7.2 Fragility of Lower-Abstraction Software Deep Learning

Section 7.2 points out the fragility of the Deep Learning approach toward

lower-abstraction software assets. We explain why this is not a suitable

level to automatically generate correct software assets.

7.2.1 Lower Abstraction Levels of Software Generation

We concisely survey lower-abstraction Deep Learning generation of

software assets. These assets have a sequential textual nature. The survey

is in increasing software semantic content, bottom-up in Fig. 7.2.

Fig. 7.2. Lower-Level Software Abstractions Hierarchy — Deep Learning for lower-level

abstractions is done sequentially by RNN variants. These abstractions (on green

background) have increasing semantic content in the figure bottom-up direction. Typical

application examples are shown beside each abstraction-level (on yellow background).

174 Artificial Intelligence Methods for Software Engineering

Sequential textual applications are based upon RNN (Recurrent Neural

Networks) [40] models and their most common variants — e.g. LSTM

(Long Short-Term Memory) [26], and GRU (Gated Recurrent Unit) [5].

The software semantic content levels are the following:

(1) Syntactic Level — Fixing Language Errors is a task at the bottom

abstraction level in the Fig. 7.2 hierarchy. It corrects common

programming errors, such as missing scope delimiters, e.g. a closing

brace, only depending on the programming language syntax. Fixing

these errors does not require semantic knowledge of the task.

Deepfix by Gupta et al. [23] is an example for this task. Its features

are:

• It aims at automatically fixing programming errors, which is a laudable

goal, aligned with our automation intention;

• It treats a program as a sequence of tokens;

• Its architecture is a multi-layered sequence-to-sequence neural network

with attention, i.e. an encoder RNN processes erroneous inputs and a

decoder RNN with attention generates outputs with error corrections;

• In order to increase efficiency, it uses the peculiar solution of encoding

program line-numbers in the program representation.

(2) Textual Fragment level — the next software assets generation task,

going upward in the hierarchy of Fig. 7.2, involves textual fragments.

These fragments do not refer to a software architectural unit. It

essentially is an NLP (Natural Language Processing) task.

Requirements Traceability is a typical task of this kind. Its challenge is

to recognize links between pairs of items belonging to different software

assets, e.g. requirements, faults, design, source code and test cases. It

requires non-trivial domain concepts knowledge in the relevant items, i.e.

more semantic content than the strictly Syntactic Level tasks. But it still

does not demand semantics knowledge of architectural units.

An example is software traceability by Jin Guo et al. [22], featuring:

• Its network architecture is multi-layered RNN variants with Word

Embedding. Their best Traceability model is the BI-GRU

(Bidirectional Gated Recurrent Unit) variant;

 Software Fusion: Deep Design with Laplacian Verification 175

• Words in the source and target artifacts — the item pairs to be linked

— are sent to the RNN layers sequentially, and semantic vectors are

generated and compared;

• A usual trait of software projects is the very small number of actual

trace links compared to the number of the potential item pairs;

• Automated traceability solutions are desirable to cope with a time

consuming and error-prone task; but data preparation uses too large

corpora of domain documents.

(3) Sub-Program Level — is a software assets generation task of sub-

programs, e.g. Java methods. It involves analysis of code snippets,

which are not yet a whole integrated software system. Each code

snippet certainly has more software semantic integrity than tasks

involving syntactic errors or tracing pairs of isolated items.

An example of this task is API Extraction: a programmer wishes to use

an API function, but either does not know which function is relevant to his

problem, or knows which API function, but does not know how to use it.

A sample API Extraction application is DeepAPI by Xiaodong Gu

et al. [21]. DeepAPI gets from the inquiring programmer a natural

language query and replies with one or more API usage sequences, each

one supplemented with a short annotation. Its characteristics are:

• it extracts <API usage sequence | natural language annotation> pairs

from a code corpus (of GitHub Java projects); the usage sequence is

derived from ASTs (Abstract Syntax Trees) and a Javadoc annotation;

• The <API sequence | annotation> pairs are used to train a Deep

Learning model, viz. a GRU variant of an RNN Encoder-Decoder;

• Instead of a bag-of-words DeepAPI learns word sequences, mapping

them to semantic vectors. Similar words obtain similar vectors;

• Finally, the RNN Encoder-Decoder is ready to translate API-related

programmer queries into suggested and ranked API sequences.

Another sub-program level task example is Comment Generation. It is

similar to API extraction, but in the opposite direction. The input to API

extraction is a natural language query and it outputs an API sub-program.

176 Artificial Intelligence Methods for Software Engineering

On the other hand, the input to Comment Generation is a sub-program, e.g.

a function, and its output is a short natural language comment.

A recent sample of Comment Generation by Deep Learning is the

DeepCom system described in the work of Xing Hu et al. [27].

(4) Program Generation is the top level in the Fig. 7.2 hierarchy. This

more ambitious task is to generate program source code from certain

kinds of input. It is supposed to automatically generate a complete

program — perhaps not very long, but still a complete program —

not just code snippets. (See also DeepSoft, by Dam et al., [6].)

A program generation example is in a paper by Mou et al. [38]. Its

input is a brief comment such as “find maximal number” (ended by the

special symbol <eos> “end-of-sequence”). Its features are:

• Code is generated in a symbol-by-symbol fashion; the symbol

granularity may be a word, sub-word, or a single character (as in [38]);

• RNN does sequence to sequence generation; a softmax layer at each

time step, predicts symbol occurrence probabilities; the highest

probability symbol is fed to the network input at the next time step;

• A network is trained by e.g. hundreds of different source code samples

for each program task; all samples must be correctly compiled and run.

7.2.2 Fault Lines of Lower Software Abstractions

Here are the main issues with Sequential Lower-abstraction software

assets Deep Learning, as illustrated by the examples in Sec. 7.2.1.

(A) Brittleness of lower-abstraction Deep Learning — To what extent

can it generate Bug-Free software assets?

For instance, the results of Deepfix are far from satisfactory in terms

of correctness. According to the paper by Gupta et al. [23] it completely

fixed only 27% of the erroneous programs and partially fixed only 19% of

the programs of a “representative” data set.

A related correctness obstacle, is illustrated by the Traceability task in

the work by Jin Guo et al. [22], viz. data preparation uses large corpora of

 Software Fusion: Deep Design with Laplacian Verification 177

domain documents; the scenario for training the tracing network, uses an

initial set of manually constructed trace links for specific projects.

In preliminary results of the Program Generation by Mou et al. [38],

the generated program is “almost” correct. A generated code example in

their paper [38] has about 15 lines of code and 4 one-symbol errors:

(i) Mistaken identifiers — an “x” should have been an “n”;

(ii) Misspelled identifiers — “max” should have been “max2”;

(iii) Wrong symbol — “==” should have been “<”;

(iv) Wrong return type — it should have been “void”;

An experienced programmer could easily debug four minor errors. As

the paper states: code is usable with little post-editing. But the approach is

unrealistic for real size programs, e.g. tens of thousands of lines of code.

These errors are semantically uninteresting. One can correct them, but

one does not learn anything much valuable from these errors: they are too

devoid of content, to enable some positive uses of these mistakes.

(B) Conceptual-Disconnect — Can lower-abstraction software assets

Deep Learning overcome the algebra and semantics Disconnect?

“Impossibility to completely decipher how the semantic vector is

extracted” — this perception (last paragraph, 1st column, page 8) in Guo’s

Traceability paper [22], illustrates a severe algebraic/semantic disconnect.

Mou et al. [38], generate programs in a symbol-by-symbol fashion, with

single character symbols. The latter do not convey semantics, being an

impediment to deeper understanding of the input/output relationship.

Summarizing this section, sequential lower-abstraction Deep Learning

does not attain the purpose of software assets generation automation. The

fragility of lower-abstraction software generation has two causes:

• low-level bugs arduously corrected by human trial-and-error; low-level

bugs are inherent to the probabilistic nature of Deep Learning of low-

abstraction models, difficult to solve in a fundamental way.

• the conceptual disconnect between algebra and semantics occurs

because semantics is not naturally embedded in the inner computation

steps of the Deep Learning algebra. (Cf. discussion in Sec. 7.7.1.)

178 Artificial Intelligence Methods for Software Engineering

7.3 Robustness of Software Fusion Design

This section shows how higher-abstraction solves lower-abstraction Deep

Learning problems:

• deterministic design verification by a Laplacian spectral approach

pinpoints mistaken design graphs assuring software design correctness;

• conceptual integrity is guaranteed by semantics embedded ab initio

into the algebra and preserved throughout the algebraic manipulation

of Linear Software Models.

The source of Software Fusion robustness is the deterministic Laplacian

verifier (see Fig. 7.1 in Sec. 7.1.1 of this chapter).

Fig. 7.3. Linear Software Models: entities and transitions — In the middle of this figure

one sees three equivalent software system design representations: Modularity Matrix,

Bipartite Graph and Laplacian Matrix (on blue background). The Modularity Matrix form

is due to the Conceptual Integrity constraints (Sec. 7.3.1). Modularity Matrix concepts are

obtained e.g. from a UML Class Diagram (Sec. 7.3.2). A bipartite graph is easily extracted

from the Modularity Matrix (Sec. 7.3.3). The Laplacian Matrix is defined in terms of the

bipartite graph (Sec. 7.3.4). The deterministic Laplacian Matrix verifier (on yellow

background) relies upon the Laplacian eigenvalues and eigenvectors.

The sub-sections of Sec. 7.3 carefully explain how:

• software system design is represented by matrices and a bipartite

graph;

 Software Fusion: Deep Design with Laplacian Verification 179

• representations are obtained, e.g. from a UML class diagram;

• semantics is embedded in the linear algebra and preserved throughout

algebraic manipulation of software design;

• deterministic spectral verification is based upon eigenvalues and

eigenvectors of the Laplacian Matrix.

The transitions between the relevant entities — the matrices and the

bipartite graph of Linear Software Models [14] — are collected in Fig. 7.3.

7.3.1 Conceptual Integrity for Software Design

Semantics is embedded in the Linear Software Models algebraic

representation entities of software systems’ design, through the constraints

imposed by Conceptual Integrity. This is an idea first formulated by

Frederick P. Brooks Jr. expressed as follows: “Conceptual Integrity is the

most important consideration in system design”. This idea appeared in

Brooks’ well-known book “The Mythical Man-Month — Essays in

Software Engineering”, first published in 1974 [1]. It was based upon his

extensive development experience of the first large software system of its

time, the OS 360 Operating System of IBM.

To apply Conceptual Integrity in practice to software design, Brooks

in his second book “The Design of Design” [2] proposed principles that

could serve as design criteria. Two of Brooks’ principles — here

formulated in terms of functions instead of concepts [9] — are as follows:

• Propriety — a product should have only the functions essential to its

purpose and no more;

• Orthogonality — individual functions should be independent of one

another.

We represent software system design by Linear Software Models [10]

based upon linear algebra. For instance, a Modularity Matrix [11] whose

columns stand for Structors, generalizing object-oriented classes, and

whose rows stand for Functionals, generalizing class methods. A matrix

element is 1-valued if its Structor provides the respective Functional,

otherwise it is zero-valued. Provides means that the class contains the

definition/declaration of a method.

The purpose of software design is to optimize its Modularity. To this

end we translated Brooks’ principles to linear algebra terms [11]:

180 Artificial Intelligence Methods for Software Engineering

• Propriety — Structor column vectors should be mutually linearly

independent and Functional row vectors should also be mutually

linearly independent. Thus, Propriety minimizes classes and functions

to just the essential ones. Under these conditions, by pure linear

algebra arguments, the Modularity Matrix is square. This is a theorem

[11], not a trivial one, and it takes some time to understand its meaning.

• Orthogonality — this is a stronger demand than linear independence;

if a Structors’ set and their respective Functionals are disjoint to other

Structors’ sets and their Functionals, a Modularity Matrix can be put in

block-diagonal form. The diagonal blocks are recognized as the

software system modules: Structors and Functionals belonging to a

given module are orthogonal to those vectors of all other modules.

Structors and Functionals are labelled by concepts. Concepts are

carried throughout the algebraic manipulations, preserving the software

system connect between algebra and semantics, whatever is the algebraic

representation in use. (See the discussion in Sec. 7.7.1.)

7.3.2 Modularity Matrix from UML Class Diagram

Concepts of a software system design — labelling Structors and

Functionals of the Modularity Matrix – are chosen according to the human

software engineer understanding of the software system requirements.

Concepts can be obtained from many sources: (a) an UML Class

Diagram; (b) the source code implemented in a programming language;

(c) the program executable code, using the Modulaser [13] software tool.

The idea is illustrated starting from an UML class diagram of the

Command design pattern (see the GoF Design Patterns’ book [18]) as a

running example. Figure 7.4 shows a class diagram of this design pattern.

Its Modularity Matrix [6] is seen in Fig. 7.5. The numbers of Structor

columns Si and of Functional rows Fi are equal. It is a standard Modularity

Matrix: it is square, has strictly block-diagonal modules, and no outliers

outside modules. Inheritance in the class diagram is translated to a row

with two or more 1-valued matrix elements in the Modularity Matrix.

 Software Fusion: Deep Design with Laplacian Verification 181

Fig. 7.4. Command Design Pattern UML Class Diagram — It has 2 interfaces ICommand

and IFileReceiver, and 3 classes FileActionInvoker, ConcreteCommand and

ConcreteFileReceiver (black names). Interfaces or classes have methods (red names on

yellow). ConcreteCommand has methods SpecifyCommand() and Execute(), inherited

from the ICommand interface. The ConcreteCommand class is aware, as marked by a black

arrow, of the ConcreteFileReceiver methods and can call the ReceiverAction() method.

Fig. 7.5. Command Design Pattern Modularity Matrix — has five Structors (S1, …, S5),

five Functionals (F1, …, F5), and three (blue) block-diagonal modules: two 2*2 modules,

and a middle 1*1 module. Zero-valued elements outside modules are omitted. Structors

and Functionals have double-identifiers: semantic concepts and short labels Si, Fi.

182 Artificial Intelligence Methods for Software Engineering

The modules shown in Fig. 7.5 use in advance results to be calculated

a posteriori from the Laplacian Matrix, as explained in Sec. 7.3.4.

An important question is scalability with respect to the software system

size. These algebraic representations are indeed scalable. This is achieved

by the modular hierarchy assumption stated in the first paragraph of

Sec. 7.1.3: a whole software system is hierarchically built from modular,

i.e. separable sub-systems, which in turn are built from modular sub-sub-

systems, and so on. Instead of very large matrices per system, one uses a

hierarchy of smaller matrix sets, each set corresponding to a given level of

the hierarchy. A module in a matrix in a given level, can be collapsed into

a single matrix element in the immediate upper level matrix.

7.3.3 Bipartite Graph from the Modularity Matrix

The Bipartite Graph in Fig. 7.6 fits the Modularity Matrix in Fig. 7.5. It is

obtained as follows: Structors are drawn as an upper set of vertices;

Functionals are drawn as a lower set of vertices; each 1-valued matrix

element in the Modularity Matrix generates one edge in the bipartite graph.

The graph in Fig. 7.6 is bipartite by definition [47]: it has two vertex

sets, the upper Structors and the lower Functionals set; edges only link

vertices in the opposite set, not in the same set.

Fig. 7.6. Command Design Pattern Bipartite Graph fitting the Modularity Matrix in

Fig. 7.5 — It has the same Structor and Functional vertices as the Matrix. Within Software

Fusion, the modules are obtained a posteriori from the Laplacian Matrix.

Bipartite graphs, the transition between the Modularity Matrix and its

corresponding Laplacian Matrix, are a cornerstone of our Deep Learning

by Graph Neural Networks. The Bipartite Graph contains all the

 Software Fusion: Deep Design with Laplacian Verification 183

information in the Modularity Matrix. Therefore, it is a good starting point

and also a reasonable outcome for the GCN.

7.3.4 Deterministic Spectral Verification of Software Design

Graph

Whether the software design bipartite graph is obtained by an experienced

software engineer or by the intended automatic Deep Learning, the

bipartite graph modularization can be rigorously verified with the

deterministic spectral approach in four steps:

(a) Generate the Laplacian matrix from the Bipartite Graph;

(b) Calculate eigenvalues/eigenvectors of the Laplacian matrix;

(c) Obtain software system modules — eigenvectors with zero-

valued eigenvalues obtain modules; modularization may take a

few iterations as detailed below;

(d) Check for outlier Laplacian matrix elements — outliers highlight

design problems to be solved; absence of outliers means

successful software design.

For any graph with a total number N of vertices vi where i = 1, …, N,

the definition of its Laplacian matrix L is given by the following equation:

 L = D – A (7.1)

where D is a diagonal Degree matrix and A is the Adjacency matrix. The

Degree matrix contains in its matrix elements the degree of each of the

vertices in the graph. The Adjacency matrix contains in its non-zero matrix

elements, a pointer to neighbors of each vertex.

Before presenting the spectral verification algorithm, two notions are

needed: Fiedler Vector and Module Sparsity.

• The Fiedler vector — this eigenvector named after the mathematician

Fiedler [17], [7], fits the lowest positive eigenvalue of the Laplacian.

The Fiedler vector enables splitting a module judged to be too large.

Splitting into two smaller modules uses the non-zero vector elements:

one module by the positive eigenvector elements and another module

by the negative eigenvector elements.

• Module Sparsity — Software modules have denser internal connections

than inter-module connections. This is the mathematical expression of

184 Artificial Intelligence Methods for Software Engineering

module Cohesion. When an outlier couples between two “actual”

modules, they are seen by the Laplacian eigenvectors as a single large

module containing the two “actual” modules and the outlier: an outlier

causes a bigger module, recognizable by its Sparsity. A too sparse

module must be split by the Fiedler vector, and the outlier refactored.

The Laplacian fitting the bipartite graph of the Command pattern in

Fig. 7.6 is seen in Fig. 7.7.

Fig. 7.7. Command Design Pattern Laplacian Matrix – Its five Structors (S1, …, S5) and

five Functionals (F1, …, F5) consist together the ten vertices of the bipartite graph (in

Fig. 7.6), therefore the Laplacian matrix has 10 columns and 10 rows. Both columns and

rows are labelled by the whole vertex set of index labels in the same order. The diagonal

(orange) Degree Matrix shows all vertex degrees. The three software modules (blue) in the

upper-right quadrant, and reflected in the lower-left quadrant, are the Adjacency Matrix

elements showing the neighboring vertices, with a negative sign, by Eq. (7.1).

 Software Fusion: Deep Design with Laplacian Verification 185

The Spectral Verification Algorithm is shown in the next text-box.

Spectral Verification Algorithm of Bipartite Graph

Loop

 While (Modules-Sparsity > Maximal-Sparsity-Threshold) do

 {Obtain Modules

 Obtain Laplacian Matrix from Bipartite Graph;

 Calculate Laplacian eigenvectors/eigenvalues;

 Get eigenvectors with 0-valued eigenvalues;

 Obtain Modules from these eigenvectors;

 Check Sparsity & Obtain Outliers

 Calculate Modules-Sparsity;

 If (Modules-Sparsity > Threshold)

 {Split Module using the Fiedler Vector:

 erase edges of Bipartite-Graph;

 Potential outliers = list of erased edges.}}

Possible results of the spectral verification algorithm are:

• No outliers = successful design;

• One or more existent outliers = design refactoring is demanded;

automatic refactoring is possible for some outlier cases (e.g. [15], [44]).

For a concrete application of the spectral verification to the Command

design pattern running example, please look at Sec. 7.5.3.

7.3.5 Closing the Design Cycle: Modularized Class Diagram

All the transitions between the algebraic entities described in Fig. 7.3 and

in Sec. 7.3, are bijective. For instance, one can pass from the Modularity

Matrix to the corresponding Laplacian Matrix, through the intermediate

bipartite graph, preserving information concerning Structors, Functionals

and Modules. The same is true in the opposite direction, from the

Laplacian Matrix to the Modularity Matrix through the intermediate

bipartite graph (see e.g. [14]).

186 Artificial Intelligence Methods for Software Engineering

Fig. 7.8. Command Design Pattern Modularized UML Class Diagram — The same classes

and interfaces as in Fig. 7.4, with added Modules M1, M2 and M3 (light blue background),

as obtained from the Laplacian Matrix eigenvalues and eigenvectors. The modules are the

same as in the above matrices, and also in the bipartite graph in Fig. 7.6.

Since, in our running example, all the concepts of the Modularity

Matrix were obtained from an UML Class Diagram, Structors and

Functionals’ information preservation is also extensible from the algebraic

entities back to the source Class Diagram. We just add the obtained

modules from the Laplacian Matrix, as can be seen in Fig. 7.8. Thus, we

have closed the design cycle with a modularized class diagram, showing,

the applicability of Linear Software Models, to software design in practice.

7.4 Flexibility of Graphs’ Deep Learning

This section focuses on graphs, or equivalent matrices, as the essential

Software Design representation in this work. A graph is a flexible structure

that can be adapted to any software architecture. We concisely describe

GCN (Graph Convolutional Networks) and GAE (Graph Auto-Encoders).

The Nature of Graphs

Graphs may appear as a basic structure inherent to a problem being

solved, such as representation and analysis of molecular structures in

chemistry. In more interesting situations, graphs are not inherent to the

 Software Fusion: Deep Design with Laplacian Verification 187

problem, but are implicit and naturally appear as a medium to achieve a

deeper understanding of complex interactions over a latent graph.

An example is dynamic inference of interacting systems, within a team

of basketball players and body movements of each player (Kipf et al.,

2018, [29]). Another example is complex images understanding, by

mapping them to scene graphs of their interrelated objects (Herzig et al.,

2018, [25]).

7.4.1 Graph Convolutional Networks

Traditional Deep Learning (e.g. [36]) was designed for simple grids in

Convolutional Neural Networks (CNN, [48]) or sequences (RNN [40], cf.

Sec. 7.2 above). Graph nodes have flexible connections: various neighbor

numbers, complex topology and no fixed node ordering. Graph Neural

Networks (GNN) operate directly on graph-structured data.

GCN (Graph Convolutional Networks) is a type of GNN that takes

advantage of a graph dataset by considering adjacent node neighbors in a

convolutional fashion. Spectral GCN works in a frequency domain in

analogy to Fourier transforms. Spectral filtering, similar to software

modularization by Laplacian matrix eigenvectors, succeeded in various

tasks, such as graphs classification (Bruna et al., [3], Defferrard et al., [8]).

Spatial GCN is less computationally intensive, working in a spatial

domain. It reduces computational costs, while increasing results precision,

by simplified operations with restricted radius of local messages among

graph nodes and close neighbors. Kipf et al. (2018, [29]), define a single

node-to-node message passing operation, and operations for moving

between node and edge GNN representations.

7.4.2 Graph Auto-Encoders

Graph Auto-Encoders (GAE) are the deep learning network architecture

currently adopted by this work. GAEs are end-to-end trainable neural

network models, used for either unsupervised or semi-supervised learning.

In general, GAE is given a graph adjacency matrix as input and is

projected into some latent vectors that capture the graph features, such as

the node degree. From this embedded information the GAE reconstructs a

188 Artificial Intelligence Methods for Software Engineering

new adjacency matrix with predicted links, that were not present in the

inputs. The GAE building blocks are a graph encoder and a decoder.

Here we concisely describe GAEs, based upon the work on Graph

Convolutional Matrix Completion by van den Berg, Kipf and Welling [45]

(referred in short as BKW). This GAE choice is justified by its network

architecture with three basic similarities to our work:

• Adjacency Matrix — used as input by BKW and also in our software

design problem. The Modularity Matrix is in fact an Adjacency matrix,

from which the software system bipartite graph is extracted. This is

easily perceived in the definition and structure of the Laplacian matrix;

• Bipartite Graphs — used by BKW in their matrix completion task and

also for our software system design (explained in Sec. 7.3);

• Link Prediction — is part of the BKW matrix completion task and in

our design problem, seen as highlighting and eliminating outliers —

spurious links disturbing the modularity.

The specific problems solved by BKW — matrix completion by edge

prediction — indeed are different from ours — outlier elimination by

superfluous edge prediction — but our software design problem has been

cast in the same framework as BKW.

In the next paragraphs, we describe the GAE framework in terms of

our software design problem, shown schematically in Fig. 7.9.

Fig. 7.9. Schematic Graph Auto-Encoder (GAE) Framework for Software System Design

— Bipartite Graph, an input to the GAE, is extracted from the Modularity Matrix. In this

figure the Modularity Matrix and its bipartite graph are the correct ones, used in the training

phase. The GAE output is predictions of superfluous outliers links (see text for additional

details).

Three features of the GAE deserve special consideration: (a) the Graph

Convolutional Layer; (b) the Decoder; (c) Model Training.

 Software Fusion: Deep Design with Laplacian Verification 189

Graphs do not have a lattice-like regular structure, preventing use of

common convolutional networks. A Graph Convolutional Layer

performs only local operations that refer to first-order neighbors of each

node, avoiding expensive and complex topology variability that could

occur for more remote neighbors. The same transformation is applied

across all graph locations.

Denoting by Ni the set of neighbors of node i and by μj→i,w the message

transferred from node j to node i, with an edge-weight w, messages are

accumulated in each node i according to a graph convolution layer, viz. an

equation of the form:

,1 ,

,,1

,....,→ →

= j i j i Wi w
j Ni Wj Ni

msgs

 (7.2)

msgsi is a single hidden parameter vector, resulting from the aggregation

by the sum over vectors within parentheses. σ(.) denotes an activation

function such as ReLU(.) i.e. Rectified Linear Unit. This graph

convolution layer may be followed by one or more layers.

The encoder accumulates information from nodes in the input bipartite

graphs. The Decoder estimates a probability distribution predicting the

weights of superfluous outlier edges in the output bipartite graph (see

Fig. 7.9 to the right of the GAE).

Model Training is done by optimization of a cost function (log

likelihood or an entropy expression) which considers only the known

positive weights in the bipartite graphs to the left of the GAE in Fig. 7.9.

7.5 Software Fusion for Software Design Graphs:

Case Studies

We report here two case studiesa concerning Software Fusion applied to

Software Design represented by Bipartite Graphs.

The first case study, with synthetic data, refers to probabilistic Deep

Learning of Software Design Graphs. This case study had a double

purpose: (a) to check that software design graphs are reasonably labelled

by the graph classifier; (b) to check that the labelling behavior of the graph

aSoftware used in the Case Study experiments is available upon request.

190 Artificial Intelligence Methods for Software Engineering

classifier has the expected functional dependence on the input parameters,

in order to assure convergence to desired results.

The second case study, upon the Command Design Pattern, refers to

deterministic Laplacian verification of graphs obtained by the Deep

Learning tool. The purpose of this case study is to show, beyond

theoretical correctness ([7], [17]), that Laplacian spectral verification is

applicable in practice, to software system design. It consisted of a variety

of sub-systems, with and without outliers, to test its reliability.

7.5.1 Graph Deep Learning — Synthetic Data: Experiments

This Case Study evaluates the suitability of Graph Auto-Encoders (GAE)

for software design. We trained GAE with pairs of Modularity Matrices:

a Modularity Matrix without outliers (M1) and another Matrix with the

same overall structure as M1 with added outliers M2 (see Fig. 7.10). A

matrix M2 with outliers is the input to the decoder and the original matrix

M1 provides the labels for the decoder. Our expectation was that the

outliers would be captured and predicted by the GAE network.

The accuracy of predictions was calculated by the number of correctly

predicted edges divided by the Total number of edges averaged over the

whole test-set by the equation:

Correctly Predicted Edges
Accuracy =

Total Average Edges
 (7.3)

We performed several experiments to evaluate our network with

graphs with varying dataset properties as follows:

• Graphs count — number of graphs in a given test-set;

• Modules count — how many “modules” the graph contains;

• Modules edges sparsity — the edges sparsity within the modules;

• Nodes count in each vertex set — how many Structors and Functionals

per bipartite graph;

• Outliers sparsity — outlier edges sparsity in the whole matrix.

 Software Fusion: Deep Design with Laplacian Verification 191

Fig. 7.10. Schematic Sample Modularity Matrices for Experiments — Both matrices have

10 Structors (S1, …, S10) and 10 Functionals (F1, …, F10). The left-hand-side M1 matrix

has no outliers, while the right-hand-side matrix M2 has 3 outliers (hatched red

background). Outliers couple module pairs: for instance the (F4, S2) outlier couples the

upper-left and middle modules. Each 1-valued matrix element corresponds to one edge in

the respective Bipartite Graphs. Superfluous link prediction identifies outlier edges.

In these experiments, modules were not set by a formal procedure using

Laplacian eigenvalues. They were initialized as synthetic randomized sets

of neighbor matrix elements. Figure 7.10 shows a ten-node vertex sets

example. Our experience with software algebraic representations guided

on how to generate synthetic data. Compare Fig. 7.10 with standard

Modularity Matrix modules, e.g. in the Command pattern in Fig. 7.5.

Further details on the data used in the experiments are provided next.

Generic Data

Experiments were conducted with a two-layer graph convolution encoder

model with 32 and 16 hidden units in each layer. The learning rate was set

at 0.01. We used neither weight decay nor dropout.

Typical experiment sizes consisted of a 5 to 1 ratio of training to testing

graphs. Each graph has up to 40 nodes in each vertex set of the bipartite

graph representing a maximum of 40 Structors and 40 Functionals.

192 Artificial Intelligence Methods for Software Engineering

Specific Data

In Experiment #1 specific additional data include: Module density 50%,

Graphs count 25, Nodes count 40, and modules count 6.

In Experiment #2 specific additional data were: Modules count 5;

Maximal module size 5, Module density 50%, and outliers’ density 20%.

In Experiment #3 the minimal module count was 2 as outliers were

assumed in this experiment to couple two modules; a single module would

not allow outliers existence. Specific additional data were: Module density

50%, Graphs count 25, Nodes count 40, and maximal module size 6.

7.5.2 Graph Deep Learning — Synthetic Data: Results

This section shows representative result samples for three experiments.

Experiment #1 refers to accuracy calculations for Outliers density vs.

Module size variations. The GAE prediction accuracy was calculated for

varying outlier densities, ranging from 10% to 50% and module sizes

ranging from 1 to 6.

Accuracy results are shown in Table 7.1 and also seen in Fig. 7.11. One

perceives that larger module sizes are in general more resilient to the

presence of outliers (maximal accuracy = 0.60, for outlier density = 0.1,

and Module size = 6) since there are enough samples in each module to

enable reliable differentiating between different types of graph edges.

Results confirm the classifier expected parameters dependence:

• Accuracy decreases with increasing outlier density and for decreasing

module size;

• Larger accuracy dispersion for higher Outliers Density (cf. trendline

fittings in Fig. 7.11);

Results fit real software systems’ sparse overall matrices, and dense

“cohesive” modules, with few outliers relative to module sizes.

 Software Fusion: Deep Design with Laplacian Verification 193

Table 7.1 Experiment #1

Accuracy vs. Module Sizes

Module Size Accuracy

 Outliers’ Density = 0.1 Outliers’ Density = 0.5

1 0.42 0.22

2 0.40 0.34

3 0.49 0.41

4 0.57 0.42

5 0.53 0.37

6 0.60 0.48

[Note: Outliers Density = 1 — Outliers Sparsity]

Fig. 7.11. Accuracy vs. Module Sizes for given Outliers’ Densities — The left-hand-side

chart shows calculations for lower Outliers Density (equals 10%). The right-hand side chart

shows calculations for higher Outliers Density (equals 50%). For lower Outliers Density

one observes two expected results: (a) the calculated accuracies are generally higher than

those with higher Outliers Density; (b) the calculated accuracies have less dispersion for

lower Outliers Density, as can be seen from the better fitting to the linear trendline.

In the 2nd experiment, seen in Table 7.2 and in Fig. 7.12, accuracy is

calculated as a function of Nodes count vs. Graphs count. The maximal

nodes count in each vertex set of the bipartite graph is 40 and the graphs

count — ranges from 1 to 75 graphs. The clear result for this experiment is:

• Prediction accuracy increases with nodes count, rather independently

of the graphs count used for input, as expected.

Nodes Count is dominant, as graphs count only influences the results

averaging. Prediction accuracy improves, as there are more nodes per

module from which the network can learn, for constant modules count.

194 Artificial Intelligence Methods for Software Engineering

Table 7.2 Experiment #2

Accuracy vs. Nodes Count

Nodes Count Accuracy

 Graphs Count = 1 Graphs Count = 75

8 0.31 0.28

16 0.32 0.39

32 0.45 0.55

40 0.59 0.54

Fig. 7.12. Accuracy vs. Nodes Count for given Graphs Count — The left-hand-side chart

shows calculations for Graphs Count = 1. The right-hand-side chart shows calculations for

Graphs Count = 75. From both charts one observes the expected result: the calculated

accuracy depends only on the Nodes Count, and not on the Graphs Count, as can be seen

from the almost identical increasing slopes and the almost identical fittings to the the linear

trendlines.

Experiment #3 refers to calculations for Outliers density vs. Modules

count variations. The GAE prediction accuracy was calculated for varying

outlier densities, ranging from 10% to 50% and module count from 2 to 6.

Results accuracy can be seen in Table 7.3 and in Fig. 7.13. At first sight

one would expect results very similar to the 1st experiment, shown in

Fig. 7.11: there one finds (highest accuracy = 0.60, for outlier density =

0.1, and Module size = 6), and here in Fig. 7.13, indeed one has (highest

accuracy = 0.62, outlier density = 0.1 and Modules count = 6) — for the

same maximal module size = 6.

Experiment #3 is the most surprising and thought provoking of this

series. Contrary to expected functionality, the charts in Fig. 7.13 show a

big dispersal for outlier density = 0.1 and a decreasing trendline slope for

outlier density = 0.3. Two possible interpretations are:

 Software Fusion: Deep Design with Laplacian Verification 195

• The probabilistic Deep Learning incorrect graphs labelling reinforces

the need for the Deterministic Laplacian matrix Spectral verification

and subsequent label correction, eventually leading to active learning;

• Since computations have the well-known capability to surprise us, it

could be that the seemingly incorrect labelling, is in fact correct, and

corresponds to unsuspected novel design graphs of interest, that also

would lead to active learning, but now in a positive sense.

Table 7.3 Experiment #3

Accuracy vs. Modules Count

Modules Count Accuracy

 Outliers’ Density = 0.1 Outliers’ Density = 0.3

2 0.41 0.59

3 0.59 0.56

4 0.55 0.53

5 0.50 0.52

6 0.62 0.52

Fig. 7.13. Accuracy vs. Modules Count for given Outliers’ Densities — The left-hand-side

chart shows results for lower Outliers Density (equals 10%); one observes a very high

dispersion of the calculated values. The right-hand-side chart shows results for higher

Outliers Density (equals 30%); besides the surprisingly high accuracy range for a higher

outliers’ density, the decreasing slope of the linear trendline is the opposite of the expected

functionality. See text for two possible interpretations.

Summarizing the experiment results:

• In Experiments #1 and #2 results are rather consistent with expectations

for the calculated accuracies, as a function of the relevant parameters.

• In Experiment #3 results reinforce the Software Fusion approach, viz.

the need for the Deterministic Laplacian matrix Spectral verification

and subsequent label correction of the labelled graphs.

196 Artificial Intelligence Methods for Software Engineering

7.5.3 Command Design Pattern — Laplacian Spectral

Verification: Experiments

This section describes the second Case Study, viz. deterministic Laplacian

Spectral Verification applied to the often used Command Design Pattern

(see its description in the Design Patterns GoF book [18], pp. 233–242).

The experiments consisted in:

• Laplacian Matrix Generation from input bipartite graphs representing

specific software designs;

• Laplacian eigenvectors’ calculation, focusing on modules and Fiedler

vectors which suggest splitting modules in the presence of outliers.

Figure 7.14 shows four Modularity Matrices used in the experiments:

(I) Mod0 — Command Design Pattern without outliers;

(II) Mod1 — Command pattern with one added distant outlier;

(III) Mod2 — Command pattern with one outlier adjacent to a module;

(IV) Mod3 — Command pattern with two outliers.

Modularity Matrices are convenient to visualize the different

situations. One easily extracts the fitting bipartite graph and derives the

Laplacian Matrix from each Modularity Matrix as detailed in Sec. 7.3.

7.5.4 Command Design Pattern —Laplacian Spectral

Verification: Results

Figure 7.14 shows Modularity Matrices, while the results in Fig. 7.15 refer

to their Laplacian matrices. Modularity Matrices have size 5*5, and the

respective Laplacians have size 10*10. Their eigenvectors in Fig. 7.15

have 10 vector elements.

 Software Fusion: Deep Design with Laplacian Verification 197

Fig. 7.14. Command Design Pattern: four Modularity Matrices and outliers — The upper-

left Modularity Matrix Mod0 has three (blue) modules and no outliers. The upper-right

Matrix Mod1 has one added outlier (hatched red background) in an element (F1, S5)

distant from any module. The lower-left Matrix Mod2 has one outlier in an element (F3,

S5) adjacent to the lower-right module. The lower-right Matrix Mod3 has two outliers.

Matrix results are shown in Fig. 7.15. Matrix Mod0 has 3 low sparsity

modules (see Fig. 7.14) and no outlier. There is no need to split modules,

thus the Fiedler eigenvector is not necessary.

Matrix Mod1 has only two modules: the original small 1*1 middle

module, and a big module of size 4*4 in which the distant outlier, in Matrix

element (F1, S5) couples the two (upper-left and lower-right) modules of

size 2*2 of the original matrix Mod0. As the coupled 4*4 module is sparse,

it is split by the signs of the Fiedler vector elements. The Fiedler vector (in

Fig. 7.15), negative elements (F1, F2, S1, S2) form one split module and

positive elements (F4, F5, S4, S5) form the other split module. Two zero-

valued vector elements (F3, S3) fit the uncoupled 1*1 middle module, not

appearing in the Fiedler vector, as it splits only the sparse coupled module.

198 Artificial Intelligence Methods for Software Engineering

Fig. 7.15. Command Design Pattern: Laplacian Modules and Fiedler eigenvectors — These

are calculation results of the four matrices of Fig. 7.14. It shows modules and outlier

numbers. The respective Laplacian module eigenvectors highlight their 1-valued elements

(yellow background). The Fiedler eigenvectors have marked positive elements (blue

background) and negative elements (green background). Eigenvector elements are

arranged by the index order of the Laplacian: F1, F2, F3, F4, F5, S1, S2, S3, S4, S5.

Concerning Matrix Mod2, Fig. 7.14 visually suggests that there is an

outlier element (F3, S5) adjacent to the lower-right 2*2 module. However,

the Laplacian spectral verification algorithm, correctly decides that the

element (F3, S5) is not an outlier, but in design terms it is an element of a

legitimate 3*3 non-sparse (4 zero-valued out of 9 matrix elements) and

block-diagonal module. Thus, the Fiedler eigenvector is not necessary.

This is a most interesting case, since the adjacent outlier seems to imply

that the Mod2 design has been generated by different requirements than

Mod0. The Laplacian Verifier correctly pinpoints this discrepancy.

Therefore, only a human software engineer can decide whether in

conceptual terms this 3*3 module fits reasonable software requirements

from which such a design could be obtained.

Matrix Mod3 apparently has just one module due to two coupling

outliers, 1 distant outlier and another adjacent outlier of the types seen in

the two previous matrices. Again, the Laplacian spectral algorithm

 Software Fusion: Deep Design with Laplacian Verification 199

correctly performs its verification role. The Fiedler vector splits the single

big module of size 5*5, into two smaller modules of 2*2 and 3*3 sizes and

stops there. The 3*3 module is legitimate by the same reason as in Mod2.

Summarizing these experiments:

• The Laplacian spectral algorithm succeeded in various tests, including

boundary situations; thus, it is applicable as a deterministic design

verifier to assert correctness of a probabilistic deep learning classifier.

7.6 Related Work

The literature on Deep Learning applications to software is extensive. Here

we concisely review relevant topics. Active Learning is used within

Software Fusion (in Fig. 7.1). Other issues are alternative approaches

to Graphs Deep Learning, and Theoretical Principles for network

architectures. Finally, this short review delineates the scope of this work.

7.6.1 Active Learning

Active Learning is an iterative procedure to select the most informative

examples of a subset of unlabeled — or mislabeled — samples. The choice

is based upon scores from a given model outcome. The chosen candidates

are added to the training set, and the classifier is retrained. P. Liu et al.

(2016, [35]) applied active learning to classify hyperspectral images, since

it is expensive to get well labeled samples for remote sensing applications.

Another interesting Active Learning application is the paper by Stark

et al. [43] using Deep Learning for CAPTCHA recognition. CAPTCHAs

are automated tests to distinguish humans from robots, i.e. easily solvable

by humans, but not by robots. But! Convolutional Neural Networks (CNN)

do solve these tests. The problem is large amounts of training data. Active

Deep Learning is a strategy to overcome the training data problem.

7.6.2 Graphs Deep Learning Alternatives

GraphSAGE, introduced by Hamilton, Ying and Leskovec, in their 2017

paper “Inductive Representation Learning on Large Graphs” [24], is a

framework with inductive capability to generate node embeddings for

200 Artificial Intelligence Methods for Software Engineering

previously unseen data. It learns a function that generates embeddings by

sampling and aggregating features from a node’s local neighborhood.

GIN (Graph Isomorphism Network) is a neural architecture by Xu et al.

(2019, [49]), motivated by a theoretical approach (cf. the next section), is

claimed to be the most expressive among a class of GNNs. It works by an

aggregation function capturing the full multiset of node neighbors.

Chen et al. (2020, [4]) propose a Linear Residual GCN approach. It is

relevant reading for a few reasons. (a) They claim that removing non-

linearities enhances performance. (b) They treat user-item historical

behavior as a bipartite graph. (c) It discusses the issue that in practice, most

GCN based variants achieve the best performance with just 2 layers.

7.6.3 Theoretical Approaches for Neural Network Architectures

Various approaches tried to formalize Deep Learning Neural Networks

(DNN), to understand DNN’s inner workings and their limitations. We

mention four approaches: (a) probabilistic representations; (b) model

reformulation; (c) theoretical principles; (d) formal bounds.

An early example of Probabilistic Representations is a paper by Patel

et al. (2015, [39]), proposing a Probabilistic Theory of Deep Learning.

They contrast Deep Learning success with remaining fundamental

questions: Why do they work? Understanding and synthesizing deep

learning architectures have remained elusive. They propose a framework

based upon a Bayesian generative probabilistic model. A recent example

is the paper by Lan and Barner (2019, [32]). They offer an energy-based

model that can also be interpreted as a Bayesian neural network.

Model Reformulation translates a set of equations of a model, into

another set of equations recognizable as a different but known model, with

familiar properties. This enables re-interpretation of the initial model.

A paper by Li, Han and Wu (2018, [33]), obtains deeper insights into

GCN for semi-supervised learning, showing that the graph convolution

within GCN is a special form of Laplacian smoothing — symmetric

Laplacian smoothing. Laplacian smoothing calculates new vertex features

as the weighted average of itself and its neighbors’. Vertices in the same

cluster tend to be densely connected, thus smoothing makes their features

similar, causing the subsequent classification task to be much easier.

 Software Fusion: Deep Design with Laplacian Verification 201

Theoretical principles seek deeper understanding of the DNN’s inner

workings for specific classes of neural networks architectures. A recent

example from the literature on GCNs, is a design principle that follows

from a natural requirement of “permutation invariance”. See e.g. the paper

by Zaheer et al. (2017, [51]) and the paper by Herzig et al. (2018, [25]).

Explicit Formal Bounds try to answer questions about Neural

Networks limitations. The paper by Xu, Hu, Leskovec and Jegelka, [49],

already mentioned in Sec. 6.2 as the proposer of GIN, is significantly

entitled “How Powerful are Graph Neural Networks?”. It proposes the

Weisfeiler-Lehman (WL) graph isomorphism test as a source of a formal

upper bound for expressiveness of neural network architectures.

The WL graph isomorphism test [46] was formulated in 1968, outside

the Neural Networks context. It is able to distinguish a broad class of

graphs. The WL test iteratively updates a given node’s feature vector by

injective aggregation that maps different node neighborhoods to different

feature vectors. Xu et al. claim that a GNN can have as large

discriminative power as the WL test if the GNN’s aggregation scheme can

model injective functions. An earlier paper by Shervashidze et al. (2011,

[42]), entitled “Weisfeiler-Lehman Graph Kernels”, used a rapid feature

extraction based on the WL test, without formulating a formal bound.

A recent paper by Garg, Jegelka and Jaakkola from February 2020 [19]

mentions models that are more powerful than the WL test. Beyond

Representational limits of GNN, the latter paper provides the first data

dependent Generalization bounds for message passing GNNs.

7.6.4 Other Possible Applications

A recent paper by Zhang et al. (2019, [52]) describes DeepCheck, a deep

learning technique detecting program code attacks, in the executable file.

It acts on the control flow graph of the code to detect abnormal flows.

In order to keep this work consistent and self-contained, we have

delineated its boundaries. It was decided that implementation of software

system design in programming languages, or run-time behavior issues are

out of the scope of this work.

202 Artificial Intelligence Methods for Software Engineering

7.7 Discussion

This final Discussion touches foundational issues in this chapter: (a) the

importance of Conceptual Integrity preservation: the connection between

concepts and algebra; (b) the ultimate meaning of Software Fusion;

(c) obstacles to Complete Automation. The Discussion concludes

mentioning future work and the Main contribution of this chapter.

7.7.1 Preserving Conceptual Integrity: Between Software

Concepts and Algebra

Software design within Linear Software Models involves a consistent

connection between two apparently unrelated and very different kinds of

ideas: software concepts and algebraic structures. This connection

triggers the following question: Why is Conceptual Integrity preservation

throughout modularization within Linear Software Models so important?

Fig. 7.16. Modularization Process: Software Concepts & Algebraic Structures — One

starts a software system characterization with Software Concepts. The next four steps are:

1- Insert Concepts into the Double-Labelled Modularity Matrix; 2- Forget Concepts;

3- Calculate Laplacian Matrix eigenvalues and eigenvectors obtaining System Modules;

4- Restore Concepts into the software system Modules. From step 1 onwards the Concepts

and Algebraic Structures are never disconnected. Initially the double Labels, and

throughout the process the short index-Labels, keep track of the Concepts associated to the

respective index-Labels.

 Software Fusion: Deep Design with Laplacian Verification 203

To answer this question, we first look at the modularization process

from a slightly different perspective in Fig. 7.16.

The four steps in Fig. 7.16 are:

1. Characterize the software system by software concepts — Software

system design starts with Concepts and their relationships chosen

according to the human software engineer understanding of the

software system requirements, (cf. beginning of Sec. 7.3.2). One

obtains a bipartite graph with vertices doubly identified by the

software concepts and in a one-to-one correspondence by unique short

index labels Si, Fi (devoid of semantic content), one label per vertex.

2. Represent the software system conceptual graph by algebraic

structures — these are matrices, preserving the whole semantic

information from the conceptual graph, in which matrix columns and

rows are identified by the unique labels as the graph vertices.

3. Forget the software concepts and perform algebraic manipulations

on the algebraic structures — keep only the unique short index labels,

as software concepts have no influence whatsoever on the algebraic

manipulations. These calculate matrix eigenvalues and eigenvectors.

4. Modularize the software system, restoring the software concepts

partitioned into modules — Once software concepts are visible, one

can double-check the modularization suitability, taking into account

semantic considerations. The software engineer may either modify the

sets of software concepts or re-assign methods to different classes and

restart the four steps of the whole process.

Two desirable properties of these four steps are:

• Total formal independence — software concepts and algebraic

structures are completely independent:

in step (1) — the engineer is free to determine the software system

semantic content, choosing concepts and assigning methods to classes;

in step (3) — algebraic manipulations are not affected at all by the

conceptual semantic content, contributing to an independent critical

view of the software system.

• Complete preservation of the semantic links along all steps —

assured by bijective double identifiers of graph vertices and matrix

columns/rows.

204 Artificial Intelligence Methods for Software Engineering

Indeed, software concepts and algebraic structures are intimately

connected all along the design modularization process, while keeping their

rigorous formal independence.

Now we can answer to the question at the beginning of this section.

Conceptual Integrity preservation throughout the modularization

process within Linear Software Models is so important for two reasons:

• Human understanding of the process — The software engineer never

loses understanding of the conceptual content of operations during

system modularization.

• Response to conceptual disconnect between algebra and semantics —

This solves the conceptual disconnect between algebra and semantics,

occurring in lower-abstractions learning, pointed out in Sec. 7.2.

7.7.2 The Ultimate Meaning of Software Fusion

Software Fusion, the approach described in this work, has been defined

from the beginning of this chapter, in Fig. 7.1, as the fusion of two

complementary, but independent, mathematical tools:

• 1st Tool — Probabilistic Deep Learning;

• 2nd Tool — Deterministic Laplacian matrix Spectral Verification of the

output of the 1st Tool.

The ultimate Software Fusion, could in principle, merge these

independent tools into a single unified tool. Indeed, the GCN architecture

by Defferrard et al. described in the paper from 2016 [8] integrates spectral

filtering by Laplacian eigenvectors within Deep Learning.

But merging the two tools has three disadvantages:

• Defferrard et al. state that the spectral filtering by Laplacian

eigenvectors is very costly in terms of multiplication operations;

• Spectral methods have a serious drawback, compared to neighborhood

aggregation within spatial approaches: the Laplacian graph needs to be

known in advance. They cannot generalize to unseen graphs (cf. [49]).

• The deterministic spectral verification of the results would be lost since

it is embedded inside the probabilistic Deep Learning.

 Software Fusion: Deep Design with Laplacian Verification 205

The current reply to the first disadvantage, is the more recent GAE

(Graph Auto-Encoder) architecture by Kipf, Welling et al. found in the

papers from 2016 [30] and from 2017 [31]. It is more efficient, by means

of reasonable approximations, using the message passing approach,

instead of direct use of the Laplacian eigenvectors within the network.

A possible reply to the third disadvantage, poses the next question:

• Can one have a Conceptual Integrity preservation throughout the Graph

Deep Learning process similar to the Conceptual Integrity preservation

throughout the modularization process within Linear Software Models?

A cautious reply to this question would be that it depends on the Deep

Learning model. According to the paper by Li, Han and Wu [33] (referred

to in Sec. 7.6.3) GCN graph convolution is a special form of Laplacian

smoothing, calculating vertex features as the weighted average of itself

and its neighbors’. Since vertices in the same cluster tend to be densely

connected — which is reasonable for cohesive modules — smoothing

makes their features similar, blurring vertex identities, causing loss of

Conceptual Integrity preservation. This issue needs further investigation.

7.7.3 Possible Obstacles to Complete Automation

We aim, in the long term, at automatic generation of Software System

Design. One can identify two possible obstacles to complete automation:

• Stopping criterion of the Laplacian modularization loop — the

Spectral Verification Algorithm of the Bipartite Software Design

Graph in Sec. 7.3.4 has a loop with a criterion to stop splitting a too

sparse module. The criterion is set by a module sparsity threshold.

There is no danger of a non-terminating loop. A possible problem is

stopping either too early or too late. This issue should be further

investigated;

• Criteria to label output graphs of the Laplacian spectral verification

— in Fig. 1, the output of the Deterministic Laplacian spectral

verification, either has the correct label and is added to the final results,

or has an incorrect label which must be corrected, and eventually

reused for Active Learning, i.e. re-training the Deep Learning GCN.

The decision whether reuse for Active Learning still must be precisely

formulated.

206 Artificial Intelligence Methods for Software Engineering

7.7.4 Future Work

Besides previous sections’ open issues, future work planned items are:

• Extending bipartite graphs with provider only structors, to bipartite

graphs with provider and consumer structors, as a more complete

algebraic description of software systems [16];

• Since Graphs Deep Learning is a very dynamic research field, we shall

consider emerging alternative models for software system design.

7.7.5 Main Contribution

The main contribution of this work is the Software Fusion of Probabilistic

Deep Learning with Deterministic Laplacian Matrix spectral verification

in order to assure correctness of Software System Design.

This involved the following three cardinal decisions:

• Work in the higher-abstraction level of Software Design;

• Represent software design by Bipartite Graphs;

• Apply Deep Learning by Graph Convolutional Neural Networks.

References

1. Brooks, F. P. (1995). The Mythical Man-Month — Essays in Software

Engineering — Anniversary Edition, Addison-Wesley, Boston, MA, USA.

2. Brooks, F. P. (2010). The Design of Design: Essays from a Computer

Scientist, Addison-Wesley, Boston, MA, USA,

3. Bruna, J., Zaremba, W., Szlam, A. and LeCun, Y. (2014). Spectral

Networks and Locally Connected Networks on Graphs. https://arxiv.org/

abs/1312.6203 [cs.LG].

4. Chen, L., Wu, L., Hong, R., Zhang, K. and Wang, M. (2020). Revisiting

Graph Based Collaborative Filtering: A Linear Residual Graph

Convolutional Network Approach, in Proc. 34th AAAI Conf. pp. 27–34.

5. Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares,

F., Schwenk, H. and Bengio, Y. (2014). Learning Phrase Representations

using RNN Encoder-Decoder for Statistical Machine Translation.

arXiv:1406.1078.

6. Dam, H. K., Tran, T., Grundy, J. and Ghose, A. (2016). DeepSoft: A

Vision for a Deep Model of Software. https://arxiv.org/abs/1608.00092

[cs.SE].

https://arxiv.org/abs/1312.6203
https://arxiv.org/abs/1312.6203
https://en.wikipedia.org/wiki/ArXiv_(identifier)
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1608.00092

 Software Fusion: Deep Design with Laplacian Verification 207

7. De Abreu, N. M. M. (2007). Old and new results on algebraic connectivity

of graphs, Linear Algebra and its Applications, 423, pp. 53–73. DOI:

10.1016/j.laa.2006.08.017.

8. Defferrard, M., Bresson, X. and Vandergheynst, P. (2016) Convolutional

Neural Networks on Graphs with Fast Localized Spectral Filtering, in Proc.

30th Conf. Neural Information Processing Systems — NIPS, Barcelona,

Spain.

9. De Rosso, S.P. and Jackson, D. (2013). What’s Wrong with Git? A

Conceptual Design Analysis, in Proc. of Onward! Conference, pp. 37–51,

ACM. DOI: 10.1145/2509578.2509584.

10. Exman, I. (2012). Linear Software Models, Extended Abstract, in Jacobson,

I., Goedicke, M. and Johnson, P. (eds.), GTSE 2012, SEMAT Workshop on

General Theory of Software Engineering, pp. 23–24. KTH Royal Institute

of Technology, Stockholm, Sweden. Video: http://www.youtube.com/

watch?v=EJfzArH8-ls.

11. Exman, I. (2014). Linear Software Models: Standard Modularity Highlights

Residual Coupling, Int. Journal on Software Engineering and Knowledge

Engineering, vol. 24, pp. 183–210. DOI: 10.1142/S0218194014500089.

12. Exman, I. (2015). Linear Software Models: Decoupled Modules from

Modularity Matrix Eigenvectors, Int. Journal on Software Engineering and

Knowledge Engineering, vol. 25, pp. 1395–1426. DOI: 10.1142/

S0218194015500308.

13. Exman, I. and Katz, P. (2016). Modulaser: A Tool for Conceptual Analysis

of Software Systems, in Proc. SKY’2016 7th Int. Workshop on Software

Knowledge, pp. 19–26. DOI: 10.5220/0006080700190026.

14. Exman, I. and Sakhnini, R. (2018). Linear Software Models: Bipartite

Isomorphism between Laplacian Eigenvectors and Modularity Matrix

Eigenvectors, Int. Journal of Software Engineering and Knowledge

Engineering, Vol. 28, No 7, pp. 897–935. DOI: 10.1142/

S0218194018400107.

15. Exman, I. and Nechaev, A. (2020). Algebraic Higher-Abstraction for

Software Refactoring Automation, in Proc. SEKE’2020 Int. Conf. on

Software Engineering and Knowledge Engineering. DOI: 10.18293/

SEKE2020-008.

16. Exman, I. and Wallach, H. (2020). Linear Software Models: An Occam’s

Razor Set of Algebraic Connectors Integrates Modules into a Whole

Software System, Int. Journal of Software Engineering and Knowledge

Engineering, Vol. 30, No 10, pp. 1375–1413. DOI: 10.1142/

S0218194020400185.

17. Fiedler, M. (1973). Algebraic Connectivity of Graphs, Czech. Math. J.,

Vol. 23, (2) 298–305.

https://doi.org/10.1016/j.laa.2006.08.017
http://www.youtube.com/watch?v=EJfzArH8-ls
http://www.youtube.com/watch?v=EJfzArH8-ls
https://www.doi.org/10.1142/S0218194014500089
https://www.doi.org/10.1142/S0218194015500308
https://www.doi.org/10.1142/S0218194015500308
https://doi.org/10.5220/0006080700190026
http://dx.doi.org/10.1142/S0218194018400107
http://dx.doi.org/10.1142/S0218194018400107
http://dx.doi.org/10.18293/SEKE2020-008
http://dx.doi.org/10.18293/SEKE2020-008
https://doi.org/10.1142/S0218194020400185
https://doi.org/10.1142/S0218194020400185

208 Artificial Intelligence Methods for Software Engineering

18. Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1995). Design Patterns:

Elements of Reusable Object-Oriented Software, Addison-Wesley, Boston,

MA, USA.

19. Garg, V. K., Jegelka, S. and Jaakkola, T. (2020). Generalization and

Representational Limits of Graph Neural Networks, https://arxiv.org/abs/

2002.06157 [cs.LG].

20. Goyal, P. and Ferrara, E. (2017). Graph Embedding Techniques,

Applications and Performance: A Survey, https://arxiv.org/abs/1705.02801

[cs.SI].

21. Gu, X., Zhang, H., Zhang, D. and Kim, S. (2017). Deep API Learning, Proc.

FSE’16, https://arxiv.org/abs/1605.08545 [cs.SE]. DOI: 10.1145/1235.

22. Guo, J., Chang, J. and Cleland-Huang, J. (2018). Semantically Enhanced

Software Traceability Using Deep Learning Techniques, https://arxiv.org/

abs/1804.02438 [cs.SE].

23. Gupta, R., Pal, S., Kanade, A. and Shevade, S. (2017). DeepFix: Fixing

Common C Language Errors by Deep Learning, Proc. 31st AAAI

Conference, pp. 1345–1351.

24. Hamilton, W. L., Ying, R. and Leskovec, J. (2017). Inductive Representation

Learning on Large Graphs, Proc. 31st NIPS Conf. Info. Processing Systems.

{GraphSAGE}.

25. Herzig, R., Raboh, M., Chechik, G., Berant, J. and Globerson, A. (2018).

Mapping Images to Scene Graphs with Permutation-Invariant Structured

Prediction, https://arxiv.org/abs/1802.05451 [stat.ML].

26. Hochreiter, S. and Schmidhuber, J. (1997). Long Short-Term Memory,

Neural Computation, 9(8):1735–1780. DOI: 10.1162/neco.1997.9.8.1735

URL: http://www.bioinf.jku.at/publications/older/2604.pdf.

27. Hu, X., Li, G., Xia, X., Lo, D. and Jin, Z. (2018). Deep Code Comment

Generation, Proc. ICPC IEEE/ACM Int. Conf. Program Comprehension, 11

pages. DOI: 10.475/123_4.

28. Kalofolias, V., Bresson, X., Bronstein, M. and Vandergheynst, P. (2014).

Matrix Completion on Graphs, https://arxiv.org/abs/1408.1717 [cs.LG].

29. Kipf, T. N., Fetaya, E., Wang, K-C., Welling, M. and Zemel, R. (2018).

Neural Relational Inference for Interacting Systems, https://arxiv.org/

abs/1802.04687 [stat.ML].

30. Kipf, T. N. and Welling, M. (2016). Variational Graph Auto-Encoders, in

NIPS Bayesian Deep Learning Workshop, https://arxiv.org/abs/1611.07308

[stat.ML].

31. Kipf, T. N. and Welling, M. (2017). Semi-Supervised Classification with

Graph Convolutional Networks, Proc. ICLR, https://arxiv.org/abs/

1609.02907 [cs.LG].

32. Lan, X. and Barner, K. E. (2019). A Probabilistic Representation of Deep

Learning, https://arxiv.org/abs/1908.09772 [cs.LG].

https://arxiv.org/abs/2002.06157
https://arxiv.org/abs/2002.06157
https://arxiv.org/abs/1705.02801
https://arxiv.org/abs/1605.08545
http://dx.doi.org/10.1145/1235
https://arxiv.org/abs/1804.02438
https://arxiv.org/abs/1804.02438
https://arxiv.org/abs/1802.05451
https://doi.org/10.1162/neco.1997.9.8.1735
http://www.bioinf.jku.at/publications/older/2604.pdf
https://doi.org/10.475/123_4
https://arxiv.org/abs/1408.1717
https://arxiv.org/abs/1802.04687
https://arxiv.org/abs/1802.04687
https://arxiv.org/abs/1611.07308
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1908.09772

 Software Fusion: Deep Design with Laplacian Verification 209

33. Li, Q., Han, Z. and Wu, X-M. (2018). Deeper Insights into Graph

Convolutional Networks for Semi-supervised Learning, https://arxiv.org/

abs/1801.07606 [cs.LG].

34. Li, X., Jiang, H., Ren, Z., Li, G. and Zhang, J. (2018). Deep Learning in

Software Engineering, https://arxiv.org/abs/1805.04825 [cs.SE].

35. Liu, P., Zhang, H. and Eom, K. B. (2016). Active Deep Learning for

Classification of Hyperspectral Images, https://arxiv.org/abs/1611.10031.

36. Ma, Y., Jin, W., Tang, J., Wu, L. and Ma, T. (2020). Graph Neural Networks:

Models and Applications, AAAI Tutorial, http://cse.msu.edu/~mayao4/

tutorials/aaai2020/.

37. Meyes, R., Lu, M., de Puiseau, C. W. and Meisen, T. (2019). Ablation

Studies in Artificial Neural Networks, https://arxiv.org/abs/1901.08644

[cs.NE].

38. Mou, L., Men, R., Li, G., Zhang, L. and Jin, Z. (2015). On End-to-End

Program Generation from User Intention by Deep Neural Networks,

https://arXiv.org/abs/1510.07211 [cs.SE].

39. Patel, A. B., Nguyen, T. and Baraniuk, R. G. (2015) A Probabilistic Theory

of Deep Learning, https://arxiv.org/abs/1504.00641 [stat.ML].

40. Rumelhart, D. E., Hinton, G.E. and Williams, R.J. (1986). Learning

representations by error propagation, In Rumelhart, D. E., McClelland, J. L.

and the PDP Research Group (Eds.), Parallel Distributed Processing

(Vol. 1, pp. 318–362). MIT Press, Cambridge, MA; originally in Nature,

Vol. 323 (6088): pp. 533–536 (1986). DOI: 10.1038/323533a0.

41. Schlichtkrull, M., Kipf, T. N., Bloem, P., van den Berg, R., Titov, I. and

Welling, M. (2017). Modeling Relational Data with Graph Convolutional

Networks, https://arxiv.org/abs/1703.06103 [stat.ML].

42. Shervashidze, N., Schweitzer, P., van Leewen, E. J., Mehlhorn, K. and

Borgwardt, K. M. (2011). Weisfeiler-Lehman Graph Kernels, J. Machine

Learning Research, vol. 12, pp. 2359–2562.

43. Stark, F., Hazirbas, C., Triebel, R. and Cremers, D. (2015). CAPTCHA

Recognition with Active Deep Learning, Proc. Workshop New Challenges

in Neural Computation.

44. Szoke, G., Nagy, C., Ferenc, R. and Gyimothy, T. (2016). Designing and

Developing Automated Refactoring Transformations: An Experience

Report, 23rd IEEE Int. SANER Conf., Vol. 5, pp. 693–697. DOI:

10.1109/SANER.2016.17.

45. van den Berg, R., Kipf, T. N. and Welling, M. (2017). Graph Convolutional

Matrix Completion, https://arxiv.org/abs/1706.02263 [stat.ML].

46. Weisfeiler, B. and Lehman, A. A. (1968). A reduction of a graph to a

canonical form and an algebra arising during this reduction, Nauchno-

Technicheskaya Informatsia, 2(9) pp. 12–16.

47. Weisstein, E. W. (2020). Bipartite graph http://mathworld.wolfram.com/

Bipartite-Graph.html.

https://arxiv.org/abs/1801.07606
https://arxiv.org/abs/1801.07606
https://arxiv.org/abs/1805.04825
https://arxiv.org/abs/1611.10031
http://cse.msu.edu/~mayao4/tutorials/aaai2020/
http://cse.msu.edu/~mayao4/tutorials/aaai2020/
https://arxiv.org/abs/1901.08644
https://arxiv.org/abs/1510.07211
https://arxiv.org/abs/1504.00641
https://doi.org/10.1038%2F323533a0
https://arxiv.org/abs/1703.06103
https://doi.org/10.1109/SANER.2016.17
https://arxiv.org/abs/1706.02263
http://mathworld.wolfram.com/Bipartite-Graph.html
http://mathworld.wolfram.com/Bipartite-Graph.html

210 Artificial Intelligence Methods for Software Engineering

48. Wu, J. (2017). Introduction to Convolutional Neural Networks, Nanjing

University, China. https://pdfs.semanticscholar.org/450c/

a19932fcef1ca6d0442cbf52fec38fb9d1e5.pdf.

49. Xu, K., Hu, W., Leskovec, J. and Jegelka, S. (2019). How Powerful are

Graph Neural Networks?, Proc. ICLR 2019, https://arxiv.org/abs/

01810.00826 [cs.LG]. {GIN}

50. Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K. and Jegelka, S.

(2018) Representation Learning on Graphs with Jumping Knowledge,

https://arxiv.org/abs/1806.03536 [cs.LG].

51. Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R. R.

and Smola, A. J. (2017). Deep Sets, in Advances in Neural Information

Processing Systems (NIPS).

52. Zhang, J., Chen, W. and Niu, Y. (2019). DeepCheck: A Non-intrusive

Control-flow Integrity Checking based on Deep Learning,

https://arxiv.org/abs/1905.01858 [cs.CR].

https://pdfs.semanticscholar.org/450c/a19932fcef1ca6d0442cbf52fec38fb9d1e5.pdf
https://pdfs.semanticscholar.org/450c/a19932fcef1ca6d0442cbf52fec38fb9d1e5.pdf
https://arxiv.org/abs/01810.00826
https://arxiv.org/abs/01810.00826
https://arxiv.org/abs/1806.03536
https://arxiv.org/abs/1905.01858

June 1, 2021 9:13 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-08 page 211

© 2021 World Scientific Publishing Company
https://doi.org/10.1142/9789811239922 0008

Chapter 8

Using Artificial Intelligence for
Auto-Generating Software for
Cyber-Physical Applications

Gregory Provan

School of Computer Science and IT, Western Gateway Building,
University College Cork, Cork, Ireland T12 WT72

g.provan@cs.ucc.ie

8.1 Introduction

Model-based software engineering (MBSE) is the process of creating and

exploiting domain models to generate software that can be verified to satisfy

particular requirements R [1]. A model Φ is an abstract representation of

the knowledge and activities that govern a particular application domain.

The MBSE approach aims to increase productivity by (a) simplifying the

design process through using models of recurring design patterns in the

application domain; and (b) maximizing compatibility between systems

through reuse of these standardized models.

Generating software that guarantees requirements R is an important

task that traditionally has followed a manual process from requirements

through to software [1]. For some cyber-physical systems (CPSs) for which

models of nominal and faulty performance exist, this manual process can

be augmented with the use of pre-defined system models. For example, this

can be done for control systems using MATLAB/Simulink model libraries

(www.mathworks.com/) or for other systems using languages like Modelica

(e.g., www.modelica.org/libraries).

Traditional MBSE uses entirely human-defined artefacts, e.g., physi-

cal model components and fault trees, so it produces explainable outputs

that meet particular safety requirements. However, a drawback of tradi-

tional model-based development is the need to manually generate the model

211

https://doi.org/10.1142/9789811239922_0008

June 1, 2021 9:13 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-08 page 212

212 Artificial Intelligence Methods for Software Engineering

libraries and to assemble to pre-defined components into complete systems

(e.g., [1]). A second drawback is that the models generated from “generic”

components must have their parameters tuned to the specific application

(e.g., [2]).

To circumvent these drawbacks, artificial intelligence (AI) techniques

have been increasingly been proposed for generating software that guaran-

tees we satisfy requirements R (e.g., [3–5]). These proposals range from

using theorem provers throughout the process, replacing the entire process

with machine learning [6] to applying learning to specific sub-sets of the

process [7]. For example, Moitra et al. [8] discuss a tool that enables users

to write requirements that are clear, unambiguous, conflict-free and com-

plete. This tool creates requirements in a structured natural language that

is both human- and machine-readable, and uses an automated theorem

prover to formally verify the requirements and identify errors. Methods

that use learning-based automation reduce costs, but may also reduce the

explainability and trustworthiness of the generated systems. Automated

MBSE systems don’t incorporate AI/learning, although there are some re-

cent proposals to do so [9].

At present, little focus is placed on the costs of the different phases

of MBSE, and in particular the costs of model-generation. Given a new

framework in which we can define different levels of automation in model-

generation, it is important to explicitly examine the trade-offs associated

with different model construction methods and the resulting models.

This article first reviews the most prominent proposals for applying AI

to generating verified software and proposes an approach that integrates

learning withing the model-based development process. We compare several

different AI-based methods in terms of accuracy, and being explainable

and trustworthy. We empirically show how this approach works for a CPS

application. We focus on the model-generation phase, where we create a

system model that guarantees properties defined with requirements R.

Our contributions are as follows:

• We compare and contrast traditional MBSE with AI-based MBSE

to highlight their strengths and weaknesses.

• We introduce a new framework for the model-development phase

of MBSE, using an optimization framework to formalize both the

traditional and AI approaches.

• We illustrate these differences using a CPS application of a chemical

process system with fault-tolerance guarantees.

June 1, 2021 9:13 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-08 page 213

Using Artificial Intelligence for Auto-Generating Software 213

This article is organized as follows. Section 8.2 reviews the state-of-

the-art in MBSE and learning-based model construction. Section 8.3 intro-

duces the area of MBSE. Next, Sec. 8.4 introduces the phases of MBSE,

and illustrates them with a well-known process-control example. Section 8.5

describes the new optimization-based framework for MBSE. Section 8.6 de-

scribes the technical details of the proposed new framework. Section 8.8

describes the different model-generation methodologies that can be used for

semi- or fully-automated model generation within this new framework.

Section 8.9 presents an empirical comparison several examples of the

new MBSE process. Section 8.10 summarizes our conclusions.

8.2 Related Work

Researchers have proposed two main methods for performing MBSE tasks:

(1) Model-Based (formal methods): Manually build models, which

can be used to formally verify if the requirements are satisfied [2, 10].

(2) Machine Learning: Learn representations from data that can be used

to validate the requirements.

In addition, for generating software satisfying requirements on fault oc-

currence or fault-tolerance, fault-tree approaches are used to manually

construct fault-trees (or equivalent representations) and, through simula-

tion, test coverage of requirements by the generated fault-trees [11].

8.2.1 Model-Based Methods

Model-based methods typically use a collection of languages to model var-

ious aspects of a CPS. Examples of integrated tools for MBSE are general

tools like [12, 13], or [14], which focuses on model based functional safety

analysis. One integrated system, COMPASS, has been developed for critical

systems such as aerospace and automotive systems [12]. COMPASS input

models use the language SLIM, which is a version of the AADL language

that has been extended to incorporate behavior and error specifications.

The semantics and syntax of SLIM are summarized in [12]. Models are de-

scribed in terms of a component hierarchy. Components interact with each

other by means of ports, which send either discrete events or data values.

COMPASS provides a declarative language for fault specification and then

tools for safety verification.

June 1, 2021 9:13 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-08 page 214

214 Artificial Intelligence Methods for Software Engineering

8.2.2 Learning-Based Methods

Researchers have applied learning to several of the steps of MBSE, with the

learning target being based on the MBSE sub-sequence addressed. Two of

the most popular targets are the behaviour models and the fault-trees.

In general, these purely data-driven approaches still need refinement to im-

prove their performance with respect to manual techniques, and to improve

the robustness of the learning to noise and missing data. To date, limited

tools are available for design automation in AI-based systems.

Hartsell et al. proposes a tool-suite for all aspects of developing CPSs

that have Learning-Enabled Components (LECs) [3]. These aspects include

architectural modeling, engineering and integration of LECs, including sup-

port for training data collection, LEC training, LEC evaluation and verifi-

cation, and system software deployment. The tool suite focuses on safety

modeling and analysis.

Meijer et al. focuses on learning finite-state automata to represent be-

haviour models, using requirements specified in Linear-time Temporal Logic

(LTL) as inputs [15]. The LTL formulae are checked on intermediate au-

tomata, and potential counterexamples are validated on the actual system.

Spurious counterexamples are used by the learner to refine these automata.

A recent trend has focused on using machine learning, and in particular

deep learning, to generate CPS systems directly from data [5, 16]. This

strand of research focuses on black-box (neural network) representations

for models, in contrast to white-box models like automata, e.g., [15].

8.2.3 Fault Trees

Fault trees are a well-established and well-understood technique used for

evaluating safety/dependability of a wide range of systems: see [11] for a

survey. Fault trees typically require significant manual effort both for their

generation and analysis, even where software tool support exists. Recent

work has focused on automating fault tree synthesis from system models.

For example, fault trees can be automatically generated from a range of

model languages, such as MATLAB [17] or AADL [18].

[19] has developed an approach for learning fault trees from data. This

approach produces results whose performance depends on the percentage

of noise in the data: for example, the fault tress perform with around 65%

accuracy given up to 3% noise in the data, at a significance level of 0.01.

However, the learning algorithm has exponential time complexity since it

does an exhaustive search, and it also cannot deal with hidden variables.

June 1, 2021 9:13 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-08 page 215

Using Artificial Intelligence for Auto-Generating Software 215

8.3 Model-Based Software Engineering

MBSE is a software development process that uses abstraction and au-

tomation to improve software-development speed and accuracy by tackling

software development complexity [2]. Abstraction is achieved by employing

suitable models of (parts of) a software system. Automation systematically

transforms these models into executable source code [20].

8.3.1 MBSE Languages

We define a model that is used in MBSE as follows:

Definition 8.1. Model [21]. A model is an abstraction of an aspect of

reality (as-is or to-be) that is built for a given purpose.

Specifying models can either be done using a general-purpose modeling

language (GPML) or a domain-specific language (DSL).

Definition 8.2. Modeling Language [21]. A modeling language defines

a set of models that can be used for modeling purposes. Its definition

consists of (a) the syntax, (b) the semantics, and (c) its pragmatics.

While modeling languages are usually not tailored to a particular do-

main but rather address general-purpose concepts (e.g., the UML [22]), a

DSL uses model-specific representations:

Definition 8.3. Domain-Specific Language [23]. A DSL is a language

that is specifically dedicated to a domain of interest, using representations

that enable communication between stakeholders.

A DSL aims to bridge the gap between problem and solution space

[23] and consequently is more restrictive than a general-purpose modeling

language. DSLs usually drop Turing-completeness, and often allow fully

automated formal verification of the (domain-specific) properties of interest.

This is hardly feasible using Turing-complete general-purpose programming

languages. If a system is grounded on a well-defined theory such as physics,

chemistry, or biology, then researchers develop models with syntax similar

to the underlying mathematical theory, e.g., using differential equations in

the language Modelica (www.modelica.org).

8.3.2 Traditional MBSE Process

MBSE typically consists of the following tasks:

June 1, 2021 9:13 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-08 page 216

216 Artificial Intelligence Methods for Software Engineering

(1) Requirements generation: Generate a formal representation of the

task requirements.

(2) Model construction: A DSL is used to represent the entity (e.g.,

CPS) and its operation within a specific environment. The system

structure (the system’s components and their interconnections) is often

represented using an architecture description language [24], which can

be used in conjunction with the DSL to auto-generate a model that can

be used for simulation and analysis.

(3) Verification & validation: Various properties, e.g., safety, can be

verified on the model or generated code.

(4) Code generation: Once the CPS has been modeled and verified,

automated methods for generating embedded code can be applied to

the model.

The traditional approach to MBSE is shown in Fig. 8.1. Here, a manual

process is used to construct a model, which is iteratively improved until the

model Φ and requirements R are consistent, i.e., Φ∧R 6|= ⊥, after which it

is fielded in the target application. We note that the model is fixed once it

is fielded.

Fig. 8.1 Traditional approach to MBSE.

Definition: MBSE Task [R,M,D]. Given a set R of requirements (for

functionality/safety/privacy/security etc.), and component model library

M , design a system model that can be guaranteed to meet the requirements

R using model library M such that Φ ∧R 6|= ⊥.

MBSE models a software system or parts of the system by abstract mod-

els, which are then used constructively for different aspects, e.g., functional

demonstrations, safety analysis, etc. MBSE tools develop and employ code

generators as well as model interpreters to reflect the models’ meanings

in a system. A code generator takes models as input and produces (parts

June 1, 2021 9:13 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-08 page 217

Using Artificial Intelligence for Auto-Generating Software 217

of) a software system [25]. Assuming correctness of the code generator,

MBSE reduces manual development costs. However, since models typically

omit certain details due to model abstractions, the generated code typically

has to be manually complemented (e.g., with handwritten code). This can

either be done on the generated source code level (e.g., [9]) or on the in-

put model level (e.g., UML/P). Successfully applying constructive MBSE

methods requires expertise in (a) application domain and the underlying

modeling DSL; and (b) code generator or interpreter development.

8.3.3 CPS Model Representation

In this article, we frame our CPS as a dynamical system:

Definition: CPS model. We model the physical aspect of a CPS as a

dynamical system as follows:

ẋ = f(x(t), u(t), θ),

y = h(x(t), u(t), θ),

where

• x ∈ Rn is the state vector,

• u ∈ Rm are known process inputs (manipulated variables or measured

disturbances taking arbitrary values independently of the rest of the

variables),

• y is the system observation,

• θ ∈ Rρ are model parameters (assumed to be constant) and

• f(·) ∈ Rn, h(·) ∈ Rl are nonlinear functions of their arguments.

A CPS also has a cyber element, which in this case is the set of output

measurements y and the control settings Ω for the input flows and the

valves.

We frame the measured data for our CPS as follows:

Definition: Measured Data. We assume that we have measured data

D represented as a collection of pairs (ξ, c), where ξ ∈ Ξ consist of measured

values from a set Ξ, and c ∈ C consist of class labels for each measurement.

8.3.4 Model Development and Validation

The standard MBSE approach is to develop a model Φ and use verification

techniques to show that the model satisfies the requirements R. In this

approach, domain experts manually generate a model with parameter set

June 1, 2021 9:13 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-08 page 218

218 Artificial Intelligence Methods for Software Engineering

θ, and then estimate the parameters given data D. The model is viewed as

being “complete”, in that it captures all necessary aspects of the application

system.

In the model-based approach, the model Φ aims to predict the behaviour

of the underlying system, which then is used for a top-level task, e.g., alarm

generation. Hence the model aims to mimic the system’s behaviour, i.e., to

develop an accurate CPS model, as in Definition 8.3.3.

In traditional MBSE situations in which the model is validated using

theorem proving, e.g., [26], one attempts to show that the model and re-

quirements are consistent. Such model validation is typically performed

without the use of data from real-world applications. In this case, if we

have a model Φ(θ) that is based on a set θ of parameters, we typically fix

the parameters for model validation, and use these parameters during oper-

ation. The drawback of this approach is when the parameters do not match

the real-world system, the software will never perform optimally. Further,

if the operational system changes (due to natural degradation or changes

in environmental conditions) the model also cannot adjust its performance

by updating θ.

8.4 Running Example

This section introduces the phases of MBSE, and illustrates them with a

well-known process-control example.

8.4.1 Process-Control Example: Three Tank System

To illustrate the concepts of this article, we use a running example of a

well-known process-control example, a three-tank system. We show the 3-

tank example in Fig. 8.2. The three-tank system is a prototype of many

industrial applications in the process industry, such as chemical and petro-

chemical plants, oil and gas systems. The control of liquid level is a crucial

problem in such process industries, and this is the control task on which

we focus. While most articles on process control focus on the control is-

sues, here we focus on the model-based methodology for generating the

embeddable control and diagnosis software. We use the models developed

for simulation and control in the software development process.

The system consists of three identical tanks, Ti, i = 1, 2, 3. (We use

subscript i to denote tank i.) Pumps are used to provide input flows to

tanks T1 and T2, with the flows denoted Q1 and Q2, respectively. Each

June 1, 2021 9:13 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-08 page 219

Using Artificial Intelligence for Auto-Generating Software 219

Fig. 8.2 3-tank system with inflows at the two outermost tanks.

input flow (Q1 or Q2) can be controlled to a level varying continuously

between 0 and a maximum flow Qmax. We control flows between tanks

using a switching valve for tank i, denoted Vi, i = 1, 2, 3.; each valve can be

controlled with maximum values of open or closed. The liquid levels h1, h2,

and h3 in each tank can be measured with continuous-valued level sensors.

The objective is to maintain set-point heights (h∗1, h∗2, h∗3) in each of the

tanks, by controlling the inflow rates and valve settings.

In the following, we will briefly illustrate the four steps of MBSE, but

focus on model construction, which is the core topic of this article.

8.4.2 Requirements

Requirements generation is one of the most important MBSE steps, and

generates a formal representation of the task requirements. Requirements

generation for process control has been well studied, with a seminal paper

being [27]. Recently, researchers have been developing methods to use ML

for aspects of requirements generation, e.g., [8]. Reviews of this recent work

on software requirements engineering using machine learning techniques

are contained in [28, 29], noting that significant work is needed to create

industrial-strength engineering tools.

We address the task of developing software for monitoring a hydraulic

system for chemical process control. In this process-control system we frame

the primary requirement as:

R1 pump two different chemicals into 3 tanks and ensure that the levels in

the tanks are maintained at set-points for fixed time periods to ensure

proper mixing of the chemicals (nominal operation)

June 1, 2021 9:13 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-08 page 220

220 Artificial Intelligence Methods for Software Engineering

R2 monitor the tank levels

R3 compute a residual in each of 3 tanks, computed as the difference be-

tween the measured and predicted levels, with a modelling accuracy

level of q%

R4 if the residual exceeds a threshold, isolate the fault (in real time) caus-

ing that anomaly

R5 adjust the control system to tolerate any isolated fault, if possible

(fault-tolerant operation)

This system is designed to have two main control regimes: (a) nomi-

nal operation and (b) fault-tolerant operation. We explicitly use a system

model for developing these controllers.

Requirements engineering is a challenging task, and the mapping of

requirements into system models is non-trivial. Also, requirements may

change over time, for which machine learning is becoming increasingly use-

ful [8]. We assume a complete set of requirements, and leave the application

of AI/ML to both requirements and modelling of evolving systems to future

work.

We can formally state requirement R1 as minimizing the difference be-

tween the actual (h) and set-point (y) tank-height values, i.e.,

min
y(t),t∈[0,...,τ]

‖ h(t)− y(t) ‖, (8.1)

where [0, ..., τ] is the temporal window of interest.

To build a system to satisfy this requirement, we can define a system

model Φ and show that the model satisfies requirement R1 − R5, i.e., the

behaviour of the model does not lead to states that violate the level-control,

safety and other constraints.

8.4.3 Model Construction

To build a system to satisfy these requirements, we can define a system

model Φ and show that the model satisfies requirements R1 −R5, i.e., the

behaviour of the model does not lead to states that violate the level-control,

safety and other constraints. The most challenging model requirement is

to balance the necessary accuracy level with real-time performance, e.g.,

fault isolation. Even for relatively simple non-linear systems like this tank

example, using a first-principles ODE model may not lead to real-time

fault isolation. Hence, in this article we focus on the model construction

challenges of balancing accuracy with inference efficiency.

June 1, 2021 9:13 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-08 page 221

Using Artificial Intelligence for Auto-Generating Software 221

8.4.3.1 Approach

The classical approach to modelling a non-linear system is using ordinary

differential equations (ODEs).

Generating models from data avoids manual model construction, but it

still poses research challenges. Even state-of-the-art methods for inducing

physics-based models from data still are limited to toy models, e.g., [33].

8.4.3.2 Modeling Language: ODEs

We model this non-linear system using ordinary differential equations

(ODEs). Due to the difficulty of performing inference on this non-linear

system, significant effort has been devoted to creating simplifications of

non-linear systems, e.g., [30]. These simplifications include Mixed-Integer

Linear Programs [31], smooth Metric Temporal Logics [32], linear approx-

imations [30], among others. We use a linear approximation in this article.

This section first describes our non-linear equations, and then a set of linear

approximation of these equations.

Nominal System Description Φnom. For this 3-tank system (with

inputs Q1 and Q2 at the outermost two tanks, and valves controlling the

flows between adjacent tanks), the equations are given by

ḣ1 =
1

A
[Q1 −Q13 −Q1l]

ḣ2 =
1

A
[Q2 −Q32 −Q20 −Q2l]

ḣ3 =
1

A
[Q13 −Q32 −Q3l] (8.2)

where

Qij = ηiVisign(hi − hj)
√

2g|hi − hj | (8.3)

(through Bernoulli’s law), ηi is a coefficient summarizing outflow parame-

ters, A is tank area, and Vi is the [0,1] valve setting where 0 denotes closed

and 1 open.

Fault System Description ΦF . To create fault model ΦF , we extend

the equations in Φnom with fault equations covering possible faults in each

state in Q. We assume that the impacts of the pump and valve faults are

additive; as a consequence we model each fault independently in the fault

model. Under this assumption, we can simulate the impact of multiple-fault

scenarios by activating multiple faults at a time.

We assume that we can have faults in the pumps and valves. A pump

fails off, such that the flow for pump i, Qi = 0, for i = 1, 2. We model

June 1, 2021 9:13 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-08 page 222

222 Artificial Intelligence Methods for Software Engineering

a valve fault as an additive fault with (bounded) parameter ζ ∈ [−1, 1].

When the valve setting is Vi ∈ [0, 1], i = 1, 2, 3, the faulty setting is given

by (Vi + ζ) ∈ [0, 1], i = 1, 2, 3. For example, if the tank is commanded to

be open (V = 1) but is stuck shut then we model this using ζ = −1 such

that V + ζ = 0.

8.5 AI-Based Framework for MBSE Task

We propose an AI-based framework as an alternative the the traditional

MBSE approach, as shown in Fig. 8.3. Here, the V&V process involves the

the model Φ, requirements R and data D. We can no longer perform logical

validation (since we have data), but instead perform an optimisation process

Opt(Φ, R,D) so that we optimise an objective function over (Φ, R,D). The

generated model Φ is updated continuously as the data generated from

deployment changes over time.

Fig. 8.3 Proposed approach to MBSE.

8.5.1 Data-Driven MBSE

Using AI and learning methods can take advantage of the recent availability

of vast amounts of data, in order to reduce the onerous manual steps of

MBSE. As a consequence, we re-define the MBSE process to incorporate

data as follows:

Definition: [Data-driven MBSE Task 〈R,M,D〉] Given a set R of re-

quirements (for functionality/safety/privacy/security etc.), a component

June 1, 2021 9:13 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-08 page 223

Using Artificial Intelligence for Auto-Generating Software 223

model library M , and data D, design a system model that can be guaran-

teed to meet the requirements R using model library M given data D.

Given a system model Φ with faults, we can then use a range of tech-

niques to verify if Φ satisfies R. In this article we focus on using AI-based

methods to automate the model development process.

The MBSE approach of Definition 8.5.1 assumes that requirements are

fully verifiable. In reality, requirements may be partially satisfiable. To

address such situations, we generalize this definition to incorporate “soft

verification” of requirements. To do this, we frame the software generation

task as an optimization problem. In particular, we focus on a CPS applica-

tion, where the underlying system has both cyber- and physical-aspects.

8.5.2 Optimization-Based MBSE

This section describes an MBSE framework that defines the overall MBSE

task in terms of optimizing the outcomes of creating the embedded software,

as represented in terms of a system model Φ.

Our aim is to define a CPS that optimizes an objective J subject to

obeying:

• a set of physical constraints, which can be represented by a system

model Φ;

• a set R of requirements;

• data D that can be used for model development (via learning) and/or

model verification.

In this article we focus on the model-construction aspects of MBSE de-

velopment. In contrast to traditional approaches that create a single model

Φ that satisfies the requirements R, we have a more general framework that

aims to trade off three MBSE aspects:

• model accuracy–measured using a loss function L(·);
• model (inference) complexity χ(Φ);

• model development cost C(·).

We presume that we have a model-development function ϕ(M,D) that

creates a model given a model library M and data D. We denote the space

of possible models as the powerset of ϕ, namely Pϕ.

We select a model using a regularization framework, using the equation:

Φ∗ = arg min
Φ∈Pϕ

[L(Φ,D) + λ1χ(Φ) + λ2C(Φ)] , (8.4)

June 1, 2021 9:13 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-08 page 224

224 Artificial Intelligence Methods for Software Engineering

where λ1 and λ2 are the regularization weights for the complexity and

development costs, respectively.

We now describe these aspects in more detail.

8.5.2.1 Model Accuracy

The loss function measures the degree to which a model Φ satisfies the

requirements R, denoted as L(Φ, R). This measure is a strict generaliza-

tion of the traditional proof-theoretic notion of requirement validation. We

can use a variety of measures, such as squared-error loss between model

predictions and actual data.

8.5.2.2 Model Complexity

Model complexity measures the “size” of the model, e.g., [34]. We can

use three complexity measures: (1) An explicit representation in terms

of “degrees of freedom” of a model, e.g. effective number of parameters;

(2) code length, a.k.a. “Kolmogorov complexity” (the longer the shortest

model code, the higher its complexity, e.g., in bits); (3) information entropy

of parametric or predictive uncertainty [35]. The literature contains several

measures for each type, e.g., for degrees of freedom we can use AIC or

BIC [36].

8.5.2.3 Model Development Cost

Another important aspect is the cost of developing a model. With manual

construction from a model library, the cost must be estimated from the

cost of the model components and the manual generation process. With

automated construction, the cost is based on that of the data acquisition

and learning process.

8.5.3 System Verification

Given a model whose parameters are optimized with respect to data, we

then verify that the model does not violate our requirements. Verification

can be decomposed into two steps: validating the model with respect to

collected data, and then validating the run-time system with regards to the

requirements and run-time data. We examine each in turn.

We address situations in which we use data from real-world applications

for model generation and validation. To generate a model that is consistent

June 1, 2021 9:13 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-08 page 225

Using Artificial Intelligence for Auto-Generating Software 225

with regard to data (i.e., make the model best fit the data), we use D to

estimate the parameters θ of Φ.

Given a model whose parameters are optimized with respect to data, we

then verify that the model does not violate our requirements. Verification

can take many forms; for example, for dynamical systems we may perform

reachability analysis to verify the system trajectories do not end up in for-

bidden states [37]. This consists of using the model Φ together with initial

conditions x0 to generate trajectories, which are checked for intersection

with forbidden states.

8.6 AI-based MBSE Model Construction Methods

This section reviews approaches (that can be applied to MBSE) for gener-

ating models using both (a) physics and/or model-libraries and (b) data.

These approaches span a range from purely data-driven approaches (gen-

erating black-box models) [38], hybrid approaches combining physics and

data (generating grey-box models) [39], to model-driven approaches (white-

box) [40]. In the following, we review the data-driven and hybrid ap-

proaches, since these are not well-known as MBSE approaches. Based on

these modeling approaches, Sec. 8.9 presents an empirical comparison of

these model classes.

8.6.1 Data-Driven Approach

This approach assumes that we have no manually-generated model, but we

generate a model directly from data D. In contrast to the model-based

approach, which uses a model Φ aims for tasks like safety analysis or alarm

generation, a learning-based approach trains a learning model to directly

predict the necessary class labels for the top-level task; in other words, we

need not represent the CPS model at all [38]. We generate a classifier Γ

with parameters w. To learn Γ, we frame our optimization task in quite

a different way to the MBSE task: We want to maximize the classification

accuracy over the data, in which case we define a loss function as the

classification loss: i.e., if our classifier Γ outputs class ĉ for data-pair (ξ, c),

we minimize the loss as follows:

w∗ = arg min
w∈Pw

∑
D∈D

‖ ĉ− c ‖ (8.5)

June 1, 2021 9:13 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-08 page 226

226 Artificial Intelligence Methods for Software Engineering

There are many different targets that can be learned, which include:

• CPS models: Significant work has been performed to learn CPS mod-

els from data, e.g., [41].

• Fault Trees: Examples of learning fault trees include [19,42].

Many papers have applied learning to fault diagnosis of the multi-tank

system, e.g., [43]. In order to learn a classifier, we need to generate data

that covers nominal as well as all fault conditions.

One of the issues that must be addressed in learning for diagnostics is

the class imbalance problem, where the data set has an unequal distribution

between it’s majority (nominal state) and minority (fault state) classes.

This imbalance arises since most data that is measured corresponds to

nominal cases, i.e., few fault cases are recorded given that faults are rare.

Addressing class imbalance problems is important, as it leads to several

problems [44], which include:

• learning a classifier to identify the minority class is very complex and

challenging since a high-class imbalance introduces a bias in favour of

the majority class;

• the predictive accuracy of the classifier (i.e., ratio of test samples for

which we predicted the correct class) is not longer a good measure of

the model performance, since predicting a nominal state always yields

the proportion of nominal in the data set (e.g., 98%), thereby failing in

the real task, i.e., correctly predicting fault cases.

In order to address class imbalance in training a classifier, we can use

several techniques, such as:

• Using data augmentation to artificially increase the proportion of fault

cases in the data by perturbing existing fault cases to create novel fault

cases;

• Train using a loss function designed for achieving a good trade-off be-

tween sensitivity and specificity ; this will correct “traditional” training

methods, that create a classifier that never predicts faults (and hence

has a sensitivity of 0 and a specificity of 1).1

1Sensitivity and specificity, though theoretically independent, typically trade off against
each other and are inversely related [45].

June 1, 2021 9:13 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-08 page 227

Using Artificial Intelligence for Auto-Generating Software 227

8.6.2 Hybrid Approach: Multi-Fidelity (Surrogate-Based)

Optimization

Multi-fidelity methods leverage models and/or data of multiple levels of

fidelity in order to maximize the accuracy of model estimates, while min-

imizing the cost associated with parameterisation [46]. The model-based

methods adopt a set of generative models, while the data-driven meth-

ods learn a model, e.g., regression-based model, physical model [47], or a

reinforcement-learning model [48].

8.6.2.1 Model-based Multi-Fidelity Approach

In situations where a high-fidelity model ΦH exists but is computationally

too expensive to use for inference, surrogate low-fidelity models can be

used instead through data-driven tuning [49–51]. A hybrid surrogate model

takes advantage of the predictive ability of each individual surrogate model

through a weighted-sum combination of the individual surrogate models. In

other words, we approximate the system behavior (high-fidelity behavior)

using a linear combination of the low-fidelity predictions and a discrepancy

function (e.g., polynomial function). The key idea is to consider the low-

fidelity model as a basis function in the multi-fidelity model with the scale

factor as a regression coefficient. We can perform least-square estimation

based on inputs of the low-fidelity model and the discrepancy function. We

compute the scale factor and coefficients of the basis functions using linear

regression, which guarantees the uniqueness of the fitting process. Besides

enabling efficient estimation of the parameters, the proposed least-squares

multi-fidelity surrogate can be applied to other tasks.

In this approach, if we have a high-fidelity model ΦH with output yH ,

and a low-fidelity model ΦL with output yL, then we can tune the system

such that

yH(x) = αyL(x) + δ(x), (8.6)

where the regression scale factor α and discrepancy function δ(x) are ob-

tained through optimization, see [51].

Provan presents an approach that learns a polynomial function for

the the scale factor α in conjunction with multiple low-fidelity models

ΦL1
, · · · ,ΦLk

[52].2 Feldman et al. takes a different approach given as

input a collection of component models of differing fidelity: they perform
2This approach is similar to ensemble learning, where a weighted combination of mul-

tiple classifiers is generated.

June 1, 2021 9:13 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-08 page 228

228 Artificial Intelligence Methods for Software Engineering

an exhaustive combinatorial search over all component combinations to

generate the system-level model that best fits the data D [53].

Various packages that build surrogate models have been devel-

oped using different programming languages, such as Scikit-learn in

Python [1], SUMO in MATLAB [54], and Surrogate Modeling Toolbox

(http://smt.readthedocs.io, [55]).

8.6.2.2 Data-Driven Surrogate Approach

Data-driven surrogate models (also known as meta-models, or response

surface models) are constructed using simulation data from high-fidelity

models [56]. Hence, they are approximate black-box models that pro-

vide black-box relationships between inputs and outputs of a system. We

construct data-driven surrogate models by simulating the original (high-

fidelity) model at a set of points, called training points, and using the

corresponding evaluations to construct an approximate model based on

mathematical functions (e.g., Kriging, Gaussian-Process functions, etc.).

The main challenge in data-driven surrogate modeling is how to obtain

an approximate model from the simulation data that is as accurate as pos-

sible over some domain of interest while minimizing the simulation cost of

the data generation. This challenge necessitates the appropriate selection

of the structure and complexity of the surrogate model, the number and

distribution of the simulation data used for learning the surrogate model,

and the validation methods used for estimating the quality of the model.

Several tool kits have been developed to enable this approach, e.g., [54].

8.6.3 Hybrid Approach: Model-Constrained Optimization

The hybrid approach uses a combination of models and learning for software

generation [57]. In this case, we assume that we have an incomplete model

Φ̆ and data D. We represent the unknown part of the model in terms of a

subset z(t) of state variables.

Definition: Incomplete CPS model Φ̆. We model an incomplete CPS

model as a dynamical system as follows:

ẋ = f(x(t), u(t), z(t), θ),

y = h(x(t), u(t), z(t), θ),

where

• x ∈ Rn is the state vector,

June 1, 2021 9:13 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-08 page 229

Using Artificial Intelligence for Auto-Generating Software 229

• u ∈ Rm are known process inputs (manipulated variables or measured

disturbances taking arbitrary values independently of the rest of the

variables),

• z ∈ Rq are algebraic variables (with undefined roles, e.g., representing

arbitrary inputs or variables that are functions of other variables),

• θ ∈ Rρ are model parameters (assumed to be constant) and

• f(·) ∈ Rn, h(·) ∈ Rl are nonlinear functions of their arguments.

Given the partial model, we define the problem as finding the sub-model

z(x, u) and parameters θ such that the response of Φ̆ optimally fits the ex-

perimental values D. This approach has the potential to provide the best

balance between physical models and empirical data, but is computation-

ally intensive. The intractability arises since we are solving a semi-infinite

programming problem (an optimization model that has finitely many vari-

ables and infinitely many constraints). Recent approaches have explored

more tractable optimization algorithms, e.g., [57].

8.7 Running Example: Continued

This section uses our running example to illustrate and compare the differ-

ent AI-based frameworks.

8.7.1 Model-based Multi-Fidelity Approach

To illustrate how surrogate models can be used for the tank system, we can

replace the high-fidelity model ΦH with a low-fidelity (but computationally

simpler) model ΦL as follows. We define a surrogate model ΦL by replacing

the non-linear model (Eqs. (8.2) and (8.3)) with a linear model of the

nominal tank system using Eqs. (8.2), except that the outflow from tank i

to tank j (i = 1, 2 j = 2, 3) is given by

Qij = ηiVisign(hi − hj)2g(hi − hj). (8.7)

For details of such a linearization process, see [58].

We then fit ΦL to data D. In this case, we use simulated data for

this fitting. If we simulate the non-linear/linear systems under equivalent

initial conditions x0, we can obtain outputs yH/yL, respectively. For such

a collection of non-linear/linear simulation outputs D = {(yH ,yL)}, we

then compute parameters α, δ(x) to optimize the surrogate model’s fit:

yH(x) = αyL(x) + δ(x). (8.8)

June 1, 2021 9:13 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-08 page 230

230 Artificial Intelligence Methods for Software Engineering

8.7.2 Data-Driven Surrogate Approach

A data-driven surrogate approach, rather than using physics-based sur-

rogate models as just described, learns a low-fidelity model ΦL from data,

and then combines the model’s outputs using optimization parameters (e.g.,

α, δ(x)). We can create a neural network surrogate (simulation) model,

e.g., as in [59,60], where the model class learned is a Radial Basis Function

(RBF) network; alternatively, we can learn a Bayesian network, as in [61].

8.8 MBSE Trade-Off Framework

This section describes our experimental methods, focusing on the models

compared and the relative model-construction costs that are key to our

comparative analysis.

8.8.1 Approaches Compared

In our experiments we compared several approaches, as shown in Table 8.1.

We compare the different approaches using the process-control model. We

define a gold-standard (high-fidelity) model ΦH that is manually developed

within a traditional model-based framework. We then compare the fault-

identification model cost of ΦH with the that of models that use data for

model-generation, using multi-fidelity surrogates, data-driven learning, and

model-constrained optimization. We use as our cost metric a measure of

manual effort necessary for model-construction.

Table 8.1 Code-generation approaches compared.

Approach Notation Diagnostics inference

Gold standard ΦH Observer-based Engine E
Data-driven (NN) ΦNN Neural Network classifier

Model-based Surrogate ΦLm Observer-based Engine E
Data-driven Surrogate ΦLd

Observer-based Engine E

We assign cost to the following operations:

• Manual model construction: components and complete models.

• Manual data preparation and class-label assignment.

• Data-driven model construction.

Table 8.2 summarises this comparative cost information. We note that

we have assessed these costs based on the models we have generated, and

June 1, 2021 9:13 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-08 page 231

Using Artificial Intelligence for Auto-Generating Software 231

Table 8.2 Comparative costs for model construction among modeling

approaches (all figures in person-hour estimates).

Approach Library Model Data Total

Manual HF 100 30 - 130
LF 60 30 - 90

Machine Learning HF - - 50 50

MB-Surrogate HF 100 - - 100
LF 60 - - 60

DD-Surrogate HF 100 - 10 110

LF 60 - 10 70

we assign all operations (model construction, data preparation, etc.) to

have identical cost. It is beyond the scope of this article to assess the costs

in a more precise manner.

8.8.2 Model Library Costs

We assess costs based on the person-hours required to develop the model

libraries. Creating such libraries is labour-intensive, but the benefit is that

the models can be re-used. In addition, many commercial libraries exist,

both free (e.g., Modelica) and paid, so these costs could be reduced through

the use of commercial libraries. We further note that the high-fidelity (HF)

models are more expensive to create that the low–fidelity (LF) models.

8.8.3 Data-Driven Model Costs

The main costs for data-driven model generation are due to the cost of

manual data preparation and class-label assignment (i.e., labeling the test-

cases for the data). It is now well known that at least 50% of costs for data

mining are accrued for data preparation.

8.8.4 Comparative Analysis

Table 8.2 summarizes the comparative costs of the different approaches.

The Machine Learning approach is the cheapest, with the other approaches

indicating the the low-fidelity model-based methods the next cheapest. Due

to re-usability of models, this table may be somewhat misleading, since

with new data an entirely new model must be learned using the Machine

Learning approach; recent research in transfer learning (e.g., [62]) aims to

use prior learned models to avoid this problem.

June 1, 2021 9:13 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-08 page 232

232 Artificial Intelligence Methods for Software Engineering

8.9 Empirical Modeling Cost Comparison

8.9.1 Empirical Analysis

We compare traditional and several AI-based (data-driven) MBSE ap-

proaches. In the proposed optimisation-focused MBSE process, our op-

timisation task incorporates both the model construction costs and model

accuracy; however, at present these are computed independently. Future

work is needed to be able to fold both into a single cost function and sub-

sequently optimize the entire MBSE process.

This section describes our empirical analysis. We compare the different

approaches using a process-control model. We define a gold-standard (high-

fidelity) model ΦH that is manually developed within a traditional model-

based framework. We then compare the fault-identification performance

of ΦH with the performance of models that use data for model-generation,

using multi-fidelity surrogates, data-driven learning, and model-constrained

optimization. We develop and train all models using a MATLAB/Simulink

platform.

We define an objective function for the experiments as follows:

J = λ∆ + (1− λ)(τ∗ − τ), (8.9)

where

• ∆ is the diagnostic accuracy, which we compute in terms of classifica-

tion error (equation 7 of [63]);3

• τ is the diagnostic inference time for the total number of cases;

• τ∗ is the target diagnostic inference time;

• λ is a regularization parameter that balances ∆ and τ .

Here, we penalize an approach that exceeds the target diagnostic inference

time using the (τ∗ − τ) term. Embedded diagnostics applications typically

need timely diagnostics results, leading to application-specific target diag-

nostic inference times (τ∗). For example, aerospace systems have stringent

values of τ∗ so that fault-tolerant control (FTC) can be implemented in

(near) real-time when a controller uses fault-isolation inputs as part of its

control loop, e.g., [65]. In this article, we use a fixed value for τ∗, similar

to the maximum fault-isolation requirements for FTC.4

3Several metrics for diagnostics accuracy have been proposed in the literature, e.g.,

[63, 64]; any of these metrics can be used for ∆.
4Fault isolation for real systems follows a distribution of times, since some faults are

computationally harder to isolate than others. It is beyond the scope of this article to

June 1, 2021 9:13 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-08 page 233

Using Artificial Intelligence for Auto-Generating Software 233

8.9.2 Data

We simulate a data set D from the gold standard model ΦH by sampling

behaviours given nominal and faulty scenarios. We divide D into training

Dtrain a test Dtest subsets, with 90% used for training and 10% for testing.

We denote the system modes η as consisting of nominal (no faults, i.e.,

η = ∅), and faults in (a) pump P1; (b) pump P2; (c) valve V13; (d) valve

V32; (e) valve V20; and (f) combinations of the fault conditions. We sample

modes according the a probability distribution over the fault occurrence,

as follows: P (η = ∅) = 0.93; P (η = P1) = 0.01; P (η = P2) = 0.01;

P (η = V13) = 0.01; P (η = V32) = 0.01; P (η = V20) = 0.01.

For each test case, we simulate a behaviour B over t = 100 seconds using

an initial condition x0; we inject a fault into some scenarios (according to

the mode distribution just described) at t = 15 seconds. We measure the

tank heights (h1, h2, h3) over t = 100 seconds, and our objective is to

identify if a fault occurred during the simulation.

8.9.2.1 Baseline: Model-Based Approach

This approach uses the model ΦH , which has had its parameters assigned

using the training data Dtrain. ΦH provides a forecast of expected be-

haviour of the system, and we use an observer-based diagnosis algorithm

[66] to isolate faults.

8.9.2.2 Data-Driven Approach

We learn a classifier given the input (B, η). For this application, we have

chosen to learn a neural network. We divide the simulation period [0,100]

into a sequence of intervals using a temporal window, and we learn the

relationships between adjacent intervals to simplify the learning process.

Note that this is supervised learning, in that each training case is labeled

with the fault class. The output layer consists of the fault class values.

8.9.2.3 Model-Based Hybrid Approach

We selected 3 low-fidelity tank models, denoted ΦL1, ΦL2, ΦL3, developed

using the approach described in [52]. Then, using the training data Dtrain,

explore such issues, but they could be incorporated into a regularisation task as described
in Eq. (8.9).

June 1, 2021 9:13 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-08 page 234

234 Artificial Intelligence Methods for Software Engineering

we learned a polynomial function such that

yH(x) '
3∑
i=1

αiyLi(x) + δ(x), (8.10)

where yLi(x) is the output of ΦLi given input x.

8.9.2.4 Data-Driven Hybrid Approach

We used training data Dtrain to learn a neural network function that gen-

erates output y(x) at time steps t = 10, 20, · · · , 100.5 We then used the

trained network Dtrain as the “low-fidelity” model used to generate a poly-

nomial function, such that Eq. (8.10) holds at time steps t = 10, 20, · · · , 100.

8.9.3 Results and Discussion

We have averaged our results over a set of 100 test cases, which contained

92 nominal scenarios, 7 single- and 1 multiple-fault scenarios. Table 8.3

summarizes our results.

Table 8.3 Code-generation results, with the best results for each category

shown in bold-face.

Approach Accuracy ∆ time (s) J : λ = 0.9 J : λ = 0.6

ΦH 96 103.5 81.1 26.2

ΦNN 64 3.8 62.2 56.9

ΦLm 85 41.3 77.4 54.5

ΦLd
78 73.1 21.4 58.2

8.9.3.1 Accuracy

• ΦH : The fact that the gold-standard approach did not achieve 100% ac-

curacy is due to the inference engine not being perfect in its diagnostics

ability.

• ΦN : We argue that the poor accuracy of the NN is due to issues with

training: there were insufficient training cases (n = 900), and signif-

icantly more work is necessary to either pre-process the data so that

training is simplified, or to tune the architecture. This shows that NN

training shifts the burden from manual model generation to (at present)

manual pre-processing and architecture tuning.
5We trained a deep LSTM network consisting of 6 densely-connected layers. The LSTM

was found to capture the temporal aspects of this application and produce better results
than atemporal networks.

June 1, 2021 9:13 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-08 page 235

Using Artificial Intelligence for Auto-Generating Software 235

• Surrogates: The model-driven surrogate approach performed the

best of the non gold-standard approaches, with the data-driven being

slightly worse due to issues with training.

8.9.3.2 Time

• ΦH : The gold-standard approach was computationally the most expen-

sive due to the complexity of ODE inference for diagnostics.

• ΦNN : The NN shows very fast inference, the timings only hampered by

the number of parameters for the classifier that need to be processed.

• Surrogates: The model-driven surrogate approach performed faster

than the gold-standard approach, but still needed to execute costly

ODE operations. The data-driven surrogate approach performed faster

since it has the fewest parameters in it’s pseudo-simulator that must

be evaluated.

8.9.3.3 Combined (Weighted) Objective

• The optimal value of J depends on the different parameters used. For

λ = 0.9 (accuracy is weighted highly) the gold-standard approach was

optimal. However, if inference speed is also important (λ = 0.6) the

data-driven surrogate approach is optimal.

8.9.4 Discussion of Trade-Offs

In this article we are ignoring the cost of parameter estimation or of training

the different models.

Modeling Costs: The model-development costs for the NN are signif-

icantly higher than those for the other approaches. As a consequence, our

results focus on the on-line inference costs and accuracy.

Explainability: The approaches differ considerably in terms of ex-

plainability. The gold-standard approach is best in this regard, since all

equations are physically well-founded and understandable. The model-

driven surrogate approach is also highly transparent, since it weights a

collection of physics-based models. The data-driven models, which consist

of just weights, do not have explanatory power since they have no physical

equations to relate their results to.

June 1, 2021 9:13 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-08 page 236

236 Artificial Intelligence Methods for Software Engineering

8.10 Conclusion

This article has proposed an optimization-based framework for MBSE. Us-

ing this approach we have examined traditional (manual) and AI (data-

driven) methods for embedded MBSE. We illustrated our framework using

an embedded-systems application, in which the aim is to generate embedded

code for monitoring a hydraulic tank benchmark such that we isolate faults

with high accuracy and inference-time deadlines. The optimization-based

framework enables developers to trade off a variety of system parameters

in building the embedded code.

This work shows the benefits of AI-based methods for automating

MBSE, in that manual model generation can be replaced by data-driven

methods. Significant work remains, as this is just a preliminary evaluation

of the trade-offs entailed in such automation. Purely data-driven methods

are not explainable, and require significant data for training. For diagnos-

tics applications, real-world data for faults in hard to acquire, which may

limit the developed classifiers. However, for applications where physics-

based models are expensive or impossible to develop, AI-based models show

great promise if data is available.

References

[1] O. Lisagor, T. Kelly and R. Niu, Model-based safety assessment: Review of
the discipline and its challenges, in The Proceedings of 2011 9th International
Conference on Reliability, Maintainability and Safety. IEEE, pp. 625–632
(2011).

[2] M. Brambilla, J. Cabot and M. Wimmer, Model-driven software engineer-
ing in practice, Synthesis Lectures on Software Engineering 1, 1, pp. 1–182
(2012).

[3] C. Hartsell, N. Mahadevan, S. Ramakrishna, A. Dubey, T. Bapty, T. John-
son, X. Koutsoukos, J. Sztipanovits and G. Karsai, Model-based design for
cps with learning-enabled components, in Proceedings of the Workshop on
Design Automation for CPS and IoT. ACM, pp. 1–9 (2019).

[4] L. E. Lwakatare, A. Raj, J. Bosch, H. H. Olsson and I. Crnkovic, A tax-
onomy of software engineering challenges for machine learning systems: An
empirical investigation, in International Conference on Agile Software De-
velopment. Springer, pp. 227–243 (2019).

[5] J. Zhang and J. Li, Testing and verification of neural-network-based safety-
critical control software: A systematic literature review, arXiv preprint
arXiv:1910.06715 (2019).

[6] S. L. Brunton, J. L. Proctor and J. N. Kutz, Discovering governing equations

June 1, 2021 9:13 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-08 page 237

Using Artificial Intelligence for Auto-Generating Software 237

from data by sparse identification of nonlinear dynamical systems, Proceed-
ings of the National Academy of Sciences 113, 15, pp. 3932–3937 (2016).

[7] F. Bruder and L. Mikelsons, Towards grey box modeling in modelica, in
IFToMM International Symposium on Robotics and Mechatronics. Springer,
pp. 203–215 (2019).

[8] A. Moitra, K. Siu, A. W. Crapo, M. Durling, M. Li, P. Manolios, M. Meiners
and C. McMillan, Automating requirements analysis and test case genera-
tion, Requirements Engineering 24, 3, pp. 341–364 (2019).

[9] T. Greifenberg, K. Hölldobler, C. Kolassa, M. Look, P. M. S. Nazari,
K. Müller, A. N. Perez, D. Plotnikov, D. Reiss, A. Roth et al., Integration
of handwritten and generated object-oriented code, in International Con-
ference on Model-Driven Engineering and Software Development. Springer,
pp. 112–132 (2015).

[10] J. Schumann and K. Goseva-Popstojanova, Verification and validation ap-
proaches for model-based software engineering, in 2019 ACM/IEEE 22nd
International Conference on Model Driven Engineering Languages and Sys-
tems Companion (MODELS-C). IEEE, pp. 514–518 (2019).

[11] S. Kabir, An overview of fault tree analysis and its application in model
based dependability analysis, Expert Systems with Applications 77, pp. 114–
135 (2017).

[12] M. Bozzano, H. Bruintjes, A. Cimatti, J.-P. Katoen, T. Noll and S. Tonetta,
Compass 3.0, in International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer, pp. 379–385 (2019).

[13] A. Cicchetti, F. Ciccozzi, S. Mazzini, S. Puri, M. Panunzio, A. Zovi and
T. Vardanega, Chess: a model-driven engineering tool environment for aid-
ing the development of complex industrial systems, in Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engineering,
pp. 362–365 (2012).

[14] L. Rogovchenko-Buffoni, A. Tundis, M. Z. Hossain, M. Nyberg and P. Fritz-
son, An integrated toolchain for model based functional safety analysis,
Journal of Computational Science 5, 3, pp. 408–414 (2014).

[15] J. Meijer and J. van de Pol, Sound black-box checking in the learnlib, Inno-
vations in Systems and Software Engineering 15, 3–4, pp. 267–287 (2019).

[16] S. Singaravel, J. Suykens and P. Geyer, Deep-learning neural-network ar-
chitectures and methods: Using component-based models in building-design
energy prediction, Advanced Engineering Informatics 38, pp. 81–90 (2018).

[17] Y. Papadopoulos and M. Maruhn, Model-based synthesis of fault trees from
matlab-simulink models, in 2001 International Conference on Dependable
Systems and Networks. IEEE, pp. 77–82 (2001).

[18] A. Joshi, S. Vestal and P. Binns, Automatic generation of static fault trees
from aadl models, in DSN Workshop on Architecting Dependable Systems.
Springer Berlin (2007).

[19] M. Nauta, D. Bucur and M. Stoelinga, Lift: learning fault trees from ob-
servational data, in International Conference on Quantitative Evaluation of
Systems. Springer, pp. 306–322 (2018).

[20] O. Kautz, A. Roth and B. Rumpe, Achievements, failures, and the future of
model-based software engineering. (2018).

June 1, 2021 9:13 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-08 page 238

238 Artificial Intelligence Methods for Software Engineering

[21] B. Combemale, R. France, J.-M. Jézéquel, B. Rumpe, J. Steel and D. Vo-
jtisek, Engineering modeling languages: Turning domain knowledge into
tools. Chapman and Hall/CRC (2016).

[22] O. M. Group, Object Management Group, http://www.omg.org (2017).
[23] B. H. Cheng, B. Combemale, R. B. France, J.-M. Jézéquel and B. Rumpe,

Globalizing domain-specific languages (dagstuhl seminar 14412), in Dagstuhl
Reports, Vol. 4. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2015).

[24] N. Medvidovic and R. N. Taylor, A classification and comparison frame-
work for software architecture description languages, IEEE Transactions on
software engineering 26, 1, pp. 70–93 (2000).

[25] A. Roth and B. Rumpe, Towards product lining model-driven development
code generators, in 2015 3rd International Conference on Model-Driven En-
gineering and Software Development (MODELSWARD). IEEE, pp. 539–545
(2015).

[26] F. Ciccozzi, I. Crnkovic, D. Di Ruscio, I. Malavolta, P. Pelliccione and
R. Spalazzese, Model-driven engineering for mission-critical IoT systems,
IEEE software 34, 1, pp. 46–53 (2017).

[27] N. G. Leveson, M. P. E. Heimdahl, H. Hildreth and J. D. Reese, Require-
ments specification for process-control systems, IEEE transactions on soft-
ware engineering 20, 9, pp. 684–707 (1994).

[28] M. G. Gramajo, L. Ballejos and M. Ale, Software requirements engineering
through machine learning techniques: A literature review, in 2018 IEEE
Biennial Congress of Argentina (ARGENCON). IEEE, pp. 1–7 (2018).

[29] A. Ahmad, C. Feng, M. Khan, A. Khan, A. Ullah, S. Nazir and A. Tahir,
A systematic literature review on using machine learning algorithms for
software requirements identification on stack overflow, Security and Com-
munication Networks 2020 (2020).

[30] A. C. Antoulas, Approximation of large-scale dynamical systems, Vol. 6.
Siam (2005).

[31] A. Bemporad and N. Giorgetti, Logic-based solution methods for optimal
control of hybrid systems, IEEE Transactions on Automatic Control 51, 6,
pp. 963–976 (2006).

[32] Y. V. Pant, H. Abbas and R. Mangharam, Smooth operator: Control us-
ing the smooth robustness of temporal logic, in 2017 IEEE Conference on
Control Technology and Applications (CCTA). IEEE, pp. 1235–1240 (2017).

[33] S.-M. Udrescu and M. Tegmark, Ai feynman: A physics-inspired method for
symbolic regression, Science Advances 6, 16, p. eaay2631 (2020).

[34] D. J. Spiegelhalter, N. G. Best, B. P. Carlin and A. Van Der Linde, Bayesian
measures of model complexity and fit, Journal of the royal statistical society:
Series b (statistical methodology) 64, 4, pp. 583–639 (2002).

[35] M. Höge, On the Way to Appropriate Model Complexity, in AGU Fall Meet-
ing Abstracts, Vol. 2016, pp. NG13A–1683 (2016).

[36] K. P. Burnham and D. R. Anderson, Multimodel inference: understand-
ing aic and bic in model selection, Sociological methods & research 33, 2,
pp. 261–304 (2004).

June 1, 2021 9:13 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-08 page 239

Using Artificial Intelligence for Auto-Generating Software 239

[37] V. D’silva, D. Kroening and G. Weissenbacher, A survey of automated tech-
niques for formal software verification, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 27, 7, pp. 1165–1178 (2008).

[38] F. Vaandrager, Model learning, Communications of the ACM 60, 2, pp. 86–
95 (2017).

[39] T. P. Bohlin, Practical grey-box process identification: theory and applica-
tions. Springer Science & Business Media (2006).

[40] A. M. Madni and M. Sievers, Model-based systems engineering: Motiva-
tion, current status, and research opportunities, Systems Engineering 21, 3,
pp. 172–190 (2018).

[41] T. Q. Chen, Y. Rubanova, J. Bettencourt and D. K. Duvenaud, Neural
ordinary differential equations, in Advances in neural information processing
systems, pp. 6571–6583 (2018).

[42] A. Ragab, M. El Koujok, H. Ghezzaz, M. Amazouz, M.-S. Ouali and S. Ya-
cout, Deep understanding in industrial processes by complementing human
expertise with interpretable patterns of machine learning, Expert Systems
with Applications 122, pp. 388–405 (2019).

[43] E. Tafazzoli and M. Saif, Application of combined support vector machines
in process fault diagnosis, in 2009 American Control Conference. IEEE,
pp. 3429–3433 (2009).

[44] J. L. Leevy, T. M. Khoshgoftaar, R. A. Bauder and N. Seliya, A survey on
addressing high-class imbalance in big data, Journal of Big Data 5, 1, p. 42
(2018).

[45] J. Chubak, G. Pocobelli and N. S. Weiss, Tradeoffs between accuracy mea-
sures for electronic health care data algorithms, Journal of Clinical Epidemi-
ology 65, 3, pp. 343–349 (2012).

[46] K. McBride and K. Sundmacher, Overview of surrogate modeling in chemical
process engineering, Chemie Ingenieur Technik 91, 3, pp. 228–239 (2019).

[47] A. Cozad, N. V. Sahinidis and D. C. Miller, Learning surrogate models for
simulation-based optimization, AIChE Journal 60, 6, pp. 2211–2227 (2014).

[48] M. Cutler, T. J. Walsh and J. P. How, Reinforcement learning with multi-
fidelity simulators, in 2014 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, pp. 3888–3895 (2014).

[49] Y. Yang and P. Perdikaris, Conditional deep surrogate models for stochas-
tic, high-dimensional, and multi-fidelity systems, Computational Mechanics,
pp. 1–18 (2019).

[50] N. M. Mangan, T. Askham, S. L. Brunton, J. N. Kutz and J. L. Proctor,
Model selection for hybrid dynamical systems via sparse regression, Proceed-
ings of the Royal Society A 475, 2223, p. 20180534 (2019).

[51] C. Park, R. T. Haftka and N. H. Kim, Remarks on multi-fidelity surrogates,
Structural and Multidisciplinary Optimization 55, 3, pp. 1029–1050 (2017).

[52] G. Provan, Model-based diagnosis using variable-fidelity modeling, in Work-
shop on Principles of Diagnosis (2016).

[53] A. Feldman, G. Provan, R. Abreu and J. de Kleer, Learning diagnosis models
using variable-fidelity component model libraries, in IFAC, Vol. 48. Elsevier,
pp. 428–433 (2015).

June 1, 2021 9:13 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-08 page 240

240 Artificial Intelligence Methods for Software Engineering

[54] D. Gorissen, I. Couckuyt, P. Demeester, T. Dhaene and K. Crombecq, A sur-
rogate modeling and adaptive sampling toolbox for computer based design,
Journal of Machine Learning Research 11, Jul, pp. 2051–2055 (2010).

[55] M. A. Bouhlel, J. T. Hwang, N. Bartoli, R. Lafage, J. Morlier and J. R. Mar-
tins, A python surrogate modeling framework with derivatives, Advances in
Engineering Software, p. 102662 (2019).

[56] S. A. Forrester and K. A, Engineering Design via Surrogate Modelling: a
Practical Guide. Wiley, New York (2008).

[57] J. L. Pitarch, A. Sala and C. de Prada, A systematic grey-box modeling
methodology via data reconciliation and sos constrained regression, Pro-
cesses 7, 3, p. 170 (2019).

[58] M. Iqbal, Q. R. Butt and A. I. Bhatti, Linear model based diagnostic frame-
work of three tank system, in WSEAS Conference SYSTEMS, WSEAS,
CSCC (????).

[59] A. Kouadri and L. Chiter, A hybrid direct optimization algorithm of neural
network based model for a three tank system, J. Appl. Environ. Biol. Sci.
6, 6, pp. 97–107 (2016).

[60] M. Jafari and M. Gomez, Online machine learning based controller for cou-
pled tanks systems, in 2019 IEEE Symposium Series on Computational In-
telligence (SSCI). IEEE, pp. 163–169 (2019).

[61] W. Zhang, W. Feng, H. Zhao and Q. Zhao, Rapidly learning bayesian
networks for complex system diagnosis: A reinforcement learning directed
greedy search approach, IEEE Access 8, pp. 2813–2823 (2019).

[62] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang and C. Liu, A survey on deep
transfer learning, in International conference on artificial neural networks.
Springer, pp. 270–279 (2018).

[63] A. Feldman, T. Kurtoglu, S. Narasimhan, S. Poll and D. Garcia, Empiri-
cal evaluation of diagnostic algorithm performance using a generic frame-
work, International Journal of Prognostics and Health Management Volume
1, p. 24 (2010).

[64] H. R. Depold, R. Rajamani, W. H. Morrison and K. R. Pattipati, A unified
metric for fault detection and isolation in engines, in Turbo Expo: Power for
Land, Sea, and Air, Vol. 42371, pp. 815–821 (2006).

[65] G. G. Yen and L.-W. Ho, Online multiple-model-based fault diagnosis and
accommodation, IEEE transactions on industrial electronics 50, 2, pp. 296–
312 (2003).

[66] J. J. Rincon-Pasaye, R. Martinez-Guerra and A. Soria-Lopez, Fault diag-
nosis in nonlinear systems: An application to a three-tank system, in 2008
American Control Conference. IEEE, pp. 2136–2141 (2008).

April 21, 2021 11:55 ws-rv9x6-9x6 Book Title 12360-08a-divider-4 page 241

AI for Software Testing

B1948 Governing Asia

B1948_1-Aoki.indd 6B1948_1-Aoki.indd 6 9/22/2014 4:24:57 PM9/22/2014 4:24:57 PM

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank

June 2, 2021 15:36 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-09 page 243

© 2021 World Scientific Publishing Company
https://doi.org/10.1142/9789811239922 0009

Chapter 9

On the Application of Machine
Learning in Software Testing

Nour Chetouane∗ and Franz Wotawa†

CD Lab for Quality Assurance Methodologies for Cyber-Physical Systems
Institute for Software Technology, Graz University of Technology, Graz,

Austria
∗nchetoua@ist.tugraz.at, †wotawa@ist.tugraz.at

9.1 Introduction

Software is running almost everywhere providing the backbone of our soci-

ety enabling communication between persons almost everywhere on earth,

allowing to come up with automated and autonomous driving function aim-

ing at increasing safety and comfort, or providing fast and reliable simula-

tions necessary for drug development. Without software many businesses

would not exist anymore in the current form including social networks or

search engines allowing a fast access to information for everyone. Consider-

ing the still growing importance of software, it is of uttermost importance

to assure that the software running is dependable, i.e., trustworthy, safe,

secure, reliable, maintainable, and available.

In order to assure that software and systems meet such requirements

like dependability, we need to come up with measures allowing to verify

these requirements. Because of the growing size of software, its interaction

and integration with other software and systems, formally proving meet-

ing given requirements seems to be not a viable solution. Hence, there is

a strong need for methods and techniques that allow at least to indicate

whether the developed software meets its requirements. Testing, i.e., exe-

cuting the software considering well-specified prerequisites and checking for

conforming to given expectations, provides such means. Although, testing

243

https://doi.org/10.1142/9789811239922_0009

June 2, 2021 15:36 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-09 page 244

244 Artificial Intelligence Methods for Software Engineering

cannot be used for proving that a given software works correctly, testing

provides evidence that this is the case of course depending on the way

testing is carried out.

Software testing is an inevitable activity in any current software devel-

opment process in order to assure quality but requires, in addition, a lot

of effort for developing tests and also for carrying them out. In order to

reduce testing effort but still providing enough evidence that the test as-

sure meeting given quality criteria, we need to further automate testing.

Currently, the degree of automation of test execution in practice is high

and still increasing. There are a lot of frameworks helping to carry out

tests automatically. However, there are still certain limitations. In case of

test generation the situation in practice is different. Most of used test cases

have been manually generated and maintained. Therefore, there is a need

for providing methods that support test automation.

Machine learning has proved to be successfully applied in many areas

like prediction and also classification. Autonomous driving without iden-

tifying objects from images often relying on machine learning approaches

like deep neural networks, would not have been possible. Hence, there is

the question whether machine learning can also be applied in the context

of software testing. In this book chapter, we discuss several but not all

applications of machine learning to all different aspects of software testing

including fault prediction, test case generation, and test suite reduction. In

all these application domains, machine learning provides valuable results

often outperforming results obtained using other methods and techniques.

We organize this chapter as follows: We first briefly introduce back-

ground information regarding testing and machine learning in Sec. 9.2. In

Sec. 9.3 we discuss the different research methods and techniques that have

been proposed for solving certain testing tasks. The objective behind this

section is to provide an overview of the application of machine learning to

software testing allowing students, researchers, and practitioners to quickly

obtain information of how certain machine learning methods can be applied

to solve a particular software testing task. Finally, we conclude this chapter

summarizing the findings.

9.2 Background

Before starting summarizing and discussing research methods and tech-

niques for software testing utilizing means of machine learning, we discuss

the basics behind software testing and machine learning. For the basic

June 2, 2021 15:36 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-09 page 245

On the Application of Machine Learning in Software Testing 245

objectives and ideas behind software testing, we refer the less experienced

reader to introductory books on software testing like [1]. For an introduc-

tion into machine learning there are many text books available including [2].

9.2.1 Software testing

Software Testing is without any doubt one of the most important quality

assurance activity to be carried out as part of the software development

process. The main objective behind software testing is to reveal faults in

programs. This is done via searching for certain input values or sequences of

interaction that lead to an unexpected behavior of the program or system.

From a general perspective, software testing is the process of evaluating

a system (or software) under test (SUT) by observing its execution with

the intent of finding deviations between the behavior of the SUT and the

expected behavior, which is given accordingly to the SUT’s requirements [3].

Edsger W. Dijkstra once mentioned that testing shows the presence,

not the absence of bugs, which is the main limitation of software testing.

Therefore, researchers have been substantially contributing to the research

field of software testing to come up with ideas and approaches that allow

them to decide when to stop testing having sufficient confidence that the

program was thoroughly tested. This has been a motivation for many

research studies that resulted in several methods and techniques to serve

software testing tasks such as the automation of test oracles, software defect

prediction for focusing on the most problematic parts of a program, or test

case design.

In the following, we briefly introduce the basic principles behind soft-

ware testing and categorize this research field, which we use later when

discussing the application of machine learning. Software testing basically

comprises two parts: (i) test suite generation, and (ii) test suite execution.

In the context of testing a test suite that is a set of test cases, where a

test case is more or less a specification of inputs or sequences of interaction

with the SUT together with a test oracle. The test oracle is a means for

deciding whether the SUT’s output or behavior deviates from the expected

ones, when executing the SUT using the inputs or given interactions. A

test oracle can range from a set of expected output values to checking for

crashes occurring during execution. A test oracle is basically a mechanism

for determining whether a test failed or passed.

Both parts of testing, i.e., generation as well as execution, can be at

least partially automated. For test suite generation, there exists various

June 2, 2021 15:36 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-09 page 246

246 Artificial Intelligence Methods for Software Engineering

methods and corresponding tools like model-based testing [4], combinatorial

testing [5], or random or fuzz testing [6] to mentioned some of them. For

test suite execution there are tools available like JUnit for programs written

in Java. However, despite the increasing use of software-test, automation

software testing is still considered to be the most challenging and expensive

part of software development.

In order to perform sufficient testing during the many changing stages

of a software’s lifetime, it is required to have an effective test suite as

it presents a major factor contributing to the adequacy and facility of the

testing process with regard to time and cost as well. Thus, it is significantly

important to evaluate test cases quality in terms of their fault detection

capability, which gets more challenging as the level of automation increases.

In addition, highly automated systems usually require large test suites,

which as well tend to grow in size when the software evolves making the

execution of the entire test suites very time-consuming and expensive to

conduct. In this regard, many research activities in the software testing

field have been proposed with the purpose of optimization of test cases

generation, test suite reduction, test cases evaluation and prioritization.

Several of the proposed approaches, dealing with these topics, have revealed

that the use of Machine learning algorithms can be very effective for solving

such issues and improving the testing quality in general. For describing the

application of machine learning in software testing we make use of the

following categories:

• Software fault prediction deals with estimating the fault proneness

of programs and their parts for gaining information regarding code

quality or other aspects that can be used for focusing testing efforts.

In this context, someone would spend more time or money in those

parts that are more likely to cause a failure.

• Test oracle automation captures all activities to automate test or-

acles or its generation.

• Test case generation is the most important challenge of testing

comprising methods, techniques and tools for the generation of

test suites focusing on failure revealing capacities of tests.

• Test suite reduction, prioritization and evaluation are necessary

activities to keep the number of tests to be executed low without

compromising failure revealing capacities. The objective is to find

faults as early as possible not exhausting available budget or time

restrictions.

June 2, 2021 15:36 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-09 page 247

On the Application of Machine Learning in Software Testing 247

• Under the category other tasks we summarize all other activities

and tasks to be carried out during testing not captured by the

previously introduced categories.

9.2.2 Machine Learning

Machine learning (ML) [2] aims at automatically generating models from

available data more or less replicating learning processes we see in nature.

Like other models the expectation is to use the learned models for under-

standing principles, doing reasoning, and making predictions using obser-

vations. Moreover, when being able to learn from data we may also gain

a deeper understanding of the human brain. From a general perspective,

ML algorithms are centered around learning a function that maps an input

domain (i.e., data points) to an output domain with the goal of achiev-

ing a certain task, e.g., making a certain decision in a given situation, or

predicting figures like the costs of shares at a stock exchange. The under-

lying idea behind ML is to allow programs to improve their performance

and prediction accuracy mainly through experience, i.e., all the data that

becomes available over time. The use of ML is rather appealing because it

would allow to obtain models directly from data in an automated way not

requiring to handcraft such models.

Over the past decades, ML has proven to be of great practical value for

many application. Actually, ML has become a common tool in the majority

of tasks requiring information extraction from large data sets. ML algo-

rithms, have found their way, as well, into software development practice as

these algorithms offer viable solutions for many software engineering issues.

In this chapter of the book, we focus in particular on their major role in

serving various purposes in the area of software testing such as detecting

potential errors, constructing test oracles, or generating test cases (see [7]).

The two canonical types of ML settings are supervised and unsupervised

learning. Supervised learning describes a scenario in which the training data

contains significant information. Typically, training examples are provided

with labels which are missing in the unseen test data to which the learned

model is to be applied. Two classic supervised ML tasks are regression and

classification. In unsupervised learning, however, no previous information

about the training examples is available, therefore, there is no distinction

between training and test data. The learner processes unlabelled input

data with the goal of identifying patterns or discovering similarities that

can lead to some useful analysis, or come up with a compacted version of

June 2, 2021 15:36 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-09 page 248

248 Artificial Intelligence Methods for Software Engineering

that data. The most prominent example of such a task is data clustering

where a set of data is partitioned into subsets of similar objects [8].

In ML, a solution can be essentially created in two ways. Either a

learned model is constructed from the data directly, which is used in deci-

sion trees induction, or it is obtained using search methods that look for an

effective solution among a set of candidate solutions. For example, in the

domain of neural networks gradient-descent algorithms are used to search

for the neuron weights. Stochastic search algorithms such as genetic al-

gorithms (GA) are often used in machine learning applications. They are

considered, i.e., in reinforcement learning algorithms where the learning

system performance is evaluated by a fitness metric. Hence, they are effec-

tive in situations when the only available information is a measurement of

performance (see [9]).

In software testing a lot of different ML algorithms have been already

used such as decision trees (DT), artificial neural networks (ANN), Bayesian

networks (BayesNet), clustering (e.g., K-means), or support vector ma-

chines (SVM). Depending on the task one or another ML method might be

the most appropriate one requiring to carry out experimental evaluations.

The specific task and as well the setup we are facing also influence the

choice of the ML method to be used. In case we are interested in predic-

tion or classification, we may make use of supervised ML methods. If we

are interested in investigations regarding certain patterns, we may rely on

unsupervised methods like clustering.

9.3 Applications of Machine Learning in software testing

In this section, we discuss selected research papers employing the most com-

mon ML algorithms like ANN, DT, SVM, k-means, and others for carrying

out software testing tasks such as fault prediction, automating test oracles,

designing test cases, evaluating test suites, or reducing and prioritizing test

cases. Most of the ML methods are designed to learn a mapping function

from input data to outputs in order to make predictions or classifications.

Therefore, we describe the majority of selected approaches in terms of in-

puts that are fed into the ML algorithms, and the outputs that are delivered

after the performing learning.

June 2, 2021 15:36 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-09 page 249

On the Application of Machine Learning in Software Testing 249

9.3.1 Machine Learning for software fault prediction

Software fault prediction is a very useful and important task to estimate the

expected delivered quality and maintenance effort before the deployment of

software. The main goal of software fault prediction is to track and reduce

the number of latent software defects as early as possible in the software

life cycle, which allows improving the effective software costs, the reliability

of the software to be developed, and the achieved customers’ satisfaction

(see [7]). In the following, we provide a brief discussion of research work in

the category of the application of ML for software fault prediction depicted

in Table 9.1.

Table 9.1 Research papers describing the use of ML methods

applied for software fault prediction.

Papers ML method used

[10] k-means clustering

[11] GA
[12] Naive Bayesian Network, SVM

[13] DTR

[14] ANN
[15] ANN

[16] GA

[17] ANN
[18] ANN

[19] Ensemble Algorithm

[20] Ensemble Algorithm
[21] ANN, unsupervised Self-Organizing Map (SOM)

[10] showed that unsupervised techniques like clustering can be used

for software fault prediction especially when fault labels are not available.

In this paper, K-means is used for predicting faults in program modules.

Cluster centers were initialized by a quad trees based method. The dimen-

sions and metrics used in the data sets represent several metrics thresholds

(i.e. Lines of Code (LoC), Cyclomatic Complexity (CC), Unique Operator

(UOp), etc. A threshold vector was used for cluster evaluation. As for

each cluster, if any metric value of the centroid data point is greater than

the threshold, then, that cluster is labeled as faulty, otherwise it is labeled

as non-faulty. After evaluation, the overall error rates of this approach are

found to be better in most of the cases, than other existing algorithms using

other k-means initialization methods.

GA was applied in [11] to determine most important attributes for

predicting faulty modules. Raw data was collected in the form of struc-

tured source code of open source systems. The collected data is evaluated

June 2, 2021 15:36 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-09 page 250

250 Artificial Intelligence Methods for Software Engineering

using some of Chidamber and Kemerer (CK) software metrics such as LOC,

Weighted Methods per Class (WMC), Response for a class (RFC), etc. Af-

ter data filtering, the metric values are collected and converted into a bi-

nary form (i.e. 0, 1) based on a specific threshold. The transformed values

are given afterwards as inputs to the GA. After applying mutation and

crossover steps on the given binary inputs, the GA outputs a string of bi-

nary values showing the most important attributes corresponding to mostly

fault prone metrics (i.e. having the value 1). Then, a detailed analysis of

the algorithm performance, is made based on a confusion matrix of the GA

prediction outcomes.

GAs were also used in [16] for predicting software errors. In order to

forecast an error in an application, the proposed method goes through three

main steps: first selection of an appropriate software database to use soft-

ware indices. Second, application of the GA in order to extract important

features and then make use of the GA output to determine the probability

of an error in the application. Results showed a good performance of the

suggested method in terms of time required for predicting errors, and an

error detection rate reaching 95%.

In order to improve the quality and reliability of software, many au-

thors suggested the use of ANNs. In [14], authors developed and trained

a software defect prediction model using a feed forward back propagation

network, with the goal of reducing the overall cost and development time.

The data set used for training the network comprises nine software metrics

attributes measured for each phase of twenty genuine software projects such

as; requirement stability (RS), design review effectiveness (DRE), process

maturity (PM), etc. The ANN takes these software measurements as inputs

and predicts four density defect indicators for each phase (i.e. requirement

analysis phase, design phase, code phase and testing phase). After the

training phase, a predictive analysis of software defects and their threshold

is done. The testing results showed the proposed approach to be good and

effective as the resulting model was able to detect software defects with

very less error rate. In their paper, [15], also train an ANN to identify the

error prone parts of the software and predict whether a module is erroneous

or not. The ANN has been trained for classifying software modules into

groups of faulty and non faulty modules. The dataset used for training and

testing the model also represents different software metrics attributes. The

experimental results showed that the approach provided a good fit in terms

of less error in prediction comparing to existing analytical models.

Similarly, [17] introduced an ANN that solves the software fault

June 2, 2021 15:36 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-09 page 251

On the Application of Machine Learning in Software Testing 251

prediction as a binary classification problem that determines the faulty

or fault-free status of a software module. Also, [18] presented a non-linear

hybrid supervised learning method combining ANN with gradual relational

association rule mining for classifying defective and non-defective software

entities. As for [21], the authors focused on determining the relationship

between object-oriented metrics and fault proneness at the source code class

level. A hybrid model was designed, as well, combining an unsupervised

SOM algorithm and a multi-layer ANN for prediction of faults occurrence.

Six CK metrics have been used as input nodes to the ANN and a prediction

rate as the achieved output which refers to a pair of fault and fault free

classes. The presented validation results in the above studies proved the

associativity of software metrics to the fault proneness.

In [13], the authors investigated the capabilities of DT Regression

(DTR) for the prediction of the number of faults in given software mod-

ules under two different scenarios; intra-release prediction and inter-releases

prediction. For the intra-release prediction scenario, the authors performed

a 10-fold cross validation for training and testing the model. For the second

scenario, previous software releases were used to build the model. For test-

ing it, authors made use of the current release of the same software. DTR

is build using independent variables that are software metrics to predict a

numeric outcome which is the number of faults in a software module. The

experimental study was carried out relying on fault datasets corresponding

to five open-source software projects comprising multiples releases. The

results showed that DTR provided significant accuracy for the number of

faults prediction across all datasets in both considered scenarios.

[19] applied ensemble classification learners to develop a model for pre-

dicting fault proneness. The authors proposed a framework for validating

source code metrics using the performance of the classifiers to evaluate

each candidate metrics and select the right set of metrics that improve the

performance of the fault prediction model. The author combined five clas-

sification techniques (i.e. one Logistic regression and four different types

of ANNs), then computed their final output. The classification models are

trained on a data set including twenty source code metrics and module fault

information corresponding to several software projects. The experiment

proved that multiple combined learners perform better than independent

single model in terms of prediction accuracy and lower costs. Later, in [20],

the authors, in addition, proposed linear homogeneous ensemble methods

using an extreme learning model consisting of an ensemble of single-hidden

layer feed forward NNs which combine all their predictions to get a final

fault prediction result.

June 2, 2021 15:36 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-09 page 252

252 Artificial Intelligence Methods for Software Engineering

[12] proposed a feature selection technique that is applied for

classification-based fault prediction. The authors suggested to train a prob-

abilistic Naive Bayes model and an SVM classifier on historical data of

software. The trained models are used afterwards for predicting faults in

software. In this study, the authors make use of two public available data

sources; from the NASA IV&V facility and from open source Eclipse Foun-

dation, representing a set of non static code features. Each observation in

the data sets represents a software module. It consists of an ID, several

static code features such as McCabe, Halstead metrics, and LOC. Plus, an

error count which, when equal to 0, indicates that no errors are recorded

for this software module, and otherwise it takes 1. The data used for train-

ing and validating the models is first selected, then, static code metrics

are computed on the software source code, and then saved in an attribute

relationship file format (ARFF) which is used as a test set for the models.

9.3.2 Machine Learning for test oracles automation

Software testing involves executing a program under test and examining

the output of the program whether it conforms with the expectations or

not. A test oracle is a mechanism required in functional testing to deter-

mine whether a test failed or passed when being executed. The oracle can

be a human or a piece of software that often operates separately from the

system under test (see [7]). Note that the oracle problem, i.e., finding an

appropriate test oracle, is still an important topic of testing. In the follow-

ing, we discuss papers given in Table 9.2 where ML is used for obtaining a

test oracle.

Table 9.2 Papers dealing with the application of ML methods for

test oracle automation.

Papers ML algorithms used

[22] DT(C4.5 algorithm)

[23] GA, SVM

[24] ANN
[25] ANN, DT

[26] ANN
[27] ANN
[28] Knowledge Discovery in Database, AdaBoost, JRip

[23] proposed a novel approach to evolve a test oracle making use of

genetic programming and SVMs. The authors aim to model specifically

the behavior of programs which process and output sequences of integers.

June 2, 2021 15:36 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-09 page 253

On the Application of Machine Learning in Software Testing 253

An input/output list relation language (IOLRL) was designed to formally

describe the relations between the input and output lists of these software

programs. Plus, a GA was applied to evolve relations in IOLRL that can

well distinct passing and failing test cases and encode test cases into bit

patterns. These bit patterns and some labelled test cases are employed to

train an SVM classifier which is used as a test oracle to verify software

behavior.

[24] showed that ANNs can be used for constructing a test oracle to au-

tomatically handle the mapping between the input domain and the output

domain. After training an ensemble of ANNs until reaching the adequate

error rate. The complete test oracle output vector is composed of the results

of all NNs. Two industry-sized case studies are used for the evaluation. A

mutated faulty version and a fault-free of each case study are created in

order to test the capability of the proposed oracle to find injected faults.

Afterwards, actual outputs produced by the SUT are decided to be faulty

or not compared to the ANNs output using an automated comparator.

The results proved this multi-networks oracles detected up to 98% of the

injected faults with an accuracy of 98.93%.

A similar approach for black box testing using ANN with a comparison

tool was proposed by [26]. The network was trained on randomly generated

data and was able to classify the test data with 100% accuracy and basically

becomes a simulated model of the software application. When executing

the software on real data, the network was able to monitor its behavior.

This trained network is assumed to be fault-free. In the evaluation, some

faults are inserted to the tested program, and a tool is used to compare

the SUT output to the network output and decide if is correct or not. The

results of experiments on one of the benchmarks programs showed that 92%

of faults were detected by the neural network.

[27] presented a similar methodology for testing real time applications

using a Back-propagation ANN. Training input data is generated randomly

and then fed to the network. Changes with mutation testing are applied to

generate faulty versions of the original program. For each input, a compar-

ison tool is used to evaluate the correctness of the obtained results based

on the absolute difference between the ANN output and the corresponding

value of the program output. If a large difference is recorded between the

two outputs then a program defect is indicated. Back-Propagation learning

method ensures that the trained network can be updated by learning new

data for evolving versions of the software. However, the author reclaims

that this approach could have some limitations in case of larger combina-

tions of inputs and outputs.

June 2, 2021 15:36 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-09 page 254

254 Artificial Intelligence Methods for Software Engineering

[25] provided a method for learning a test oracle utilizing ANN and DT

model to generate expected outputs. The DT model can also be used for

detecting software faults along with mutation testing. In the evaluation,

the authors trained and tested the two models on the well-known Triangle

program. The study showed that DTs provide maximum accuracy as a

data mining technique for test oracle however the proposed DT based ap-

proach can only be used for small programs which take integer input data

besides the framework is not reliable enough for non-deterministic software.

Similarly, in [22], a test oracle based on DT was proposed for identifying

failures using binary classification model in order to improve the testing of

software with graphical interfaces such as Mesh simplification. They train

a C4.5 DT classifier on available known samples, then let it label unseen

test cases produced from other programs.

[28] proposed an approach based on ML for automating test oracle

mechanism in software. In this paper, a knowledge discovery process is

applied on historical usage data in order to define the topology in rela-

tion to the inputs and outputs of the ML algorithm. After the selection

of two convenient ML algorithms (i.e. AdaBoost, JRip) and their hyper-

parameters, each of them is trained to generate an oracle suitable for the

SUT. The trained model is then used to classify each of the test cases to

be run on the target SUT in one of three classes: “Valid”, “Fault” and

“Possible Fault”. To evaluate this approach, the authors carried out three

experiments on a web application; first using randomly inserted failures,

second using failures inserted by an expert and thirdly using mutation test-

ing. The results showed an accuracy of 94%, 72% and 98% respectively.

However, some limitations related to the generalization of the proposed ap-

proach have occurred since the example application used in this experiment

has a limited set of functionalities.

9.3.3 Machine learning for test cases generation

Test case generation is the process of designing test suites, which is one

of the most important parts of software testing aiming at providing test

suites having a high fault detection rate. A test suite comprises test cases

describing inputs and interactions with the system together with the ex-

pected output or behavior of the system. A test case can either pass or

fail. It fails if the output or behavior deviates from the expected output

or behavior when executing the program using the given inputs or interac-

tions. Otherwise, it passes. In Table 9.3 we list some ML applications used

June 2, 2021 15:36 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-09 page 255

On the Application of Machine Learning in Software Testing 255

Table 9.3 Papers introducing ML

methods applied for test cases gener-

ation.

Papers ML algorithms used

[29] ANN, GA

[30] GA
[31] GA

[32] GA

[33] GA
[34] GA

[35] ANN, GA

for test case generation, we are going to further discuss. It is worth noting

that we also added papers that utilize GA without ML in this section for

the sake of completeness.

[29] proposed a novel approach for designing adequate test cases on

the basis of software specifications. The approach focuses on creating test

cases from output domain instead of the input domain. A neural network

was trained to be taken as a function substitute for the SUT with the

same number of inputs and outputs. The initial inputs of the NN are

generated randomly and its outputs are considered as the actual outputs

according to the SUT specifications. Based on the function model, the GA

searches for the correspondent test inputs for a given output, applying a

series of operations (i.e. reproduction, crossover and mutation). The GA

stops when its fitness function reaches the maximum value meaning that

the corresponding test inputs have been found. Experiments conducted

on two different software programs showed that this proposed approach is

promising and effective.

[30] made use of GA for fully automating test case design with more

focusing on boundary value analysis tests. GA searches for effective test

cases in the input domain of the SUT. The initial population of test cases

is generated randomly, the Fitness function used here is measured as the

difference of each test case from the boundaries of the variable. For se-

lection criteria, the GA uses the roulette wheel method with respect to

the probability distribution based on fitness value. The authors compared

their approach to Random Testing (RT) and they observed that not only

GA outperformances RT but also the overall quality of software is improved

in comparison to using RT. The study confirms that GAs are quite useful

for increasing the efficiency and effectiveness of software testing, and hence

to decrease the overall development cost for software-based systems.

June 2, 2021 15:36 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-09 page 256

256 Artificial Intelligence Methods for Software Engineering

[31] focused on black-box testing methods such as RT and adaptive

RT, aiming to optimize a specific string test case generation. A multi-

objective optimization algorithm based on GA is used for generating a

diverse and effective set of test cases. Several string distance functions

were introduced to compute the length distribution of the string test cases,

and for controlling the diversity of test cases within a test set as well.

An empirical study was performed on several real-world programs. The

results have shown that the generated string test cases outperform test

cases generated by other methods.

[32] made use of GA for automatic test cases generation and optimiza-

tion. The proposed algorithm starts by randomly generating initial input

tests and executing them. Only test cases whose path coverage is more than

20% are selected as initial population for the GA. New tests are generated

after applying GA operations (Crossover and Mutation). For checking the

coverage criteria, a probabilistic based fitness function that uses 0.8 prob-

ability for crossover and 0.2 for mutation operation. The algorithm stops

when path coverage including statement and branch coverage exceed 95%.

This method, based on an optimized fitness function, helps achieve final

test suites with 100% path coverage.

[33] focused on GA for optimization because it was successfully used by

many researchers for providing a more feasible and reliable test suites. This

study proposed an optimization approach for test case generation combining

GA and mutation testing. For evaluating the performance of the test cases,

the authors made use of the mutation score as a selection criteria for the

newly produced test cases. The fitness function of the underlying GA relies

on the capability of a test case to kill mutants.

[34] focused on structural testing at the unit level. It presents a frame-

work of test case generation using an improved adaptive GA. The main

challenge is to search for a set of test cases that lead to the highest path

coverage. The proposed method improves search efficiency by maintain-

ing a high population diversity by dynamically adapting crossover rate and

mutation rate. Experimental evaluation of the proposed framework were

performed making use of six industrial programs. The results approve that

the proposed method is more efficient than existing similar methods and

also random generation of test cases for assuring path coverage.

[35] proposed a neural network based test case generation approach

for data-flow oriented testing. The authors focused on the data flow test-

ing criterion as coverage objective for test case generation. Therefore ev-

ery variable definition in the program and its use (DU-pairs) need to be

June 2, 2021 15:36 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-09 page 257

On the Application of Machine Learning in Software Testing 257

calculated first. A Back Propagation NN is then trained to simulate a fit-

ness function that is mainly based on the control flow graph of the program.

The fitness function checks if the test case covers the given DU-pair. Af-

terwards, a GA is used to generate test cases to cover all DU-pairs. Thus,

the fitness value of the test case can be evaluated with the NN instead of

running the instrumented program. The results showed that this approach

reduces the total time of test case generation especially in case of large and

complex program, when compared with traditional GA based methods.

9.3.4 Machine learning for test suite reduction,

prioritization and evaluation

In this subsection, we discuss the application of ML for test suite reduction,

prioritization and evaluation taking care of the papers given in Table 9.4.

Table 9.4 Some research studies of ML methods applied for test cases reduction,
prioritization and evaluation.

Papers ST tasks ML method used

[36] Test cases generation, test
cases reduction

ANN

[37] Test cases reduction Hierarchical clustering

[38] Test cases reduction Cluster analysis
[39] Test cases reduction semi-supervised clustering with k-means

[40] Test case prioritization and
selection

K-means, Expectation-Maximization (EM),
Incremental Conceptual Clustering (Cobweb),

DT

[41] Test cases reduction K-means clustering
[42] Test cases reduction K-means clustering

[43] Test cases generation, test

suite evaluation

DT for model inference, GA

[44] Test cases reduction DT for model inference

[45] Test cases prioritization ANN

[46] Test cases reduction K-means

When testing programs in practice the question whether the used test

suite is effective enough arises. This also tells when to stop testing. So, it

is significant to evaluate the quality of the underlying test suite in terms of

fault detection for a specific program or SUT. Recently test suite evaluation

has become a major focus in software quality assurance research.

For assessing the quality of a test suite, the highest number of existing

approaches have focused on the source code level of a system assuming that

adequacy of test suites is measured by its ability to execute all statements,

June 2, 2021 15:36 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-09 page 258

258 Artificial Intelligence Methods for Software Engineering

branches, or mutants. Yet, in practice, such syntax based criteria of testing

are considered, at best, as minimum requirements for a test set and they are

rarely sufficient, and, sometimes misleading even when they are satisfied.

An alternative approach has been proposed by [43] in order to overcome the

shortcomings of syntax based adequacy metrics, the authors recommend the

idea of behavioral coverage which basically consists in inferring a suitable

model that reflects the system behavior during the execution of its test

cases and can be used to provide a much more reliable assessment of test

suites. If the inferred model correctly covers the behavior of a system and

is accurate enough, then the test suite can be considered to be adequate.

The paper allows the use of ML algorithms such as DT for model inference,

it also presents a search-based test generation technique using GA which

extends standard syntactic and optimizes the generation of rigorous test

sets. The authors used a selection of Java units for the empirical evaluation,

the results demonstrate that test cases with higher behavioral coverage

significantly outperform current baseline test metrics in terms of detected

faults.

Test suite size has a direct impact on the cost and effort of software

testing. In this regard several different approaches have been proposed for

test suite reduction including test suite minimization, test case selection and

test cases prioritization. Test suite minimization is a process of detecting

and then removing the obsolete redundant test cases from the test suite.

Test case selection consists in choosing a representative subset of test cases

from the original test suite that will be used to test the newly introduced

parts of the software. Test case prioritization focuses on the identification

of the ideal ordering of test cases that maximize desirable test requirements,

such as early fault detection. These test suite reduction techniques must

preserve the highest possible test suite fault detection capability in addition

to minimize the size and the time of the testing process.

[36] presented an automated approach for test cases reduction, mainly

based on input-output analysis of the tested software. First, a multi-layer

ANN is build with similar characteristics as the SUT such as types and

number of inputs and outputs. For obtaining the ANN training set, input

data is generated randomly and then fed to the original program which

generates the corresponding outputs. During the ANN back-propagation

training process, a penalty function is used in order to assign lower weights

to less important connections. Then, ANN is pruned by removing edges

which have lower weights without affecting the predictive accuracy of the

network. Thus, only connections corresponding to the most important

June 2, 2021 15:36 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-09 page 259

On the Application of Machine Learning in Software Testing 259

attributes are retained in the network. Then feature ranking is performed

by sorting inputs in the order of their importance; according to the set of

weights from the pruned algorithm. This helps to identify the most signif-

icant attributes contributing to the value of output. Test cases with lower

ranked attributes are thus removed. After pruning, rule extraction phase

is performed in order to express the Input-Output relationship in the form

of If-Then rules. Then, clustering is applied to build equivalence classes

for continuous attributes. Afterwards, test cases are generated by making

combinations of data values of the inputs. Hence, the reduction of size of

the input domain conducts to the reduction in test cases. ANN was also

applied as black box testing method for test cases prioritization in [45].

Input data is randomly generated by extracting inputs from design specifi-

cations and correspondent outputs are obtained by manually executing the

input tests. The ANN is trained to assign priorities to the obtained test

cases based on a set of priority assignment rules using design specifications

and software requirement specifications. The network output is the priority

assigned to corresponding test cases. Experiments have been performed on

different NN with 2 to 20 layers, the results show that the NN can be used

for effectively predicting a test case priority.

Clustering techniques were shown by several research studies to be very

useful for test cases reduction purposes. In [37], authors proposed a clus-

tering based approach to help making a selection of diverse test cases and

removing redundancy. The authors introduced a framework which provides

a group of test cases comparison metrics which quantitatively compare any

random pair of test cases. Besides, a hierarchical clustering algorithm is

performed using program profiles and static execution in order to group

similar test cases. A specific threshold is used to drive redundancy elimi-

nation, test selection and effectiveness of new test cases. The experimental

results identified 10–20% of redundant test cases.

In [38] the authors provided a solution to deal with the trade-offs be-

tween test suite reduction and fault detection capability in regression test

selection. Clustering of test cases execution profiles was performed to group

program executions that have similar features which helps to better under-

stand program behaviors so that test cases can be properly selected to

reduce the test suite effectively. The results showed that this approach can

significantly reduce the size of test suite, on the premise of finding most of

fault-revealing test cases.

Later, authors, in [42], also performed a cluster analysis on other dif-

ferent types of structural profiles which consider sequential, relations and

June 2, 2021 15:36 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-09 page 260

260 Artificial Intelligence Methods for Software Engineering

structural information between function calls including function execution

sequence, function call sequence and function call tree reduction. The rea-

son behind this study is that authors believe that binary or numeric vector-

based methods which consider only the number of times that a function or

statement is executed do not always generate satisfying results. K-means

cluster analysis was also applied to select a representative subset from the

original test suite based on the similarity of profiles of exercised tests.

In [39], semi-supervised clustering was used for the first time to improve

clustering results and test selection. Semi-supervised clustering technique

aims to derive appropriate information by providing some labelled data in

form of constraints. In this paper, the authors introduce a semi-supervised

K-means where a limited supervision was provided in the form of constraints

derived from previous test results and recorded execution profiles of tests.

For each test, a simple execution profile and a function call profile are

generated indicating if the corresponding function is called or not during

a running test. The experiment results illustrate the effectiveness of this

semi-supervised cluster test selection methods.

In [40], both supervised and unsupervised ML algorithms have been

applied. In this paper, main goal is to link test results derived from the

application of different testing techniques to functional aspects of the pro-

gram. First, test results are grouped into similar functional clusters which

serve as functional equivalence classes. Three famous clustering algorithms

k-means, Expectation/Maximization EM and Incremental Conceptual

Clustering (Cobweb) are used. After clustering, test inputs are linked

to software functional aspects and then can be used for training a DT

model, based on C4.5 algorithm, to generate classifiers, in the form of rules,

which can serve for many purposes like test cases selection or prioritization.

In [41], the authors proposed a mining approach, also based on clustering, to

provide better set of test cases. First, a control flow graph is inferred from

the tested program, then, independent paths are clustered using k-means

algorithm. A reduced test suite is build including test cases represented

by each cluster. This approach eliminates test cases which cover similar

testing paths of the program.

In [46] the authors proposed a clustering based approach for test suite

reduction using k-means algorithm. Representative test cases are selected

from each cluster to build a reduced test suite. K-means was combined with

binary search in order to look for an appropriate K number of centroids. For

evaluating the reduced test suite, the authors compute branch, statement,

MC/DC (Modified Condition/Decision Coverage) coverage and mutation

June 2, 2021 15:36 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-09 page 261

On the Application of Machine Learning in Software Testing 261

score. The proposed approach can be applied on programs with different

types of inputs and outputs (numeric, strings and booleans). A first evalu-

ation have shown an average reduction of 95.9% with same branch coverage

as originally but with a small decrease in the mutation score for some ex-

amples. Nevertheless, 82.2% reduction was provided with a guarantee of

same coverage and mutation score as the original test suite.

DTs were employed by [44] to infer a model from the SUT. The proposed

model-based test suite reduction approach was conducted without the need

to execute the program. The idea behind is to remove test cases that do

not change the learned model by checking the similarity between deduced

DTs after each test case removal. This approach maintains almost same

level of code coverage and mutation score as the initial test suite.

9.3.5 Other tasks

In the following two subsections, we briefly summarize the content of the

papers given in Table 9.5, which cannot be assigned to the other software

testing categories.

Table 9.5 ML methods and techniques applied in other software testing tasks.

Papers Other tasks ML algorithms used

[47] Software quality evaluation ANN
[48] Software performance prediction ANN

[49] Software reliability prediction ANN

[50] Software reliability prediction ANN
[51] Assessing Software reliability GA, SVM, BayesNet.

[52] Test time prediction, test cost estimation Classification tree
[53] Cost and Execution effort estimation of

testing

ANN, SVM

[54] Estimation of testing effort by predicting
test code size

k-nearest neighbors algorithm
(k-NN), BayesNet, DT (C4.5),

Random Forest, and ANN

9.3.5.1 Software Quality Prediction

Software quality prediction models aim to ensure the reliability of the de-

livered software and help building products of highest quality by predicting

quality factors such as whether components are fault-prone or not. Effective

verification and accurate prediction of fault prone modules have a major

role of eventually increasing productivity and reducing risk.

June 2, 2021 15:36 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-09 page 262

262 Artificial Intelligence Methods for Software Engineering

[47] introduced an approach for software quality evaluation. The ap-

proach is mainly based on an improved back-propagation neural network,

which is mainly used for building a comprehensive evaluation model for

software quality. The inputs of the neural network are evaluation indica-

tors that reflect different levels of software quality. After training the ANN

a knowledge base is iteratively formed that can be used for evaluating the

software quality comprehensively.

[48] used ANN for predicting the performance of a software by describ-

ing the input-output relationship. The authors proposed to make use of

ANNs to learn the correlation between the most effective input factors and

the software performance.

The two papers [49] and [50] use ANNs for software reliability prediction.

The main idea is to use ANN based models to produce accurate prediction

results of software reliability based on fault history data without any further

assumptions. The proposed neural network predicts software reliability by

learning the dynamic temporal patterns of the fault data.

In [51] the authors try to improve software reliability by accurately

predicting errors in short time and low cost. For this, the authors suggest

to apply a GA to optimize test data and generate effective test cases. In

addition, the authors also make use of other machine learning algorithms

such as SVM or Bayesian networks to design models for predicting faults

in programs at early stages and to repair them. The discussed results show

that software reliability fault prediction depends on the number of defects,

which are already present in the software before deployment.

9.3.5.2 Test cost estimation

Test cost and execution effort estimation is very much important when

managing software projects. The aim of test cost estimation is to provide

an accurate prediction of the effort needed to develop and test software

systems with respect to time and cost required to complete a defined task

in the testing cycle.

In [52], the authors made an experiments in order to investigate whether

machine learning techniques can be used to determine important software

testing attributes and for predicting testing cost and specifically testing

time. They create a classification DT in order to identify relevant factors

that affect testing time. After analyzing the DT, they noticed that each

node represents a group of programs having similar attributes sharing an

average testing time. Therefore, they conclude that classification tree can

June 2, 2021 15:36 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-09 page 263

On the Application of Machine Learning in Software Testing 263

be effectively used in estimating the testing time of a new program as well.

In [53], the authors introduced the application of machine learning al-

gorithms for estimation the execution effort of functional testing. In the

paper, the authors focussed on SVM to solve non-linear regression problems.

In addition, the authors also trained a feedforward multi-layer perceptron

network using an asymmetric cost function that helped to build a model

that favors overestimation over underestimation.

In [54] different machine learnings techniques such as linear regression,

k-NN, Naive Bayes, DT (C4.5), Random Forest, and ANNs were empirically

investigated for performing an early prediction of the effort required to test

object-oriented software from the perspective of test code size, i.e., the

required test lines of code (TLOC). For training the prediction models, the

authors used functional requirements, describing use cases because they

are the main available input at an early stages of the software development

lifecycle. The results showed, that this use-case metrics based approach

is more accurate in prediction of TLOC compared to the well-known Use

Case Points (UCP).

9.4 Conclusions

As pointed out by [7] many learning methods have known practical prob-

lems such as overfitting, local minima, or curse of dimensionality caused by

either data inadequacy, noisy data, irrelevant attributes in data, or incor-

rect domain theory. Therefore, the application of ML in practice may not

be that easy requiring a deeper understanding of the methods and their

limitations. For known tasks and domains in the case of software test-

ing, we discussed several methods and techniques already available. For

new challenges in the area of software testing we have to take care of the

limitations behind the ML methods and algorithms. One of the few key

limitations of ML algorithms is the fact that for their application we have

to make sure the availability of relevant data. In addition, the ML algo-

rithms sometimes need to procure a previous domain knowledge in order to

be able to deploy and interpret the outcomes of ML correctly. Moreover,

when applying ML we have to assure a high quality of data because the

quality has a direct impact on the outcome of analytical learning method.

It is also worth noting that one of the main disadvantages of relying on

standard ML algorithms is that some of them often require a sort of pre-

processing such as data cleaning, handling missing or null data values, data

normalization, and removing inconsistencies in data.

June 2, 2021 15:36 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-09 page 264

264 Artificial Intelligence Methods for Software Engineering

As noticed, ML algorithms differ in terms of their function as some of

them seem to be more suitable for automating certain software testing tasks

than others. For example, ANNs have been widely used for solving problems

related to test oracle automation, predicting faults, prediction of testing

costs and software reliability. Their main advantages are their robustness

to errors in training data and their ability of learning complex functions

like non-linear and continuous functions. However, they are commonly

known as black box systems because interpreting what a neural network

has learned is not that straightforward and can hardly be interpreted by

users directly. In addition, ANNs are known to have slow training and

convergence processes requiring adequate computational resources. Besides

this ANNs lead to multiple local minima in error surface and suffer from

overfitting (see [7]).

GAs have been used more often for test case generation and optimiza-

tion. They are recognized to be very much suitable for tasks that require

an approximation of complex functions. GAs are most efficient in a search

space where little information is provided, and they usually only require

an evaluation function rather than the availability of a large set of data.

Yet, one of their limitations is that they are computationally expensive and

time-consuming especially when the solution space is continuous. In ad-

dition, most of approaches using GAs in test case generation, need to run

the tested program for each generated test case to evaluate its fitness value

which costs a lot and consumes a lot of running time, especially for large

scaled programs [35]. We have also noticed the current use for clustering

techniques such as k-means in test suite reduction. This might be because

clustering is a common solution when no labelled data is available, which

is usually quite hard to afford in case of real-world data. [55] stated that it

is not always easy to truly take advantage of the benefits of ML algorithms

without fully considering their assumptions and implications.

References

[1] G. J. Myers, The Art of Software Testing, 2nd edn. John Wiley & Sons, Inc.
(2004).

[2] T. Mitchell, Machine Learning. McGraw Hill (1997).
[3] P. Ammann and J. Offutt, Introduction to software testing. Cambridge Uni-

versity Press (2016).
[4] I. Schieferdecker, Model-based testing, IEEE Software 29, 1, pp. 14–18

(2012).
[5] D. Kuhn, R. Kacker and Y. Lei, Introduction to Combinatorial Testing,

June 2, 2021 15:36 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-09 page 265

On the Application of Machine Learning in Software Testing 265

Chapman & Hall/CRC Innovations in Software Engineering and Software
Development Series. Taylor & Francis (2013).

[6] Y. Koroglu and F. Wotawa, Fully automated compiler testing of a reason-
ing engine via mutated grammar fuzzing, in Proceedings of the 14th Inter-
national Workshop on Automation of Software Test, AST ’19. IEEE Press,
pp. 28–34 (2019), doi:10.1109/AST.2019.00010, https://doi.org/10.1109/
AST.2019.00010.

[7] D. Zhang and J. Tsai, Machine learning and software engineering, Software
Quality Journal - SQJ 11, pp. 22–29 (2002), ISBN 0-7695-1849-4, doi:10.
1109/TAI.2002.1180784.

[8] R. Bekkerman, M. Bilenko and J. Langford, Scaling up machine learning:
Parallel and distributed approaches. Cambridge University Press (2011).

[9] J. Shapiro, Genetic Algorithms in Machine Learning. Springer Berlin Hei-
delberg, Berlin, Heidelberg, ISBN 978-3-540-44673-6, pp. 146–168 (2001),
ISBN 978-3-540-44673-6, doi:10.1007/3-540-44673-7 7, https://doi.org/

10.1007/3-540-44673-7_7.
[10] P. S. Bishnu and V. Bhattacherjee, Software fault prediction using quad

tree-based k-means clustering algorithm, IEEE Transactions on knowledge
and data engineering 24, 6, pp. 1146–1150 (2011).

[11] A. Puri and H. Singh, Genetic algorithm based approach for finding faulty
modules in open source software systems, International Journal of Computer
Science and Engineering Survey 5, 3, p. 29 (2014).

[12] K. Sankar, S. Kannan and P. Jennifer, Prediction of code fault using naive
bayes and svm classifiers, Middle-East Journal Of Scientific Research 20, 1,
pp. 108–113 (2014).

[13] S. S. Rathore and S. Kumar, A decision tree regression based approach for
the number of software faults prediction, ACM SIGSOFT Software Engi-
neering Notes 41, 1, pp. 1–6 (2016).

[14] T. Sethi et al., Improved approach for software defect prediction using
artificial neural networks, in 2016 5th International Conference on Relia-
bility, Infocom Technologies and Optimization (Trends and Future Direc-
tions)(ICRITO). IEEE, pp. 480–485 (2016).

[15] D. Mundada, A. Murade, O. Vaidya and J. Swathi, Software fault prediction
using artificial neural network and resilient back propagation, International
Journal of Computer Science Engineering 5, 03 (2016).

[16] F. S. Fazel, A new method to predict the software fault using improved
genetic algorithm, Bull. la Société R. des Sci. Liège 85, pp. 187–202 (2016).

[17] M. Owhadi-Kareshk, Y. Sedaghat and M.-R. Akbarzadeh-T, Pre-training
of an artificial neural network for software fault prediction, in 2017 7th In-
ternational Conference on Computer and Knowledge Engineering (ICCKE).
IEEE, pp. 223–228 (2017).

[18] D.-L. Miholca, G. Czibula and I. G. Czibula, A novel approach for soft-
ware defect prediction through hybridizing gradual relational association
rules with artificial neural networks, Information Sciences 441, pp. 152–170
(2018).

[19] L. Kumar, S. Rath and A. Sureka, An empirical analysis on effective fault

https://doi.org/10.1109/AST.2019.00010
https://doi.org/10.1109/AST.2019.00010
https://doi.org/10.1007/3-540-44673-7_7
https://doi.org/10.1007/3-540-44673-7_7

June 2, 2021 15:36 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-09 page 266

266 Artificial Intelligence Methods for Software Engineering

prediction model developed using ensemble methods, in 2017 IEEE 41st An-
nual Computer Software and Applications Conference (COMPSAC), Vol. 1.
IEEE, pp. 244–249 (2017).

[20] P. R. Bal and S. Kumar, Extreme learning machine based linear homo-
geneous ensemble for software fault prediction, in ICSOFT, pp. 103–112
(2018).

[21] C. Viji, N. Rajkumar and S. Duraisamy, Prediction of software fault-prone
classes using an unsupervised hybrid som algorithm, Cluster computing 22,
1, pp. 133–143 (2019).

[22] W. K. Chan, J. C. Ho and T. Tse, Finding failures from passed test cases:
Improving the pattern classification approach to the testing of mesh sim-
plification programs, Software Testing, Verification and Reliability 20, 2,
pp. 89–120 (2010).

[23] F. Wang, J.-H. Wu, C.-H. Huang and K.-H. Chang, Evolving a test oracle in
black-box testing, in International Conference on Fundamental Approaches
to Software Engineering. Springer, pp. 310–325 (2011).

[24] S. R. Shahamiri, W. M. Wan-Kadir, S. Ibrahim and S. Z. M. Hashim, Ar-
tificial neural networks as multi-networks automated test oracle, Automated
Software Engineering 19, 3, pp. 303–334 (2012).

[25] A. Singhal, A. Bansal et al., Generation of test oracles using neural network
and decision tree model, in 2014 5th International Conference-Confluence
The Next Generation Information Technology Summit (Confluence). IEEE,
pp. 313–318 (2014).

[26] N. Majma and S. M. Babamir, Software test case generation & test oracle
design using neural network, in 2014 22nd Iranian Conference on Electrical
Engineering (ICEE). IEEE, pp. 1168–1173 (2014).

[27] V. Sathyavathy, Evaluation of software testing techniques using artificial
neural network, Int. J. Electr. Comput. Sci 6, 3, pp. 20617–20620 (2017).

[28] R. Braga, P. S. Neto, R. Rabêlo, J. Santiago and M. Souza, A machine learn-
ing approach to generate test oracles, in Proceedings of the XXXII Brazilian
Symposium on Software Engineering, pp. 142–151 (2018).

[29] R. Zhao and S. Lv, Neural-network based test cases generation using ge-
netic algorithm, in 13th Pacific Rim International Symposium on Depend-
able Computing (PRDC 2007). IEEE, pp. 97–100 (2007).

[30] R. Kumar, S. Singh and G. Gopal, Automatic test case generation using ge-
netic algorithm, International Journal of Scientific & Engineering Research
(IJSER) 4, 6, pp. 1135–1141 (2013).

[31] A. Shahbazi and J. Miller, Black-box string test case generation through a
multi-objective optimization, IEEE Transactions on Software Engineering
42, 4, pp. 361–378 (2015).

[32] R. Khan, M. Amjad and A. K. Srivastava, Optimization of automatic gen-
erated test cases for path testing using genetic algorithm, in 2016 Second
International Conference on Computational Intelligence & Communication
Technology (CICT). IEEE, pp. 32–36 (2016).

[33] A. Mateen, M. Nazir and S. A. Awan, Optimization of test case generation
using genetic algorithm (ga), arXiv preprint arXiv:1612.08813 (2016).

June 2, 2021 15:36 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-09 page 267

On the Application of Machine Learning in Software Testing 267

[34] Z. Ma, Y. Zhang, Q. Li, M. Xu, J. Bai and S. Wu, Resveratrol improves
alcoholic fatty liver disease by downregulating hif-1α expression and mito-
chondrial ros production, PloS one 12, 8 (2017).

[35] S. Ji, Q. Chen and P. Zhang, Neural network based test case generation
for data-flow oriented testing, in 2019 IEEE International Conference On
Artificial Intelligence Testing (AITest). IEEE, pp. 35–36 (2019).

[36] P. Saraph, A. Kandel and M. Last, Test set generation and reduction with
artificial neural networks, in Artificial Intelligence Methods in Software Test-
ing. World Scientific, pp. 101–132 (2004).

[37] V. Vangala, J. Czerwonka and P. Talluri, Test case comparison and clus-
tering using program profiles and static execution, in Proceedings of the 7th
joint meeting of the European software engineering conference and the ACM
SIGSOFT symposium on The foundations of software engineering, pp. 293–
294 (2009).

[38] C. Zhang, Z. Chen, Z. Zhao, S. Yan, J. Zhang and B. Xu, An improved re-
gression test selection technique by clustering execution profiles, in 2010 10th
International Conference on Quality Software. IEEE, pp. 171–179 (2010).

[39] S. Chen, Z. Chen, Z. Zhao, B. Xu and Y. Feng, Using semi-supervised clus-
tering to improve regression test selection techniques, in 2011 Fourth IEEE
International Conference on Software Testing, Verification and Validation.
IEEE, pp. 1–10 (2011).

[40] A. R. Lenz, A. Pozo and S. R. Vergilio, Linking software testing results
with a machine learning approach, Engineering Applications of Artificial
Intelligence 26, 5–6, pp. 1631–1640 (2013).

[41] B. Subashini and D. JeyaMala, Reduction of test cases using clustering
technique, International Journal of Innovative Research in Science, Engi-
neering and Technology, 2014 International Conference on Innovations 3,
3, pp. 1993–1996 (2014).

[42] R. Wang, B. Qu and Y. Lu, Empirical study of the effects of different profiles
on regression test case reduction, IET Software 9, 2, pp. 29–38 (2015).

[43] G. Fraser and N. Walkinshaw, Assessing and generating test sets in terms
of behavioural adequacy, Software Testing, Verification and Reliability 25,
8, pp. 749–780 (2015).

[44] H. Felbinger, F. Wotawa and M. Nica, Test-suite reduction does not neces-
sarily require executing the program under test, in 2016 IEEE International
Conference on Software Quality, Reliability and Security Companion (QRS-
C). IEEE, pp. 23–30 (2016).

[45] H. Bhasin, E. Khanna and K. Sharma, Neural network-based automated
priority assigner, in Proceedings of the Second International Conference on
Computer and Communication Technologies. Springer, pp. 183–190 (2016).

[46] N. Chetouane, F. Wotawa, H. Felbinger and M. Nica, On using k-means
clustering for test suite reduction, in 2020 IEEE International Conference on
Software Testing, Verification and Validation Workshops (ICSTW). IEEE,
pp. 380–385 (2020).

[47] A. Wang, L. Guo, Y. Chen, J. Wang and Y. Song, Comprehensive evaluation
of software quality based on lm-bp neural network, in 2017 International

June 2, 2021 15:36 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-09 page 268

268 Artificial Intelligence Methods for Software Engineering

Conference on Dependable Systems and Their Applications (DSA). IEEE,
pp. 162–167 (2017).

[48] A. Sabbeh, Y. Al-Dunainawi, H. Al-Raweshidy and M. F. Abbod, Perfor-
mance prediction of software defined network using an artificial neural net-
work, in 2016 SAI Computing Conference (SAI). IEEE, pp. 80–84 (2016).

[49] P. Roy, G. Mahapatra, P. Rani, S. Pandey and K. Dey, Robust feedforward
and recurrent neural network based dynamic weighted combination models
for software reliability prediction, Applied Soft Computing 22, pp. 629–637
(2014).

[50] S. Ramasamy and I. Lakshmanan, Application of artificial neural network
for software reliability growth modeling with testing effort, Indian Journal
of Science and Technology 9, 29 (2016).

[51] R. Jain and A. Sharma, Assessing software reliability using genetic algo-
rithms, The Journal of Engineering Research [TJER] 16, 1, pp. 11–17
(2019).

[52] T. J. Cheatham, J. P. Yoo and N. J. Wahl, Software testing: a machine
learning experiment, in Proceedings of the 1995 ACM 23rd annual conference
on Computer science, pp. 135–141 (1995).

[53] D. G. e Silva, M. Jino and B. T. de Abreu, Machine learning methods and
asymmetric cost function to estimate execution effort of software testing, in
2010 Third International Conference on Software Testing, Verification and
Validation. IEEE, pp. 275–284 (2010).

[54] M. Badri, L. Badri, W. Flageol and F. Toure, Investigating the accuracy
of test code size prediction using use case metrics and machine learning
algorithms: An empirical study, in Proceedings of the 2017 International
Conference on Machine Learning and Soft Computing, pp. 25–33 (2017).

[55] V. H. Durelli, R. S. Durelli, S. S. Borges, A. T. Endo, M. M. Eler, D. R. Dias
and M. P. Guimaraes, Machine learning applied to software testing: A sys-
tematic mapping study, IEEE Transactions on Reliability 68, 3, pp. 1189–
1212 (2019).

June 2, 2021 16:58 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-10 page 269

© 2021 World Scientific Publishing Company
https://doi.org/10.1142/9789811239922 0010

Chapter 10

Creating Test Oracles Using Machine
Learning Techniques

Rafig Almaghairbea and Marc Roperb

aDepartment of Computer Science, University of Omar Al-Mukhtar,
Derna, Libya

rafig.almaghairbe@omu.edu.ly
bDepartment of Computer and Information Sciences,

University of Strathclyde, Glasgow, UK

marc.roper@strath.ac.uk

10.1 Introduction

Automating aspects of software testing process can be a key factor in reduc-

ing the costs of software development projects. Consequently, researchers

in software testing have developed ways to automatically generate and ex-

ecute test cases, as well as maintain and manage test suites. However, the

generation of a test oracle (a mechanism to determine whether the output

associated with an input is correct or incorrect) is a relatively neglected area

of research. Whilst many tools have been developed to generate test in-

puts [1], few tools exist to build automated test oracles, making the process

of checking test outputs primarily human-centred and as a result expensive

and possibly error-prone [2].

Proposed approaches to generate test oracles vary from the inexpensive

and ineffective (e.g. implicit oracles) to effective but very costly (e.g. spec-

ified oracles). Implicit oracles are easy to construct at practically no cost

(e.g., the work of Carlos and Michael [3]), and usually perform well with

269

https://doi.org/10.1142/9789811239922_0010

June 2, 2021 16:58 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-10 page 270

270 Artificial Intelligence Methods for Software Engineering

general errors like system crashes, null pointer dereferences or unhandled

exceptions, but are not applicable for semantic and complex failures [4].

On the other hand, specified oracles can be obtained from formal specifica-

tions, and are effective in revealing failures, but defining and maintaining

such specifications is a challenging task and hence such specifications are

very rare [4].

In recent years, researchers have tried to strike the balance between

these approaches and develop a technique which combines the effectiveness

of specified oracle and the cost of an implicit one by using machine learning

and data mining approaches, in particular anomaly detection, to automat-

ically identify failing tests. The purpose of this chapter is to re-evaluate

and analyse the work on test oracles built using such machine learning tech-

niques, and also to identify the properties of automated/semi-automated

test oracles required for them to be practically usable. Researchers in the

software testing community can use these properties as criteria to evaluate

test oracles based on machine learning techniques.

The chapter has been motivated by the following research questions:

• Question 1:

(a) What anomaly detection approaches (machine learning, data mining

etc.) have been used to build automated test oracles?

(b) Which of the variety of anomaly detection approaches are considered

to be the most appropriate for automated test oracles?

(c) What is the effectiveness of anomaly detection strategies (classifica-

tion, clustering etc.) for the creation of automated test oracles?

• Question 2:

(a) What data from software systems have been used to build anomaly

detection models for automated test oracles?

(b) What data from software systems are reported to provide the

anomaly detection techniques with the best chance of building an

effective automated test oracle?

(c) How has this data been transformed to suitable set of feature vectors?

• Question 3:

(a) What types of software faults have been used on the empirical studies

of automated test oracles by using anomaly detection techniques?

(b) What classes of faults are reported to be the most frequently detected

via anomaly detection techniques?

June 2, 2021 16:58 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-10 page 271

Creating Test Oracles Using Machine Learning Techniques 271

(c) Is there any relationship between specific classes of faults and the

success of anomaly detection approaches?

The remainder of the chapter is organised as follows: In the next sec-

tion, a background on test oracles is presented. Section 10.3 provides an

overview of the related work. Section 10.4 discusses work that addresses

the problem of test oracles creation based on machine learning techniques

and answers the research questions identified above. Section 10.5 reports

the required properties of test oracle techniques. A road map for further

research direction is outlined in Sec. 10.6. Section 10.7 summarises and

presents the conclusions.

10.2 Background on Test Oracles

An oracle can be defined as a mechanism that determines and judges

whether a system’s test results have passed or failed [5]. This function

can be carried out by the tester (human oracle), or by automated/semi-

automated means. Memon et al. [6] defined two important parts of a test

oracle: oracle information that represents expected output, and an oracle

procedure that compares the oracle information with the actual output.

Shahamiri et al. [7] summarised the test oracle process as follows: (1) gen-

erate expected outputs; (2) save the generated outputs; (3) execute the

test cases; (4) compare expected and actual outputs; (5) decide if there is

a fault or not. It is worth pointing out that the test case execution activity

does not form part of the test oracle, but it is part of the oracle process.

Ye et al. [8] have characterised a perfect and complete automated test

oracle as follows: (1) it should have source of information which makes

it possible to produce a reliable and equivalent behaviour to the software

under test (SUT); (2) it should accept all entries for the specified system

and always produce the correct result; (3) it should have the answers to the

data which is actually used in the test. Again a point worth noting is that

the anomaly detection approaches discussed in this chapter are unlikely to

meet the first of these criteria.

A traditional and generic test oracle structure can be seen in Fig. 10.1

[9]. In this scenario, the test oracle accesses the set of data required to eval-

uate the correctness of the test output. The set of data can be obtained

from the specification of the SUT and holds enough information to sup-

port the oracle’s final decision. The following subsections introduce several

structures of test oracle functions using different sources of information.

June 2, 2021 16:58 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-10 page 272

272 Artificial Intelligence Methods for Software Engineering

Fig. 10.1 Generic Test Oracle Structure.

10.2.1 Test Oracles Based on Individual Test Cases

The development of unit testing frameworks allows the developer to specify

the pass/fail conditions for an individual test. This approach is illustrated

in Fig. 10.2 which shows how the test case itself carries the expected results

in order to decide the correctness of the SUT [10]. The tester can imple-

ment this oracle by using one of the various frameworks that are known

collectively as an “xUnit” family which support unit testing for a range

of programming languages [11] (e.g., “JUnit” is an “xUnit” framework for

Java). Testers develop test oracles in their code by inserting assertions in

a program to check unit or partial results. This oracle still demands a lot

from the developer in that test cases need to be hand coded and acceptable

results clearly specified. An example of such oracle is shown in the following

piece of code:

public void testBOOKInLibrary () {

// A test oracle to check the correctness of the

// method "boolean Library.checkByTitle(String)"

Library library = new Library ();

boolean search = library.checkByTitle ("Data Mining");

assertEquals (true, search);

}

Fig. 10.2 Test Oracle Structure Using Expected Output Behaviours.

June 2, 2021 16:58 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-10 page 273

Creating Test Oracles Using Machine Learning Techniques 273

Testers can use their own knowledge about the SUT to check if outputs

meet the SUT specification. This test oracle is known as a human oracle

(Fig. 10.3) [12]. A human oracle suffers from several disadvantages; most

notably, it is likely to be error-prone and also slower than an automated

check, which may restrict its application to only trivial input/output be-

haviour.

Fig. 10.3 Test Oracle Structure Using Human Oracles.

10.2.2 Test Oracles Based on Formal Specifications

Test oracles can be generated from formal models or specifications

(Fig. 10.4) [13]. In this scenario a test oracle can be automated when a

mathematical model (e.g. Finite State Machine (FSM) or Petri net) of the

SUT is available for testers. Test oracles based on formal models or spec-

ifications are effective in identifying failures, but defining and maintaining

formal specifications is expensive to the point that such specifications are

very rare.

Fig. 10.4 Test Oracle Structure Using Formal Model Specification.

Figure 10.5 illustrates the structure test oracles that derive expected

outputs of the SUT from test data inputs [14]. This could be possibly

made by using another reference version of the SUT (e.g. an earlier ver-

sion) to generate outputs from, and then the tester can build a test or-

acle to compare those outputs and the current outputs. In this case,

testers must assume that the version used (the reference program) meets all

June 2, 2021 16:58 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-10 page 274

274 Artificial Intelligence Methods for Software Engineering

Fig. 10.5 Test Oracle Structure Using Test Data.

specifications of the SUT. This type of test oracle is widely used in the case

of regression testing and mutation testing, but is not sufficient in the general

case.

The oracle problem usually occurs when it is difficult to interpret test

results [15]. In some cases, it is extremely difficult to predict expected

behaviours of the SUT to be compared against current behaviours (this

depends on the SUT) [16]. Failures can be manifested under different cir-

cumstances which makes checking the results complex or impossible to be

performed [17]. Some SUTs produce outputs in very complex formats such

as images, sounds or virtual environments which make the oracle problem

very challenging [16].

10.3 Related Work

The automatic generation of test oracles is an important problem in soft-

ware testing, but has received considerably less attention compared to other

problems such as the generation of test cases. There have been three ex-

tensive reviews of topics relating to test oracles. The first by Baresi and

Young [2] covered four important topics in the test oracle area: assertions,

specification, state-based conformance testing and log file analysis. The

second by Pezzé and Zhang [18] discussed the main techniques used to de-

velop automated test oracles based on the available sources of information.

In their survey, the source of information for test oracles was classified

either as the software specification (e.g. the type of formal model specifi-

cation: state-based, transition-based, history-based or algebraic) or as the

program code (e.g. values from other versions, results of program analysis,

machine learning models and metamorphic relations). The third by Barr

et al. [4] classified the existing literature on test oracles into three broad

categories: specified oracles, implicit oracles, and derived oracles. Specified

oracles are test oracles obtained from formal specification of the system

behaviour. For instance, Doong and Frankl developed the ASTOOT tool

June 2, 2021 16:58 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-10 page 275

Creating Test Oracles Using Machine Learning Techniques 275

which generates test suites along with test oracles from algebraic specifi-

cations [19]. In their work, test oracles generated by the ASTOOT tool

may then be used to verify the equivalence between two different execution

scenarios. Specified oracles are effective in finding system failures but their

success depends heavily on the availability of a formal specification of the

system behaviour. However, the vast majority of systems lack an accurate,

complete and up-to-date machine readable specification which limits their

applicability.

Implicit oracles are generated without requiring any domain knowledge

or formal specification and hence can be applied to all runnable programs.

For example, in the fuzzing approach proposed by Miller et al. [20], the

main principle is to generate random inputs and attack the system to find

faults which cause the system to crash. If a crash is spotted then the

fuzz tester reports the crash with the set of inputs or input sequences that

caused it. The fuzzing approach is well used in the security vulnerabilities

detection area such as buffer overflows and memory leaks etc. but relies on

the consequences of an error being easily detectable (e.g. in the form of a

system crash) so has limited general applicability.

Derived oracles are built from properties of the SUT, or several arte-

facts other than the specification (e.g. documentation and system execution

information), or other versions of the SUT. For instance, metamorphic test-

ing has been used to test search engines such as Google and Yahoo [21].

The BERT tool is another example of a derived oracle which can be used

to identify behavioural differences between two versions of a program by

using dynamic analysis [22].

Each oracle category (specified, implicit and derived) could merit an

entire survey in its own right. This chapter is focused on test oracles

generated using machine learning techniques (which fall into the category

of derived oracles as they are typically created from system executions).

Therefore, the chapter is structured according to learning strategies: su-

pervised learning (e.g. techniques that build more on earlier versions of the

SUT), semi-supervised learning (e.g. approaches that label a small number

of observations and use this to seed the creation of a more complete oracle),

and unsupervised learning (e.g. techniques that are based upon clustering

similar results and detecting anomalies).

June 2, 2021 16:58 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-10 page 276

276 Artificial Intelligence Methods for Software Engineering

10.4 Test Oracles Based on Machine Learning Techniques

Chandola et al. defined anomaly detection as a matter of spotting pat-

terns in data that correspond to abnormal behaviour [23]. This concept

is illustrated in Fig. 10.6 where N represents regions of normal behaviour,

whereas the points labelled O represent the anomalous data. The work

covered in this section aimed at investigating whether software bugs gener-

ate a non-conformant pattern of behaviour that can be distinguished from

the conformant or normal behaviour — in other words, in Fig. 10.6 do the

groups marked N corresponded to passed tests and those marked O with

failures? If this is the case then the possibility of detecting bugs automati-

cally can be raised.

Fig. 10.6 Principle of Anomaly Detection.

The main concept behind generating automated test oracles based on

machine learning techniques is to detect unexpected patterns (faulty be-

haviour) in a large set of observations, events or items [23]. Figure 10.7

shows the principles of using machine learning techniques to automatically

cluster or classify (depending on the machine learning strategy employed)

passing/failing outputs. The program under test is run on a set of inputs

which will generate outputs and optional traces, and may encounter bugs

in the program (the *s in the figure). The pass/fail status of the outputs

is unknown and the aim is to automatically distinguish between these us-

ing machine learning. The application of anomaly detection strategies in

June 2, 2021 16:58 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-10 page 277

Creating Test Oracles Using Machine Learning Techniques 277

Fig. 10.7 Overview of Test Oracle Based on Machine Learning Strategy.

this context has not been extensively investigated. The current work can

be divided into three main categories of learning techniques: supervised,

semi-supervised and unsupervised.

10.4.1 Test Oracles Based on Supervised Learning

Techniques

Supervised learning techniques assume the availability of a training data

set which has labelled instances for normal as well as anomaly classes and is

therefore the least generally applicable approach. Various Artificial Neural

Network (ANN) models have been used to construct test oracles as they

have the ability to simulate a software system’s behaviour based on in-

put/output pairs [14]. They can be used as continuous [24] or discrete [25]

function approximators and that property can be exploited to build oracles.

There are two operation phases in the development of an ANN: training

and regression (or association, if the ANN is used as a classifier) [24]. Given

a training set composed of input/output pairs, the ANN (in the role of a

continuous function approximator) is capable of finding an approximate

function of a deterministic computational process. In the role of a regres-

sion model, the trained ANN can generate the expected outputs to input

data that are not part of the training set. The ANN used as a discrete func-

tion approximator can be trained with a set of input/output pairs, where

the output is a category to input, and then classify other unseen inputs in

one of the given categories (this scenario was illustrated earlier in Fig. 10.5

in Sec. 10.2).

For example, Aggarwal et al. [25], Chan et al. [26] and Jin et al. [24]

tackle the use of ANN as oracles to the problem of test output classification.

June 2, 2021 16:58 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-10 page 278

278 Artificial Intelligence Methods for Software Engineering

Two of these papers present a case study for creating an oracle for the

famous triangle problem. The inputs are three integers that represent the

length sides of a triangle. The output is the classification into equilateral,

isosceles, scalene or not a triangle. The ANN is given correct input/output

pairs as a training set and after training phase is able to classify new inputs

into the presented categories.

Vanmali and colleagues trained a multi-layer ANN on an original soft-

ware application by using randomly generated test data that conformed

to the specification [27]. When new versions of the original application

are created and regression testing was required, the tested code was exe-

cuted on the test data to yield outputs that are compared with those of

the ANN. Shahamiri et al. [14] presented an experiment with a student

registration verifier program which validates the registration, decides the

maximum courses students can select and if a discount is applicable or not.

A backpropagation ANN was used as an oracle and evaluated on the golden

(reference) version test cases and mutated test cases.

All of previous studies used a single ANN oracle. Shahamiri et al. [28]

proposed a multi-ANN oracle to perform input/output mapping in order

to test more complicated software applications where a single ANN oracle

may fail to deliver a high quality oracle. A single ANN was defined for each

of the output items of the output domain; then all of ANN together made

the oracle. As a result, the complexity of the software may be distributed

between several ANN instead of having a single one to do all of the learning,

and also separating the ANN may reduce the complexity of the training

process and increase the oracle’s ability to find faults. The experimental

results indicate that multi-ANN oracle performed much better than single

ANN oracle. However, building single ANN for every output item to create

multi ANN oracle could be expensive.

Although all of previous studies demonstrate the ability of ANNs to act

as a test oracle, they may not be reliable when the complexities of sub-

ject programs increase because they require larger training samples that

could make the ANN learning process complicated. A small ANN error

could increase the oracle miss-classification error considerably in large soft-

ware applications. Moreover, most of these studies were evaluated by small

subject programs having small input/output domains and the ANN was

able to perform the mapping in most of these studies. It is possible that

a tiny difference exists between expected output generated by the ANN

based oracle and the correct program. These issues could happen because

of the complexity of the application under test. Consequently, generating

June 2, 2021 16:58 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-10 page 279

Creating Test Oracles Using Machine Learning Techniques 279

the most representative data sets to train the ANN could enhance the ANN

performance and reduce the mis-classification error. In addition, the struc-

ture of the ANN (e.g. the number of layers and neurons) is another issue

which may not be easy to determine.

More recently, Tsimpourlas et al. [29] use supervised learning over test

execution traces. A small fraction of the execution traces were labelled with

their verdict of pass or fail, and then used to train an ANN model to learn

and distinguish run-time patterns for passing versus failing executions for

a given program. Their experimental results showed that the classification

model was highly effective in classifying passing and failing executions,

achieving over 95% precision, recall and specificity while only training with

an average 9% of the total traces.

ANN algorithms are not the only supervised learning models used.

Wang et al. [30] applied support vector machine (SVM) as a supervised

learning algorithm to test reactive systems. Parsa et al. [31] trained a sup-

port vector machine (SVM) to detect faults during the execution of subject

programs. Their work was extended by using a SVM with a customised

kernel function to measure the similarities between passing and failing ex-

ecutions, represented as sequences of program predicates [32]. Frounchi

et al. [33] used a decision tree technique as a test oracle to verify the ac-

curacy of an image segmentation algorithm which was able to achieve an

average accuracy of approximately 90% during the evaluation phase. Brun

and Ernst [34] also explored the use of SVM and decision tree to rank pro-

gram properties provided by the user that are likely to indicate errors in

the program.

Other learning algorithms were used by Haran et al. [35] to classify ex-

ecution data collected from applications in the field as coming from either

passing or failing program runs. They used random forests to model and

predict the outcome of an execution based on the corresponding execu-

tion data. Their work was extended by proposing two different classifica-

tion techniques (association trees and adaptive sampling association trees)

which can build models with significantly less data than that required by

random forests but maintaining the same accuracy [36]. Lo et al. [37] pro-

posed a new technique to classify unknown executions. Their technique first

mined a set of discriminative features capturing repetitive series of events

from program execution traces. After that, feature selection was performed

in order to select the best features for classification. Then, these features

were used to train a classifier (SVM) to detect failures.

June 2, 2021 16:58 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-10 page 280

280 Artificial Intelligence Methods for Software Engineering

10.4.2 Test Oracles Based on Semi-Supervised Learning

Techniques

Semi-supervised learning techniques are employed in situations where la-

belled data is scarce (e.g. instances may be difficult to come by or expensive

to label). This make them very appropriate for the test oracle problem,

where there may be a small set of labelled results (i.e. classified by a hu-

man as passing or failing — normal or abnormal) which may then be used

to incrementally create more sophisticated classifiers.

Some of the related work in this subsection combines supervised learn-

ing with unsupervised learning, but we consider them as semi-supervised

learning techniques. For instance, clustering is often performed as a prelim-

inary step in the data mining process with the resulting clusters being used

as further inputs into downstream techniques such as a neural network (it

is often helpful to apply clustering analysis first to reduce the search space

for the downstream algorithm). Podgurski et al. built a system to clus-

ter bugs represented by a failed test that had the same cause [38]. Their

approach was based on the analysis of the execution profile corresponding

to reported failures of the test and was built on top of their earlier unsu-

pervised learning system where the execution count for each function in

the program was used as a feature to construct the model. Francis et al.

proposed two new tree-based techniques for refining an initial classifica-

tion of failures [39]. The first of these techniques was based on the use of

dendrograms which are tree-like diagrams used to represent the results of

hierarchical cluster analysis. Their dendrogram-based technique for refin-

ing failure classification was used to decide how non-homogeneous clusters

should be considered for merging. The second technique for refining an ini-

tial failure classification relied on generating a classification tree to recognise

failed executions. A classification tree was constructed algorithmically us-

ing a training set containing positive and negative instances of the class

of interest. The experimental results indicated that both techniques were

effective for grouping together failures with the same or similar causes. All

techniques were aimed at bug localisation by identifying groups of failures

with closely related causes among a set of reported failures based on user

feedback.

Bowring and colleagues proposed an automatic classification of program

behaviours using execution data aimed at reverse engineering a more ab-

stract description of system’s behaviour [40]. Their work focused on an

active learning approach (rather than batch learning approach) where, for

June 2, 2021 16:58 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-10 page 281

Creating Test Oracles Using Machine Learning Techniques 281

each iteration of learning, the classifier is trained incrementally on a series of

labelled data elements and then applied to series of unlabelled data to pre-

dict those elements that most significantly extend the range of behaviours

that can be classified. These selected elements are then labelled and added

to the training set for the next round of learning. Their technique builds a

classifier for software behaviour in two stages. Initially, a model of individ-

ual program executions was built as a Markov model by using the profiles of

event transitions such as branches (a binary matrix was used to transform

data to a suitable set of feature vectors). Each of these models thus repre-

sents one instance of the program’s behaviour. The technique then used an

automatic clustering algorithm to build clusters of these Markov models,

which then together form a classifier tuned to predict specific behavioural

characteristics of the considered program. Mao et al. [41] also used the

Markov model approach proposed by Bowring et al. [40] and clustering

analysis along with a new sampling strategy (priority-ranked n-per-cluster)

to aid fault localisation. The methodology starts by using a Markov model

and the profiles of event transitions such as branches to depict program be-

haviours. Based on the obtained model, the dissimilarity of two profiles is

defined. After separating the failure executions and non-failure executions

into different subsets, the clustering and sampling strategy were performed

on the failure execution subset in order to choose the most representative

sample of failures to reduce the debugging effort.

Baah et al. proposed a new machine learning technique that performs

anomaly detection during software execution [42]. A Markov model was

trained on trace predicate information and the Baum-Welch algorithm was

used to find unknown parameters for the Markov model. Probes were in-

serted into the subject program to sample tuples in the form of <class

name, method name, line number, predicate state>. Clustering of pred-

icate states was used also in the training phase to gather predicate state

information based on the line number and method number. In the line

number clustering, all predicate states generated at an instrumented line

number are grouped into one cluster. In method clustering, all predicate

states belonging to a method are grouped into one cluster. The subject

program along with the Markov model were then deployed together to de-

tect faults as they occur and to possibly perform fault correction actions

to prevent failures. The experimental results showed that the proposed

technique performed well with domain faults with up to 100% accuracy in

some cases. However, the technique did not perform well with computation

errors with accuracy less than 50% and dropping to 0% in some cases. The

June 2, 2021 16:58 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-10 page 282

282 Artificial Intelligence Methods for Software Engineering

authors pointed out to a few efficiency issues such as the time required to

build such model especially in the presence of a large test suite, the cost of

instrumenting the software to gather more information without incurring a

significant overhead, and how quickly the model can track the execution of

the software.

Semi-supervised learning techniques have been used as test oracles to

classify passing and failing tests [43]. A learner is built by using train-

ing data set that has a small subset of labelled test data which is then

used to classify the remaining data (i.e. labelling it as a passing or failing

test). Different learning algorithms were explored on three systems based

on dynamic execution data (firstly input/output pairs alone, and then

input/output pairs combined with their corresponding execution traces).

Two labelling strategies were used for the training data (labelled instances

for both failing and passing tests, and just for passing tests alone). The

experimental results showed that the proposed approach has an important

practical implication: testers need to examine a small subset of the test

results from a system and then use this information to train a learning

algorithm to classify the rest. Roper [44] combined unsupervised and semi-

supervised learning strategies together to construct test oracles by using

the outcomes of applying unsupervised learning techniques as input to the

semi-supervised learning techniques. The test classification strategy con-

sists of two phases: Firstly, unsupervised learning (clustering) is used with

the aim of creating a grouping of tests where the smallest clusters contain

a greater proportion of failures. Manual checking of tests then focuses on

these smallest clusters first as they are more likely to contain failing tests.

Secondly, having checked a small proportion of the test outcomes, semi-

supervised learning is then employed to use this information to label an

initial small set of data and derive an automatic pass/fail classification for

the remainder of tests. The combined effect of these is to create a far more

efficient process than just checking the outcome of every test in order: clus-

tering creates a small subset of tests in which failures are more prevalent,

and using semi-supervised learning allows the tester to focus next on those

outputs considered to be failures. The scenario for a test oracle based on

semi-supervised learning techniques is shown in Fig. 10.8. This scenario is

different compared to other scenarios in Sec. 10.2 as here the tester provides

the semi-supervised learning techniques with some information to improve

the oracle.

June 2, 2021 16:58 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-10 page 283

Creating Test Oracles Using Machine Learning Techniques 283

Fig. 10.8 Test Oracle Structure Using Test Data and Based on Semi-Supervised Learn-

ing Techniques.

10.4.3 Test Oracles Based on Unsupervised Learning

Techniques

Unsupervised learning techniques do not require training data, and thus

are most widely applicable. The techniques based on unsupervised learn-

ing make the implicit hypothesis that abnormal instances are relatively

infrequent in the test data compared to normal instances. If this hypothe-

sis is not true, then the techniques will suffer from high false positive rate.

Dickinson, Leon and Podgurski demonstrated the advantage of automated

clustering of execution profiles over random selection for finding failures by

using function caller/callee feature profiles as the basis for cluster forma-

tion [45, 46]. This work is in turn based on that of Podgurski et al. [47],

who used cluster analysis of profiles (the execution counts of conditional

branches) and stratified random sampling to calculate estimates of soft-

ware reliability, and found that failures were often isolated in small clusters

based on unusual execution profiles.

Yoo et al. applied clustering to the problem of regression test optimi-

sation [48] where test cases are clustered based on their dynamic runtime

behaviour (execution traces). Their experimental results showed that the

clustering approach outperformed the coverage based approach in terms of

fault detection rate. Yan et al. [49] proposed a dynamic test cluster sam-

pling strategy called execution spectra based sampling (ESBS). The empir-

ical evaluation showed that the proposed sampling strategy is more effec-

tive than existing test cluster sampling strategies [45, 46]. Masri et al. [50]

presented an empirical study of several test case filtering techniques (cov-

erage based and distribution based techniques) by using various types of

information flows (e.g. basic blocks, branches, function calls and call pairs).

Their empirical study showed that coverage maximization and distribution-

based filtering techniques were more effective overall than simple random

June 2, 2021 16:58 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-10 page 284

284 Artificial Intelligence Methods for Software Engineering

sampling. In addition, distribution-based filtering techniques did not per-

form significantly better than coverage maximization overall.

More recently, Almaghairbe and Roper have investigated the use of clus-

tering based anomaly detection techniques to support the construction of

a test oracle by performing two different empirical studies along with vary-

ing types of dynamic execution data [51, 52]. In the first study, a range of

clustering algorithms were applied to just the input-output pairs of three

systems with the primary aim of exploring the feasibility of this approach.

The aim of the second study was to improve the accuracy and perfor-

mance of the approach by augmenting the input/output pairs with their

associated execution traces. Their results demonstrate important practical

consequences: the task of checking test outputs may potentially be reduced

significantly to examining a relatively small proportion of the data to dis-

cover a large proportion of the failures. Figure 10.9 shows the test oracle

structure based on unsupervised learning techniques. It can be observed

that the approach is built based on the SUT output only (no other infor-

mation) to judge suspicious outputs. Table 10.1 summarises the difference

between test oracle structures presented in this chapter.

Fig. 10.9 Test Oracle Structure Using Test Data and Based on Unsupervised Learning
Techniques.

10.4.4 Summary and Findings

Returning to the research questions in Sec. 10.1, the principal findings of

this chapter may be summarised as follows:

• Question 1:

(a) The techniques that can be used to build an automated test oracle

are divided into three categories based on the learning strategies:

i. Unsupervised machine learning techniques such as clustering meth-

ods with different sampling strategies (stratified, simple random,

one-per-cluster, adaptive, n-per-cluster and failure-pursuit sam-

pling strategies) or without any sampling strategies.

June 2, 2021 16:58 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-10 page 285

Creating Test Oracles Using Machine Learning Techniques 285

Table 10.1 The Summary of Different Concepts of Test Oracles.

Test Oracles Structures

Test Oracles The Different

Test oracles based on individual test

cases (Fig. 10.2 and Fig. 10.3 in
Sec. 10.2)

This scenario requires a tool to gener-

ate the expected output (e.g. JUnit) or
tester knowledge about the SUT.

Test oracles based on formal speci-

fications (Fig. 10.4 and Fig. 10.5 in

Sec. 10.2)

This scenario requires expected output

generator such as a formal method or

ANN.

Test oracles based on semi-supervised
learning techniques (Fig. 10.8 in

Sec. 10.4)

The tester in this scenario provides
semi-supervised learning techniques

with some information to improve the

oracle.

Test oracles based on unsupervised
learning techniques (Fig. 10.9 in

Sec. 10.4)

The approach in this scenario is built
based on the SUT output only (no

other information) to judge suspicious

outputs.

ii. Semi-supervised learning techniques such as logistic regression

with clustering methods and Markov model with clustering meth-

ods. Traditional semi-supervised learning techniques have been

also used such as self-training and co-training methods. The re-

sults of clustering methods have also been used as input to semi-

supervised/supervised learning techniques.

iii. Supervised machine learning techniques such as a multi-layered

perceptron neural network, back-propagation neural network, ra-

dial basis function neural network (RBF), support vector machine

(SVM) with kernel function, decision tree (DT), random forests,

association trees, adaptive sampling association trees, and frequent

pattern mining algorithm.

Figure 10.10 illustrates the distribution of the learning strategies of

the studies discussed by counting the number of studies using each

learning strategy.

(b) The chapter reported that the range of anomaly detection approaches

explored were applicable for automated test oracles but different ma-

chine learning techniques with different dynamic execution data give

mixed results in terms of detection accuracy. However, some tech-

niques have been shown to be superior in term of their software fault

detection accuracy. These are presented based on their learning strat-

egy as follows:

June 2, 2021 16:58 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-10 page 286

286 Artificial Intelligence Methods for Software Engineering

Fig. 10.10 Learning Strategies Used in the Studies.

i. Supervised machine learning techniques: Artificial neural net-

work algorithms (ANN) showed significant accuracy in term of

software fault detection for the oracle problem by using only a

set of input/output pairs of SUT as feature. In addition, decision

tree (DT) performed much better than support vector machine

(SVM) in terms of classification accuracy by using program prop-

erties as feature. However, support vector machine (SVM) with

a kernel function showed reasonable accuracy in software fault

detection by using predicate state information of the program as

feature. Moreover, each of random forests, association trees and

adaptive sampling association trees also showed reasonable accu-

racy in term of software behaviour classification by using differ-

ent execution data. Furthermore, frequently the pattern mining

algorithm also performed well for software fault detection and

localisation by using execution traces.

ii. Semi-supervised machine learning techniques: Logistic regression

and clustering techniques performed well when used in combina-

tion to group failures that have the same cause together by using

execution profile as the feature set. In addition, Markov model

with clustering techniques performed well when used together to

classify software behaviour by using both profile event transi-

tions and predicate state information as a set of features. Fur-

thermore, traditional semi-supervised learning techniques demon-

strates their ability to compete alongside supervised learning

June 2, 2021 16:58 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-10 page 287

Creating Test Oracles Using Machine Learning Techniques 287

techniques in terms of constructing an automated test oracles.

In addition, the combination of clustering algorithms and semi-

supervised/supervised learning techniques also showed reasonable

performance.

iii. Unsupervised machine learning techniques: Clustering methods

with different sampling strategies (stratified, simple random, one-

per-cluster, adaptive, n-per-cluster and failure-pursuit sampling

strategies) showed their ability to find failures by using differ-

ent execution profiles. Simple random sampling strategy did not

perform well compared to other sampling strategies. In addi-

tion, clustering algorithms with no sampling strategies proved

that they can be used to build automated test oracles.

The number of individual machine learning algorithms that has been

used in discussed papers is illustrated in Fig. 10.11 (fifteen Algo-

rithms in total). From the algorithms shown in Fig. 10.9, the five

most frequently individual algorithms are ANN, Hierarchical cluster-

ing with sample strategies, SVM, Markov model with clustering and

DT. ANN is the most frequently used individual algorithm for test

oracle construction with seven studies.

Fig. 10.11 Individual Algorithms Used for Test Oracle Construction.

(c) In terms of effectiveness, a classification strategy (supervised machine

learning techniques) is reported to be better in most cases compared

June 2, 2021 16:58 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-10 page 288

288 Artificial Intelligence Methods for Software Engineering

to a clustering strategy (unsupervised machine learning techniques)

in terms of software fault detection. However, a classification strat-

egy has disadvantages that can be summarised as follows (Chandola

et al., 2009): (1) multi-class classification-based techniques rely on

the availability of accurate labels for various normal classes, which is

often not possible; (2) classification-based techniques assign a label

to each test instance, which can also become a disadvantage when a

meaningful anomaly score is desired for the test instances.

As can be seen from Fig. 10.12, classification problems used far more

frequently than other machine learning problems when constructing test

oracles.

Fig. 10.12 The Frequency of Machine Learning Problem Types Used to Construct Test

Oracles.

• Question 2:

(a) The chapter reported that different types of dynamic execution data

have been used as a set of features to build anomaly detection

model such as the execution count of conditional branches, func-

tion caller/callee profiles, execution count for functions or methods,

input/output pairs, throw counts, catch counts and execution traces

such as temporal relation events, program properties, frequent path

sequences, profiles of event transitions, predicate state information,

and method entry/exit points.

Figure 10.13 shows the frequency of execution data usage in discussed

papers. Input/Output pairs and execution profiles are the most

June 2, 2021 16:58 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-10 page 289

Creating Test Oracles Using Machine Learning Techniques 289

Fig. 10.13 Frequency of Use of Execution Data Types Over the Studies.

frequently used feature for building test oracles (9 studies each), fol-

lowed by execution traces, combinations of input/output pairs and

execution traces, decision control statements and profiles of event

transition (3 and 2 studies for each feature respectively). Predicate

state information is only used in 1 study.

(b) The experimental results in some studies showed that the execution

count for conditional branches and execution count for functions or

methods are more suitable to build an effective automated software

fault detection model (using a supervised learning strategy) com-

pared to throw count and catch count. In addition, the combination

of input/output pairs and execution traces is more suitable to build

an effective test oracle compared to input/output pairs alone.

(c) The chapter reported that different approaches have been used to

transform dynamic execution data to suitable set of feature vectors

for anomaly detection techniques to be able to make meaningful

distance comparisons between execution trace profiles such as bi-

nary metric, proportional metric, SD metric, histogram metric, linear

regression metric, count binary metric and proportional binary met-

ric [45]. However, binary metric is the most commonly used ap-

proach, and normalisation has only been used in the case of using

input/output data with anomaly detection to build an automated

test oracle. Tokenisation and compression is also used to transform

June 2, 2021 16:58 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-10 page 290

290 Artificial Intelligence Methods for Software Engineering

text input/output pairs and execution traces into suitable and com-

pact feature representations.

• Question 3:

(a) The chapter reported different types of faults that have been used in

the experiments such as operator faults, domain faults, computation

faults, fatal faults (executions that terminated because an uncaught

exception), non-fatal faults (executions that terminated normally but

produce the wrong output), omission faults (omission bugs are those

where methods/functions that should have been invoked were ab-

sent), additional faults (bugs are those where methods/functions were

invoked but were unnecessary and caused a failure of execution run)

and ordering faults (bugs are those methods/functions that are called

out of sequence).

(b) The experimental results for some studies have reported that domain

faults are more frequently detected by the Markov model compared

to computation errors, and also omission and additional bugs are

more frequently detected by the pattern mining algorithm compared

to ordering bugs.

(c) There is no evidence for any relationship between specific types of

faults and anomaly detection approaches that have been reported in

discussed papers in this chapter.

Tables 10.2–10.4 provide a summary of the available approaches, the un-

derlying mechanisms and input/output data. In addition, Tables 10.5–10.7

highlight the main findings for all proposed approaches in the paper dis-

cussed in this chapter.

10.5 Discussion

In terms of their application in practice, the most important properties

that test oracles need to demonstrate are scalability, fault detection ability,

a low false positive rate and cost effectiveness. Each of those properties is

explained further below:

• Scalability means the ability of any technique to handle any size of soft-

ware (with corresponding increases in the volume of data). In other

words, a technique has to be potentially usable at an industrial level.

June 2, 2021 16:58 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-10 page 291

Creating Test Oracles Using Machine Learning Techniques 291

Table 10.2 Summary of Selected Studies Using Supervised Learning.

Techniques Based on Supervised Learning Strategy
Author Aim Technique Data Transformation

- Processing
Jin et al.
(2008)

Test
oracle

ANN Input/Output pairs N/A

Aggarwal
et al.
(2004)

Test
oracle

ANN Input/Output pairs N/A

Chan et al.
(2006)

Test
oracle

ANN Input/Output pairs Normalisation

Vanmali
et al.
(2002)

Test
oracle

ANN Input/Output pairs Normalisation -
Binary

Shahamiri
et al.
(2010)

Test
oracle

ANN Input/Output pairs Normalisation -
Binary

Shahamiri
et al.
(2012)

Test
oracle

ANN Input/Output pairs Normalisation -
Binary

Tsimpourlas
et al.
(2020)

Test
oracle

ANN Execution traces
(sequences of
method invocations)

Binary

Wang et al.
(2011)

Test
oracle

SVM Execution traces
(variables for
temporal Relation
events)

Binary

Parsa et al.
(2009)

Faults
detection

SVM Decision control
statements

Binary

Parsa et al.
(2012)

Faults
detection

SVM Decision control
statements

Binary

Frounchi
et al.
(2011)

Test
oracle

DT Input/Output pairs Normalisation

Brun et al.
(2004)

Finding
error in
program
properties

SVM and DT Execution traces
(program
properties)

Binary

Haran et al.
(2005)

Classifying
execution
data

Random forests and
DT

Statement,
throw/catch and
method counts

Principal com-
ponent analysis

Haran et al.
(2007)

Classifying
execution
data

Random forests,
association trees
and adaptive
sampling association
trees

statement,
throw/catch and
method counts

Principal com-
ponent analysis

Lo et al.
(2009)

Failures
detection

Pattern mining
algorithm

Execution traces
(the frequent path
sequences with tim-
ing information)

Binary

• Fault detection ability refers to the effectiveness which new (unseen)

faults occurring in the running application are identified.

• False positive rate is the rate of false alarms reported by test oracles. This

can be considered as the biggest issue with automated oracles. When such

a rate is intolerably high, any problem reported by automated oracles will

be deemed unreliable and ignored by developers.

June 2, 2021 16:58 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-10 page 292

292 Artificial Intelligence Methods for Software Engineering

Table 10.3 Summary of Selected Studies Using Semi-Supervised Learning.

Techniques Based on Semi-Supervised Learning Strategy
Author Aim Technique Data Transformation

- Processing
Podgurski
et al.
(2003)

Built a system to
group together
failures with the
same or similar
causes

Logistic regress-
ion and clustering
technique

Execution function
counts

Binary

Francis et al.
(2004)

Built a system to
classifying
reported instances
of software fail-
ures so that fail-
ures with the same
cause are grouped
together

tree-based tech-
niques (e.g.
CART algorithm)
and clustering
technique

Execution
function/method
counts

Binary

Bowring
et al.
(2004)

Automatic classifi-
cation of program
behaviours using
execution data

Markov model
and clustering
technique

Profiles of event
transitions such as
branches

Binary

Mao et al.
(2005)

Software faults
localization

Markov model
and clustering
technique with
priority-ranked-
n-per-cluster sam-
pling strategy

Profiles of event
transitions such as
branches

Binary

Baah et al.
(2006)

Software faults
detection and
localization on
deployment stage

Markov model
with clustering
technique

Predicate state
information such
as class name,
method name, line
number and predi-
cate state

Binary

Almaghairbe
et al.
(2016)

Test oracle Self-training and
co-training
techniques

Input/Output
pairs

Tokenization
process

Roper (2019) Test oracle Cluster analysis
with supervised
learning
techniques

Input/Output
pairs and execu-
tion traces
(methods
entry/exit points)

Tokenization
process for
input/output
pairs and hash
function for
execution trace

• Cost effectiveness takes into consideration the effort and resources re-

quired to create an oracle in relation to its ability to reveal subtle seman-

tic failures.

Generally, all those properties are complementary to each other and can

affect the usability of any test oracle in practice. The ultimate goal of the

software testing community is to find a test oracle that can be used to test

any system, and is able to find all failures with a low false positive rate at

an acceptable cost.

Test oracles based on supervised learning techniques have been widely

used to build an automated test oracle. They have shown that they are

June 2, 2021 16:58 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-10 page 293

Creating Test Oracles Using Machine Learning Techniques 293

Table 10.4 Summary of Selected Studies Using Unsupervised Learning.

Techniques Based on Unsupervised Learning Strategy
Author Aim Technique Data Transformation -

Processing
Podgurski
et al. (1999)

Estimation
of software
reliability

Cluster analysis
with stratified
sampling strategy

Execution profiles
(execution counts
of conditional
branches)

Binary

Dickinson
et al.
(2001a)

Finding
software
failures

Cluster analysis
with different
sampling strategies
(simple random,
one-per-cluster,
adaptive and
n-per-cluster)

Execution profiles
(function
caller/callee)

Binary,
proportional, his-
togram, standard
deviation, linear
regression, count
binary and propor-
tional count binary

Dickinson
et al.
(2001b)

Finding
software
failures

Cluster analysis
with different
sampling strategies
(failure-pursuit,
simple random,
one-per-cluster,
adaptive and
n-per-cluster)

Execution profiles
(function
caller/callee)

Binary, propor-
tional, histogram,
standard devia-
tion, linear regres-
sion, count
binary and propor-
tional count binary

Yoo et al.
(2009)

Finding
software
failures

Cluster analysis
without sampling
strategy

Execution profiles
(execution counts
of conditional
branches)

Binary

Yan et al.
(2010)

Finding
software
failures

Cluster analysis
with execution-
spectra-based
sampling strategy
(ESBS)

Execution profiles
(execution counts
of conditional
branches)

Binary

Masri et al.
(2007)

Finding
software
failures

Cluster analysis
via coverage based
and distribution
based filtering
techniques

Execution profiles
(basic blocks,
branches,
function calls and
call pairs)

Numeric

Almaghairbe
et al. (2015)

Test oracle Cluster analysis
without sampling
strategy

Input/Output
pairs

Tokenization
process

Almaghairbe
et al. (2017)

Test oracle Cluster analysis
without sampling
strategy

Input/Output
pairs and execu-
tion traces (meth-
ods entry/exit
points)

Tokenization
process for
input/output pairs
and hash function
for execution trace

able to test any system with any size which make them scalable. They

also tend to display a powerful ability to detect failures with a very low

false positive and false negative rate (in other words, a high classification

accuracy). However, their effectiveness depends on the availability of a

fully labelled training data set (each instance in the training data set has

to be labelled as passing or failing test execution) to construct the oracle.

Labelling each instance in the training data set can be an expensive process

and typically relies on using a reference version of the software (which is

difficult to obtain in practice), making them prohibitively expensive and

not cost-effective.

June 2, 2021 16:58 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-10 page 294

294 Artificial Intelligence Methods for Software Engineering

Table 10.5 Summary of Findings for Selected Studies Using Supervised Learning.

Techniques Based on Supervised Learning strategy

Author Findings

Jin et al.

(2008)

The average accuracy for the technique is approximately 60%

over several data sets.

Aggarwal et al.
(2004)

The mean miss-classification error for the technique is 15.9%
with standard deviation of 2.312. The mean non-prediction

error for the technique is only 2.949% with standard deviation

of 1.252. The total mean relative error is found to be 19.02%
with standard deviation of 2.224.

Chan et al.

(2006)

The average accuracy for the technique is 78.14%.

Vanmali et al.

(2002)

The minimum classification error rate for the technique for

the binary output is 8.31% and for the continuous output is
20.79%.

Shahamiri
et al. (2010)

The average accuracy for the technique is 95.37%.

Shahamiri

et al. (2012)

The average accuracy for the technique in the first case study

is 95.7% and for the second case study is 98.83%.

Tsimpourlas

et al. (2020)

The classification model for each of the subject programs is

highly effective in classifying passing and failing executions,
achieving over 95% precision, recall and specificity while only

training with an average 9% of the total traces.

Wang et al.

(2011)

The average accuracy for the technique is 95.46%.

Parsa et al.

(2009)

The average precision for the technique is 85%.

Parsa et al.
(2012)

The average precision for technique is 65%.

Frounchi et al.
(2011)

The average accuracy for the technique is 95%.

Brun et al.

(2004)

The experimental results showed for C programs, 45% of the

top 80 properties are fault-revealing. For Java programs, 59%

of the top 80 properties are fault-revealing. The DT tech-
nique performed much better than SVM in term of classifica-

tion. The SVM technique performed much better than DT

technique in term of ranking properties.

Haran et al.
(2005)

Statement counts and method counts succeeded in building
classification model with higher accuracy compared to the

classification model used throw counts and catch counts.

Haran et al.

(2007)

Three techniques performed well with overall

miss-classification rates typically below 2 percent.

Lo et al. (2009) The average accuracy for proposed algorithm was 93.77% and

24.67% over the base classifier. The technique worked well
with omission and additional bugs but poorly with ordering
bugs.

June 2, 2021 16:58 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-10 page 295

Creating Test Oracles Using Machine Learning Techniques 295

Table 10.6 Summary of Findings for Selected Studies Using Semi-Supervised Learn-

ing.

Techniques Based on Semi-Supervised Learning Strategy

Author Findings

Podgurski
et al. (2003)

These results indicate that the strategy can be effective and is
able to group together failures with the same or similar causes.

Francis et al.

(2004)

Experimental results indicate that the proposed techniques

are effective for grouping together failures with the same or

similar causes.

Bowring et al.
(2004)

An active learning approach had very high classification accu-
racy and performed better than batch learning approach.

Mao et al.
(2005)

The results show that the clustering and sampling techniques
based on revised Markov model is more effective to find faults

than Podgurski’s method (one-per-cluster sampling method).

Baah et al.

(2006)

The technique performed well with domain faults and per-

formed poorly with computation error.

Almaghairbe
et al. (2016)

The results show that in many cases labelling just a small
proportion of the test cases as low as 10% is sufficient to build a

classifier that is able to correctly categorise the large majority

of the remaining test cases.

Roper (2019) The accuracy of the technique is 86% with just only 31 test
cases labelled.

Test oracles based on semi-supervised learning techniques are less expen-

sive in comparison to those based on supervised learning techniques as they

require a smaller set of labelled training data (as opposed to the large data

set required by supervised techniques or the fault-free version employed

by invariant detectors). However, test oracles based on semi-supervised

learning techniques have a lower accuracy in comparison to those based on

supervised learning techniques (they have a slightly higher false positive

rate, and also slightly lower fault detection ability) which is to be expected

as the training of the algorithms use far less labelled data. Semi-supervised

approaches are a classic demonstration of the cost benefit trade-off: a larger

set of labelled data is likely to yield a more accurate classifier, and while

these techniques are significantly more cost-effective (and practicable) than

supervised approaches, there is still work to be done in establishing the

ideal ratio of labelled to unlabelled data.

Test oracles based on unsupervised learning techniques do not require

the availability of labelled data or a fault free version of the SUT to con-

struct test oracles which make them more scalable in comparison to test

oracles based on supervised/semi-supervised learning techniques and test

oracles based on invariant detection in terms of the provision of labelled

data (other scalability issues may arise in the application of the algorithms

June 2, 2021 16:58 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-10 page 296

296 Artificial Intelligence Methods for Software Engineering

Table 10.7 Summary of Findings for Selected Studies Using Unsupervised Learning.

Techniques Based on Unsupervised Learning Strategy
Author Findings
Podgurski
et al. (1999)

Experimental results suggest that the approach is computationally feasible,
can isolate failures, and can significantly reduce the cost of estimating software
reliability. Stratified sampling strategy performed much better than simple
random sampling strategy.

Dickinson
et al.
(2001a)

The experimental data shows that the percentage of failures found in the small-
est clusters is significantly higher than 50%. One-per-cluster, adaptive and
n-per-cluster sampling strategies performed much better than simple random
sampling strategy. Also, binary, standard deviation, histogram, proportional
and proportional binary metrics with the sampling strategies performed much
better than linear regression and binary metrics.

Dickinson
et al.
(2001b)

The experimental data shows that the percentage of failures found in the
smallest clusters is significantly higher than 50%. Failure-pursuit, one-per-
cluster, adaptive and n-per-cluster sampling strategies performed much bet-
ter than simple random sampling strategy. Also, binary, standard deviation,
histogram, proportional and proportional binary metrics with the sampling
strategies performed much better than linear regression and binary metrics.

Yoo et al.
(2009)

The empirical studies show that the proposed approach (hybrid ICP algo-
rithm) can outperform the traditional coverage-based prioritisation for some
programs.

Yan et al.
(2010)

The experimental results show that clustering algorithm with ESBS sampling
strategy is better in failures detection than existing sampling strategies in
most case.

Masri et al.
(2007)

Both coverage maximization and distribution-based filtering techniques were
more effective overall than simple random sampling, although the latter per-
formed well in one case in which failures comprised a relatively large proportion
of the test suite. In addition, distribution based filtering techniques did not
perform significantly better than coverage maximization overall.

Almaghairbe
et al. (2015)

The findings reveal that failing outputs do indeed tend to congregate in small
clusters, suggesting that the approach is feasible and has the potential to
reduce by an order of magnitude the numbers of outputs that would need to
be manually examined following a test run.

Almaghairbe
et al. (2017)

The experimental results gave an evidence which support the clustering hy-
pothesis behind their work where in several cases small (less than average
sized) clusters contained more than 60% of failures (and often a substantially
higher proportion). As well as having a higher failure density they also con-
tained a spread of failures in the cases where there were multiple faults in the
programs. The results also demonstrate important practical consequences: the
task of checking test outputs may potentially be reduced significantly to exam-
ining a relatively small proportion of the data to discover a large proportion
of the failures.

but these are likely to be equally applicable to all approaches). In addition,

they are less expensive to obtain in comparison to test oracles based on

supervised/semi-supervised learning techniques (again as no data labelling

is necessary), but can be less accurate for the same reason.

Most recently, Almaghairbe et al. [53,54] empirically evaluated test or-

acles based on semi-supervised and unsupervised learning techniques by

comparing them with existing techniques from the mining specification do-

main (the data invariant detector Daikon [55]). The experimental results

showed that semi-supervised learning techniques have a higher fault detec-

tion ability (82% on average) and lower false positive rate (11% on average

June 2, 2021 16:58 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-10 page 297

Creating Test Oracles Using Machine Learning Techniques 297

compared to 16% for Daikon and for unsupervised learning). In addition,

unsupervised learning techniques have slightly higher fault detection ability

compared to Daikon (66% compared to 64%), but a similar false positive

rate (16% on average).

In general, as such approaches are developed, more work is needed on the

measurement of oracles and their properties, and also it has been suggested

that it is important for the software metrics community to consider the

concept of “oracle metrics” [4].

10.6 Further Research Direction

Despite the achievements identified in this chapter, there are a number

of barriers that need to be overcome for the work to become practically

usable which fall into the categories of scalability and accuracy. These are

explained further below:

10.6.1 Improving the Accuracy

Accuracy in this context means the ability of the proposed approaches

to identify failing and passing test results as correctly as possible (high

true positive rate and low false positive/false negative rates). The ac-

curacy of semi-supervised and unsupervised learning techniques may be

improved by augmenting the data sets (input/output pairs and execution

traces) with more relevant information from the program execution (e.g.

state information, execution time and code coverage etc.) to build more

effective/accurate test oracles, but this strategy still needs to be evaluated.

Adding more execution data to the data sets can help to reduce the size

of labelled data needed to train the learning algorithms in semi-supervised

learning. This also relates to scalability but to make the approach practical

the size of labelled data needs to be as low as possible which means im-

proving the accuracy as well. The other point related to the size of labelled

data and then accuracy is that the predictions of semi-supervised learning

approaches should come with an estimate of confidence.

The accuracy of unsupervised learning approaches can be improved by

selecting the most appropriate similarity measures for clustering algorithms.

In addition, the number of specified clusters for clustering algorithms is

important and the accuracy can be improved by specifying the optimal

number of cluster counts as this can have a significant impact on the way

that passing and failing tests become grouped into different clusters.

June 2, 2021 16:58 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-10 page 298

298 Artificial Intelligence Methods for Software Engineering

The final way to improve accuracy is to investigate alternative algo-

rithms. A wide range have already been employed as has been seen in this

study but there are many machine learning algorithms which have yet to

be explored, along with meta-level approaches such as ensemble methods

which combine learners to build more effective and accurate algorithms.

10.6.2 Improving the Scalability

Many of the approaches reviewed work with very complex feature sets: test

inputs and outputs, execution traces, function call profiles, predicate state

information, event transition profiles etc. These are often extensive sets of

information which are not easily handled by machine learning algorithms

and consequently need to be transformed and encoded in a form that allows

them to be compared sensibly and used meaningfully as feature sets. For

instance, the input/output pairs for tested systems in [43, 51, 52] were of

string/text type and it turned out that a tokenization procedure worked

reasonably well with the proposed approach, but this may not be generally

applicable for all input and output types. More general strategies need to

be identified to make the approaches scalable and widely applicable.

An interesting approach to addressing the scalability (and cost-

effectiveness) issue which should be explored in the future is to investigate

the feasibility of using the cheap results from clustering in which there is

the greatest confidence to generate the labelled set required by the semi-

supervised techniques, and thereby reduce the cost of the semi-supervised

learning. There has already been some initial work in this area [44]

In summary, the fundamental principle to the successful automated test

oracles is the capability to build oracles that demonstrate a substantially

lower false positive rate and higher fault detection capability, as compared

to the available, state of the art tools. Therefore, future research is also

devoted to further development and empirical investigation of the effective-

ness of several automated test oracles, to evaluate the features offered by

different alternative oracles.

10.7 Conclusion

The importance of testing activity is widely known. However, the difficulty

in deciding whether a result is acceptable or not (also known as the oracle

problem) hampers such activity.

The comparison between expected output and obtained output is often

June 2, 2021 16:58 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-10 page 299

Creating Test Oracles Using Machine Learning Techniques 299

determined manually by the tester, which is usually slow, error-prone, and

very expensive. Several approaches have been proposed in order to address

the oracle problem and automate the process.

The main contribution of this chapter is to present a comprehensive

overview on test oracles based on machine learning techniques, and iden-

tify the strengths and limitations of the approach. We also provided a

discussion about the required properties of automated and semi-automated

test oracle techniques (based on machine learning techniques) for them to

be practically usable such as scalability, accuracy and cost effectiveness.

Those properties are used as criteria to evaluate the existing approaches.

To conclude, the chapter sets out a road map for future work and a guide-

line to software testing researchers who seek to address this challenging and

important problem.

References

[1] G. Fraser and A. Arcuri, Evosuite: Automatic test suite generation for
object-oriented software, in Proceedings of the 19th ACM SIGSOFT Sym-
posium and the 13th European Conference on Foundations of Software En-
gineering, ESEC/FSE ’11. ACM, New York, NY, USA, ISBN 978-1-4503-
0443-6, pp. 416–419 (2011), ISBN 978-1-4503-0443-6, doi:10.1145/2025113.
2025179, http://doi.acm.org/10.1145/2025113.2025179.

[2] L. Baresi and M. Young, Test oracles, Technical Report CIS-TR-01-02, Uni-
versity of Oregon, Dept. of Computer and Information Science, Eugene, Ore-
gon, U.S.A. (2001), http://www.cs.uoregon.edu/~michal/pubs/oracles.
html.

[3] C. Pacheco and M. D. Ernst, Randoop: Feedback-directed random test-
ing for java, in Companion to the 22Nd ACM SIGPLAN Conference on
Object-oriented Programming Systems and Applications Companion, OOP-
SLA ’07. ACM, New York, NY, USA, ISBN 978-1-59593-865-7, pp. 815–
816 (2007), ISBN 978-1-59593-865-7, doi:10.1145/1297846.1297902, http:

//doi.acm.org/10.1145/1297846.1297902.
[4] E. Barr, M. Harman, P. McMinn, M. Shahbaz and S. Yoo, The oracle prob-

lem in software testing: A survey, Software Engineering, IEEE Transactions
on 41, 5, pp. 507–525 (2015), doi:10.1109/TSE.2014.2372785.

[5] D. Tu, R. Chen, Z. Du and Y. Liu, A method of log file analy-
sis for test oracle, in Scalable Computing and Communications; Eighth
International Conference on Embedded Computing, 2009. SCALCOM-
EMBEDDEDCOM’09. International Conference on, pp. 351–354 (2009),
doi:10.1109/EmbeddedCom-ScalCom.2009.69.

[6] A. Memon, I. Banerjee and A. Nagarajan, What test oracle should I use for
effective gui testing? in 18th IEEE International Conference on Automated
Software Engineering, 2003. Proceedings., pp. 164–173 (2003).

http://doi.acm.org/10.1145/2025113.2025179
http://www.cs.uoregon.edu/~michal/pubs/oracles.html
http://www.cs.uoregon.edu/~michal/pubs/oracles.html
http://doi.acm.org/10.1145/1297846.1297902
http://doi.acm.org/10.1145/1297846.1297902

June 2, 2021 16:58 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-10 page 300

300 Artificial Intelligence Methods for Software Engineering

[7] S. R. Shahamiri, W. M. N. W. Kadir and S. Z. Mohd-Hashim, A comparative
study on automated software test oracle methods, in Software Engineering
Advances, 2009. ICSEA ’09. Fourth International Conference on, pp. 140–
145 (2009), doi:10.1109/ICSEA.2009.29.

[8] M. Ye, B. Feng, L. Zhu and Y. Lin, Automated test oracle based on neural
networks, in 2006 5th IEEE International Conference on Cognitive Infor-
matics, Vol. 1, pp. 517–522 (2006), doi:10.1109/COGINF.2006.365539.

[9] R. A. P. Oliveira, U. Kanewala and P. A. Nardi, Automated Test Oracles:
State of the Art, Taxonomies, and Trends, ELSEVIER ACADEMIC PRESS
INC 525 B STREET, SUITE 1900, SAN DIEGO, CA 92101-4495 USA,
pp. 113–199 (2014).

[10] P. McMinn, M. Shahbaz and M. Stevenson, Search-based test input genera-
tion for string data types using the results of web queries, in 2012 IEEE Fifth
International Conference on Software Testing, Verification and Validation,
pp. 141–150 (2012), doi:10.1109/ICST.2012.94.

[11] A. Z. Javed, P. A. Strooper and G. N. Watson, Automated generation of test
cases using model-driven architecture, in Proceedings of the Second Interna-
tional Workshop on Automation of Software Test, AST ’07. IEEE Computer
Society, Washington, DC, USA, ISBN 0-7695-2971-2, pp. 3– (2007), ISBN
0-7695-2971-2, doi:10.1109/AST.2007.2, http://dx.doi.org/10.1109/AST.
2007.2.

[12] D. Hook and D. Kelly, Testing for trustworthiness in scientific software,
in Software Engineering for Computational Science and Engineering, 2009.
SECSE ’09. ICSE Workshop on, pp. 59–64 (2009), doi:10.1109/SECSE.2009.
5069163.

[13] D. D’Souza and M. Gopinatha, Computing complete test graphs for hierar-
chical systems, in Fourth IEEE International Conference on Software En-
gineering and Formal Methods (SEFM’06), pp. 70–79 (2006), doi:10.1109/
SEFM.2006.13.

[14] S. R. Shahamiri, W. M. N. W. Kadir and S. Ibrahim, A single-network
ann-based oracle to verify logical software modules, in Software Technology
and Engineering (ICSTE), 2010 2nd International Conference on, Vol. 2,
pp. V2–272–V2–276 (2010), doi:10.1109/ICSTE.2010.5608808.

[15] M.-C. Gaudel, Testing can be formal, too, in Proceedings of the 6th Interna-
tional Joint Conference CAAP/FASE on Theory and Practice of Software
Development, TAPSOFT ’95. Springer-Verlag, London, UK, UK, ISBN 3-
540-59293-8, pp. 82–96 (1995), ISBN 3-540-59293-8, http://dl.acm.org/

citation.cfm?id=646619.697560.
[16] M. E. Delamaro, F. de Lourdes dos Santos Nunes and R. A. P. de Oliveira,

Using concepts of content-based image retrieval to implement graphical test-
ing oracles, Software Testing, Verification and Reliability 23, 3, pp. 171–198
(2013), doi:10.1002/stvr.463, http://dx.doi.org/10.1002/stvr.463.

[17] A. M. Memon and Q. Xie, Empirical evaluation of the fault-detection effec-
tiveness of smoke regression test cases for gui-based software, in Software
Maintenance, 2004. Proceedings. 20th IEEE International Conference on,
pp. 8–17 (2004), doi:10.1109/ICSM.2004.1357785.

http://dx.doi.org/10.1109/AST.2007.2
http://dx.doi.org/10.1109/AST.2007.2
http://dl.acm.org/citation.cfm?id=646619.697560
http://dl.acm.org/citation.cfm?id=646619.697560
http://dx.doi.org/10.1002/stvr.463

June 2, 2021 16:58 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-10 page 301

Creating Test Oracles Using Machine Learning Techniques 301

[18] M. Pezzè and C. Zhang, Automated test oracles: A survey, in Advances in
Computers, Vol. 95. Elsevier, pp. 1–48 (2015).

[19] R.-K. Doong and P. G. Frankl, The astoot approach to testing object-
oriented programs, ACM Trans. Softw. Eng. Methodol. 3, 2, pp. 101–130
(1994), doi:10.1145/192218.192221, http://doi.acm.org/10.1145/192218.
192221.

[20] B. P. Miller, L. Fredriksen and B. So, An empirical study of the reliability of
unix utilities, Commun. ACM 33, 12, pp. 32–44 (1990), doi:10.1145/96267.
96279, http://doi.acm.org/10.1145/96267.96279.

[21] Z. Q. Zhou, S. Zhang, M. Hagenbuchner, T. H. Tse, F.-C. Kuo and
T. Y. Chen, Automated functional testing of online search services, Softw.
Test. Verif. Reliab. 22, 4, pp. 221–243 (2012), doi:10.1002/stvr.437, http:
//dx.doi.org/10.1002/stvr.437.

[22] S. Hangal and M. S. Lam, Tracking down software bugs using automatic
anomaly detection, in Proceedings of the 24th International Conference on
Software Engineering, ICSE ’02. ACM, New York, NY, USA, ISBN 1-
58113-472-X, pp. 291–301 (2002), ISBN 1-58113-472-X, doi:10.1145/581339.
581377, http://doi.acm.org/10.1145/581339.581377.

[23] V. Chandola, A. Banerjee and V. Kumar, Anomaly detection: A survey,
ACM Comput. Surv. 41, 3, pp. 15:1–15:58 (2009), doi:10.1145/1541880.
1541882, http://doi.acm.org/10.1145/1541880.1541882.

[24] H. Jin, Y. Wang, N. W. Chen, Z. J. Gou and S. Wang, Artificial neural
network for automatic test oracles generation, in Computer Science and
Software Engineering, 2008 International Conference on, Vol. 2, pp. 727–
730 (2008), doi:10.1109/CSSE.2008.774.

[25] K. K. Aggarwal, Y. Singh, A. Kaur and O. P. Sangwan, A neural net based
approach to test oracle, SIGSOFT Softw. Eng. Notes 29, 3, pp. 1–6 (2004),
doi:10.1145/986710.986725, http://doi.acm.org/10.1145/986710.986725.

[26] W. K. Chan, M. Y. Cheng, S. C. Cheung and T. H. Tse, Automatic goal-
oriented classification of failure behaviors for testing xml-based multimedia
software applications: An experimental case study, J. Syst. Softw. 79, 5,
pp. 602–612 (2006), doi:10.1016/j.jss.2005.05.031, http://dx.doi.org/10.
1016/j.jss.2005.05.031.

[27] M. Vanmali, M. Last and A. Kandel, Using a neural network in the software
testing process, International Journal of Intelligent Systems 17, 1, pp. 45–62
(2002), doi:10.1002/int.1002, http://dx.doi.org/10.1002/int.1002.

[28] S. Shahamiri, W. Wan-Kadir, S. Ibrahim and S. Hashim, Artificial neu-
ral networks as multi-networks automated test oracle, Automated Soft-
ware Engineering 19, 3, pp. 303–334 (2012), doi:10.1007/s10515-011-0094-z,
http://dx.doi.org/10.1007/s10515-011-0094-z.

[29] F. Tsimpourlas, A. Rajan and M. Allamanis, Learning to encode and classify
test executions, (2020), arXiv:2001.02444 [cs.SE].

[30] F. Wang, L. Yao and J. Wu, Intelligent test oracle construction for reactive
systems without explicit specifications, in 2011 IEEE Ninth International
Conference on Dependable, Autonomic and Secure Computing, pp. 89–96
(2011), doi:10.1109/DASC.2011.39.

http://doi.acm.org/10.1145/192218.192221
http://doi.acm.org/10.1145/192218.192221
http://doi.acm.org/10.1145/96267.96279
http://dx.doi.org/10.1002/stvr.437
http://dx.doi.org/10.1002/stvr.437
http://doi.acm.org/10.1145/581339.581377
http://doi.acm.org/10.1145/1541880.1541882
http://doi.acm.org/10.1145/986710.986725
http://dx.doi.org/10.1016/j.jss.2005.05.031
http://dx.doi.org/10.1016/j.jss.2005.05.031
http://dx.doi.org/10.1002/int.1002
http://dx.doi.org/10.1007/s10515-011-0094-z
http://arxiv.org/abs/2001.02444

June 2, 2021 16:58 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-10 page 302

302 Artificial Intelligence Methods for Software Engineering

[31] S. Parsa, S. Arabi Nare and M. Vahidi-Asl, Early Bug Detection in Deployed
Software Using Support Vector Machine. Springer Berlin Heidelberg, Berlin,
Heidelberg, ISBN 978-3-540-89985-3, pp. 518–525 (2009), ISBN 978-3-540-
89985-3, doi:10.1007/978-3-540-89985-3 64, http://dx.doi.org/10.1007/

978-3-540-89985-3_64.
[32] S. Parsa and S. A. Naree, Software online bug detection: applying a new

kernel method, IET Software 6, 1, pp. 61–73 (2012), doi:10.1049/iet-sen.
2010.0057.

[33] K. Frounchi, L. C. Briand, L. Grady, Y. Labiche and R. Subramanyan,
Automating image segmentation verification and validation by learning
test oracles, Information and Software Technology 53, 12, pp. 1337–
1348 (2011), doi:http://dx.doi.org/10.1016/j.infsof.2011.06.009, http://

www.sciencedirect.com/science/article/pii/S095058491100156X.
[34] Y. Brun and M. D. Ernst, Finding latent code errors via machine learning

over program executions, in Proceedings of the 26th International Conference
on Software Engineering, ICSE ’04. IEEE Computer Society, Washington,
DC, USA, ISBN 0-7695-2163-0, pp. 480–490 (2004), ISBN 0-7695-2163-0,
http://dl.acm.org/citation.cfm?id=998675.999452.

[35] M. Haran, A. Karr, A. Orso, A. Porter and A. Sanil, Applying classification
techniques to remotely-collected program execution data, SIGSOFT Softw.
Eng. Notes 30, 5, pp. 146–155 (2005), doi:10.1145/1095430.1081732, http:
//doi.acm.org/10.1145/1095430.1081732.

[36] M. Haran, A. Karr, M. Last, A. Orso, A. A. Porter, A. Sanil and S. Fouche,
Techniques for classifying executions of deployed software to support soft-
ware engineering tasks, IEEE Transactions on Software Engineering 33, 5,
pp. 287–304 (2007), doi:10.1109/TSE.2007.1004.

[37] D. Lo, H. Cheng, J. Han, S.-C. Khoo and C. Sun, Classification of soft-
ware behaviors for failure detection: A discriminative pattern mining ap-
proach, in Proceedings of the 15th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, KDD ’09. ACM, New
York, NY, USA, ISBN 978-1-60558-495-9, pp. 557–566 (2009), ISBN 978-1-
60558-495-9, doi:10.1145/1557019.1557083, http://doi.acm.org/10.1145/
1557019.1557083.

[38] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch, J. Sun and B. Wang,
Automated support for classifying software failure reports, in Proceedings of
the 25th International Conference on Software Engineering, ICSE ’03. IEEE
Computer Society, Washington, DC, USA, ISBN 0-7695-1877-X, pp. 465–
475 (2003), ISBN 0-7695-1877-X, http://dl.acm.org/citation.cfm?id=

776816.776872.
[39] P. Francis, D. Leon, M. Minch and A. Podgurski, Tree-based methods for

classifying software failures, in Proceedings of the 15th International Sym-
posium on Software Reliability Engineering, ISSRE ’04. IEEE Computer
Society, Washington, DC, USA, ISBN 0-7695-2215-7, pp. 451–462 (2004),
ISBN 0-7695-2215-7, doi:10.1109/ISSRE.2004.43, http://dx.doi.org/10.

1109/ISSRE.2004.43.
[40] J. F. Bowring, J. M. Rehg and M. J. Harrold, Active learning for automatic

http://dx.doi.org/10.1007/978-3-540-89985-3_64
http://dx.doi.org/10.1007/978-3-540-89985-3_64
http://www.sciencedirect.com/science/article/pii/S095058491100156X
http://www.sciencedirect.com/science/article/pii/S095058491100156X
http://dl.acm.org/citation.cfm?id=998675.999452
http://doi.acm.org/10.1145/1095430.1081732
http://doi.acm.org/10.1145/1095430.1081732
http://doi.acm.org/10.1145/1557019.1557083
http://doi.acm.org/10.1145/1557019.1557083
http://dl.acm.org/citation.cfm?id=776816.776872
http://dl.acm.org/citation.cfm?id=776816.776872
http://dx.doi.org/10.1109/ISSRE.2004.43
http://dx.doi.org/10.1109/ISSRE.2004.43

June 2, 2021 16:58 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-10 page 303

Creating Test Oracles Using Machine Learning Techniques 303

classification of software behavior, in Proceedings of the 2004 ACM SIG-
SOFT International Symposium on Software Testing and Analysis, ISSTA
’04. ACM, New York, NY, USA, ISBN 1-58113-820-2, pp. 195–205 (2004),
ISBN 1-58113-820-2, doi:10.1145/1007512.1007539, http://doi.acm.org/

10.1145/1007512.1007539.
[41] C. Mao and Y. Lu, Extracting the Representative Failure Executions via

Clustering Analysis Based on Markov Profile Model. Springer Berlin Heidel-
berg, Berlin, Heidelberg, ISBN 978-3-540-31877-4, pp. 217–224 (2005), ISBN
978-3-540-31877-4, doi:10.1007/11527503 26, http://dx.doi.org/10.1007/
11527503_26.

[42] G. K. Baah, A. Gray and M. J. Harrold, On-line anomaly detection of de-
ployed software: A statistical machine learning approach, in Proceedings of
the 3rd International Workshop on Software Quality Assurance, SOQUA ’06.
ACM, New York, NY, USA, ISBN 1-59593-584-3, pp. 70–77 (2006), ISBN 1-
59593-584-3, doi:10.1145/1188895.1188911, http://doi.acm.org/10.1145/
1188895.1188911.

[43] R. Almaghairbe and M. Roper, Automatically classifying test results by
semi-supervised learning, in 2016 IEEE 27th International Symposium on
Software Reliability Engineering (ISSRE), pp. 116–126 (2016), doi:10.1109/
ISSRE.2016.22.

[44] M. Roper, Using machine learning to classify test outcomes, in IEEE Inter-
national Conference On Artificial Intelligence Testing, AITest 2019, Newark,
CA, USA, April 4–9, 2019. IEEE, pp. 99–100 (2019), doi:10.1109/AITest.
2019.00009, https://doi.org/10.1109/AITest.2019.00009.

[45] W. Dickinson, D. Leon and A. Podgurski, Finding failures by cluster analysis
of execution profiles, in Software Engineering, 2001. ICSE 2001. Proceedings
of the 23rd International Conference on, pp. 339–348 (2001a), doi:10.1109/
ICSE.2001.919107.

[46] W. Dickinson, D. Leon and A. Podgurski, Pursuing failure: The distribution
of program failures in a profile space, in Proceedings of the 8th European Soft-
ware Engineering Conference Held Jointly with 9th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering, ESEC/FSE-
9. ACM, New York, NY, USA, ISBN 1-58113-390-1, pp. 246–255 (2001b),
ISBN 1-58113-390-1, doi:10.1145/503209.503243, http://doi.acm.org/10.
1145/503209.503243.

[47] A. Podgurski, W. Masri, Y. McCleese, F. G. Wolff and C. Yang, Esti-
mation of software reliability by stratified sampling, ACM Trans. Softw.
Eng. Methodol. 8, 3, pp. 263–283 (1999), doi:10.1145/310663.310667, http:
//doi.acm.org/10.1145/310663.310667.

[48] S. Yoo, M. Harman, P. Tonella and A. Susi, Clustering test cases to achieve
effective & scalable prioritisation incorporating expert knowledge, in Pro-
ceedings of International Symposium on Software Testing and Analysis (IS-
STA 2009). ACM Press, pp. 201–211 (2009).

[49] S. Yan, Z. Chen, Z. Zhao, C. Zhang and Y. Zhou, A dynamic test cluster
sampling strategy by leveraging execution spectra information, in Proceed-
ings of the 2010 Third International Conference on Software Testing, Verifi-

http://doi.acm.org/10.1145/1007512.1007539
http://doi.acm.org/10.1145/1007512.1007539
http://dx.doi.org/10.1007/11527503_26
http://dx.doi.org/10.1007/11527503_26
http://doi.acm.org/10.1145/1188895.1188911
http://doi.acm.org/10.1145/1188895.1188911
https://doi.org/10.1109/AITest.2019.00009
http://doi.acm.org/10.1145/503209.503243
http://doi.acm.org/10.1145/503209.503243
http://doi.acm.org/10.1145/310663.310667
http://doi.acm.org/10.1145/310663.310667

June 2, 2021 16:58 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-10 page 304

304 Artificial Intelligence Methods for Software Engineering

cation and Validation, ICST ’10. IEEE Computer Society, Washington, DC,
USA, ISBN 978-0-7695-3990-4, pp. 147–154 (2010), ISBN 978-0-7695-3990-4,
doi:10.1109/ICST.2010.47, http://dx.doi.org/10.1109/ICST.2010.47.

[50] W. Masri, A. Podgurski and D. Leon, An empirical study of test case fil-
tering techniques based on exercising information flows, IEEE Transactions
on Software Engineering 33, 7, pp. 454–477 (2007), doi:10.1109/TSE.2007.
1020.

[51] R. Almaghairbe and M. Roper, Building test oracles by clustering failures, in
10th IEEE/ACM International Workshop on Automation of Software Test,
AST 2015, Florence, Italy, May 23–24, 2015, pp. 3–7 (2015), doi:10.1109/
AST.2015.8, https://doi.org/10.1109/AST.2015.8.

[52] R. Almaghairbe and M. Roper, Separating passing and failing test execu-
tions by clustering anomalies, Software Quality Journal 25, 3, pp. 803–
840 (2017), doi:10.1007/s11219-016-9339-1, https://doi.org/10.1007/

s11219-016-9339-1.
[53] R. Almaghairbe and M. Roper, An empirical comparison of two different

strategies to automated fault detection: Machine learning versus dynamic
analysis, in 2019 IEEE International Symposium on Software Reliability En-
gineering Workshops (ISSREW), pp. 378–385 (2019), doi:10.1109/ISSREW.
2019.00099.

[54] R. Almaghairbe, M. Roper and T. Almabruk, Machine learning techniques
for automated software fault detection via dynamic execution data: Em-
pirical evaluation study, in Proceedings of the 6th International Confer-
ence on Engineering and MIS 2020, ICEMIS’20. Association for Comput-
ing Machinery, New York, NY, USA, ISBN 9781450377362 (2020), ISBN
9781450377362, doi:10.1145/3410352.3410747, https://doi.org/10.1145/

3410352.3410747.
[55] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco,

M. S. Tschantz and C. Xiao, The daikon system for dynamic detection of
likely invariants, Sci. Comput. Program. 69, 1–3, pp. 35–45 (2007), doi:10.
1016/j.scico.2007.01.015, http://dx.doi.org/10.1016/j.scico.2007.01.

015.

http://dx.doi.org/10.1109/ICST.2010.47
https://doi.org/10.1109/AST.2015.8
https://doi.org/10.1007/s11219-016-9339-1
https://doi.org/10.1007/s11219-016-9339-1
https://doi.org/10.1145/3410352.3410747
https://doi.org/10.1145/3410352.3410747
http://dx.doi.org/10.1016/j.scico.2007.01.015
http://dx.doi.org/10.1016/j.scico.2007.01.015

June 1, 2021 9:2 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-11 page 305

© 2021 World Scientific Publishing Company
https://doi.org/10.1142/9789811239922 0011

Chapter 11

Intelligent Risk Based Analysis
Methodology

Eli Menasheof

Intel Corporation, Jerusalem, Israel

eli.menasheof@intel.com

11.1 Introduction

Traditionally, success in software project management has been associated

with the ability to find balance among the project’s cost (funding and re-

sources), time (schedule and deadlines), and quality (scope and features),

that constrain overall project delivery [12]. The main question is whether

it is possible to achieve a successful project without trade-offs or sacrificing

quality given these constraints.

Since 2000, this challenge has received considerable attention in both

academia and industry. In the literature, in order to cope with this chal-

lenge, researchers have proposed software-testing-related methods such as

Risk-Based Testing (RBT) and Test Case Prioritization (TCP);

software development frameworks, like Agile and Continuous Integra-

tion (CI); and scientists have suggested some Artificial Intelligence

(Al) methods. These methods suggest various solutions, but the most

common mindsets for risk analysis fundamentals in software testing are

“prevention is always better than cure,” as recommended by [30], and also

“no pain, no gain.” This means, with more investment prior to the project

on collecting available data, analyzing them, and consulting with experts,

one will achieve a better long-term risk strategy plan, which will justify

the investment. In practice, this kind of solution usually leads to a low

return on investment (ROI) because the pain, which is in this context the

305

https://doi.org/10.1142/9789811239922_0011
mailto:eli.menasheof@intel.com

June 1, 2021 9:2 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-11 page 306

306 Artificial Intelligence Methods for Software Engineering

investment, comes ahead of achieving the potential gain, i.e., the return.

It might also lead to negative ROI that reflects in the tendency of these

methods to avoid changes during the project in order to reduce continuous

maintenance efforts by key experts. This informed mindset has a negative

impact on project success, and on customer satisfaction because customers

usually ask for further changes during the project. As a result, instead

of focusing on the challenge, which is project success and customer satis-

faction, the major investment by these methods is on a new preparatory

step they added that wasn’t part of the original project scope, and is now

a prerequisite for the project. In addition, existing RBT methods mostly

prioritize testing a single application-under-test and cannot cope with the

interoperability of a large number of applications, as the cost would be even

more expensive. Is it possible to reduce the huge scope without compro-

mising functional coverage, and at the same time expose the most high-risk

areas with its defects?

This chapter proposes intelligent Risk Based Analysis methodology

(iRBA), challenging this status quo. This model changes the rules of the

game by suggesting an original approach to address the challenge. It is

the first time that a method suggests “gain without pain,” or at least with

minimum pain, by intelligent effective utilization of it. iRBA suggests a

practical AI-powered data analysis learning method, built up in real time

according to the behavior and environment of the project. Any signifi-

cant data, event, change, or risk that can impact the project’s priority are

iRBA’s bread and butter toward achieving immediate gain. Continuously,

iRBA measures and adapts to reality and always maintains the best possible

strategy plan, progress, coverage, and quality.

11.2 Motivation and Related Works

Risk-Based Testing. To cope with this challenge, researchers proposed

several RBT methods. A good analogy by [14] compares RBT to eating

food. Most of the existing RBT methods are based on Bach’s attitude.

With more investment on collecting data (about our health), analyzing

them, and consulting with experts (nutritionists, etc.), one will achieve

a better long-term risk strategy plan (diet menu) that will justify the in-

vestment (ensure our health durably). In the ideal world this sounds like

a great solution. But, even if you succeed in creating the best plan (diet

menu), it is not as effective as it could be. The project (our life) is dy-

namic and much more complex. Many events can impact this plan. The

June 1, 2021 9:2 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-11 page 307

Intelligent Risk Based Analysis Methodology 307

requirements may be changed many times by customers, and the schedule

and resources may be changed during the project (a lot of things impact

on your health like daily physical fitness, exposure to others, or contagious

disease, health changes, etc.). It’s also impractical to do dynamically, as it

requires too much investment to run it frequently. We can’t ask most of

our key experts to be dedicated to updating the plan all the time.

On the one hand, RBT has the potential to guide the project by im-

proving the software test process, as it helps to optimize the allocation

of resources and provides decision support for management based on the

plan. Once a plan is made before the project, all the teams reach an agree-

ment and follow it, taking the risk-factor into account. On the other hand,

RBT gives only a partial solution to the challenge, and the return on in-

vestment is low. The overall effort can be quite high, especially when key

project members are involved. The process requires gleaning all the data

after all members have submitted their opinion. Their limited availabil-

ity may impose serious restrictions concerning possible risk estimation and

consolidation methods.

In addition, the plan and its conclusions are based only on data avail-

able before the project, which means it’s mostly based on estimates, as

some data are still not clear at this point, and they cannot predict the fu-

ture. In this context, [14] reminds that all you really have at the beginning

of a project are rumors of risks, and the RBT is going to be incomplete

and inaccurate, and may really be very wrong during the project. It be-

comes even more challenging when such estimates need to be conducted

frequently throughout the lifecycle of a project. Although there are ample

advantages to covering all eventualities, there is also a considerable price

to pay: it makes both the plan-creation process and the decision-making

process slower and more cumbersome. As a mitigation, in order to reduce

continuous maintenance efforts by key experts, the mindset of these existing

RBT methods is risk averse and change avoidance during the project. That

means, once a plan is made and the project has started, accept minimum

new requirements or changes that were not taken into account in the initial

plan. This informed mindset has a negative impact on the satisfaction of

customers, who usually ask for new requirements and changes during the

course of a project.

Agile [20] claimed to be a framework that provides flexible responsive-

ness to changes when using the RBT methods. In Agile there is a fixed

schedule and fixed resources, thus, when things don’t work according to

the plan, the scope needs to be reduced. In this case, the scope should

June 1, 2021 9:2 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-11 page 308

308 Artificial Intelligence Methods for Software Engineering

include the highest priority items in the product backlog for maximizing

the value yielded by the project. In practice, RBT in Agile can be chal-

lenging, too, when scaling projects; it also requires constant refactoring as

changes are frequent and even more so if the scope is not properly defined

from the early stages of the project. There is uncertainty in prioritization

of test cases, too much time spent clarifying and communicating test re-

quirements, a huge backlog of test cases, and rising test environment costs.

Continuous Integration is another cost-effective software develop-

ment framework commonly used in the industry [19, 21], where developers

frequently integrate code changes in the main branch from which new soft-

ware releases are deployed directly into production [26]. Testing of new

software release candidates in CI is a crucial activity to detect defects as

early as possible and to ensure that changes do not adversely affect existing

functionality. However, executing an entire regression test suite after every

code change is often costly in large software projects.

Test Case Prioritization. To deal with this challenge, researchers

have suggested an additional level of optimization: TCP methods [34], to

order the test cases [8] and select the top-k ranked test cases as a subset of

tests suite that must be run to lower costs without overly reducing effec-

tiveness [13]. The most recent systematic literature review that classified

TCP methods was performed by [15]. They concluded that each existing

method has specific potential limitations and can be improved both in terms

of data used and execution process. The challenge of applying most of them

in practice lies in their complexity and the computational overhead typi-

cally required to collect and analyze different test case parameters needed

for prioritization. In addition, these methods often either underestimate or

overestimate the set of test cases needed [13].

Artificial intelligence. To cope with this challenge, scientists have

suggested using AI. Using AI methods improves the defect prediction and

TCP, but there is a steep price to pay, as key experts are required to provide

quality data and invest resources to collect history data, collecting as input

to be used as training data, in order to gain experience from previous data.

[2] suggest using Machine Learning (ML) and multiple heuristic tech-

niques, while the requisite input is the code coverage information, text

path similarity, text content similarity, failure history, and test case age. [4]

suggest using Artificial Neural Networks (ANN), while the essential in-

put is test case metrics like length, command frequency, and parameter

use frequency. [22] propose case-based reasoning using ML, while the re-

quired input is the prioritization indexes, priority information from the user,

June 1, 2021 9:2 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-11 page 309

Intelligent Risk Based Analysis Methodology 309

user-defined pairwise priority relations on test cases, and structural cover-

age information. [11] recommend using Reinforcement Learning (RL), while

the mandatory input is information on test cases, including the test case

duration, the last execution, and a failure history. [23] advise applying Sup-

port Vector Machine (SVM), and [10, 35] suggest using Natural Language

Processing (NLP), while the required input is the history data. [17] advo-

cate using ML, while the necessary input is all previous defects metrics,

as well as newly defined metrics by the method. [29] suggest using Deep

Neural Networks, while the input required is a list of correct and incorrect

spreadsheets and previous defects repositories. To group test cases into

clusters to be used by defect prediction and TCP, [1] suggest using ML

methods, while the required input is structural coverage information, num-

ber of mutants killed, and mutation score associated with each mutation

operator. [25] suggest using semi-supervised clustering, while the needed

input is data labels or data constraints, to be provided by key experts.

Dozens of ML-based studies to improve defect prediction and TCP were

reviewed by [5,32]. They concluded there is much left to improve ML-based

methods quality to improve defect prediction and TCP. They indicate the

main common drawback of these methods is their dependency on a large

amount of data as required input for the training. The success of all these

methods depends on the quality of the data, which means definition of the

metrics by key experts. Another drawback is their inability to discover new

types of defects, such as defects that were not defined in advance nor as

part of the training data.

Most of these methods apply systematic prioritization algorithms and

improve the defect prediction by learning on the entire training data set

at once, which means they are not well adapted to changes. The learning

process and effectiveness using the reward functions is not optimal, as the

agent interacts in a dynamic execution environment, and gets rewards with

dynamic impact. That means, the same action for the same test case does

not always yield the same reward. The importance of some test cases might

be changed over others during the project. New test cases are added to cover

new requirement changes, while other test cases might be removed. Some

test cases are crucial in certain time periods, as they cover areas mostly

important to the customers but become less important with low priority,

following unplanned focus change during the project. Test cases are selected

by these methods to expose defects, based on previous experiences because

they are likely to fail, but no longer fail when this area becomes irrelevant

as it grew more stable with previous code fixes. Test cases that were not

June 1, 2021 9:2 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-11 page 310

310 Artificial Intelligence Methods for Software Engineering

selected for execution and removed from the scope, and their pass would

be expected, based on previous experiences, because they are likely to pass,

no longer pass, following unplanned new requirement change requests by

the customer that also impacted the area to which this test case belongs.

Another limitation is the required history collecting as the input for the

process. Theoretically, long history provides more data and allows better

knowledge about the risky areas and defect distribution. Furthermore, it

has negative impact on the performance time, as it requires processing of

much more data.

[11] raise the question of how long the history of test case results should

be for a reliable indication. He concluded a longer history can reduce

performance due to a higher complexity, and as it requires more data to

adapt. The agent has to learn to handle earlier execution results differently

from more recent ones, which is the most relevant result, for example by

weighting or aggregating them. These limitations make it harder for the

learning agent to discover a feasible prioritization strategy.

Interoperability. Matters get even worse in the case of complex en-

vironments with multiple applications-under-test. Existing RBT methods

prioritize mostly testing of a single application-under-test and cannot cope

with the interoperability of a large number of applications. [3, 33, 37], re-

quire a risk assessment phase by experts. It is too costly and impractical

manually to assess the criticality of possible defects in this complex envi-

ronment. [18, 28] propose interoperability test cases generation methods,

and reduce the scope without compromising functional coverage, but can’t

expose the most high-risk areas. In addition, the number of generated test

cases depends on the global model’s complexity.

11.3 iRBA Solution

iRBA suggests a novel data analysis learning method, built up in real time

according to the behavior and environment of the project. iRBA is based on

unique techniques and elements, combined with elements of RL Q-learning

and online machine learning. RL is well-tuned to design an adaptive method

capable of learning from its experience of the execution environment. A

more in-depth introduction can be found in [24].

iRBA method uses a unique prioritization technique combined with on-

line machine learning in which data becomes available in a sequential order

and is used to update the best predictor at each step, constantly learning

during its runtime. This is also appropriate where indicators for failing

June 1, 2021 9:2 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-11 page 311

Intelligent Risk Based Analysis Methodology 311

test cases can change over time due to unplanned changes in the dynamic

environment. iRBA method can progressively improve its efficiency from

observations of the effects of its actions. iRBA continuously measures and

adapts to reality and achieves the best predictability possible.

11.3.1 iRBA Unique Techniques and Elements

The following list of iRBA techniques reflects those practices and their

interpretation most commonly encountered by intelligent methodology.

(1) irba represents the probability of the test case to find defects.

(2) iRBA-Link or x represents a common linkage criteria item that en-

ables grouping test cases that are impacted by this item.

(3) Impacted(x) represents a function that returns all test cases that

are impacted by the linkage criteria x.

(4) iRBA-Reward-Functions define the functions and the impact by

the positive or negative reward that triggered by list of significant

events that might impact on test cases priority, which are part of the

daily user’s activities during the project.

(5) iRBA-Reward represents any new data provided to the agent im-

mediately every time a new significant event happens, for adaptation

and agent’s policy improvement.

(6) iRBA-Prioritization continuously re-prioritizes the impacted test

cases from the set of all test cases immediately, with any new signif-

icant event, using iRBA-Reward-Functions. It means, the next test

case to be executed might be changed as it’s defined in real time.

(7) iRBA-Queue-Management or iQ() schedules the individual test

case with the highest priority in the sequence, at this moment, to be

executed next. As a result, iRBA succeeds in overcoming outliers, as

they will most likely be caught by the impact of other relevant events,

as this kind of test will never be the one with the highest priority.

(8) iRBA-Dynamic-Scope keeps the set of all the test cases in the

scope during the whole project. Instead of selecting what test cases to

execute or cut in advance, iRBA enables any test case from the bottom

part of the list gradually to move up to the top part, and vice versa,

according to the changing environment that reflects their reliable and

actual priority at this moment. That way, iRBA focuses on the highest

priority test case at any moment, and always maintaining the best

possible coverage and quality, according to the given schedule and

resources. Additionally, it enables effective decision-making in real

June 1, 2021 9:2 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-11 page 312

312 Artificial Intelligence Methods for Software Engineering

time regarding scope definition and reduction and resource allocation,

due to unplanned changes.

(9) iRBA-3D-Graph represents a very powerful database and capability

that enables grouping test cases from multiple applications-under-test

into mutual prioritized clusters, and detects major interoperability

defects much earlier.

(10) Non-iRBA represents the other existing traditional and modern

methods that are reviewed in Sec. 11.2

11.3.2 Test Case Prioritization — Problem Formulation,

Statement and Definition

This section introduces the notations proposed by [9] that are used in the

rest of the paper and present the addressed challenge in a formal way.

Let T be an unprioritized set of all the test cases developed for validating

the product. ti is a test case in the set ti ∈ T : {t1, t2, ..., tn}.
Let PT be the set of all possible permutations of T , and f is a function

that calculates the probability of finding defects sooner. f(T ′) is maximized

when T ′ is an optimal prioritized sequence of test cases that finds defects

as early as possible.

Problem:

Find T ′ ∈ PT such that (∀T ′′)(T ′′ ∈ PT)(T ′′ 6= T ′)[f ′(T ′) ≥ f ′(T ′′)]

With non-iRBA methods, TCP target is finding T ′, such that f(T ′) is

maximized prior to the test cycle. With iRBA method, iRBA-Prioritization

target is keeping T ′ prioritized at any moment during the whole project, so

f(T ′) is always maximized.

11.3.3 TCP Method Using RL — iRBA Vs. Non-iRBA

Figures 11.1 and 11.2 show how the iRBA method and non-iRBA methods

solve the prioritization problem using RL. State represents a test case ti
with its parameters. Action returns the recommended sub test suite called

T ′
c to be run first in test cycle c in order to expose early defects. This

recommendation is based on an optimization process that was performed

by the agent. T ′
c ⊆ T c = 1...m.

With non-iRBA methods, the decision about the scope coverage comes

prior to the test cycle, and is based on a one time analysis of results from

the previous run. This means, there is an optimization process by train-

ing the algorithm, or by TCP, to order and select only the high priority

test cases that would fail with high accuracy as the new sub test suite T ′
c

June 1, 2021 9:2 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-11 page 313

Intelligent Risk Based Analysis Methodology 313

Fig. 11.1 Non-iRBA TCP using RL.

Fig. 11.2 iRBA-Prioritization using RL.

depends on the cycle timeframe that was defined in advanced plus other

project limitations. Only this subset is the input for the test execution,

which means, the number of test cases is decreased in every test cycle.

T ⊇ T ′
1⊇ T ′

2 ⊇ ... ⊇ T ′
m.

Another disadvantage is the optimization level of the testing coverage

during the cycle. If the defined test suite is completed before the pre-set

time, the time left is wasted in vain, as no more test cases would be added at

this point. On the other hand, if the defined test suite was not completed

on time, due to unplanned blockers, the test cases that covered are not

necessarily the most important at this stage, but those that were the most

important at the analysis time prior to the cycle.

With iRBA method, the decision about the scope, coverage, and the

optimization process, is based on real time analysis and is much more ef-

fective. This is achieved by keeping the set of all the test cases prioritized

at any moment in all the executions T ′
1 = T ′

2 = ... = T ′
m and by using the

iRBA-Queue-Management during the test execution.

June 1, 2021 9:2 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-11 page 314

314 Artificial Intelligence Methods for Software Engineering

iRBA-Dynamic-Scope also enables exposing critical defects that are

well-hidden behind test cases that were initially defined as low priority. As

shown in the industrial case study in Sec. 11.5, these kinds of test cases

indeed exposed many critical defects much earlier.

With non-iRBA methods, the reward is calculated and fed back to the

agent once having completed running the test cycle. Let Rc be non-iRBA

reward that represents the results data of all the test cases from the test

cycle c. These results are only for the selected subset T ′
c which means, the

total number of rewards is dependent on the total number of the test cases

in the test suite, which is decreased in every test cycle R1⊇ R2 ⊇ ... ⊇ Rm.

In some non-iRBA methods, the length of the history results data is

longer, which means results are kept from many previous test cycles or

even previous projects for future analysis.

With iRBA method, the iRBA-Reward is provided to the agent immedi-

ately with any new meaningful event, to adapt its experience and policy for

future actions. The total number of rewards is not related to the number

of test cases but to the events.

With non-iRBA methods, the result of test cases from previous execu-

tion, or from long history data, impact only on the priority of this specific

test. In the case of positive reward, it gets higher priority to be included in

the next Test Schedule, while in the case of negative reward it gets lower

priority.

With iRBA method, the impact on the priority is on all the test cases

that are impacted by the latest change, based on iRBA-Reward-Functions

definitions.

Let irba be a number that represents the probability of a test case to

find defects, where a greater value shows a greater defect detection rate.

Each test case has an iRBA value ti.irba.

The initial irba score for all the test cases is 1, and this score increased

in the initial step, based on the test case’s importance level, critical, high,

medium, and low.

∀ti ∈ T : ti.irba = 1 + ti.importancelevel
Let link[] be an array of all the linkage criteria items that are defined

for the project. ti.link[x] is either true when the test case ti is impacted

by linkage criteria x, or false if not. Let Impacted(x) be a function that

returns all the test cases that are impacted by the linkage criteria x. In

this context, it could be, all test cases that use the same mutual resource

depend on a specific external component, or validate the same sub-feature

or code area.

June 1, 2021 9:2 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-11 page 315

Intelligent Risk Based Analysis Methodology 315

∀ti ∈ T Impacted(x) =

{
ti.link[x] = true, ti ∈ Impacted(x)

ti.link[x] = false, ti /∈ Impacted(x)

11.3.4 The iRBA-Reward-Functions

Generally, the reward functions should lead to early defect detection to steer

the agent’s behavior [36]. The reward should impact on the prioritization

of the test cases and the execution order. Every passed test case reduces

its quality if it precedes a failing test case. Failing test cases should be

executed first and as early as possible. In order to achieve this target and

focus on areas most likely to have defects, iRBA’s reward functions are

using existing software testing principles [6] that offer general guidelines

common for all testing.

Each reward function represents significant events that occur many

times during the project, and should contribute to the project’s success

by impacting immediately upon prioritization. Each reward function has

its weight, which represents the positive or negative reward that was de-

fined and might be changed by the RL algorithm, according to learning

over time and policy improvement.

Let we be the weight of the positive or negative reward of event e on

the impacted test cases. It means that it defines how much to increase or

decrease their irba score. In Sec. 11.5, there is an example table that rep-

resents the optimal weight that is defined and used as part of the industrial

case study.

11.3.4.1 iRBA Reward Function — Test Case Passed Event

The guiding principle for this factor is the ‘pesticide paradox’ [6] — i.e., if

the same test cases are running over and over again, eventually the same

test case will no longer find any new defects. It is recommended to review

and revise this test case or invest the limited resources to focus on other

test cases in riskier areas first, to find new defects.

In the event a test case passed without finding defect, it has negative

impact on the target, so the iRBA value of the test is decreased by the

negative reward. The impact is only on the test case itself. There is no

impact on other test cases because the passing of a specific test case cannot

bear witness to other test cases. To improve the accurate estimate, each

test case has ti.running, which represents the running number of this test

case during the project. This means, the impact level is dependent on the

running number in order to overcome outliers. For example, there should

June 1, 2021 9:2 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-11 page 316

316 Artificial Intelligence Methods for Software Engineering

be a different impact among test cases that succeed in being the one with

highest priority many times during the project, compared with test cases

that run only once based on its importance probability.

ti.irba = ti.irba ·
(

1− we

ti.running

)
11.3.4.2 iRBA-Reward-Functions — New Defect Event

The guiding principle for this factor is ‘defect clustering’ [6] — i.e., the

tendency of defects to cluster together and that the greater number of

defects found in any given feature indicates a greater number of defects

is expected to follow. The rationale for the defects on a specific area can

be a complex algorithm, bad specifications, an inexperienced developer, or

complex interactions with other parts of the product.

In the event the test case failed and exposed new defects with new

linkage criteria x, it has positive impact on the target, so the iRBA value

of all the test cases that are impacted by x is reinforced by positive reward.

Additionally, to improve the accurate estimate, the reinforcement of

iRBA values is relative to the severity of the defect, correspondingly.

∀ti ∈ Impacted(x) : ti.irba = ti.irba · we

11.3.4.3 iRBA-Reward-Functions — Defect Rejected Event

In case the defect is rejected as not a real defect that was submitted by

mistake, the method is to undo the previous impact of this defect and

return to its original iRBA value.

∀ti ∈ Impacted(x) : ti.irba =
ti.irba

we

11.3.4.4 iRBA-Reward-Functions — New Code Integration Event

Every time a developer integrates a new change to the code, by fixing a

defect or implementing a requirement, there is a new linkage criteria x as

part of the code integration process, that reflects the most impacted areas

to focus on based on his insights from investigating this specific change.

It has positive impact on the target because it indicates the newly re-

leased version that contains the new code that had never been tested and

needs more attention.

In this case, the iRBA value of all the test cases that are impacted by

x is reinforced, by positive reward.

June 1, 2021 9:2 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-11 page 317

Intelligent Risk Based Analysis Methodology 317

Additionally, to improve the accurate estimate, the reinforcement of

iRBA values is relative to the severity of the defect, correspondingly.

∀ti ∈ Impacted(x) : ti.irba = ti.irba · we

11.3.4.5 iRBA-Reward-Functions — New Test Case Creation

Event

In the event a new test case is created during the project and added to

the scope, it is indicated on the new feature, or new flow, or area in the

code that was not yet tested, and has positive impact on the target. In this

instance, the iRBA value of the test case itself is reinforced after the initial

step.

ti.irba = (1 + ti.importancelevel) · we

11.3.4.6 iRBA-Reward-Functions — Customer Feedback or

Unplanned Change Event

This function enables effective use of customer feedback during the project

to drive product quality. It could be as a result of a new requirement change

request from the customer, new feature or a decision on focus change.

In case the request is to focus more on a specific area, there is a new

linkage criteria x, and it has positive impact on the target because it in-

dicates a new area that never has been tested, or existing areas that need

more attention. In this situation, the iRBA value of all the test cases that

are impacted by x is reinforced.

∀ti ∈ Impacted (x) : ti.irba = ti.irba · we

In case the request is to focus less on a specific area x, it is recommended

to invest the limited resources to focus on other areas that are important

to the customer first. In this circumstance, the iRBA value of all the test

cases impacted by x is decreased by the negative reward.

∀ti ∈ Impacted (x) : ti.irba =
ti.irba

we

11.4 iRBA Benefits Demonstrations

Introducing state-of-the-art iRBA methodology delivers multiple benefits.

It enhances testing quality, team efficiency and agility as well as being far

more predictable in achieving milestones. This intelligent method enables

June 1, 2021 9:2 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-11 page 318

318 Artificial Intelligence Methods for Software Engineering

achieving a successful project without sacrificing quality, given the con-

straints among the project’s cost, time, and quality. Only a selected few of

iRBA advantages are presented here. Those presented are the most “visibly

measurable” and easy to verify by outsiders.

11.4.1 Project’s Cost Challenge

11.4.1.1 Become Much More Effective with Cost-Effective

Manpower and Limited Resources

The recommended mindset behind iRBA method is maximizing gain and

minimizing pain, while keeping the process and interfaces, managing as lean

and agile as possible, only with those processes that achieve gain immedi-

ately for project success and quality.

As concluded by [7], the major pain of the RBT methods are the pre-

requisite steps, experts’ availability, integration into an established test

process, and reliability in complex systems.

This leads iRBA to cut back on unnecessary expenses and save

Fig. 11.3 Generic RBT process. Figure is taken from [7]. Some changes made to show

the generic iRBA process.

June 1, 2021 9:2 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-11 page 319

Intelligent Risk Based Analysis Methodology 319

meaningful time and resources, by reducing the pain from the process with-

out having a negative impact on the end result, as shown in Fig. 11.3.

The cost reduction includes freeing the domain experts and senior engi-

neers by removing the RBT prerequisites phases from the scope, including

Risk Identification and Risk Assessment by experts, mentioned by [31] as

critical cost factors. Another pain is the Test Schedule process and its

preparation steps by existing RBT or TCP methods before each Execution

Cycle. iRBA suggests a much more effective and lean process, by han-

dling both RBT and TCP challenges at the same time, without performing

computationally intensive operations during prioritization. In iRBA, data

collection and analysis are not separate stages of the project. They are

embedded in the project process and happen all the time during the entire

Software Development Life Cycle (SDLC). It enables reflecting feedback by

customers and the insights from testers, developers, and architects, who are

valuable resources for the software project’s success and quality. There are

special time points in their daily work in which they have unique insights

with high impact on the project success and quality. Based on the iRBA

mindset, these time points are the optimal times to collect the required

data for the method, as the effort required in this case is negligible. For

example, one of the required data to collect by iRBA and use as part of

the rewards functions, is linkage criteria, which is a common item, enabling

grouping impacted test cases. In this context, it could be all the test cases

using the same mutual resource depend on specific external components, or

validate the same sub-feature or code area. A developer who just integrated

a new change to the code, by fixing a defect or implementing requirement,

also fills as part of the code integration process, the linkage criteria, which

reflects the most impacted areas by this change on which to focus the test-

ing, based on his insights from investigation of this specific change. Linkage

criteria could also be filled as part of the defect submission process by the

tester, who just submitted a defect based on his insights from the initial

debugging of the issue. A tester, who just created a test case as part of the

test creation process, fills the importance level of the test case and linkage

criteria, based on his insights from the requirement review with the archi-

tect of this specific test. Another limitation in most of the existing RBT

methods, is the integration into an established test process, and the fact

that a method suitable to one project may well be ineffective for another

project. iRBA solution is agnostic framework applicable to any project,

environment and SDLC model. iRBA built up in real time according to

the behavior and environment of the project itself.

June 1, 2021 9:2 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-11 page 320

320 Artificial Intelligence Methods for Software Engineering

11.4.2 Project’s Quality Challenge

11.4.2.1 Effective Use of Customer Feedback to Drive Product

Quality

An indication for project success is customer satisfaction. When using

iRBA, requirements change requests by customers during the project are

more than welcome. Another meaningful impact on product quality and

customer satisfaction can be attained by reducing escaped defects. iRBA

framework enables utilizing customer pre-release or post-release feedback

in real time and increases the priority in the impacted areas. That way,

there is full partnership, enabling effective use of customer feedback and

much faster response to any request from them.

11.4.2.2 Risk Prioritization of Multiple Applications and Early

Detection of Major Interoperability Issues

iRBA also provides effective solutions for the complex integration and in-

teroperability testing challenge. It enables prioritizing testing of multiple

applications-under-test, reducing the number of test cases without compro-

mising functional coverage, while at the same time exposing the riskiest

areas.

In this context, the principle guideline is to use the ‘divide and conquer’

concept. The iRBA profit grows exponentially when it is used by a large

number of teams. Each team can use iRBA separately for their applications-

under-test testing. It enables them to focus on the riskiest issues at any

moment and find the major defects sooner. Backstage, the iRBA-3D-

Graph is created automatically.

Let dj be one of the dimensions in the graph that represents

applications-under-test j, including its set of all the test cases prioritized.

It means, each dj is a single applications-under-test which belongs to the

multiple applications-under-test.

As shown before, iRBA enables using linkage criteria item x to group

test cases from the same applications-under-test into clusters. In this con-

text, dj .Impacted(x) function returns all the test cases that are impacted

by the linkage criteria x, in applications-under-test dj .

iRBA-3D-Graph provides a very powerful database and capability. It

enables using the same linkage criteria item x that are in common to all

the different applications-under-test, to group test cases from the different

June 1, 2021 9:2 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-11 page 321

Intelligent Risk Based Analysis Methodology 321

applications-under-test into mutual clusters.

m⋃
j=1

(dj .Impacted(x))

It returns all the test cases that are impacted by the same linkage criteria

x, from all the applications-under-test. In this context, iRBA-Queue-

Management schedules the individual test case with the highest priority

in the sequence from each applications-under-test dj at this moment of the

project.

m⋃
j=1

(iQ(dj .Impacted(x))

It returns j individual test cases with the highest priority from each

applications-under-test dj at this moment during the project that have a

common linkage criteria x.

Quality interoperability and integration test case by combining two or

more of these j test cases can be achieved this way. The generated test

case is the peak quality test case with the highest probability of exposing

defects related to the common linkage criteria x.

Based on this continuous output by iRBA-Queue-Management, a

desired number of test cases is generated, while the scope is always updated

according to the given schedule and resources. This is the key to successful

projects, and the reason these test cases expose the critical and high defects

much earlier.

As shown in the industrial case study in Sec. 11.5, risk prioritization of

multiple applications and early detection of major interoperability issues

are indeed feasible by iRBA.

11.4.2.3 Quality Evaluation System

Another important challenge for tracking project success is providing re-

liable status and progress that reflect quality. In a constantly changing

environment, the status reports and graphs that generated based on non-

iRBA methods are not effective enough and don’t provide indications for

real quality. These had negative impact on decisions during the project.

iRBA centralizes and analyzes only the significant data and continuously

measures and adapts to reality and makes adjustments in real time. In this

way, it provides a reliable evaluation mechanism with quality indication.

June 1, 2021 9:2 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-11 page 322

322 Artificial Intelligence Methods for Software Engineering

11.4.3 Project’s Time Challenge

Another indication for project success in the competitive equation is meet-

ing customer needs on time. Time to market (TTM) improvement as mea-

sured by early defects detection and by delivering on schedule is meaningful

toward achieving competitive advantage in the marketplace. As shown in

the industrial case study in Sec. 11.5, there was meaningful TTM improve-

ment across generations when using iRBA compared with non-iRBA.

11.5 Industrial Project Case Study

To realize the benefits of iRBA in a real-world environment, the research

and results are from industrial projects used as a study object for ana-

lyzing and discussing the challenge. As in many other industrial projects,

the SDLC is under time and budget constraints, that require continuous

improvement of the established processes and methods. To support deci-

sions about the focus and testing coverage and priority, the risk analysis

activity model by [30] applied and the most popular non-iRBA methods

implemented that have been upgraded over the years to create the optimal

method. It also included all the non-iRBA prior requirements, history data

from previous project generations analysis and dedicated key experts for

the intensive preparation stages as well as during the project. For the sake

of simplicity, let Optimal-non-iRBA be the optimal method that was

used in the industry project.

In order to evaluate, a simulator was created to measure the quality be-

tween Optimal-non-iRBA vs. iRBA. For the experimental evaluation, the

same set of parameters is used in all experiments, if not stated otherwise.

These parameters are based on values from literature and experimental ex-

ploration. The comparison criteria include product quality (as measured by

both the APFD quality indicator, and the defects count with their sever-

ity), cost reduction (as measured by freeing headcounts) and TTM across

generations (as measured by early defects detection).

Average Percentage of Faults Detected (APFD) was introduced as a

common quality indicator in [8] to measure the effectiveness of the methods

and how rapidly a prioritized test suite detects defects. This evaluation

metrics measures the quality via the ranks of defect detecting test cases in

the test execution order. The value of APFD result can be from 0 to 1

where a bigger value shows greater fault detection rate. The equation for

June 1, 2021 9:2 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-11 page 323

Intelligent Risk Based Analysis Methodology 323

calculating the APFD value is shown as follows:

APFD = 1− TF1 + TF2 + ... + TFm

nm
+

1

2n
Where n represents the number of test cases, m represents the number

of defects that were found, and TFi is the earliest test case in the sequence

which finds defect i.

The industrial data sets consist of historical data about test executions

and their results for all the test cycles in the project. This complex and

dynamic project included 36 components of embedded system technology,

with 9,780 test cases. The experimental results have been computed on

industrial data gathered over one year of project.

Table 11.1 presents the APFD results in two major test cycles, while

the results were consistent throughout all the test cycles during the project.

The results indicate better performance by iRBA method comparing to

Optimal-non-iRBA, regarding prioritizing test cases and achieving higher

APFD values.

Table 11.2 presents the optimal weight we that defined the positive

or negative reward that used by iRBA-Reward-Functions as part of the

Table 11.1 APFD Results.

Test Cycle 1 Test Cycle 2

Number of test cases (n) 9780 9780
Number of defects (m) 230 136

TF1 + ... + TFm non-iRBA methods 241722 139464

TF1 + ... + TFm iRBA methods 93834 73125
APFD non-iRBA 0.892 0.895

APFD iRBA methods 0.958 0.945

Table 11.2 iRBA-Reward-Functions Optimal Weights.

iRBA-Reward-Functions events we

Test Case Passed 0.5

New Defect (critical, high, medium, low) 1.3, 1.2, 1.1, 1
Defect Rejected (critical, high, medium, low) 1.3, 1.2, 1.1, 1

New Code Integration 2.1
New Test Case Creation 2

Customer Feedback or Unplanned Change (positive, negative) 2,2

iRBA-Reward-Functions initial step importancelevel

Test case importance level (critical, high, medium, low) 5, 4, 2, 1

June 1, 2021 9:2 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-11 page 324

324 Artificial Intelligence Methods for Software Engineering

industrial case study. One of the limitations of APFD is the fact that it

assumes defects were with equal severities, and test cases were with equal

costs. As a result, another quality indicator function was created to mea-

sure effectiveness of the prioritization methods. To visualize and demon-

strate the experiences and results from the industrial case study, using the

new quality indicator function, a line graph is used, as shown in Fig. 11.4

and Fig. 11.5. This new function also takes additional conditions into ac-

count. In this case, the defects count is defined by the number of defects

with respect to their severity: low, medium, high, and critical. The filled

area in the graph represents the actual execution pace- it also takes into

account special times like weekends, setup issues, and platforms upgrades

and recovery. The non-iRBA Defect Score line represents what was really

happened with Optimal-non-iRBA. The iRBA Defect Score line represents

what would happen if test cases were run in iRBA order. Each graph rep-

resents the status of one test cycle during a real project. The results were

consistent. In all test cycles, iRBA managed to find all the major defects

much earlier.

Figure 11.4 shows that with iRBA all the major issues, critical and high

priority defects, found much earlier, that is, within the first 44 days. In

order to expose the same number of defects with non-iRBA methods, the

Fig. 11.4 Test Cycle 1: iRBA vs. non-iRBA comparison results.

June 1, 2021 9:2 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-11 page 325

Intelligent Risk Based Analysis Methodology 325

Fig. 11.5 Test Cycle 2: iRBA vs. non-iRBA comparison results.

test cycle should continue until the 71th day. Note that additional defects

were also found using iRBA on the 61st day, however those defects had low

exposure.

Figure 11.5 shows the same behavior. With iRBA, most of the major

issues were found much earlier, before the 33rd day, compared to Optimal-

non-iRBA, that required to continue until 89th day. TTM improvement by

more than 30% across generations was measured by early defects detection.

The major defects found by non-iRBA methods were also found by iRBA

and much earlier in the timeline. The product quality improvement by

more than 2X was measured by defects count. It is reflected by many

critical and high well-hidden defects that were exposed much earlier by

iRBA. Resource saving of 28% as measured by freeing headcounts. iRBA

enabled the managers make up to date decisions regarding the schedule and

resource allocation, by moving resources from low risk to high risk features

and headcount reduction. It reduced validation effort and improved project

predictability, cost, quality and efficiency. Another part of the case study

object was to compare risk prioritization of multiple applications and early

detection of major interoperability issues between Optimal-non-iRBA and

iRBA.

Optimal-non-iRBA were applied by most experienced senior engineers,

June 1, 2021 9:2 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-11 page 326

326 Artificial Intelligence Methods for Software Engineering

who collected and analyzed huge amounts of data related to 6 applications

under test, that their testing teams distributed in different geographical

areas in the world, using top-of-the-line combinatorial testing tools.1 iRBA

used only its unique iRBA-3D-Graph. Both methods significantly re-

duced the number of test cases without compromising functional coverage,

but Optimal-non-iRBA exposed very low numbers of critical and high de-

fects compared to iRBA. The product quality improvement by more than

3X was measured by defects count. It’s reflected by many critical and high

defects that were exposed much earlier by iRBA. A resource saving of 60%

as measured by freeing headcounts.

Table 11.3 Case Study Results: iRBA Improvements Based on the Comparison

Criteria.

iRBA improvements
Prioritization Interoperability Measured by

Quality improvement 2X 3X Defects count; APFD

Resource saving 28% 60% Freeing headcounts
TTM improvement 30% 25% Early defects detection

11.6 Summary and Conclusions

A main outcome of the study was that iRBA methodology enables achieving

a successful project without sacrificing quality given the constraints among

the project’s cost (funding and resources), time (schedule and deadlines)

and quality (scope and features).

Continuously, iRBA was compared with traditional and modern soft-

ware testing related methods and software development frameworks, in-

cluding AI-based solutions, to cope with more and more existing software

testing challenges. An important aspect in this context is that many of the

proposed iRBA solutions have been tested as case studies in complex and

dynamic industrial project environments in real-world.

The comparison criteria include product quality (as measured by both

APFD quality indicator, and defects count and their severity), cost reduc-

tion (as measured by freeing headcounts) and TTM across generations (as

measured by early defects detection). The results of the test case study

analysis as well as the positive feedback from the involved practitioners

indicate, iRBA is the most promising and practical risk and prioritization
1http://www.pairwise.org.

June 1, 2021 9:2 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-11 page 327

Intelligent Risk Based Analysis Methodology 327

methodology to date. Its quality is far superior compared to other meth-

ods, and it makes the entire SDLC and testing process much more effective.

Unlike other non-iRBA methods, iRBA is agnostic framework applicable to

any project, environment and SDLC model. In addition, the results indi-

cate risk prioritization of multiple applications and early detection of major

interoperability issues are indeed feasible and much more effective by iRBA.

iRBA made a significant revolution in the field of software engineering

by shortening product time to market and improving project predictability,

cost, quality and efficiency.

11.7 Future Work

The consistent and sustained delivery of results and solutions by using iRBA

is testimony to the effectiveness of this intelligent methodology. These

activities were essential to fulfill the vision and bring it to reality. To the

best of our knowledge, this kind of holistic methodology that covers most

of the software testing challenges and maximizes overall efficiencies has not

yet been done.

This chapter about the iRBA is the perfect marriage between iRBA

theory and practice, as well as a valuable source of insight and ideas. It

can inspire researchers and scientists to learn iRBA methodology and its

mindset, to propose and apply more powerful and more accurate models

for software engineering challenges. The software engineering community

can replicate the consistent success to achieve similar significant improve-

ments by adopting iRBA to improve products validation quality and ensure

success in the competitive marketplace of software acceleration.

Despite this success and recent progress, there are still some directions

for future work in this area. It is recommended to use AI algorithms to

learn the impact level of the iRBA-Link on the impacted test cases cluster in

the short and long terms, and update the policy to update their properties

respectively, e.g. strong link, average link, basic link, weak link, or false

link.

Additional future work could be edge cases, like very long or a complex

high priority test case that might block the execution progress of other test

cases. iRBA is also coping with these kinds of cases, but that is out of the

scope of this chapter. It is recommended to formulize these edge cases and

their specific iRBA-Reward-Function.

June 1, 2021 9:2 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-11 page 328

328 Artificial Intelligence Methods for Software Engineering

Acknowledgments

This work was funded by Intel Development Center Jerusalem.

References

[1] A. R. Lenz, A. Pozo, and S. R. Vergilio, Linking Software Testing Results
with a Machine Learning Approach, Engineering Applications of Artificial
Intelligence, vol. 26, no. 5–6, pp. 1631–1640, 2013.

[2] B. Busjaeger and T. Xie, Learning for Test Prioritization: An Industrial Case
Study, in Proceedings of the ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ACM, 2016, pp. 975–980.

[3] Bauer, T., Stallbaum, H., Metzger, A., Eschbach, R.: Risikobasierte
Ableitung und Priorisierung von Testfällen für den modellbasierten Sys-
temtest. Softw. Eng. 121, 99–111 (2008).

[4] C. Anderson, A. V. Mayrhauser, and R. Mraz, On the Use of Neural Net-
works to Guide Software Testing Activities, in International Test Conference,
1995, pp. 720–729.

[5] Catal, C. (2011). Software fault prediction: A literature review and current
trends, Expert Systems with Applications 38, 4, pp. 4626–4636.

[6] D. Graham, E. Veenendaal, I. Evans, R. Black. Foundations of Software
Testing ISTQB Certification, International Software testing Qualifications
Board, 2010.

[7] Felderer, M., Ramler, R.: Integrating risk-based testing in industrial test
processes. Softw. Qual. J. 22(3), 543–575 (2014).

[8] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. Test case prioriti-
zation: An empirical study. In Proc. ICSM 1999, pp. 179–188.

[9] Gregg Rothermel, Roland H. Untch, Chengyun Chu, Mary Jean Harrold,
and IEEE Computer Society. 2001. Prioritizing Test Cases For Regression
Testing. IEEE Transactions on Software Engineering 27, 10 (2001), 929–948.

[10] H. Hemmati and F. Sharifi, Investigating NLP-Based Approaches for Pre-
dicting Manual Test Case Failure, 2018 IEEE 11th International Conference
on Software Testing, Verification and Validation (ICST), 2018.

[11] H. Spieker, A. Gotlieb, D. Marijan, and M. Mossige, Reinforcement learning
for automatic test case prioritization and selection in continuous integration,
in Proceedings of the ACM SIGSOFT International Symposium on Software
Testing and Analysis. ACM, 2017, pp. 12–22.

[12] J. Pollack, J. Helm, and D. Adler, “What is the iron triangle, and how has
it changed?” Int. J. Manag. Projects Bus., vol. 11, no. 2, pp. 527–547, 2018.

[13] J.-M. Kim and A. Porter. A history-based test prioritization technique for
regression testing in resource constrained environments. In Proc. ICSE 2002,
pp. 119–129.

[14] James Bach, Heuristic Risk-Based Testing, Software Testing and Quality
Engineering Magazine, November 1999, pp. 96–99.

[15] Khatibsyarbini, M., Isa, M. A., Jawawi, D. N., & Tumeng, R. (2017). Test

June 1, 2021 9:2 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-11 page 329

Intelligent Risk Based Analysis Methodology 329

case prioritization approaches in regression testing: A systematic literature
review. Information and Software Technology.

[16] Kloos, J., Hussain, T., Eschbach, R.: Risk-based testing of safety-critical
embedded systems driven by fault tree analysis. In: 4th International Confer-
ence on Software Testing, Verification and Validation Workshops (ICSTW),
pp. 26–33. IEEE (2011).

[17] Koch, P., Schekotihin, K., Jannach, D., Hofer, B., and Wotawa, F. (2019).
Metricbased fault prediction for spreadsheets, IEEE Transactions on Soft-
ware Engineering.

[18] Luo, G., Bochmann, G., Petrenko, A.: Test selection based on communicat-
ing non-deterministic finite-state machines using a generalized Wp-method.
IEEE Trans. Softw. Eng. 20(2), 149–162 (1994).

[19] Martin Fowler and M Foemmel. 2006. Continuous integration. (2006).
[20] Moran, A. 2015. Managing Agile: Strategy, Implementation, Organisation

and People. Springer Verlag, Heidelberg, NY.
[21] P. M. Duvall, S. Matyas, and A. Glover. 2007. Continuous Integration: Im-

proving Software Quality and Reducing Risk. Pearson Education.
[22] P. Tonella, P. Avesani, and A. Susi, Using the Case-Based Ranking Method-

ology for Test Case Prioritization, in IEEE International Conference on Soft-
ware Maintenance, 2006, pp. 123–133.

[23] R. Lachmann, S. Schulze, M. Nieke, C. Seidl, and I. Schaefer, System-Level
Test Case Prioritization Using Machine Learning, 2016 15th IEEE Interna-
tional Conference on Machine Learning and Applications (ICMLA), 2016.

[24] Richard S. Sutton and Andrew G. Barto. 1998. Reinforcement Learning: An
Introduction (1st ed.). MIT press Cambridge.

[25] S. Chen, Z. Chen, Z. Zhao, B. Xu, and Y. Feng, Using Semi-supervised
Clustering to Improve Regression Test Selection Techniques, in IEEE Inter-
national Conference on Software Testing, Verification and Validation, 2011,
pp. 1–10.

[26] S. Elbaum, G. Rothermel, and J. Penix. Techniques for improving regression
testing in continuous integration development environments. In Proc. FSE
2014, pp. 235–245.

[27] S. Yoo, R. Nilsson, and M. Harman. Faster fault finding at Google using
multi objective regression test optimisation. In Proc. ESEC/FSE 2011.

[28] Seol, S., Kim, M., Chanson, S.T., Kang, S.: Interoperability test generation
and minimization for communication protocols based on the multiple stimuli
principle. IEEE J. Sel. Areas Commun. 22(10), 2062–2074 (2004).

[29] Singh, R., Livshits, B., and Zorn, B. (2017). Melford: Using neural networks
to find spreadsheet errors, Microsoft Technical Report MSR-TR-2017-5.

[30] Stale Amland, Risk Based Testing and Metrics: Risk analysis fundamentals
and metrics for software testing including a financial application case study,
The Journal of Systems and Software, Vol. 53, 2000, pp. 287–295.

[31] Stallbaum, H., Metzger, A.: Employing requirements metrics for automating
early risk assessment. In: Wsh. Measuring Requirements for Project and
Product Success (MeReP), pp. 1–12 (2007).

[32] T. Hall and D. Bowes, The State of Machine Learning Methodology in

June 1, 2021 9:2 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-11 page 330

330 Artificial Intelligence Methods for Software Engineering

Software Fault Prediction, 2012 11th International Conference on Machine
Learning and Applications, 2012.

[33] Wendland, M.F., Kranz, M., Schieferdecker, I.: A Systematic approach to
risk-based testing using risk-annotated requirements models. In: 7th Interna-
tional Conference on Software Engineering Advances (ICSEA), pp. 636–642
(2012).

[34] V. Garousi, R. Özkan, A. Betin-Can, Multi-objective regression test selection
in practice: An empirical study in the defense software industry, Inf. Softw.
Technol., vol. 103, pp. 40–54, Nov. 2018.

[35] Y. Yang, X. Huang, X. Hao, Z. Liu, and Z. Chen, An Industrial Study of
Natural Language Processing Based Test Case Prioritization, 2017 IEEE
International Conference on Software Testing, Verification and Validation
(ICST), 2017.

[36] Y. Ledru, A. Petrenko, S. Boroday, N. Mandran, Prioritizing test cases with
string distances, Automated Software Engineering 19 (1) (2012) 65–95.

[37] Zimmermann, F., Eschbach, R., Kloos, J., Bauer, T.: Risk-based statistical
testing: a refinement-based approach to the reliability analysis of safety-
critical systems. In: 12th European Workshop on Dependable Computing
(EWDC) (2009).

June 2, 2021 15:55 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 331

© 2021 World Scientific Publishing Company
https://doi.org/10.1142/9789811239922 0012

Chapter 12

A Qualitative Reasoning Model
for Software Testing,

based on Combinatorial Geometry

Spyros Xanthakisa and Emeric Gioanb

aAthens University of Applied Science, Athens, Greece
bLIRMM, University of Montpellier, CNRS, Montpellier, France

12.1 Introduction

Let us first give a short summary of the paper. We introduce an operational

qualitative model for numerical algorithms. This model enables qualitative

algorithmic reasoning during the unit testing process, supported by an au-

tomatic generation of boundary test data. It contains the spatial encoding

of all the functionally equivalent regions (called homodromies). The model,

viewed as a qualitative abstraction of the algorithm, is automatically gen-

erated thanks to multiple targeted executions of its instrumented basic con-

ditions, that permit the interpolation of a set of linear equations and their

corresponding hyperplanes. All feasible paths (when all basic conditions are

linear) are identified in the form a Ternary Decision Tree. Each feasible

execution path corresponds to a geometric region supported and/or delim-

ited by a finite set of hyperplanes of the vector space. Oriented Matroids

allow the encoding of the relative positions of all such regions of various

dimensions, in a purely combinatorial way, using a finite signed set system,

supported by a rich mathematical theory. This model uses a qualitative

space algebra and enables qualitative reasoning : regions are identified ac-

cording to qualitatively valued inputs, which are, in their turn, propagated

through them. The proposed model permits a global/local envisionment

331

https://doi.org/10.1142/9789811239922_0012

June 2, 2021 15:55 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 332

332 Artificial Intelligence Methods for Software Engineering

of the algorithmic behaviour in an abstract level. The cocircuits of the

underlying oriented matroid play the role of testing building blocks: the

combination of their numerical coordinates enables the automatic genera-

tion of limit test data that lies at the boundary of any critical surface of

any dimension.

Let us now present the paper and its context in more details. From the

very beginning, the software engineering community tried to adopt artifi-

cial intelligence (AI) techniques for assisting an especially time-consuming

and complex phase of the software development process: unit testing. Unit

testing is destinated to assess the units programmed during the implemen-

tation phase (a C-procedure, a Python method). During this phase, the

tester, who is often the developer, has to design test data (according to unit

testing criteria), prepare the right execution environment, execute the (pos-

sibly instrumented) software, filter the outputs, analyse and validate the

final results. Testing criteria could be functional, like, “Test what happens

when alarm is on”, “Check the answer of the system when the temperature

is very high”, or structural like, “Check what happens if a loop statement

is not executed”, or “Be sure that, at the end of unit testing, all statements

have been executed at least once”, etc.

Evolutionary (or search based) techniques, initially devoted to the AI

area, have nowadays proved their efficiency in software testing, and particu-

larly in the automatic test data generation. A first application of evolution-

ary techniques for unit testing was proposed by one of the authors of this

paper [1, 2]. It consisted in expressing a structural test data objective as

an optimization problem handled by a conventional steady state genetic al-

gorithm (GA) coupled with an elementary data flow analysis. Many works

followed that improved the performances and extended the range of tech-

niques and applications; they are now grouped under the name evolutionary

testing [3–8] which is no more limited to the use of GAs but encompasses

a wide spectrum of AI techniques. More broadly, evolutionary (or search

based) software engineering, can now tackle with different testing tasks:

functional testing, integration testing, mutation testing, regression testing

and test case planning [5, 9–13]. Test data generation, and especially limit

(or boundary) test data, constitute a major open issue in the software de-

velopment process. Our testing data generation philosophy does not rely

on a specific structural coverage objective (i.e. cover all the statements),

nor uses an a priori testing model (i.e. a state machine or a control graph),

nor a random/heuristic/evolutionary technique. Under certain assumptions

June 2, 2021 15:55 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 333

A Qualitative Reasoning Model based on Combinatorial Geometry 333

that will be presented in the beginning of the next section (briefly, for a

constant-time algorithm based on linear inequalities), it handles, formally

and exhaustively, all the feasible execution paths of the source code.

In our view, existing automatic testing generation techniques, do not

dispose of a sufficient high level of abstraction to assist testers intelligently.

The testing process cannot be reduced to an input/output comparison task.

It often involves designing activities (design of the testing strategy and its

deployement, redesign a defectuous code, etc.) but also reverse engineer-

ing tasks (assisted by many visualisation and/or debugging tools, etc.).

All those activities necessitate a minimum of understanding and reason-

ing about the actual and/or the required behaviour of an algorithm. We

will try to illustrate our point by a (non exhaustive) list of some questions

that may arise during testing (assuming that inputs are endowed with an

absolute order relation). Questions of this kind are answered in Sec. 12.4.

• How and in what direction a specific output is impacted by a small

change of inputs? Which are the inputs that are influencing a

condition in the source code? In what direction could one change

the inputs in order to switch its truth value from False to True?

• What happens at a close neighborhood of a critical point? If the

temperature is very high and the pressure is normal will the alarm

be triggered? Will it stay triggered even if the temperature raises

“indefinitively”? Is it possible to find contiguous regions with dif-

ferent behaviour, and, if yes, what are the limit test data that

separate them?

• If one decreases the element of an array or if this element is very

small, will it eventually appear at the beginning of an ascending

order sorted array? In the Knap Sack problem if one decreases

the weight of an already selected item, will the total value increase

or decrease? In the Traveler Salesman Problem, if the distance

between two cities is decreased, will their orders be closer in the

solution?

We argue that all those kind of questions are pervasive in software

testing and contain indisputably qualitative reasoning aspects, extensively

studied by the qualitative reasoning community in AI, such as compar-

ative analysis and envisionment, order-of-magnitude and spatial reason-

ing [14–20]. We will illustrate that spatial properties are implicit when

reasoning about numerical algorithms. We do not claim that qualitative

reasoning exhausts all the mental activities of unit testing (and even less,

June 2, 2021 15:55 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 334

334 Artificial Intelligence Methods for Software Engineering

of algorithmic reasoning in general), but that it constitutes an essential

component.

In our approach, an algorithm is viewed as a fragmentation process of

the input space considered as a real vector space. It uses sequences of nested

and iterated logical conditions in order to fragment the input space into

small connected pieces, the fragments. At each point (which corresponds

to a specific input) of a fragment is associated a uniform sequence of com-

putations. One of the main tasks of software testing could be compared

to the task of checking whether those fragments are well “glued” together.

Our central working assumption can thus be formulated as follows: if one

is capable, first, of qualitatively expressing the underlying spatial infor-

mation of the fragments (i.e., contiguity, direction, intersection, inclusion,

etc.) and, secondly, qualitatively expressing input values (i.e., small, big,

close to, etc.), while ensuring their propagation between and inside those

regions, then an algorithmic qualitative reasoning is possible.

We present a qualitative reasoning algorithmic model. Its construction

is illustrated in Fig. 12.1. The spatial relations between fragments are

expressed using a very active area of combinatorial geometry: Oriented

Matroid theory (whose fundamentals are recalled in Sec. 12.3). Qualitative

propagation is ensured by an order-of-magnitude algebra. To any cocircuit

of the oriented matroid (combinatorial encoding of a 1-dimensional region)

is naturally associated the quantitative information (real coordinates) of its

location in the space. This is used to produce, automatically, by means of

algebraic combinatorial properties, limit test data lying at the boundary of

any critical surface of any dimension. Our model necessitates only a simple

instrumentation of the basic conditions of the source code. It can be then

used for functional/non-functional as well for object-oriented/non-object-

oriented languages ranging from assembly language to Fortran, C, LISP,

C++, Java, Python, etc. It encompasses all applications using mainly

numeric inputs, such as avionics, statistics, banking, simulation, robotics,

etc. Further comments are given in the conclusion.

12.2 What the model contains

Our model is based on an instrumented source code. In the whole paper,

our assumption is that the source code implements a constant-time algo-

rithm, and that it is based on real (decimal) linear (in)equalities, so that

all possible conditions executed for all possible inputs amount to evaluate

some real linear functions of the input vector space, yielding a finite set of

June 2, 2021 15:55 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 335

A Qualitative Reasoning Model based on Combinatorial Geometry 335

Input Space Instrumented Source

Linear

Solver

Genetic

Algorithm

Model

Construction

Ternary Decision Tree + Homodromies

Equations + Oriented Matroid Cocircuits

Model

Execution

Order-of-Magnitude
Algebra

Combinatorial
Geometry

EnvisionmentTest Data Generation
Order-of-Magnitude

Reasoning

Fig. 12.1 The two main steps of the algorithmic qualitative modelling process: Model

Construction and Model Execution. The Instrumented Source code, and its Input Space

are given. In case of non-linearity a Genetic Algorithm can be used to detect a critical

point. A rational Linear Solver builds a Ternary Decision Tree and interpolates the
equations (generated by the basic conditions of the source code), their corresponding

oriented matroid cocircuits and all the homodromies (geometric regions associated to

feasible paths). Model Execution will then use Order-of-Magnitude Algebra combined
with a Combinatorial Geometry algebra (playing the role of a qualitative space algebra)

enabling the abstract Execution and Envisionment of the source code behaviour. Finally,
quantitative information associated with the cocircuits permits the automatic generation

of limit test data that lies exactly at the boundaries (of any dimension) of critical surfaces.

useful real linear functions, as detailed below. In this case, the model is

completely well-defined and extensive. In the non-linear case (and in the

non-constant-time case), that will not be addressed in this paper, the same

technique can be used locally, at a close neighbourhood of a critical point

of the input space, by considering appropriate linear inequalities, possibly

with an approximation (this can be based on the Jacobian matrix, and/or

found by Genetic Algorithms techniques).

We first introduce the content of our model (Sec.12.2.1). Next, we illus-

trate it on a simple example that will serve as running example throughout

this paper. Section 12.2.3 details the technical construction of the model.

June 2, 2021 15:55 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 336

336 Artificial Intelligence Methods for Software Engineering

12.2.1 Conditions, Equations, Paths, Super-covectors, and

Homodromies

Let us start with a source code using numeric linear (in)equalities as con-

ditions. When the source code is executed for a given input, a sequence of

conditions is executed. We say in that case that these conditions are sensi-

tized. To each condition corresponds a truth value, True or False, observed

during the execution path, with respect to the current variable values. We

will not focus on the sequence of truth values but on a sequence of signs +,

−, or 0, which we call the sign-path, defined as follows. When the condition

is executed in the source code, written in the form [left-hand-side (LHS)

comparison-operator right-hand-side (RHS)], then we record the sign

of the value of [LHS − RHS] (with respect to the current variable values).

Intuitively speaking, when the condition is an inequality, the 0 case can be

thought of as a “limit case between True and False”. Our model takes into

account these limit cases and handles them in a precise geometric combi-

natorial structure.

According to our assumption, each condition in the sequence consists to

checking whether an associated real linear function of the input space has

a positive, negative or null value. In what follows, we abusively call this

linear function an equation (though it is the underlying inequality that is

used). Generally, equations do not appear explicitly in the source code (in

contrast with our toy example), and the same source condition may yield

several equations (in the case of a loop, typically). The set of all resulting

equations for all possible executions forms a set E, which is finite (because

of the constant-time assumption). It is computed by a tree search based on

the sign-path associated to an interpolation technique using a linear solver

(see Sec. 12.2.3). We call equation-path the sequence of sensitized equations

(among E), and with each equation is associated a sign in {+, -, 0} according

to the value of its corresponding linear function. A supplementary equation

“at infinity” is added when the initial inequalities are affine, in order to use

a standard vector space setting; its sign will always be + for executions;

it will also permit to model the algorithm’s behavior “at infinity”. We

stress the fact that two inputs admit the same sign-path if and only if they

admit the same equation-path (though the two sequences of signs can be

different). This property ensures that, for each execution path, a unique

equation (with a unique sign) will be associated with every basic condition,

thus permitting its interpolation.

Finally, each possible execution is encoded by associating each element

June 2, 2021 15:55 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 337

A Qualitative Reasoning Model based on Combinatorial Geometry 337

of E with either its sign from the equation-path or the undetermined sign

× when the equation is not sensitized in the equation-path, yielding what

we call a super-covector over E, or scovector for brevity. Those combina-

torial objects can actually be understood as parts of the oriented matroid

structure underlying the set E of real equations in the real input vector

space, as detailed in Sec. 12.3. Note that two inputs admitting the same

scovector do not generally yield the same output (as in our toy example);

however they sensitize the same execution path. The converse is not true:

two inputs sensitizing the same execution path may admit distinct scovec-

tors (because of the 0 sign of conditions, as noted above). The resulting

scovectors yield equivalence classes aggregating inputs that sensitize the

same execution path.

The geometric interpretation of the previous equivalence relation is cap-

tured by the concept of homodromy. Homodromies — from the greek,

óµoιoς(same), δρóµoς(path) — are connected regions of the (geometrized)

input space, that exhibit the “same” algorithmic behaviour. They group

inputs that are operationally treated in the “same manner”. Clearly, ho-

modromies correspond to feasible execution paths and can be compared to

a sort of “software phases”. Two inputs belong to the same homodromy

(we say in that case that they are homodromic) if one can connect them

with a “continuous” geometric path without changing the sign-path (or,

equivalently, the equation-path). As explained above, homodromies are

combinatorially encoded by scovectors, and we shall say that the homod-

romy is the region of a scovector encoding the homodromy as above. Let

us emphasize this notion as it constitutes the central notion of this work.

(Let us mention that the geometric concept of homodromy as defined below

could be extended to any source code based on a geometric input space.)

Definition 12.1. We call homodromies the path-connected components

(of the input space) induced by the equivalence relation based on the sign-

path (or, equivalently, the equation-path). Homodromies form a partition

of the whole input space called the fragmentation of the input space with

respect to the source code (see Definition 12.6 below for a combinatorial

counterpart).

12.2.2 Running example

Suppose that one wishes to perform structural dynamic testing of the follow-

ing source code, which implements the specifications of an approximative

and simplified model of the water transition phase diagram from classical

June 2, 2021 15:55 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 338

338 Artificial Intelligence Methods for Software Engineering

Solid

Liquid

SF

SF

Gas

P(-10,1)

Q(50,50)

1

2

3

4

mb

◦C

0

0 600

30

γ1(0, 0)

γ2(600, 30)

c1

c2

c3

c4

c5

Fig. 12.2 Phase Transition Diagram of the toy algorithm. Four equations, induced by
the conditions in the source code, delimit four zones corresponding to distinct outputs

(phases). These equations e1, . . . , e4, are depicted as 1, 2, 3, 4, and “oriented” by arrows

towards their positive side (the points where the equation is positive). The boundary
of the Solid zone (formed by regions/homodromies yielding the same Solid output) is

formed by the equations e1 and e2 sensitized by the internal point P (-10,1). Similarly,

the point, Q(50,50) (Liquid zone) sensitizes its border equations e1, e2, e3. The points
γ1 and γ2 are intersections of lines corresponding to the equations, and c1, c2, c3, c4, c5
denote the useful directions of those lines at infinity.

physics, as illustrated in Fig. 12.2. The WaterPhases algorithm takes two

decimal inputs: t (between −100.0 and +1000.0) and p (between −100.0

and +100.0), representing the temperature (in degree Celsius) and the pres-

sure (in bars) of the water, respectively. Then, it outputs its state: Solid,

Liquid, Gas, SuperFluid.

if t >= 20*p:

if p > 30: return ‘SuperFluid’

else: return ‘Gas’

elif 10*t + p <= 0: return ‘Solid’

elif t - 10*p < 300: return ‘Liquid’

else: return ‘SuperFluid’

June 2, 2021 15:55 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 339

A Qualitative Reasoning Model based on Combinatorial Geometry 339

The previous source code uses four basic conditions: (t >= 20*p),

(10*t + p <= 0), (t - 10*p < 300) and (p > 30). Basic conditions

(simply called conditions) are expressions separated by a comparison op-

erator {<=, >=, ==, etc.}. They are uniquely identified by their textual

position inside the source code and may appear in many different forms,

like, inside compound conditions using logic connectors, and/or at the right

hand of boolean assignment statements. Note that, the (basic) conditional

statement “if (t >= 20*p)” is equivalent to “if (t - 20*p >= 0)”.

Let’s now execute the previous code for the input t = -10.0 and p = 1.0,

corresponding to a cold temperature of −10◦C and a normal atmospheric

pressure of 1 bar. First condition, t >= 20*p, is executed (sensitized)

yielding the truth value False with the negative value t− 20 ∗ p = (−10)−
20(1) = −30. The execution path follows the else alternative and sensitizes

the condition p + 10*t <= 0 which is True (since 1+10.(-10)=-99<=0)

and the observed value is negative; the final output will be the Solid (ice)

phase. In conclusion, the two conditions have been sensitized, yielding

the sign-path [--]. These conditions can be interpolated (as it will be

explained in Sec. 12.2.3) yielding respectively the linear equations e1(t, p) =

t − 20p and e2(t, p) = 10t + p. The equation path associated to the point

P (−10, 1) will be thus noted 1−2−. The resulting scovector is [--xx+] (the

last + sign comes from an equation added “at infinity” as mentioned above).

Table 12.1 includes these results for all executions/homodromies of the

toy example.

12.2.3 How the model is built technically

In this section, we present how the successive executions of the source con-

ditions permit the interpolation of their corresponding (unique) equation

inside each homodromy. This is accomplished by a progressive expansion

of a Ternary Decision Tree.

Ternary Decision Trees. Let E = {ei}i=1..n be a set of linear equations

on Rr. A Ternary Decision Tree (TDT) is a tree where any non terminal

node belongs to E and admits 1, 2 or 3 successors (according to their

feasibility) connected with sign labels in {+, -, 0} (each sign appearing only

once). For convenience, one can collapse identical brother subtrees in a

unique subtree decorated by the union of the original signs (see Fig. 12.3).

June 2, 2021 15:55 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 340

340 Artificial Intelligence Methods for Software Engineering

Table 12.1 The 11 homodromies of the toy algorithm (grouped according to their

topological dimension), denoted Ω1, . . . ,Ω11, their sign-paths and equation-paths,

their resulting encoding as scovectors, the corresponding output, and an illustrative
boundary test data proposed by the tool (see Sec. 12.4.3). The column “Test data”

gives an input yielding the corresponding sign-path. For instance, in the last row,
the test data [600,30] means that putting the temperature at 600 degrees and the
pressure at 30 bars, the algorithm output (the water phase) will be Gas and the

sensitized homodromy corresponds to the scovector [0xx0+].

Ωi Sign-path Equation-path SCovector Output Test data

1 [--] 1−2− [--xx+] Solid [-100,999]

2 [-+-] 1−2+3− [-+-x+] Liquid [599.99,30]

3 [-++] 1−2+3+ [-++x+] SuperFluid [600.3,30.02]

4 [++] 1+4+ [+xx++] SuperFluid [600.21,30.01]

5 [+-] 1+4− [+xx-+] Gas [-100,-100]

6 [-0] 1−20 [-0xx+] Solid [-100,1000]

7 [-+0] 1−2+30 [-+0x+] SuperFluid [600.1,30.01]

8 [0+] 104+ [0xx++] SuperFluid [600.2,30.01]

9 [+0] 1+40 [+xx0+] Gas [600.01,30]

10 [0-] 104− [0xx-+] Gas [-100,-5]

11 [00] 1040 [0xx0+] Gas [600,30]

1

2 4

3Ω1 = 1−2−

Ω6 = 1−20 Ω10 = 104−

Ω5 = 1+4−
Ω11 = 1040

Ω9 = 1+40
Ω2 = 1−2+3−

Ω7 = 1−2+30
Ω3 = 1−2+3+

Ω8 = 104+

Ω4 = 1+4+

Solid Liquid SuperFluid Gas SuperFluid

− 0+

0− +

−
0+

0−
+

Fig. 12.3 The Ternary Decision Tree (TDT) modelling the algorithmic behaviour of
the WaterPhases algorithm. Each of the 11 leaves corresponds to a unique homodromy

of Table 12.1. The equation-path % = 1−2+3− sensitized by Q(50,50) corresponds
to the Liquid homodromy Ω2. Note that those equations 1, 2, 3 form its geometric
boundary (see Fig. 12.2). As addressed in Sec. 12.2.3, this equation-path % admits 6
tree alternatives: {10, 1+, 1−20, 1−2−, 1−2+30, 1−2+3+}. A rational linear solver will

produce solutions (or not) for those alternatives, and thus new points to be executed
that will eventually sensitize the 4th equation.

June 2, 2021 15:55 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 341

A Qualitative Reasoning Model based on Combinatorial Geometry 341

Each leaf (node with no successor) expresses a geometric region, i.e. a

single homodromy, thus a feasible execution path, labeled by its equation-

path. A tree using n equations will admit at most 3n feasible leaves. Their

feasibility depends on the intersection pattern of the equations. (Let us

mention that this feasability is encoded in the underlying oriented matroid.)

Tree Expansion Algorithm. The tree expansion algorithm follows a

conventional tree breadth-first strategy (BFS). At a first stage, a random

sampling provides a bootstrap point. Consider for instance that the point

Q = (50,50), of the Liquid homodromy Ω2, is the bootstrap point. Q has

a sign-path [-+-] and sensitizes equations {e1, e2, e3}. Using the rational

linear solver, in a small enough neighborhood of Q, it is now possible to

generate a sufficient number of homodromic points enabling their interpo-

lation. In fact, since all points belong to the same homodromy, we know

that the condition (t >= 20*p) expresses a unique equation of the form:

e1(t, p) : k1t + k2p + k3 = 0 (since we use two inputs). In our example,

the execution of two additional homodromic points, yields two more values

for the equation e1, and allows the evaluation of the coefficients k1, k2, k3,

and thus the exact mathematical expression of e1(t, p) = t−20p. The same

interpolation is done by observing the values of the conditions (10*t + p

<= 0) and (t - 10*p < 300), yielding the equations e2(t, p) = 10t + p

and e3(t, p) = t − 10p − 300. The equations having been identified, it

is now possible to reconstitute the first equation-path path of the TDT :

% = 1−2+3− (see the path in Fig. 12.3), yielding the scovector [-+-x+].

At a second stage, follows the generation of the 6 tree alternatives of %:

{10, 1+, 1−20, 1−2−, 1−2+30, 1−2+3+} (see Fig. 12.3). Each tree alternative

corresponds to a subpath of % starting from the root, where the last node

has been extended with only one branch different from the original one.

Each alternative corresponds to a system of (strict) linear (in)equalities

submitted to a rational linear solver. Starts now, a classic iterative process

of a ternary tree expansion. New solutions and sign alternatives will be

found, checked, rejected or added as new leaves.

Note that equalities can be handled in the same way as inequalities

(consistently with the arbitrary choice of signs used for the sign-path).

Thus, we shall not make the distinction with inequalities anymore. Once

the TDT has been built, one thus disposes of a set E of linear inequalities,

with which can be associated an oriented matroid.

June 2, 2021 15:55 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 342

342 Artificial Intelligence Methods for Software Engineering

12.3 Which mathematical results will be needed

Oriented matroid theory is a rich mathematical theory born in the 1970’s as

a combinatorial abstraction of linear algebra, convex geometry, and graph

theory. In this paper, we focus on a small portion of this theory, that is,

on vectorial oriented matroids and how they encode regions of all dimen-

sions in real hyperplane arrangements. General oriented matroids are both

combinatorial objects, by means of combinatorial axioms, and topological

objects, by means of pseudosphere arrangements; see [21]. Section 12.3.1 is

a short introduction to oriented matroids theory with some classical results

that are necessary for our formal setting. Next, we will build on it for the

sake of our model. We will give no technical details nor formal proofs for

our constructions in this paper; see [22] for further deepening.

12.3.1 Preliminaries on Oriented Matroid theory

General setting. Let us start with a set of n linear inequalities in a vec-

tor space or an affine space (see Sec. 12.2). In the latter case, in a standard

way, we embed the affine space into a vector space with one more dimen-

sion, corresponding to one more variable. The affine space corresponds to

this variable having a value equal to 1. And we add the inequality (consid-

ered as being at infinity) where the additional variable is greater than zero.

From now on, we thus assume that we are given a set of n inequalities in a

real vector space (possibly including one inequality at infinity). Denoting

the variables by xi, 1 ≤ i ≤ r, each inequality
∑

1≤i≤r αi.xi ≥ 0 can be seen

as a vector (α1, . . . , αr) of the ambient space. Up to considering a smaller

ambient space, we can assume that these n vectors span the ambient space

Rr, and we will always make this assumption, which is crucial for further

results and geometric representations.

We also assume that none of these vectors is the null vector. Hence,

each induced linear equation
∑

1≤i≤r αi.xi = 0, yields an hyperplane of the

ambient space (that is, a (r− 1)-dimensional subspace), which is the set of

vectors (x1, . . . , xr) satisfying the equation.

Combinatorial encoding in terms of oriented matroids. Accord-

ingly to the previous setting, one disposes of a finite ground set E =

{e1, ..., en} of a set of (non-null) vectors of the real space Rr (spanning

the ambient space), possibly with repetitions of the same vector with dif-

ferent indices. Each vector e ∈ E provides the equation e.x = 0, for x ∈ Rr,

June 2, 2021 15:55 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 343

A Qualitative Reasoning Model based on Combinatorial Geometry 343

of a hyperplane He of Rr called the hyperplane of e, and provides the in-

equalities of two half-spaces e.x > 0 and e.x < 0, for x ∈ Rr, called the

positive and negative half-space of e, denoted H+
e and H−e , respectively.

The hyperplane He can be equally denoted H0
e . Also, the element at infin-

ity will be denoted p, when it exists. Such a set of hyperplanes is called an

hyperplane arrangement.

Those hyperplanes He and half-spaces H+
e and H−e , for all e ∈ E,

subdivide the ambient space Rr into cells of various dimensions. For the

sake of a geometric representation of these cells, notably used in the figures

of this section, we actually consider a central unit sphere Sr−1 of Rr as the

ambient object, and the spheres Sr−2 in Sr−1 which are the intersections

of the hyperplanes with Sr−1. When there is an element at infinity p, then,

by symmetry, we can consider only the half-sphere Sr−1 on the positive

side of p, and we represent p as a sphere at infinity bounding the figure.

In this way, the cells of Rr defined by the hyperplanes and half-spaces

canonically correspond to cells of Sr−1, except the null vector of Rr which

is not represented. See Fig. 12.4.

A signed-set C on E is defined by giving a sign in {+,−, 0} to each

element of E. The subset of elements with a +, −, or 0 sign is denoted

by C+, C− or C0, respectively. Thus, a signed-set yields a partition E =

C+ ∪ C− ∪ C0. The sign of e ∈ E in the signed-set C is denoted Ce. The

subset C = C+∪C− of E is called the support of C. For A ⊆ E, the signed-

set C \A on E \A is defined to have C+ \A as a positive part and C− \A
as a negative part. For example, writing elements of E = {1, . . . , 5}< in

a list, C = [---0+] is the signed-set with C+ = {5}, C− = {1, 2, 3} and

C0 = {4}.
For x ∈ Rr, we define the covector C associated with x as the signed-set

defined, for each e ∈ E, by giving a 0, + or − sign to e whether x belongs

to the hyperplane, the positive half-space or the negative half-space of e,

respectively. Formally, we have:

Ce = sign(e.x).

The (finite) set of all covectors associated with all x ∈ Rr is denoted by

Cov and forms the family of covectors of an oriented matroid M on E. For-

mally, an oriented matroid is a finite ground set E provided with a family

of signed-sets on E called its covectors and satisfying some combinatorial

axioms. Here, the oriented matroid is called vectorial as it was built from

vectors. Actually, an oriented matroid can be characterized by different

families of signed-sets with different axiom systems, such as its cocircuits

June 2, 2021 15:55 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 344

344 Artificial Intelligence Methods for Software Engineering

or its topes addressed below. As E spans a vector space of dimension r,

we say that the rank of M is r. The cells of the hyperplane arrangement

are in canonical bijection with the covectors. Covectors combinatorially

describe the relative positions of the cells. We call tope a maximal covec-

tor, that is, a covector not containing the zero sign. Topes correspond to

full-dimensional cells of the space delimited by the hyperplanes of E (that

is, to connected components of the complementary set in Rr of the union of

the hyperplanes). We call cocircuit a minimal non-null covector. Geomet-

rically speaking, cocircuits correspond to 1-dimensional cells. In a sphere

representation, they correspond to the points obtained as intersections of

spheres representing the elements of E.

The notions described above are illustrated in Fig. 12.4. For instance,

covectors with no - sign correspond to cells bounding the cell encoded

by [+++++] (see [0++++], [++++0], [+++0+], [0+++0], [+++00], and [0+00+]),

topes with one - sign correspond to full-dimensional cells reached from the

previous cell by crossing one hyperplane (see [-++++] and [+++-+]).

Conformal composition. Two covectors C,D ∈ Cov are called confor-

mal (to each other) if C+∩D− = C−∩D+ = ∅, that is, if no element e ∈ E
has a different non-zero sign in C and D. In other words, the corresponding

cells are in the boundary of the same full-dimensional cell.

Given two conformal covectors C and D, the covector obtained by con-

formal composition of C and D is the covector denoted C ◦ D, or D ◦ C,

whose positive elements are C+ ∪ D+ and whose negative elements are

C− ∪D−. Geometrically, when the corresponding cells are not comparable

for inclusion, C ◦D corresponds to the cell given by the strict convex hull of

the cells corresponding to C and D. The next result will be crucial for us.

Theorem 12.1. Every covector is the result of the conformal composition

of the set of cocircuits that are conformal to it.

The geometric interpretation in terms of full-dimensional cells is simply

that every open bounded convex polytope (tope) is the strict convex hull

(conformal composition) of its extremal points (cocircuits conformal to the

tope). So, the above property can be seen as the combinatorial counterpart

of this classical property in convex geometry. For instance, in Fig. 12.4, we

have that [+++++] = [0+00+]◦ [+++00]◦ [0+++0], and we have that [-+0++] =

[0+00+] ◦ [-+0+0].

June 2, 2021 15:55 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 345

A Qualitative Reasoning Model based on Combinatorial Geometry 345

p

4

1

32

1234p
+++++

-++++-+-++

---++

----+

+---+

+-+-+

+++-+

-+--+

++--+

p

4

1

32

1234p
+++++

0+00+

+++00---00

0+++0

-+0+0

0---0

+-0-0

-0-+0

+0+-0

-0-0+

00--+

+00-+

p

4

1

32

1234p
+++++

---0+ -+-0+ +++0+

0-
--
+

0+
--
+

0+
++
+

+
-
0
-
+

+
+
0
-
+

-
+
0
+
+

-+-+0

+-+-0

---+0

-+++0

++++0

----0

+---0

+++-0

-0-++

-0--+

+0--+

+0+-+

Fig. 12.4 Oriented matroid covectors encoding cells of the hyperplane arrangement, in
a sphere representation with the element p at infinity. The signed-sets are indicated as

lists with respect to the ordering E = {1, 2, 3, 4, p}<. The positive (and negative) sides
of the hyperplanes are indicated by the full-dimensional cell whose signs [+++++] are all

positive. Topes are represented in the upper left figure. Cocircuits are represented in

the upper right figure. Other non-null covectors are represented in the third figure. This
oriented matroid is obtained from the equations of the running example (Sec. 12.2.2).

Minors. Given a subset A of E, we define the oriented matroid M\A
obtained by deletion of A from M as the oriented matroid defined as above

from the vectors in E \A (its covectors can be characterized in a combina-

torial way, but we omit this). Observe that a representation of M directly

yields a representation of M\A. An example of deletion is shown in the

left side of Fig. 12.5.

Given a subset A of E, we define the oriented matroid M/A obtained

by contraction of A from M in the following way (again a combinatorial

characterization exist that we omit). Geometrically, the contraction of A

June 2, 2021 15:55 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 346

346 Artificial Intelligence Methods for Software Engineering

p

4

1

1..4p
+..++

-..++

-..-+

+..-+

0..0+

+..00-..00

0..+0

0..-0

4
3

2

p

p

.234p

.++++

.---+

.+--+ .+00+

.+++0

.---0

.0--+

Fig. 12.5 Oriented matroid minors. Spherical representations of the oriented matroid
M\23 on the left and of the oriented matroid M/1 on the right, where M is the oriented

matroid of Fig. 12.4. Their topes and cocircuits are indicated (dots stand for omitted

elements).

consists in considering only the set of cells contained in every hyperplane

in A. Precisely, we consider the subspace HA =
⋂
a∈AHa as a new ambient

space, and we consider the arrangement of hyperplanes {He ∩ HA | e ∈
E \ A, He 6⊇ HA} indexed by E \ A in this space (the elements e such

that He ⊇ HA become so-called loops, which encode the null vector and

are omitted in the structure). In this way, a representation of M directly

contains a representation of M/A. An example of contraction is shown in

the right side of Fig. 12.5.

The oriented matroids of type M\A/A′ for A ⊆ E and A′ ⊆ E with

A∩A′ = ∅ are called minors of M . The ordering of the deletion/contraction

operations does not matter since M\A/A′ = M/A′\A.

As noted above, a representation of M directly yields a representation

of M\A. However, the dimension of the space spanned by E \ A is not

necessarily the same as the initial ambient space spanned by E, which was

our assumption (that is, the rank of M\A can be smaller than the rank of

M). In this case, removing elements from a spherical representation of M

does not yield a proper spherical representation of M\A under the same

assumption, and points in the resulting representation do not correspond

to cocircuits anymore. This subtlety will be important for us. The next

lemma states that cocircuits of minors of M can be seen as cocircuits of M

as soon as the assumption is preserved.

June 2, 2021 15:55 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 347

A Qualitative Reasoning Model based on Combinatorial Geometry 347

Lemma/Definition 12.2. Consider the minor M ′ = M\A/A′ of M . As-

sume that the rank of M\A is equal to the rank of M . Then, for any cocir-

cuit C ′ of M ′, there exists a unique cocircuit C of M such that C ′ \A = C.

We call C the lift of C ′ in M .

For example, consider the cocircuit [0..-0] of M\23 in Fig. 12.5. Its

lift in M is the cocircuit [0---0] of M in Fig. 12.4.

12.3.2 Encoding regions with super-covectors

What follows does not belong to standard oriented matroid theory. We

introduce original concepts for our application.

Let us define Q = { 0, −, +, × } as the set of super-signs, where ×
is called the undetermined sign. The set Q is ordered with 0 ≤ + ≤ ×
and 0 ≤ − ≤ ×, forming a lattice (depicted below), whose join and meet

operators are denoted by ∨ and ∧, respectively:

×

− +

0

Definition 12.3. Let E be a finite set. A super-signed-set over E (sss for

brevity), is an element U ∈ QE . We naturally extend, componentwise, the

lattice structure of Q to a lattice structure of QE . Let U, V ∈ QE . We say

that U is smaller than V , noted U � V , if Ue ≤ Ve, for all e ∈ E. Finally,

U ∨V and U ∧V , are defined by (U ∨V)e = Ue∨Ve and (U ∧V)e = Ue∧Ve,
respectively, for all e ∈ E.

For e ∈ E, the super-sign associated to e in U is denoted by Ue. For a

super-sign σ ∈ Q, we define the set Uσ = {e ∈ E : Ue = σ}. Observe that

if U× = ∅, then U is a signed-set, as addressed in Sec. 12.3.1.

Observe that two signed-sets U and V are conformal (Sec. 12.3.1) if and

only if no element of U ∨ V has the undetermined sign. In that case, we

have U ∨ V = U ◦ V . For example, we have [+0] ∨ [-0] = [x0], [+0] ∨ [0-] =

[+0] ◦ [0-] = [+-], [+x] ∨ [00] = [+x], and [+x] ∨ [x0] = [xx]. Observe also

that, for two signed-sets U and V , if U � V then U and V are conformal.

Let M be an oriented matroid on E as built in Sec. 12.3.1. Recall that

each e ∈ E is associated with one equation that partition the space into

one hyperplane H0
e and two (open) halfspaces H+

e and H−e .

June 2, 2021 15:55 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 348

348 Artificial Intelligence Methods for Software Engineering

Property 12.1. For a sss U over E, the following conditions are equivalent:

• the following region is non-empty:

region(U) =
⋂
e∈E
Ue 6=×

HUe
e

• the signed-set U \
(
U×∪U0

)
on E\

(
U×∪U0

)
is a maximal covector

(or tope) of the minor M\U×/U0 of M .

Definition 12.4. A sss U satisfying the conditions of Property 12.1 is

called a super-covector of M , or scovector for brevity. Also, region(U) is

called the region of U ; and region(U) denotes the topological closure of

region(U). Two super-covectors U and V representing the same region are

considered as equivalent and noted U ∼ V . The family of all scovectors of

M will be denoted by SCov.

We call null-scovector the scovector with only 0 signs. Note that its

region is {0}, consisting of the null-vector only. Note also that the scovector

with only × signs yields the whole ambient space as a region.

12.3.3 Super-covectors versus covectors

Super-covectors essentially consist of groups of covectors/regions induced

by covectors/regions of minors. Obviously, covectors of M are also scovec-

tors. If C is a covector, then region(C) is the cell of C as addressed in the

previous section. The scovectors with no 0 sign and no × sign are the con-

ventional topes (or maximal covectors) of the oriented matroid (Sec. 12.3.1).

The scovectors with no 0 sign are called super-topes of M . We mention that

this notion was addressed under the same name in [23] and is equivalent to

the so-called notion of T -convex sets; see [21, Sec. 4.2].

As an example, Fig. 12.6 shows various scovectors of the oriented ma-

troid of Fig. 12.4. Observe how different scovectors may represent the same

region. For instance, in Fig. 12.6: the scovectors [+++0+], [+xx0+] and

[xx+0+] represent the same region, which is the cell of the covector [+++0+]

of M (and the cell of the covector [+++.+] of the minor M/4); the scovectors

[0x--+], [0x-x+] and [0xx-+] represent the same region, which is also the

cell of the covector [0.--+] of the minor M\2 and the cell of the covector

[..--+] of the minor M/1\2.

Definition 12.5. For two scovectors U and V , let us denote U E V if, for

all e ∈ E, we have Ue = Ve or Ve = ×. Equivalently: U E V if and only if

U � V and U0 ⊆ V 0 ∪ V ×.

June 2, 2021 15:55 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 349

A Qualitative Reasoning Model based on Combinatorial Geometry 349

p

4

1

32

 1234p

 +++++
(+xx++)

 -++++
(-x+x+) -+-x+

(-+-x+)

 ---x+
(--xx+)

 +xx-+
(+xx-+)

 +++0+
(+xx0+)
(xx+0+)

 0
x-
-+

(0
x-
x+
)

(0
xx
-+
)

 0
++
++

(0
x+
x+
)

(0
xx
++
)

 -+0++
(-x0x+)
(xx0++)

 -0-x+
(-0xx+)

 0+00+
(xx00+)
(0xx0+)
(0x0x+)

+++00

0+++0

-+0+0

0---0

-0-+0

00--+

Fig. 12.6 The figure shows various super-covectors (or scovectors) for the oriented ma-
troid of Fig. 12.4. Each scovector is written in its region (Definition 12.4). The bold

scovector is the representative of the region (Proposition/Definition 12.7), and some
equivalent scovectors are written below. The dotted portions of elements represent those

which are signed × for the regions that they cross. The cocircuits, that will serve as

borders of scovectors, are written in italics (Sec. 12.3.6). This set of scovectors forms
a fragmentation of the oriented matroid, that is, their regions form a partition of the

sphere (Definition 12.6). This fragmentation is obtained from the toy example addressed

in Sec. 12.2.2 and Fig. 12.2.

As seen below in Property 12.3, this E relation corresponds to an inclu-

sion relation for regions of scovectors. Observe that two covectors are not

comparable for E unless they are equal. The E relation will be useful for

handling scovectors representatives as defined in Sec. 12.3.4.

Property 12.2. For a scovector U , we have:

• covectors C E U are obtained from U by possibly replacing every

× sign in U with a sign in {+,−, 0}, and keeping only covectors of

M ;

June 2, 2021 15:55 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 350

350 Artificial Intelligence Methods for Software Engineering

• covectors C � U are obtained from U by possibly replacing every

× sign in U with a sign in {+,−, 0} and/or every {+,−} sign in U

with a 0 sign, and keeping only covectors of M ;

• region(U) =
⊔

C∈Cov
CEU

region(C) and region(U) =
⊔

C∈Cov
C�U

region(C)

(where t denotes a disjoint union).

For instance, in Fig. 12.6, the scovector [+xx-+] is the union of the fol-

lowing covectors from Fig. 12.4: [+---+], [++--+], [+-+-+], [+++-+] (topes),

[+0--+], [+-0-+], [++0-+], [+0+-+] (intermediate covectors) and [+00-+] (co-

circuit).

Definition 12.6. A fragmentation of M is a set F of scovectors of M

whose regions partition the ambient space (that is, regions are disjoint to

each other and their union equals the whole space). Equivalently, in a com-

binatorial way: the sets
{
C | C ∈ Cov, CEU

}
, for U ∈ F , partition the set

of covectors of M . (This is a combinatorial counterpart of Definition 12.1.)

12.3.4 Representative of a super-covector

As noticed above, various super-covectors may represent the same region.

The notion of representative will be essential to compare and relate homod-

romies. Representative scovectors are written in bold in Fig. 12.6.

Proposition/Definition 12.7. Let U be a scovector of M . There exists a

unique scovector of M , which we denote by rep(U), such that U ∼ rep(U)

and rep(U)× has the smallest possible number of × signs. It satisfies

rep(U) =
∧
V∼U

V =
∨

C∈Cov
CEU

C.

If the region of U is {0} (consisting of the null-vector only), then rep(U)

is the null-scovector (with only 0 signs). We call representative of U , or of

region(U), the scovector rep(U). A scovector which is equal to its repre-

sentative is called a representative scovector. Clearly, covectors are repre-

sentative scovectors.

June 2, 2021 15:55 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 351

A Qualitative Reasoning Model based on Combinatorial Geometry 351

Property 12.3. For two scovectors U and V , we have the following:

(i) U ∼ V if and only if rep(U) = rep(V).

(ii) If U � V then rep(U) � rep(V), and if UEV then rep(U)Erep(V).

(iii) region(U) ⊆ region(V) if and only if rep(U) E rep(V).

(iv) region(U) ⊆ region(V) if and only if rep(U) � rep(V).

For instance, in Fig. 12.6, the scovectors [+++0+], [+xx0+] and [xx+0+]

admit the same representative scovector [+++0+], and the scovectors [0x--+],

[0x-x+] and [0xx-+] admit the same representative scovector [0x--+].

Note that “rep” cannot be omitted in the above statements. For in-

stance, in Fig. 12.6, the two scovectors [x+00+] ∼ [0+x0+] yield the same

region (with representative [0+00+]) but are not comparable.

Note also that, for two scovectors U and V , rep(U ∨V) can be different

from rep(U) ∨ rep(V). (Thus, in general, U is not equivalent to
∨
V∼U V .)

For instance, [0x-x+]∨ [0xx-+] = [0xxx+] whose region is the whole part of

H1 in the positive side of Hp, larger than the region of [0x--+].

However, with the above properties, one can see that the lattice struc-

ture of QE naturally induces a consistent lattice structure for the set of

representative scovectors. (The join and meet operations between rep(U)

and rep(V) are given by rep(rep(U)∨rep(V)) and rep(rep(U)∧rep(V)), re-

spectively.) This lattice is isomoprhic to a lattice for closures of scovector’s

regions.

Finally, representative scovectors can be considered as the useful scovec-

tors for a practical encoding and handling of the regions. Practically, they

can be computed using the construction of Sec. 12.3.6 below.

12.3.5 Contiguity between super-covectors

The notion of contiguity between homodromies will be central to use our

model, and it can be directly deduced from the oriented matroid structure.

Property 12.4. Let U and V be two scovectors. Then U∧V is a scovector.

We have region(U)∩ region(V) 6= {0} (where 0 denotes the null-vector)

if and only if the rep(U ∧ V) is not the null scovector (with only 0 signs),

that is, if and only if region(U ∧ V) 6= {0}.
Furthermore, if region(U) ∩ region(V) = ∅ then the region of U ∧ V is

the greatest common face of the closures of the regions of U and V .

Definition 12.8. Two scovectors U and V with disjoint regions are called

contiguous when the union of their regions is connected, that is, when one

can pass continuously from region(U) to region(V).

June 2, 2021 15:55 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 352

352 Artificial Intelligence Methods for Software Engineering

Proposition 12.1. For two scovectors U and V with disjoint regions, the

following conditions are equivalent:

(i) U and V are contiguous;

(ii) region(U) ∩ region(V) or region(U) ∩ region(V) is non-empty;

(iii) rep(U ∧ V) satisfies rep(U ∧ V) E rep(U) or rep(U ∧ V) E rep(V).

Application. Further properties and underlying combinatorial structures

can be obtained by exploiting, for instance, the approach of the above prop-

erties. Starting with the set of all representatives of scovectors of a fragmen-

tation, and applying all possible ∧ and ∨ operations, a lattice is naturally

built. This lattice is a combinatorial representation of the way the algo-

rithm acts on the input space and contains all the necessary information to

perform qualitative reasoning and test data generation tasks. Such appli-

cations will be given in Sec. 12.4 using the above results as combinatorial

criteria.

12.3.6 Border of a super-covector

Given a scovector U , our goal is here to compute rep(U) by a join operation

applied to a set of cocircuits of M , or of a suitable minor of M , that we call

the border of U . This construction yields a way to compute representative

scovectors, and, furthermore, to compute boundary test data in Sec. 12.4.3.

Let us state a definition and result in the most general case, that we will

explain and illustrate in the simpler most frequent cases. Various equivalent

definitions are possible but will be omitted here.

Definition 12.9. Let U be a scovector of M . Let X be the union of all

supports of cocircuits of M which are contained in U×. Let us denote

M ′ = M\U×/U0 and U ′ = U \
(
U× ∪ U0

)
. Consider the cocircuits of

M ′ which are conformal to U ′. Then, the border of U in M is the set of

scovectors of M which are obtained by taking the lifts in M\X of these

cocircuits of M ′, and then by adding a × sign to all elements in X. The

border is denoted by ∂M (U), or by ∂(U) for brevity.

Scholia. In Definition 12.9, in the case where X = ∅, which we call the

tame case, ∂(U) is a set of cocircuits of M . (In this case, equivalently,

the rank of M\U× equals the rank of M , and it is the most frequent in

applications.) In the general case, ∂(U) is a set of very special scovectors

June 2, 2021 15:55 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 353

A Qualitative Reasoning Model based on Combinatorial Geometry 353

of M : for V ∈ ∂(U), we have that V × = X and V \ X is a cocircuit of

M \X. Furthermore, ∂M\X(U \X) = {V \X | V ∈ ∂M (U)}.

Theorem 12.2. Let U be a scovector of M . Then rep(U) is the join of its

border:

rep(U) =
∨

C∈∂(U)

C.

Furthermore, for two scovectors U and V , we have U ∼ V if and only if

∂(U) = ∂(V).

First, let us consider the particular case where U× = ∅ (hence X =

∅) and U0 = ∅. In this case, U = U ′ is a maximal covector of M =

M ′, and ∂(U) is simply the set of cocircuits of M which are conformal

to U . Then, the above result can be written rep(U) = U = C∈∂(U) C =∨
C∈∂(U) C, and it is essentially a reformulation of Theorem 12.1, which

is given here by the central equality. (Obviously, U = rep(U) as it has

no × sign, and the conformal composition can be replaced with the join

operation as the two operations coincide for signed-sets which are conformal

to each other, as observed in Sec. 12.3.2.) As mentioned in Sec. 12.3.1, the

geometric interpretation of the above result is the following classical result

in geometry: a bounded convex polytope (encoded by a covector) is the

convex hull (encoded by the composition operation) of its extremal points

(encoded by conformal cocircuits). In the case where U× = ∅ and, possibly,

U0 6= ∅, we have exactly the same result and interpretation but in the minor

M ′ = M/U0, and the border of U is also formed by cocircuits of M .

For instance, in Fig. 12.6, for the maximal covector U = [+++++], the

border ∂(U) is formed by [0+00+], [0+++0] and [+++00], whose join equals

U ; and for the covector V = [-+0++], the border ∂(V) is formed by [0+00+]

and [-+0+0], whose join equals V .

Second, consider now the case where X = ∅ (but, possibly, U× 6= ∅). In

this case, we call U a tame scovector, and the border of U is also formed

by cocircuits of M . By Property 12.1, the signed-set U ′ = U \
(
U× ∪ U0

)
is a maximal covector of M ′ = M\U×/U0. Since X = ∅, then the rank

of M\U× equals the rank of M (this is a lemma which we omit). Hence,

the lift notion from Lemma/Definition 12.2 is well-defined in M ′. Consider

the border ∂M ′(U
′) of U ′ in M ′ as defined in the case above. Then the

cocircuits in ∂M (U) are the lifts in M of cocircuits of M ′ belonging to

∂M ′(U
′).

June 2, 2021 15:55 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 354

354 Artificial Intelligence Methods for Software Engineering

As discussed in Sec. 12.3.1, being tame means that the region of U in

the ambient space of M and the region of U ′ in the ambient space of M ′

coincide. According to our experiments on program testing, most (or all)

scovectors are tame in applications. For instance, all scovectors depicted in

Fig. 12.6 are tame. The border of the scovector U = [+xx-+] is formed by

the cocircuits [0---0], [0+00+] and [+++00] whose join equals U . The border

of the scovector [-0-x+] is formed by the cocircuits [-0-+0] and [00--+].

Third, in the non-tame case, scovectors of the border are no more co-

circuits of M . By properties of the rank function, we have that r(M\X) =

r(M\U×) = r(M)−r(X). Hence the lifting notion is well-defined in M\X.

By Property 12.1, the signed-set U ′ = U \
(
U×∪U0

)
is a maximal covector

of M ′ = M\U×/U0. Consider the border ∂M ′(U
′) of U ′ in M ′ as defined

in the first case. Then, the scovectors in ∂M (U) are obtained from ∂M ′(U
′)

as said in Definition 12.9 by using Lemma/Definition 12.2 in M\X.

5

3

4

21

 12345

 +++++

 xx-++

 xx--+

 xx0++

 xx-0+

 xx--0

++000--000

5

5

3

4

 345

 +++

 -++

 --+

 0++

 -0+

 --0

M M\12
X=12

Fig. 12.7 Example of non-tame scovectors and their borders. The positive half-spaces

are indicated by the region of the [+++++] covector. For any of the five depicted scovectors

with U× = 12, we have that U× contains the support X = 12 of the cocircuit [++000],
hence these scovectors are non-tame. The spherical representation of M\X induced by

the spherical representation of M in the sphere S2 (on the left, with 5 at infinity) is
thus not proper (the cocircuits do not correspond to points anymore, as shows the point
associated with [++000] in M , which would be associated with [000] in M\X but which
is not a cocircuit). The proper spherical representation of M\X is given in the sphere
S1 (on the right, with 5 still at infinity). The five above scovectors yield covectors of

M\X, as shown on its proper representation. The border of [..-++] in M\X is formed
by [..0++] and [..-0+]. Thus, the border of [xx-++] in M is formed by [xx0++] and
[xx-0+]. Observe on the left picture how the two corresponding half-linear-subspaces (of

dimension 2 in R3) delimit the region of [xx-++].

June 2, 2021 15:55 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 355

A Qualitative Reasoning Model based on Combinatorial Geometry 355

An example of non-tame scovectors and their borders is given and ex-

plained in Fig. 12.7. Note that the scovectors belonging to a border are

either cocircuits (tame case) or very special scovectors (cf. Scholia above).

When they correspond to cocircuits of a minor M\X with a loss of rank,

they are supported by half-linear-subspaces of the initial ambient vector

space (which are just half-lines in the tame case).

Application. The above definition and result have their numeric coun-

terpart that will be used for limit test data generation (see in Sec. 12.4.3).

Each cocircuit of ∂(U) can be realized as a real vector (recall that it cor-

responds a precise point in a spherical representation). In general, one can

compute a real vector belonging to the region of each scovector of ∂(U).

Then, performing a join operation on the combinatorial structure amounts

to perform a convex combination of the associated real vectors. In this way,

by Theorem 12.2, one can generate real vectors on the extreme boundary

faces — encoded by ∂(U) — of the region of U , and in their neighbourhood

inside the region of U .

12.4 How the model is used

Once the model (consisting of real inequalities and combinatorial informa-

tion) has been computed (Sec. 12.2), one can determine the underlying

oriented matroid which vehiculates additional combinatorial information

such as representative scovectors and borders of homodromies (Sec. 12.3).

We present in this section the three “outputs” of the qualitative model that

one can derive from the previous computations: envision graphs, order-of-

magnitude reasoning, and boundary test data generation. Our examples

will still be based on our WaterPhases algorithm.

12.4.1 Relations between Homodromies and the Envision

Graph

Intuitively speaking, an envision graph is a qualitative visualisation of the

behaviour of the algorithm.

Homodromies form a partition of the ambient input space (called a

fragmentation in Definitions 12.1 and 12.6). Moreover, homodromies, as

regions of scovectors, are bijectively encoded in terms of their representative

scovectors (Sec. 12.3.4). It is then natural to use the contiguity property of

Proposition 12.1 as a straightforward combinatorial criterion for building

the following adjacency graph.

June 2, 2021 15:55 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 356

356 Artificial Intelligence Methods for Software Engineering

Definition 12.10. Let us consider a fragmentation F . The homodromy

graph of F is the undirected graph G whose vertices are elements of F and

whose edges are pairs of contiguous scovectors in F .

In practical applications, homodromy graphs are relatively dense

graphs, since they express the geometric configuration of all the feasible

paths of the algorithm. It is then tempting to aggregate neighbor vertices

with respect to a user-defined equivalence relation '. For instance, distinct

homodromies can correspond to the same output of the initial software. In

our example, ' will be “having the same output” (see Figs. 12.8 and 12.9).

In other cases, the equivalence relation can be established using the subset

of inputs that are numerically influencing outputs (see example below and

Fig. 12.10). More formally:

Definition 12.11. Let G be the homodromy graph of the fragmentation

F , and let ' be an equivalence relation over F . The envision graph of F
with respect to ' is the graph obtained from G by contracting edges with

equivalent endpoints. The resulting vertices of G′ are consistently labelled

with the equivalence classes of '.

In Fig. 12.8 is given the homodromy graph of Fig. 12.6. Its corre-

sponding envision graph (where homodromies having the same output are

aggregated) is illustrated in Fig. 12.8 and refined in Fig. 12.9. As illustrated

in this example, the envision graph can also be refined as a directed graph

in order to take into account the influence of increasing/decreasing variable

changes.

As another example, let us consider the following source code for the

algorithm MAXN which computes the maximum of an array of N elements.

max = a[0]

for i in range(1, N):

if a[i] > max: max = a[i]

return max

In Fig. 12.10, are given the envision graphs of the MAX3 and MAX4, for the

equivalence relation ' defined as follows: two homodromies are equivalent

if their output is influenced by the same input variable. This information

is automatically collected during the TDT construction (Sec. 12.2.3). More

generally, the algorithm MAXN admits 3N−1 homodromies (feasible paths)

and its underlying oriented matroid is a classical one known as the braid

arrangement (of dimension N−1, admitting N ! full-dimensional regions, in

June 2, 2021 15:55 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 357

A Qualitative Reasoning Model based on Combinatorial Geometry 357

Gas

Superfluid

Liquid

Solid

 +++++
Ω4

 -++++
Ω3

 -+-x+
Ω2

 ---x+
Ω1

 +xx-+
Ω5

 +++0+
Ω9

 0x--+
Ω10

 0++++

Ω8

 -+0++

Ω7

 -0-x+

Ω6

 0+00+
Ω11

Fig. 12.8 Homodromy graph for the fragmentation of Fig. 12.6: vertices are the scovec-

tors of Fig. 12.6, and edges reflect the contiguity relations between regions in Fig. 12.6.

Envision graph for this fragmentation with respect to the output of the WaterPhases

algorithm of Sec. 12.2.2 and Fig. 12.2: vertices are groups of scovectors corresponding

to the same output, edges (represented by dashed segments) are induced by edges of the

homodromy graph between those groups. Note that each homodromy is given with its
representative scovector (Sec. 12.3.4), different from its initial scovector (Table 12.1).

bijection with permutations, or acyclic orientations of the complete graph).

It contains 2N −2 cocircuits. Among them, 2N −1 are sufficient to express

combinatorially all the homodromies by means of their borders (Sec. 12.3.6).

The envision graph of MAXN , according to ', turns out to be the complete

graph KN , which we refine in the following way: to any given input ai
corresponds a node labelled ai (expressing the fact that the ai input is

influencing the output), admitting N − 1 outgoing arrows aj , j 6= i, and

N − 1 ingoing arrows, all equal to ai.

Envision graphs are mainly destinated to the visualisation of local be-

haviours. When equations are linear, it is possible to have a global vision.

However, when equations become very numerous, the envision graph can

be very complex to visualize globally. It is then preferable to use it as a

simulation tool (the simulation aspect is not in the scope of this paper).

Let us end with an application of the intersection criterion of Property

12.4. Suppose that one wishes to know what happens when three differ-

ent phases meet at a common boundary surface. Using the four phases

June 2, 2021 15:55 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 358

358 Artificial Intelligence Methods for Software Engineering

Gas SuperFluid

Solid Liquid

p

p− t p− t p− t

p+ tt

t

p

p
t

t − p

Fig. 12.9 Refined envision graph of the WaterPhases algorithm, automatically generated

by our tool (with some minor cosmetic changes). The underlying graph is the same as
the one given in Fig. 12.8. Labels p and t stand for pressure and temperature. The node

SuperFluid aggregates the 4 contiguous SuperFluid homodromies Ω3, Ω4, Ω7, Ω8. The

arrow from Gas to Liquid labeled p−t expresses that pressure must increase and/or the
temperature must decrease to allow the transition. Arrows are reversible: the previous

arrow could be reversed from Liquid to Gas and labeled t−p (dotted arrow). Arrows with

no predecessors/successors (infinity arrows, dotted) mean that any increase/decrease will
not change the phase. For instance, in the Gas phase, any increase of the temperature

and any decrease of pressure will not change the phase; equally, only a pressure increase

will allow the transition to SuperFluid phase. Note also that there is no possible direct
transition from Solid to SuperFluid.

homodromies of maximal dimension, Ω1(Solid), Ω2(Liquid),

Ω3(SuperFluid), Ω5(Gas) and this criterion, one directly gets the possi-

ble triple points:

• rep(Ω1) ∧ rep(Ω2) ∧ rep(Ω3) = [---x+] ∧ [-+-x+] ∧ [-++++] =

[-00++] ∼ [00000] which corresponds to the null vector, which does

not belong to the affine initial input space (outside the specifica-

tions). Hence, there is no possible triple point between the Solid,

Liquid and SuperFluid phases.

• rep(Ω1) ∧ rep(Ω2) ∧ rep(Ω5) = [---x+] ∧ [-+-x+] ∧ [+xx-+] =

[00--+] = rep(γ1)

• rep(Ω2) ∧ rep(Ω3) ∧ rep(Ω5) = [-+-x+] ∧ [-++++] ∧ [+xx-+] =

[0+00+] = rep(γ2)

June 2, 2021 15:55 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 359

A Qualitative Reasoning Model based on Combinatorial Geometry 359

a0

a1

a2

a2

a1

a2

a0

a0a1

a0

a1 a2

a3

a1

a2

a3

a0

a0 a1 a3 a1

a2

a0a1

a2

a0 − a1 − a2

a1 − a0 − a2

a2 − a0 − a1

a0 − aj 6=0

a1 − aj 6=1 a2 − aj 6=2

a3 − aj 6=3

Fig. 12.10 The Envision Graphs of MAX3 (left) and MAX4 (right) algorithms, refined with

arrows. Nodes are automatically labeled, according to the (here unique) input influencing
the result. The arrow from a0 to a2, labeled a2 means that when the maximum is the

first element of the array (a0), and the third element (a2) is incremented then, eventually,

a2 will be selected as the maximum. If a2 “continues” to increase or any other element
decreases, the algorithm will stay at the same state a2 (infinite arrow labeled a2−a0−a1).

Each of the 4 nodes of MAX4 graph represents a 4-dimensional polytope. (One can note

that reversing the arrows, yields the envision graphs of similar MIN3 and MIN4 algorithms.)

where γ1 and γ2 are indicated in Figs. 12.2 and 12.11 (we use representatives

of homodromies, shown in Figs. 12.6 and 12.8, possibly different from their

initial scovectors from Table 12.1).

12.4.2 Order-of-Magnitude Reasoning and Qualitative

Execution

We introduce in this section an original order-of-magnitude algebra which

can be considered as a non-standard version of an interval based order

of magnitude algebra from [16]. We then illustrate how this formalism

can be consistently combined with the combinatorial spatial properties of

scovectors, to obtain useful qualitative conclusions.

Order-of-Magnitude Reasoning. Non-standard analysis handles hy-

perreal numbers, that is, infinitesimally small numbers (called infinitesi-

mals) and infinitesimally big (called infinite) numbers, with an equivalence

relation, noted ≈ meaning “infinitesimally close”; see [24,25]. In our model,

ε stands for any strictly positive infinitesimal, d for any standard strictly

positive finite (but not infinitesimal) real number, and ω stands for any pos-

itive infinite number (and their opposites are represented using a − sign).

June 2, 2021 15:55 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 360

360 Artificial Intelligence Methods for Software Engineering

The qualitative value associated to an input of the algorithm, say p, will

be denoted [p] and will be a closed interval. For instance [p] ≈ [ε, ω] stands

for a strictly positive input p with an unknown order-of-magnitude. The

interval [−ω, ω] expresses undeterminacy; [−d, ε] stands for any finite real

(possibly negative) that is inferior that any standard positive real number.

The four interval arithmetic operations (⊕,⊗,	,�) constitute an interval

extension of the hyperreal operations. Some examples: [d, d]⊕ [ε, ε] ≈ [d, d];

[d, d] 	 [ω, ω] ≈ [−ω,−ω], [ε, ε] ⊗ [ω, ω] ≈ [ε, ω]; [−d, ε] ⊕ [0, d] ≈ [−d, d];

[−d,−d]⊗ [−ε, ε] ≈ [−ε, ε].

Qualitative execution. Suppose in the following that, in the toy algo-

rithm, the temperature is a very small number, of unknown sign ([t] ≈
[−ε, ε]) and the pressure has a standard positive value ([p] ≈ [d, d]). Using

linearity of e2 = 10t+p and the neutrality of [d, d], it is then straightforward

to evaluate the qualitative value of e2. In fact, all coefficients, considered as

standard reals, ([d, d]) can be dropped and we obtain: [e2] ≈ [10 · t+1 ·p] ≈
[10]⊗ [t]⊕ [1]⊗ [p] ≈ [d, d]⊗ [t]⊕ [d, d]⊗ [p] ≈ [t]⊕ [p] ≈ [−ε, ε]⊕ [d, d] ≈ [d, d].

We conclude that the equation e2 will be positive. For the other equations

one gets:

• [e1] ≈ [t]− [p] ≈ [−ε, ε]	 [d, d] ≈ [−d,−d] thus its sign is −
• [e3] ≈ [t]− [p]− [d, d] ≈ [−ε, ε]	 [d, d]	 [d, d] ≈ [−d,−d], with sign

−
• [e4] ≈ [p]− [d, d] ≈ [d, d]	 [d, d] ≈ [−d, d] thus its sign is unknown,

×

Grouping all equations’ signs, and adding a + sign at the end (as before

for the equation at infinity) we obtain the scovector U = [-+-x+] which

corresponds to the Liquid homodromy Ω2. We conclude that, when tem-

perature is very close to zero and pressure has a normal (non-negligible)

positive value, the result will be the Liquid phase.

Let’s take another example: what happens when the temperature is

very high and pressure is normal (non-negligible) but unknown? We

have [t] ≈ [ω, ω] and [p] ≈ [−d, d]. Evaluating, as previously, equations

signs, we obtain the scovector V = [+++x+]. Using now the intersection

criterion of Property 12.4, one can observe that two Gas homodromies,

rep(Ω5) = [+xx-+] and rep(Ω9) = [+++0+], and the SuperFluid homod-

romy, rep(Ω4) = [+++++], combinatorially intersect the scovector V . We

conclude that when the temperature is very high and the pressure is un-

known, the only compatible results will be the Gas and SuperFluid phases.

June 2, 2021 15:55 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 361

A Qualitative Reasoning Model based on Combinatorial Geometry 361

12.4.3 Boundary Test Data Generation

Boundary test data generation is the quantitative side of the model. Its

principle resides in the transformation of combinatorial operators (∨,∧)

in real valued operations. Cocircuits constitute the combinatorial and nu-

merical buildings blocks of the model. Rephrasing it, in software testing

teminology: by composing a restricted set of test points, it is possible to

generate, automatically, new limit test points on the borders of all the

possible execution paths of the algorithm. Test data generation takes two

steps.

• Step 1: Combinatorial generation of a specific region B.

• Step 2: Numerical generation of a point inside B, using rational

valued operations.

For this sake, we extensively use the border notion of Sec. 12.3.6. Let us

consider a scovector U and its border ∂(U). To each cocircuit or scovector

C in ∂(U), can be arbitrarily associated, a real vector, named sample(C),

realizing C in region(C). Such a real vector can be easily computed from

the initial equations (if C is a cocircuit, then sample(C) can be any real

vector spanning the half-line contained in the line
⋂
e∈E,C(e)=0He, in the

same side as the region
⋂
e∈E,C(e)6=0H

C(e)
e). For instance, samples of the

cocircuits of our example (Figs. 12.2 and 12.6) are given in Table 12.2.

Then, by Theorem 12.2, a real vector in region(U) realizing U =∨
C∈∂(U) C can be any combination of the real vectors sample(C) for

C ∈ ∂(U) with positive coefficients: sample(U) =
∑
C∈∂(U) αC .sample(C),

with αC ∈ R∗+ for all C ∈ ∂(U). Furthermore, real vectors in the region in

Table 12.2 The 7 basic cocircuits of the toy model and the coordinates
of their associated real samples. Cocircuit γ1 = [00--+] means that, at

the point γ1(0, 0, 1), e1 and e2 are zero, and e3 and e4 are negative.

The fifth sign expresses its position at infinity (the positive sign means
that the point is inside the specifications). The sample coordinates are

given in the 3-dimensional vector space containing the 2-dimensional
affine input space. The third coordinate equals 1 for points inside the
specifications and 0 for the points “at infinity” (see General setting in

Sec. 12.3.1). The 7 samples are represented in Figs. 12.2 and 12.11.

cocircuit coordinates cocircuit coordinates

γ1 [00--+] [0, 0, 1] γ2 [0+00+] [600, 30, 1]

c1 [0---0] [-1000, -50, 0] c2 [-0-+0] [-100, 1000, 0]

c3 [+++00] [0.1, 0, 0] c4 [0+++0] [2, 0.1, 0]

c5 [-+0+0] [1, 0.1, 0]

June 2, 2021 15:55 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 362

362 Artificial Intelligence Methods for Software Engineering

the neighborhood of these boundary vectors can be generated (for instance)

as sample(C) + ε.sample(U) for C ∈ ∂(U) and for a small ε ∈ R∗+. (In the

case of an initial affine space, one has to divide all coordinates by the coor-

dinate corresponding to the element at infinity, in order to get points inside

the specifications.)

In this way, one can compute real vectors at all boundaries between ho-

modromies as well as at the neighborhood of all boundaries in all homod-

romies that they bound. Such a set of real vectors, serving as a relevant

limit test data, is illustrated with grey dots in Fig. 12.11, obtained from

the fragmentation given in Fig. 12.6 for the toy example. Real coordinates

of test data obtained in the above way are given in Table 12.1.

p

4

1

32

 1234p
 +++++

Ω4

 -++++
Ω3

 -+-x+
Ω2

 ---x+
Ω1

 +xx-+
Ω5

 +++0+
Ω9

 0
x-
-+

Ω10

 0
++
++

Ω8

 -+0++

Ω7

 -0-x+

Ω6

 0+00+
Ω11

γ
2

γ1

c
1

c
2

c
3

c
4

c
5

Fig. 12.11 Using scovectors and their borders to generate real vectors in homodromies

of a fragmentation, in their boundaries, and in the neighborhood of their bound-
aries (Sec. 12.3.6), for the toy example of Sec. 12.2 and Fig. 12.2. The homodromies
Ω1, . . . ,Ω11 correspond to the fragmentation of Fig. 12.6 and Table 12.1. The border

cocircuits are represented by points denoted γ1, γ2, c1, c2, c3, c4, c5, consistently with
Fig. 12.2 and Table 12.2. Light grey dots represent samples (or test points) in ho-

modromies, their boundaries, and their neighborhood; they are obtained by barycentric

combinations of cocircuit points.

June 2, 2021 15:55 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 363

A Qualitative Reasoning Model based on Combinatorial Geometry 363

We now present some applications of the previous general construction

to the computation of limit test points. The qualitative execution, in the

previous section, permitted us to conclude that, when temperature is very

close to zero and pressure has a normal positive value, algorithm yields the

Liquid phase. Suppose now that this result contradicts the specifications

which predict that, in that case, one should obtain the ‘ice’ result (the

Solid phase). In other words, the analyzed algorithm contains a defect

(bug).

The tester thus decides to examine what happens at temperatures close

to zero in the boundary of the Solid homodromy Ω1 and the Liquid ho-

modromy Ω2. In other words, she wishes to obtain boundary inputs that

lye exactly on the Solidification/Liquefaction surface.

• Step 1: Starting from Table 12.1, Ω1 = [--xx+] and Ω2 =

[-+-x+], one can compute their borders (∂(Ω1) = {c1, γ1, c2}
and ∂(Ω2) = {γ1, γ2, c4, c2}) hence, their representatives, getting

rep(Ω1) = [---x+] and rep(Ω2) = [-+-x+]. Using Property 12.4,

one can calculate their common face with the meet ∧ operator:

rep(Ω1) ∧ rep(Ω2) = [---x+] ∧ [-+-x+] = [-0-x+] = rep(Ω6). In

other words, the homodromy Ω6 (the open segment]γ1, c2[), forms

the solidification/liquefaction separating surface between the two

phases.

• Step 2: Since the tester wishes to examine what happens with a

small temperature and a positive pressure, she may ask for a test

data that is close to γ1(0, 0), still staying inside Ω6. Taking as

coefficients (for the convex hull combination) two strictly positive

rationals λ1 and λ2 with λ1 + λ2 = 1, with, say, λ1 = 9999× 10−4,

“much closer” to 1, than λ2 = 10−4. The join ∨ operation is now

translated into a convex sum of rational coordinates. We obtain

a boundary test data, T1 = λ1 · sample(γ1) + λ2 · sample(c2) =

9999·10−4[0,0,1]+10−4[-100,1000,0] = [-0.01,0.1,0.9999].

Transforming the last coordinates in affine coordinates (dividing

by the non-zero infinite third coordinate) one gets the test data

T1 = [-0.010001, 0.10001]. One can check that T1 nullifies

the equation e2, and still lies inside the Solid homodromy Ω6.

Exchanging λ1 with λ2 would still yield a point of Ω6 but close to

the specification frame.

June 2, 2021 15:55 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 364

364 Artificial Intelligence Methods for Software Engineering

What happens if one wishes to have an equivalent point of T1 (close to

γ1) but in the Liquid side? Like previously:

• Step 1: The Liquid homodromy Ω2 = [-+-x+] admits 4 border

cocircuits, {γ1, γ2, c4, c2}, with rep(Ω2) = [-+x+] = γ1∨γ2∨c4∨c2.

• Step 2: For producing a limit test data point, T2 close to

γ1(0, 0), but staying inside the Liquid homodromy we choose

four positive rationals λ1..4 such that their sum equals 1.

Choosing say λ1 = 997 · 10−5 and λ2 = λ3 = λ4 =

10−5, we obtain: T2 = λ1 · sample(γ1) + λ2 · sample(γ2) +

λ3 · sample(c4) + λ4 · sample(c2) = 997 · 10−5[0,0,1] +

10−5[600,30,1] + 10−5[2,0.1,0] + 10−5[-100,1000,0] =

[0.00502, 0.001301, 0.00998]. In affine coordinates one gets

the test data T2 = [0.503006, 0.130361], yielding a Liquid out-

put.

12.5 Conclusion

We presented an algorithmic qualitative model intended to assist the tester

during the unit testing process. This model permits the visualization, in

an abstract level, of the algorithmic behaviour. The spatial properties are

based on oriented matroids. The propagation of orders-of-magnitude en-

ables the validation of abstract properties concerning boundary behaviour.

The combinatorial properties of cocircuits are finally used to generate con-

crete numeric test sets on any critical surface of any dimension.

Our approach is a technique allowing the automatic generation of test

data. As we stressed in the introduction, this constitutes a critical open

issue in the software engineering process, thus many other techniques have

been proposed to tackle this problem. Note however that our testing data

generation approach is not based on a structural coverage objective (i.e.

cover all the statements of the source code), nor model based (i.e. use of an

oriented graph), nor heuristic (like evolutionary techniques). It produces,

formally and exhaustively (under certain assumptions and thanks to the

mathematical theory presented in the previous sections), all the feasible

execution paths of the source code. It is thus stronger (in the sense of [26])

than any other structural (path, branch, du-path, etc.) coverage objective.

This work is still at a prototype stage and is intended for software units

whose conditions depend on decimal or rational inputs. Note however, that

this restriction does not concern outputs which can be of any arbitrary

type, as long as one disposes of an equivalence relation to aggregate them.

June 2, 2021 15:55 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 365

A Qualitative Reasoning Model based on Combinatorial Geometry 365

As a first experiment to evaluate its usefulness in the development pro-

cess, the prototype was used in a first year Python programming course.

The pedagogical objective was twofold: first, sensitize the students to the

testing process by making them compare their (manually produced) test

data with the automatic ones. Second, thanks to the envision graph, it

gives to the students a more abstract and visual view of what was effec-

tively coded, that can be compared with their qualitative understanding of

the initial specifications.

A limitation obviously concerns the number of equations that the tool

can analyze (limited in our prototype to 50), a number which can become

very large in the case of large arrays and/or nested iterations. Note however,

that the tool disposes of several filtering (slicing) options that can reduce

drastically the number of studied paths.

We are currently working on several technical and theoretical future

developments: the construction of a qualitative formal proof engine that

checks properties by examining all possible paths (or in certain directions)

of the homodromy graph; a qualitative simulation engine (that could be

compared to a qualitative debugger) coupled with a decorated source code

browser, which visualizes, step by step, the path followed on the homodromy

graph according to qualitative input directions or magnitudes; and further

useful mathematical properties in terms of oriented matroids.

Acknowledgments

This research was supported by: the OMSMO Project (Oriented Matroids

for Shape Modeling) - Grant “Chercheur d’avenir 2015” (Région Occi-

tanie & Fonds Européen de Développement Régional FEDER); the ANR

Grant DISTANCIA (Metric Graph Theory, ANR-17-CE40-0015); and the

ARCHIMEDES III (Greek minister of Research) project (support for TEI

Larissa, No. 16, 2010: Application of Genetic algorithms and Qualitative

Reasoning for intelligent software testing).

References

[1] S. Xanthakis, C. Ellis, C. Skourlas, A. Le Gall, S. Katsikas and K. Kara-
poulios, Application of genetic algorithms to software testing (application
des algorithmes génétiques au test des logiciels), in 5th International Con-
ference on Software Engineering and its Applications, Toulouse, France,
pp. 625–636 (1992).

June 2, 2021 15:55 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 366

366 Artificial Intelligence Methods for Software Engineering

[2] M. Schoenauer and S. Xanthakis, Constrained GA optimization, in Proceed-
ings of the 5th International Conference on Genetic Algorithms, Urbana-
Champaign, IL, USA, pp. 573–580 (1993).

[3] R. P. Pargas, M. J. Harrold and R. R. Peck, Test data generation using
genetic algorithms, Software Testing, Verification and Reliability 9, pp. 263–
282 (1999).

[4] P. McMinn, Search-based software test data generation: A survey, Software
Testing, Verification and Reliability 14, 2, pp. 105–156 (2004).

[5] O. Bühler and J. Wegener, Evolutionary functional testing, Computers and
Operations Research 35, pp. 3144–3160 (2008).

[6] S. Di Alesio, L. Briand, S. Nejati and A. Gotlieb, Combining genetic algo-
rithms and constraint programming to support stress testing of task dead-
lines, ACM Transactions on Software Engineering and Methodology 25,
pp. 1–37 (2015).

[7] C. Sharma, S. Sabharwal and R. Sibal, A survey on software testing tech-
niques using genetic algorithm, International Journal of Computer Science
Issues 10 (2013).

[8] Z. Zhu and L. Jiao, Improving search-based software testing by constraint-
based genetic operators, in Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO 19. Association for Computing Machin-
ery, New York, NY, USA, pp. 1435–1442 (2019).

[9] S. Xanthakis, S. Karapoulios, R. Pajot and A. Rozz, Immune system and
fault tolerant computing, in Artificial Evolution, Vol. 1063. Lecture Notes in
Computer Science, Springer-Verlag, pp. 181–197 (1996).

[10] Y. Jia and M. Harman, Constructing subtle faults using higher order muta-
tion testing, in 8th International Working Conference on Source Code Anal-
ysis and Manipulation (SCAM 2008). Beijing, China, IEEE Computer So-
ciety (2008).

[11] L. C. Briand, J. Feng and Y. Labiche, Using genetic algorithms and coupling
measures to devise optimal integration test orders, in 14th IEEE Software
Engineering and Knowledge Engineering (SEKE), Ischia, Italy, pp. 43–50
(2002).

[12] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer and R. S. Roos, Time aware
test suite prioritization, in International Symposium on Software Testing and
Analysis (ISSTA 06). Portland, Maine, USA, ACM Press, pp. 1–12 (2006).

[13] S. Yoo and M. Harman, Pareto efficient multi-objective test case selection,
in International Symposium on Software Testing and Analysis (ISSTA 07),
ACM Press, pp. 140–150 (2007).

[14] D. S. Weld and J. de Kleer, Readings in Qualitative Reasoning about Physical
Systems. Morgan-Kaufman (1990).

[15] D. S. Weld and J. de Kleer, in D. S. Weld and J. de Kleer (eds.), Qualitative
Reasoning. Series in Artificial Intelligence (1989).

[16] L. Travé-Massuyès and N. Piera, The orders of magnitude models as qual-
itative algebras, in IJCAI’89: Proceedings of the 11th international joint
conference on Artificial intelligence - Volume 2, pp. 1261–1266 (1989).

June 2, 2021 15:55 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-12 page 367

A Qualitative Reasoning Model based on Combinatorial Geometry 367

[17] D. S. Weld, Exaggeration, in D. S. Weld and J. de Kleer (eds.), Readings in
Qualitative Reasoning About Physical Systems. Morgan Kaufmann, pp. 417–
421 (1990).

[18] S. Parsons and M. Dohnal, The qualitative and semiqualitative analysis of
environmental problems, Environmental Software 10, pp. 75–85 (1995).

[19] R. Moratz, Qualitative Spatial Reasoning. Encyclopedia of GIS, Editors:
Shashi Shekhar, Hui Xiong, Xun Zhou (2017).

[20] K. D. Forbus, Qualitative Representations How People Reason and Learn
about the Continuous World. MIT Press (2019).

[21] A. Björner, M. Las Vergnas, B. Sturmfels, N. White and G. Ziegler, Oriented
Matroids, Encyclopedia of Mathematics and Its Applications, Vol. 46, 2nd
edn. Cambridge University Press (1999).

[22] S. Xanthakis and E. Gioan, A qualitative reasoning model for software test-
ing, based on oriented matroid theory, Full length journal paper (detailing
and completing the present chapter) (In preparation).

[23] J. Edmonds and A. Mandel, Topology of oriented matroids. Ph.D. Thesis of
A. Mandel, University of Waterloo (1982).

[24] G. Reeb, Analyse non standard (essai de vulgarisation), Bulletin de
l’APMEP 32 (1981).

[25] R. Goldblatt, Lectures on the Hyperreals. An introduction to nonstandard
analysis, Vol. 188. Graduate Texts in Mathematics. Springer-Verlag MR164
(1998).

[26] E. J. Weyuker, Comparing the effectiveness of testing techniques, in For-
mal Methods and Testing, Vol. 4949. Lecture Notes in Computer Science,
Springer, pp. 271–291 (2008).

B1948 Governing Asia

B1948_1-Aoki.indd 6B1948_1-Aoki.indd 6 9/22/2014 4:24:57 PM9/22/2014 4:24:57 PM

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank

April 21, 2021 11:55 ws-rv9x6-9x6 Book Title 12360-12a-divider-5 page 369

AI for Software Debugging

B1948 Governing Asia

B1948_1-Aoki.indd 6B1948_1-Aoki.indd 6 9/22/2014 4:24:57 PM9/22/2014 4:24:57 PM

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank

June 2, 2021 15:43 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-13 page 371

© 2021 World Scientific Publishing Company
https://doi.org/10.1142/9789811239922 0013

Chapter 13

AI-based Spreadsheet Debugging

Konstantin Schekotihina,∗, Birgit Hoferb,†, Franz Wotawab,‡ and

Dietmar Jannacha,§

aAlpen-Adria-University Klagenfurt, Austria, bTU Graz, Austria
∗konstantin.schekotihin@aau.at, †bhofer@ist.tugraz.at,
‡wotawa@ist.tugraz.at, §dietmar.jannach@aau.at

13.1 Introduction

Spreadsheets are by far the most popular end-user programming environ-

ment, and some estimate that there are about 1 billion users world-wide

who work with spreadsheet environments like Microsoft Excel or Google

Sheets.1 The broad adoption of such end-user programming tools has two

main reasons. First, the layout and structure of typical spreadsheets is in

some ways similar to what one would probably end up with on paper. Sec-

ond, users only need basic programming skills to develop their own spread-

sheets. As a result, spreadsheets are used in all types of organizations and

for various purposes such as storing information in a tabular form, budget

estimations, and other kinds of computations that are required for decision-

making. However, like any other software, also spreadsheets can contain

faults, and there are plenty of known cases in which incorrect spreadsheets

resulted in erroneous decisions and also huge financial losses.2 [1] estimated

that there is a chance of 3–5% for users to make a mistake when entering

a formula in a spreadsheet. Consequently, a spreadsheet with 100 formulas

has a probability of more than 95% to contain at least one fault.

1https://www.grid.is/blog/excel-vs-google-sheets-usage-nature-and-numbers.
2http://www.eusprig.org/horror-stories.htm.

371

https://doi.org/10.1142/9789811239922_0013
 https://www.grid.is/blog/excel-vs-google-sheets-usage-nature-and-numbers
http://www.eusprig.org/horror-stories.htm

June 2, 2021 15:43 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-13 page 372

372 Artificial Intelligence Methods for Software Engineering

Given this high probability for a complex spreadsheet to contain a fault,

it is highly desirable to provide appropriate tools assisting spreadsheet de-

velopers in different aspects of quality assurance. A survey on spread-

sheet quality assurance conducted by [2] shows that various methods exist

to help users prevent, detect, localize, and repair faults in spreadsheets.

For instance, to prevent faults researchers suggested numerous visualiza-

tion frameworks, static spreadsheet analysis methods, as well as develop-

ment methodologies such as model-oriented or test-driven development, or

spreadsheet templates. Such fault prevention methods aim at the mini-

mization of the risk for a fault to occur. However, various proposals were

also made to enable users to detect, localize, and repair faulty parts of a

spreadsheet.

Since modern spreadsheet environments only provide a limited and rel-

atively simple set of tools for end-user developers, there is an increased

interest, both in industry and academia, to enrich existing spreadsheet en-

vironments with better debugging support. In order to reduce the cognitive

load of the users, many of the recent developments are focusing on automa-

tion of spreadsheet debugging.

In this chapter, we focus on modern approaches to spreadsheet debug-

ging that are based on Artificial Intelligence (AI) methods and techniques

to simplify the debugging process. Recent approaches like [3], for example,

aim to automatically predict faults in spreadsheets with machine learning

techniques, based on specific spreadsheet metrics and repositories of past

faults. Other machine learning approaches like the Melford tool [4] utilize

neural networks to detect faults in cells that erroneously contain numeri-

cal values instead of formulas. Training such machine learning approaches

relies on repositories of known faults. An alternative AI-based approach

uses automated reasoning that, differently from machine learning, does not

require any historical training data. For instance, [5] use constraint sat-

isfaction and model-based diagnosis to determine a set of formulae in a

spreadsheet that, if considered faulty, would explain an unexpected calcu-

lation outcome.

Existing spreadsheet debugging approaches can be classified in various

ways, e.g., by the type of information that they are using or the way they

make a prediction that some part of a spreadsheet is faulty. The classi-

fication used in this chapter is designed by taking into account the fact

that many of the approaches developed for automated debugging of gen-

eral software artifacts were later also successfully applied to spreadsheet

June 2, 2021 15:43 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-13 page 373

AI-based Spreadsheet Debugging 373

debugging.3 For instance, existing spreadsheet debugging approaches may

consider structural information like dependencies between spreadsheet ar-

tifacts, but they may also use calculation traces to determine fault prob-

abilities for certain units of a spreadsheet. An interesting aspect in that

context is that spreadsheets can be much more restricted than software

written with general-purpose programming languages, thus requiring less

complicated debugging solutions. In spreadsheets, for example, the set of

data types and operations is limited, user-defined functions are compara-

bly rare, and there are no recursive calculations. All these properties make

spreadsheets an interesting niche for the application of certain debugging

methods and techniques.

In the following, we structure our review of AI-based spreadsheet de-

bugging techniques in a way that is inspired by classification schemes used

for automated software debugging methods see, e.g., [6]. Specifically, we

classify existing approaches into two categories: (i) heuristic and statis-

tics-based methods (Sec. 13.3), and (ii) model-based diagnosis techniques

(Sec. 13.4). In the final section of the work, we give an outlook on possible

future directions in this area. In particular, we point to potential limi-

tations and open questions regarding the usability and the user interface

design of advanced AI-based debugging tools. We believe that this aspect

is particularly crucial for the success of such tools, because spreadsheet

developers, i.e., the end-users, often do not have formal training or/and

practical experience in software engineering.

13.2 Spreadsheet Debugging

The detection, localization, and repair of faults in spreadsheets can be

tedious and error-prone since most of the spreadsheet processors, such as

MS Excel or Numbers, do not provide sufficient support to their users.

Consider the spreadsheet shown in Fig. 13.1a, which calculates the distance

covered and the final speed of an object. When the user — usually a

domain expert — inspects this spreadsheet, she might notice errors4 in the

computations. In particular, the accumulated distance, computed in cells

B6, C6, and D6, should increase and the final velocity, calculated in cell E2,

should be 0 instead of −20. In this case, to recognize these errors the end-

user has to know the basic principles of Newtonian mechanics to understand

3For an overview of techniques and methods for fault localization in general software,

see, e.g., [6].
4With the term error, we refer to unexpected calculation outcomes.

June 2, 2021 15:43 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-13 page 374

374 Artificial Intelligence Methods for Software Engineering

1

2

3

4

5

6

7

8

9

10

11

A B C D E

 Acceleration Constant Velocity Deceleration Final State

Initial Velocity [m/s] 0 20 0 -20

Acceleration [m/s²] 2 0 -2

Duration [s] 10 5 10

Distance [m] 100 100 -100

Accumulated Distance [m] 100 200 100

xxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx

(a) Value view

1

2

3

4

5

6

7

8

9

10

11

A B C D E

 Acceleration Constant Velocity Deceleration Final State

Initial Velocity [m/s] 0 =B2+B3*B4 =B2+C3*C4 =D2+D3*D4

Acceleration [m/s²] 2 0 -2

Duration [s] 10 5 10

Distance [m] =B2*B4+B3*B4*B4/2 =C2*C4+C3*C4*C4/2 =D2*D4+D3*D4*D4/2

Accumulated Distance [m] =B5 =B5+C5 =B5+C5+D5

xxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx

(b) Formula view

Fig. 13.1: Running example with a fault in cell D2.

that negative velocity, i.e., a backward motion of an object, is impossible

with this amount of deceleration. Similarly, it should be clear that the

notion of the accumulated distance means the total distance covered by an

object and not its distance from the starting location. However, in many

practical cases, a specification of a modeled problem might be unclear. As

a result, the developers cannot spot a fault easily and must perform manual

computations to verify the correctness of values computed by a spreadsheet

processor.

The presence of errors in a spreadsheet indicates that there is at least one

fault causing them. When the presence of faults is detected, the user has to

locate their origins. A simple inspection of the values shown in Fig. 13.1a

might provide an idea that the formula in D2 is likely to be faulty, because

the object was already moving and therefore the initial velocity cannot be

0. Of course, this hypothesis must be verified, since a typo in some other

formula might also lead to this unexpected result. In the formula view,

shown in Fig. 13.1b, the user can see that the reference to the cell B2 is

invalid. Whenever a fault is localized, there are multiple ways to repair it.

One can modify the formula in D2 by replacing the reference to B2 with

C2. Alternatively, one can extend the formula with an additional summand

B3*B4. The identification of a correct repair gets considerably harder if a

spreadsheet comprises multiple faults.

Examples of faulty spreadsheets, similar to the one given above, can be

found in various document corpora, which were collected by researchers and

practitioners over the last decade (see Sec. 13.5 for more details). These

June 2, 2021 15:43 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-13 page 375

AI-based Spreadsheet Debugging 375

corpora comprise spreadsheets from different sources and are widely used

for the evaluation of novel spreadsheet debugging approaches. There are,

however, some differences between the existing corpora. For instance, the

spreadsheets in the EUSES and Fuse corpora were collected from the In-

ternet and do not contain any ground-truth data indicating faults. There-

fore, these corpora are mostly used in controlled studies, where faults are

manually inspected by the researchers. Other corpora, like Enron Errors,

INFO1, or Hawaii Kooker, were created by researchers using very specific

sources, such as emails or practical assignments of students, and comprise

annotations of identified faults. These corpora are particularly useful for

the development and evaluation of automatic approaches, e.g., to train

machine learning models helping end-users to find faults in spreadsheets.

Further details about these approaches are provided in the next sections.

13.3 Heuristic and statistical approaches

The identification and localization of faults in software based on heuristics

or statistical methods — and combinations thereof — has been pursued by

many researchers over the last decades. Many ideas for developing such

methods come from the general software engineering domain in which au-

tomated software debugging is a long-running research topic.

Heuristic methods for fault detection in general software artifacts were

surveyed by [7]. Their study indicated that the prediction performance

of the discussed approaches can depend on different factors, e.g., on the

types of faults that occur in a particular piece of software or the underlying

heuristic decision procedures. Architecture metrics, which focus on object-

oriented structures, were in many cases better fault predictors than more

traditional size and complexity metrics that measure, e.g., the complexity

of statements or the numbers of methods.

Regarding statistical and machine learning techniques, [8] provides an

overview of 90 papers that focus on the application of such techniques to

fault prediction. The described methods use a variety of machine learning

algorithms including decision trees, logistic regression, or deep neural net-

works. In many cases, however, the evaluation of such methods indicates

that they can require substantial amounts of data for training the underly-

ing models in order to achieve high precision and recall values in the fault

identification process. The same observation may also hold in the domain

of spreadsheet debugging.

Like in the debugging of general software artifacts, heuristic- and

June 2, 2021 15:43 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-13 page 376

376 Artificial Intelligence Methods for Software Engineering

statistic-based methods used in spreadsheets are based on the observation

that developers often make similar mistakes. As a result, it is a reasonable

approach in automated debugging to focus on the detection and localization

of typical faults that are highly likely to occur in spreadsheets. Heuristic

debugging approaches use a set of rules to detect patterns in a spreadsheet

that correspond to typical faults. Quite often, if multiple heuristic rules

are used, meta-heuristics are designed to decide if the results obtained by

single heuristics are considered as an indication of a fault or not.

Statistical methods are in some ways similar to the heuristic ones, but

use experience from previously debugged spreadsheets for the identification

of faulty patterns in the data. Such methods usually first associate with

every element of a spreadsheet that they consider, e.g., a formula or a

cell, some probability that this element is faulty. Then, they often apply a

decision procedure, e.g., a heuristic one, to decide if a spreadsheet element

is considered faulty or not. In the following sections, we discuss heuristic-

and statistic-based methods in more detail.

13.3.1 Heuristic-based approaches

Methods that use heuristic procedures are often based on the experience

of their authors acquired while searching for bugs in spreadsheets. Like

in the general software domain, however, the success of fault detection

and localization procedures can depend strongly on the effectiveness and

applicability of the underlying heuristics.

Early approaches to fault detection tried to copy the behavior of experi-

enced spreadsheet programmers by identifying and checking which types of

data are stored in cells [9, 10]. For instance, XeLda [11], UCheck [12], and

Dimension [13] implement different approaches to data type inference in or-

der to detect and localize faulty cells. Roughly speaking, these approaches

first infer and assign data types to columns or rows of input cells, i.e., those

cells that contain values and do not refer any other cells. Then, the as-

signed data types are recursively propagated over the formula cells, which

are referring to cells that already have a known data type. UCheck derives

the data types for input cells by analyzing the values of their column/row

header cells, i.e, of the first cells positioned in the same row or column as the

considered cells. Moreover, for each cell that contains a formula, UCheck

uses the same procedure to derive the expected types of the formulas. The

debugging algorithm reports a formula cell as possibly faulty if the type

of this cell propagated from the input cells does not match the expected

June 2, 2021 15:43 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-13 page 377

AI-based Spreadsheet Debugging 377

type obtained from the header information. XeLda is designed similarly

to UCheck but requires its users to manually annotate the data types for

columns and rows. As a result, this tool works independently of the spread-

sheet layout. Finally, Dimension reuses the header analysis of UCheck and

extends it with a reverse type inference mechanism from formula to input

cells and various data type conversions. Practical evaluations of UCheck

and Dimension showed that in real-world scenarios these tools can identify

almost 50% of all known faults in a given corpus of spreadsheets.

Example 13.1. In our example described in Sec. 13.2 types can be derived

from the text of the first column and the first row. For instance, D2 can be

labeled with “Initial Velocity” and “Deceleration”. Its derived type consists

of “Initial Velocity”, “Acceleration”, and “Duration”. So the types are

mismatched and D2 is declared as possibly faulty.

More recent tools such as AmCheck [14], as well as its successors

CACheck [15] and EmptyCheck [16], extend the single-cell focus of the

previously discussed approaches to arrays of cells. These tools are based

on the assumption that formulas physically located near to each other in

a spreadsheet are also logically related to each other. These approaches

therefore use specific heuristics to extract arrays of formula cells that might

contain faults. An array is defined as a set of columns or rows that com-

prises formula cells that are (i) functionally related and (ii) surrounded

by “borders” of either empty cells or cells containing fixed values. Both

AmCheck and CACheck predict a cell to be faulty whenever its formula

deviates significantly from other formulas of the same array with respect

to a set of predefined metrics. The EmptyCheck tool predicts if an empty

cell in an array should contain a formula based on a clustering algorithm.

Example 13.2. Reconsider the example presented in Fig. 13.1. In addition

to the types, array-oriented tools are also considering the nearby cells. For

instance, C2 and D2 are considered as a part of an array, since they are

surrounded by cells comprising fixed values and have similar types.

13.3.2 Statistics-based approaches

Designing a general heuristic procedure for fault prediction can be a tedious

process. Statistic-based methods can simplify this problem by applying

statistical or machine learning techniques to automatically identify faulty

cells. One approach to automatically identify faults in spreadsheets is to

June 2, 2021 15:43 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-13 page 378

378 Artificial Intelligence Methods for Software Engineering

use unsupervised learning methods. The corresponding tools suggested in

the literature, e.g., CUSTODES [17], WARDER [18], or SGUARD [19],

first compute different features of spreadsheets and/or its parts and then

use clustering algorithms to group similar cells with the goal of detecting

outliers. These outliers are then considered to be the cells that are most

likely a source of a fault. Technically, CUSTODES uses a two-stage tech-

nique utilizing strong and weak features of an analyzed spreadsheet. Strong

features are extracted from groups of cells that are usually placed close to

each other by spreadsheet processors, e.g., cells with formulas generated

automatically by copying a formula over some range. Weak features are

computed from cell labels, standard layouts, fonts, etc., that allow the tool

to automatically adapt to varying tabulation styles.

Example 13.3. In our example, shown in Fig. 13.1, CUSTODES first

converts all formulas into R1C1 notation that replaces absolute references

to cells in formulas with relative ones. For instance, the formula in D2 is

converted into ‘=RC[-1]+R[1]C[-2]*R[2]C[-1]’, where R[2]C[-1] refers to a

cell, which row number equals to the D2 row number plus two and column

number to the D2 column number minus one. Next, the framework extracts

an abstract syntax tree (AST) for each formula, e.g., D2 is translated into

(+,RC[-1],*,R[1]C[-2],R[2]C[-1]), and generates a list of cell dependencies,

e.g., (RC[-1],R[1]C[-2],R[2]C[-1]). These strong features are used in the first

stage, where a clustering algorithm puts all cells with similar feature values

in one cluster. Examples of such clusters include (B5,C5,D5) and (C2,D2).

Next, for the cells of each cluster, the algorithm extracts the weak features

listed above and tries to further refine clusters using weak features. This

procedure, for instance, extends the cluster (C2,D2) to (B2,C2,D2) since B2

is structurally relevant to both C2 and D2. Finally, CUSTODES identifies

that (i) B2 might be faulty since it contains a value, whereas C2 and D2

comprise formulas, and (ii) either C2 or D2 is faulty, since their formulas

refer to different cells.

WARDER further refines the clustering technique used in CUSTODES

by a more precise definition of weak features, e.g., occurrences of data

cells among formula cells, cells whose content is different from the con-

tent of other cells in the cluster, etc. SGUARD implements a three-stage

clustering method that (i) forms clusters of cells that perform similar com-

putations and that are located in close proximity to each other; (ii) refines

the clusters by removing irrelevant cells from clusters and unqualified clus-

ters; and (iii) detects outliers based on the obtained clusters. Regarding

June 2, 2021 15:43 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-13 page 379

AI-based Spreadsheet Debugging 379

the evaluation of these clustering-based techniques, it was found that these

tools were able to recognize up to 78% of the faulty cells in the EUSES [20]

corpus.

ExceLint [21] is another tool that employs a custom clustering algorithm

based on the reduction of the Shannon entropy. Like the tools listed above,

it assumes that the structure of spreadsheets follows “rectangular-like” pat-

terns, i.e., formulas in the same row or column are very likely to have the

same semantics. Technically, the identification of the patterns in ExceLint

is based on fingerprints, i.e., a two-dimensional vector representation that

is generated for each formula. The value of each coordinate is defined by

the sum of the relative column/row distances from the formula cell to other

cells referred to in the formula. Given these fingerprints, a binary decom-

position algorithm finds clusters in the spreadsheet by recursively dividing

it into two parts such that each split minimizes the normalized Shannon

entropy of the fingerprints in both subdivisions. Lastly, the tool generates

repair suggestions for formulas where a deviation is identified. The sugges-

tions are generated in a way that would lead to a moderate reduction of

the overall entropy of the spreadsheet, which is typical for genuine fixes of

faults.

Example 13.4. In our example, the formula in D2 is represented as a

relative fingerprint (-4,-3), which is a sum of vectors corresponding to the

referenced cells B2: (-2,0), C3: (-1,-1), and C4 : (-1,-2). The vector coor-

dinates are computed by representing the spreadsheet as a Cartesian plane

with the origin in D2. A range in a formula is represented by a vector with

the same cardinality as the range. Given the fingerprint representation,

the clustering algorithm identifies a cluster with C2 and D2, since their

fingerprints are quite similar, but still have a small difference in the first

coordinate.

On a set of 70 spreadsheets drawn from the EUSES corpus, the ExceLint

tool was able to find around 63% of all formulas that were known to be

faulty to the authors.

Another unsupervised method that combines both heuristic- and

statistics-based methods was proposed by [22]. Their approach identifies

faulty cells using spreadsheet smells [23–26], i.e., heuristic procedures that

use spreadsheet metrics to identify possibly problematic parts of a spread-

sheet. Technically, each smell can be viewed as a two-step procedure. First,

smells are based on evaluating a certain metric on a given spreadsheet,

where a metric is a function that maps some part of a spreadsheet to a

June 2, 2021 15:43 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-13 page 380

380 Artificial Intelligence Methods for Software Engineering

numeric value. Since each smell is designed to detect some specific qual-

ity issue, the underlying metric is defined to quantify to what extent the

specific issue occurs in the input of a smell. Depending on the nature of

an issue, a metric might take arrays of cells, single cells, or their content

as input. In the second step, a heuristic that is specifically designed for

each smell is used to decide if the value returned by the metric surpasses

a certain threshold. If so, this indicates that the considered cell(s) might

have some quality issues and should be inspected by the developers of the

spreadsheet.

FaultySheet Detective [27] uses the output of spreadsheet smells to trig-

ger a Spectrum-based Fault Localization (SFL) algorithm. Technically, this

approach has two phases. In the first step, the tool computes two sets of

cells: (i) the set of smelly cells and (ii) the set of output cells, i.e., those

cells that refer to other cells, but themselves are not referred by any other

cell. To find the smelly cells, FaultySheet Detective uses a catalog of 15

smells. These smells are, for example, designed to find formulas that point

to empty cells or cells that exhibit suspicious patterns, like an empty cell

appearing in a row that contains numerical values. Next, the algorithm

determines calculation chains for all output cells and generates what is

called a hit-spectra matrix in which every column corresponds to a cell in

a spreadsheet and each row to an output cell.

Table 13.1: Hit-spectra Matrix Example.

c1 c2 . . . cn smelly

1 0 . . . 1 0

0 1 . . . 0 1

.

0 0 . . . 1 0

The values 0 and 1 in the example matrix in Table 13.1 indicate: (i) if

a cell ci appears in the computation chain of an output cell, or (ii) if the

computation chain represented by a row comprises smelly cells. In the

second step, the tool uses the Ochiai coefficient [28], which is a popular

suspiciousness measure widely used in SFL for fault localization in general

software artifacts [29, 30]. FaultySheet Detective finally returns those cells

to its user, where the value vectors are similar to the value vector of the

smelly column in terms of the Ochiai coefficient, i.e., where the value of the

coefficient surpasses some predefined threshold. An evaluation of the tool

June 2, 2021 15:43 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-13 page 381

AI-based Spreadsheet Debugging 381

on the Hawaii Kooker Corpus [31] of 73 faulty spreadsheets showed that

given a proper similarity threshold and a relevant set of smells, the tool

was able to detect up to 70% of the existing known faults.

To increase the accuracy of fault prediction, some spreadsheet debug-

gers use supervised learning techniques in case historical labeled data is

available. Following such an approach, structures that are found in given

sets of correct and faulty spreadsheets can for example be used to train

machine learning models to identify incorrect placements of formulas and

value cells in arrays. Melford [4] is an example of a method that imple-

ments such a machine learning approach based on Deep Neural Networks.

It uses a training data set derived from a corpus of correct and incorrect

spreadsheets to train a classifier that is able to automatically identify cells

in which a value is erroneously placed instead of formula. To make such

a prediction, Melford first converts a given spreadsheet into an image-like

representation, where cells that contain values, formulas, and empty cells

are mapped to different symbols. The obtained representation is then pro-

vided to a neural network that is trained to detect the cells that contain

a value instead of a formula. An evaluation of the approach shows that

Melford can successfully detect cells in which a number was erroneously

placed instead of a formula.

Example 13.5. For the spreadsheet given in Fig. 13.1a, Melford generates

the following mappings: A1 - O, A2 - S, B2 - N, D2 - F, denoting empty,

string, number, and formula cell, resp. The converted spreadsheet is then

provided to a trained classifier to identify those cells where the label must

be F instead of S or N.

Another supervised approach, which uses smells for automatic fault de-

tection and localization in spreadsheets, was recently proposed in [3]. The

authors suggest to use machine learning methods and to train models able to

predict if a cell in a given spreadsheet is faulty. The basis of their approach

is an exhaustive catalog of spreadsheet metrics, which were specifically se-

lected to detect different quality issues that might occur in spreadsheets.

The catalog includes all metrics that were previously used in FaultySheet

Detective, other metrics proposed in the literature e.g. [23–26], as well as

new metrics designed in the context of the proposed method. Technically,

given a set of faulty spreadsheets, in which every faulty cell is labeled as

such, a training data set is generated using the following pipeline:

June 2, 2021 15:43 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-13 page 382

382 Artificial Intelligence Methods for Software Engineering

(1) The metrics from the catalog are applied to compute a value for

every cell of each spreadsheet.

(2) The values are stored in a table in which every column corresponds

to a metric and every row to a cell in a spreadsheet.

(3) All labels of the correct and faulty cells are also stored in the rows

of the table.

Next, in the training phase, four machine learning algorithms — Deep

Neural Networks [32], Support Vector Machines [33], Adaptive Boosting

[34], and Random Forests [35] — were applied to train predictors of faulty

cells. The results obtained for three corpora of faulty spreadsheets, Enron

Errors [36], INFO1 [37], and EUSES [38], indicate that the models trained

by the Random Forest algorithm were able to correctly recognize 98%,

77%, and 61% of the faulty cells for each corpus, respectively. The Deep

Neural Networks classifier exhibited good performance results on two of

the real-world corpora. However, its performance degraded significantly for

the EUSES corpus, which comprises spreadsheets with artificially injected

(synthetic) faults.

13.3.3 Empirical evaluations and limitations

The experimental evaluations of heuristic- and statistic-based approaches,

as described above, show that these methods demonstrate good accuracy

and coverage of faults for which they were designed and/or trained. This

success is based on the fact that the metrics used in the methods of

both types are specifically designed using domain knowledge of experienced

spreadsheet developers to discover quality issues. Given the high-quality in-

formation from these metrics, the decision-making procedures implemented

as heuristics, correlation coefficients, or machine learning models are able

to efficiently identify faults in real-world spreadsheets.

The main obstacles on the way to industrial applications of the discussed

methods are their reliability and scalability. Both heuristic and statistical

approaches are unable to discover new types of faults, e.g., those that were

not considered by the developers of the metrics and those that were not

present in the training data. In such application scenarios, the detection of

novel types of faults may require significant changes in the decision-making

procedures, e.g., re-training of machine learning models, and/or the cre-

ation of novel metrics that are able to discover such new types of faults.

The creation of such metrics and the generation of relevant training data

June 2, 2021 15:43 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-13 page 383

AI-based Spreadsheet Debugging 383

sets can be costly since spreadsheets often contain sensitive information,

which cannot be publicly shared. The problem might be partially solved

by continuously extending the catalog of considered faults and by com-

bining heuristic- or statistic-based approaches with model-based diagnosis

techniques that we describe next.

13.4 Model-based diagnosis techniques

Already in the early years of AI research it was widely recognized that

models of real-world artifacts can be used to identify and localize faults.

The main idea behind Model-based Diagnosis (MBD) techniques is there-

fore to compare the observed behavior of an artifact with the behavior as

predicted by a model. The artifact is considered as faulty if its observed

behavior deviates from the predicted behavior. One of the first success-

ful applications of MBD techniques was the localization of faults in digital

circuits [39]. A model in this case encodes a circuit to be diagnosed, i.e.,

logic gates and circuit layout, as a set of logic sentences that represent the

correct behavior of the circuit. Given the model and a set of circuit ob-

servations encoded as logical sentences, a diagnosis algorithm first infers if

the observations are consistent with the model. Whenever inconsistencies

are found, the diagnosis algorithm computes a set of gates that, if assumed

to be faulty, explain the incorrect behavior of the circuit. Various MBD

algorithms were proposed since the 1980s and, more importantly, MBD

techniques were applied in various application domains, including software

artifacts such as logic programs, knowledge bases, and spreadsheets. In

the latter case, MBD techniques can support the user by analyzing which

formulas could have caused unexpected outcomes and, vice versa, which

formulas could not have caused the observed discrepancy.

In this section, we will first provide the basic definitions of MBD and

show three types of models that can be used when applying MBD prin-

ciples to spreadsheets. We will then discuss algorithms to compute the

diagnoses and finally review existing tools and empirical results for MBD-

based spreadsheet debugging.

13.4.1 Basic definitions

A classic MBD approach suggested by [39] defines a diagnosis problem as

a triple (COMP, SD, OBS), which can be translated to the spreadsheet

domain as follows:

June 2, 2021 15:43 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-13 page 384

384 Artificial Intelligence Methods for Software Engineering

• COMP is a set of identifiers for all formula cells, called components,

e.g., D2 or E1;

• SD is a system description, which is a set of spreadsheet formulas,

each represented as a logical sentence such as a constraint; and

• OBS is a set of observations represented by a set of logical sentences

that encode values observed in the input and output cells of a

spreadsheet.

According to [39], each component C ∈ COMP is either abnormal, de-

noted AB(C), or it behaves as expected. In this case an expected behavior

of every component C, denoted Behav(C), can be modeled in SD as follows

¬AB(C) → Behav(C). The latter logical sentence relates an assumption

about the health state of a component with the requirement for this com-

ponent to behave in a certain way. If we assume a component C to be

faulty, i.e., AB(C) is true, we correspondingly make no assumption about

the behavior of C. Otherwise, AB(C) is false and therefore the behavior of

C represented by Behav(C) is expected.

Ultimately, MBD aims at finding one or more subsets of COMP, called

diagnoses, which might be responsible for the unexpected outcomes. Infor-

mally speaking, we try to find a set of components, which, if we assume

them to be faulty, could in some ways explain the observed behavior. The

following formal definition based on logical sentences does exactly that:

for all components that are assumed to be faulty, the assumptions about

their correct behavior are removed, and a diagnosis is found if this relaxed

specification is consistent with the observed outcomes.

Definition 13.1 (Diagnosis). Given a diagnosis problem (COMP, SD,

OBS). A subset ∆ ⊆ COMP is a diagnosis, if and only if SD ∪ OBS ∪
{¬AB(C) | C ∈ COMP \∆} ∪ {AB(C) | C ∈ ∆} is satisfiable. A diagnosis

∆ is minimal if and only if no proper subset of ∆ is a diagnosis.

Since spreadsheets mostly consist of arithmetic operations on numeric

values, the encoding of the models and observations is usually done using

constraint programming, which is then used to make the inferences that

are necessary to compute the diagnoses. A Constraint Satisfaction Problem

(CSP) is a tuple (V,D,CO), where V is the set of variables with the domains

defined in the set D and CO is the set of constraints that connect the

variables [40].

As mentioned before, in the spreadsheet domain, COMP corresponds to

the identifiers of formula cells, SD models the formulas, and OBS encodes

June 2, 2021 15:43 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-13 page 385

AI-based Spreadsheet Debugging 385

one or more test cases that are defined by the user to reveal a fault. A test

case T = (I,O) for a spreadsheet is a pair of sets, where I = {(c, v)} is a

set of pairs of input cells and their values, and O = {(c, vexp)} is a set of

pairs of output cells and their expected values. Input cells are non-formula

cells that are referenced by other cells; output cells are formula cells that

are not referenced by other cells. The pairs in set I must specify values

for all input cells which are required to compute values of all output cells

listed in O. A test case fails if at least for one output cell the expected

value differs from the computed one. Otherwise, a test case passes.

Example 13.1 (Test case). A test case for our running example

(Fig. 13.1) is I = {(B2, 0), (B3, 2), (B4, 10), (C3, 0), (C4, 5), (D3,−2), (D4,

10)} and O = {(B6, 100), (C6, 200), (D6, 300), (E2, 0)}. Since the computed

values of D2, D6 and E2 differ from their expected values, this test case

fails.

13.4.2 Model types

The system description SD for spreadsheet debugging can be modeled in

three different abstraction levels:

• the value-based model [5, 41–43]

• the dependency-based model [44], and

• the qualitative deviation model [45].

The value-based model uses the values of the cells in the reasoning process.

It computes a smaller number of cardinality-minimal diagnoses compared to

the other models, but has the highest computation time. The dependency-

based model uses correctness information regarding individual cell values

in the reasoning process, i.e, a value is either correct or erroneous. This

reduces the domain of all variables in V to Boolean. This model is less

precise and usually returns more diagnoses than the value-based model.

However, its computation time is lower. The qualitative deviation model

lies in between the value-based and the dependency-based models. It uses

additional information about the expected ranges for the cell values in the

reasoning process, e.g., if a cell value should be larger, smaller, or equal to

its current value. Therefore, the domains of all variables have exactly three

possible values.

In detail, the formula cells of a spreadsheet S = {c1, c2, . . . , cn} can be

June 2, 2021 15:43 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-13 page 386

386 Artificial Intelligence Methods for Software Engineering

translated into a value-based constraint model SDV (S) as follows:

SDV (S) =
⋃

i={1,...,n}

{
ABindex(ci) ∨ ci == constr (formula(ci))

}
where index(c) returns a unique index for each cell, the function formula

returns the cell’s formula, and where constr recursively translates a formula

expression e as follows [43]:

• If e is a constant or a cell name c, then constr(e) = c.

• If e is of the form (e1), then constr(e) = (constr(e1)).

• If e is of the form e1 ◦ e2, then constr(e) = constr(e1) ◦∗ constr(e2)

where ◦∗ is the constraint representation of operator ◦.
• If e is f(e1, . . . ,en), then constr(e) = f∗(constr(e1), . . . , constr(en))

where f∗ is the constraint representation of the function f .

Whenever an expression consists of sub-expressions, auxiliary variables tmpi

are introduced with i being a consecutive number to make the variables

unique. Every test case T = (I,O) is converted into value-based constraints

as

OBSV (T) =
⋃

(x,v)∈{I∪O}

{x == v}.

Example 13.2 (Value-based model). The running example (Fig. 13.1)

has the value-based system description SDV = {ABB5 ∨ (B5 == tmp1 +

tmp2),ABB5 ∨ (tmp1 == B2 ∗ B4),ABB5 ∨ (tmp2 == tmp3/2),ABB5 ∨
(tmp3 == tmp4∗B4),ABB5∨(tmp4 == B3∗B4),ABB6∨(B6 == B5), . . . }.
The test case from Example 13.1 translates to OBSV = {B2==0, B3==2,

. . . , B6==100, C6==200, D6==300, E2==0}.

For the dependency-based model, only the correctness information

is propagated in the model:

SDD(S) =
⋃

i={1,...,n}

ABindex(ci) ∨

 ∧
c′∈ref(ci)

c′

→ ci

where the function index(c) returns a unique index for each cell and ref (c)

returns all cells that are referenced by cell c. A test case T = (I,O) is

transformed into

OBSD(T) =
⋃

(x,v)∈I

{x == true}∪
⋃

(x,v)∈O′

{x == true}∪
⋃

(x,v)∈O′′

{x == false}

June 2, 2021 15:43 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-13 page 387

AI-based Spreadsheet Debugging 387

where O′ ⊆ O contains the output cells with correct values and O′′ ⊆ O

contains the output cells whose computed values differ from their expected

values. More details on the transformation into a dependency-based model

and a variation of the dependency-based model can be found in [44].

Example 13.3 (Dependency-based model). The running example

from Fig. 13.1 translates to SDD = {ABB5 ∨ ((B2 ∧ B3 ∧ B4) → B5),

ABB6 ∨ (B5 → B6), . . . }. The test case from Example 13.1 translates to

OBSD = {B2==true, . . . , B6==true, C6==true, D6==false, E2==false}.

In the qualitative deviation model, we reason about the information

whether values are correct or if they should be greater or smaller. For

example, if cell A3 = A1 + A2 and we know that the expected value in A1

is greater than the actually computed value, then the value in A3 should

also be greater. Figure 13.2(a) continues this line of reasoning for the

operators +, ∗,−, /. These tables can be easily transformed into the tables

illustrated in Fig. 13.2(b) which can be directly used by constraint solvers.

The transformation of a formula expression e3 = e1 � e2 in cell ci with

� ∈ {+,−, ∗, /} works as follows:

• If both e1 and e2 are numbers, then constr =

tableConstr(ABindex(ci),=,=, e, table(�)),

• if e1 is a reference to a cell c′ and e2 is a number n, then constr =

tableConstr(ABindex(ci), c
′,=, e, table(�)),

• if e1 is a number n and e2 is reference to a cell c′, then constr =

tableConstr(ABindex(ci),=, c′, e, table(�)),

• if e1 references c′ and e2 is a reference to c′′, then constr =

tableConstr(ABindex(ci), c
′, c′′, e, table(�))

where the function index(c) returns a unique index for each cell,

table(�) returns t1 for � ∈ {+, ∗} and t2 for � ∈ {−, /}, and

tableContr(abj , e1, e2, e3, ti) represents the constraint that looks up possible

value combinations for abj , e1, e2, e3 in table ti (see Fig. 13.2(b) for a def-

inition of t1 and t2). Whenever an expression consists of sub-expressions,

auxiliary variables tmpi are introduced with i being a consecutive number

to make the variables unique. A test case T = (I,O) is transformed into

OBSQ(T) =
⋃

(x,v)∈{I∪O′}

{eq(x,=)}∪
⋃

(x,v)∈O′′

{eq(x,<)}∪
⋃

(x,v)∈O′′′

{eq(x,>)}

where eq(x1, x2) is a constraint that ensures that x1 is equal to x2, O′ ⊆ O

contains the output cells with correct values, O′′ ⊆ O contains the output

June 2, 2021 15:43 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-13 page 388

388 Artificial Intelligence Methods for Software Engineering

cells whose computed values are smaller than their expected values, and

O′′′ ⊆ O contains the output cells whose computed values are larger than

their expected values. More information about the transformation of other

operators can be found in [45].

e1 + e2 e2
e1 ∗ e2 < = >

< < < ?

e1 = < = >

> ? > >

e1 − e2 e2
e1/e2 < = >

< ? < <

x1 = > = <

> > > ?

‘?’ stands for any value from {<,=, >}

abe3 e1 e2 e3
false < < <

false = < <

false > < <

false > < =

false > < >

false < = <

false = = =

false > = >

false < > <

false < > =

false < > >

false = > >

false > > >

true . . .

abe3 e1 e2 e3
false < < <

false < < =

false < < >

false = < >

false > < >

false < = <

false = = =

false > = >

false < > <

false = > <

false > > <

false > > =

false > > >

true . . .
‘.’ stands for all values from {<,=, >}

(a) Qualitative deviation behavior (b) Tuple sets t1 (left) and t2 (right)

Fig. 13.2: Qualitative deviation behavior for +, ∗.−, / and the derived tu-

ples for the operators +, ∗ (t1) and −, / (t2).

Example 13.4 (Qualitative deviation model). The running example

from Fig. 13.1 has the qualitative deviation system description

SDQ = {tableContr(ABB5, B3, B4, tmp1, t1), tableContr(ABB5, tmp1, B4,

tmp2, t1), tableContr(ABB5, tmp2,=, tmp3, t2), tableContr(ABB5, B2, B4,

tmp4, t1), tableContr(ABB5, tmp3, tmp4, B5, t1), . . . }. The test case from

Example 13.1 translates to OBSQ = {(eq(B2,=), eq(B3,=), . . . , eq(B6,=),

eq(C6,=), eq(D6,<), eq(E2,<)}.

13.4.3 Solving mechanism

Independent of the model type, the diagnoses can be computed either indi-

rectly [41] or directly [43]. The indirect method first identifies the minimal

conflict sets. Informally speaking, a conflict is a subset of the components

June 2, 2021 15:43 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-13 page 389

AI-based Spreadsheet Debugging 389

for which it can be concluded that not all of them can be working correctly

given the observations.

Definition 13.2 (Conflict). A conflict for a diagnosis problem (COMP,

SD, OBS) is a subset ∇ ⊆ COMP where SD ∪ OBS ∪ {¬AB(C) | C ∈ ∇}
is not satisfiable. A conflict ∇ is minimal if and only if no proper subset of

∇ is a conflict.

Minimal conflict sets can be efficiently computed using the QuickX-

Plain [46] or MergeXPlain [47] algorithms. These minimal conflict sets can

then be used to determine the diagnoses by means of Reiter’s hitting set

algorithm [39]. A hitting set contains at least one element of each conflict

set.

Example 13.5 (Indirect diagnosis computation). For the value-

based model from Example 13.2, we compute {D2, E2}, {C6, D2, D5,

D6}, {B6, C2, C5, D2, D5, D6}, and {B5, C2, C5, D2, D5, D6} as minimal

conflict sets. From these conflicts, we compute the minimal hitting sets

{D2}, {D5, E2}, {D6, E2}, {C2, C6, E2}, {C5, C6, E2}, and {B5, B6, C6,

E2} which are also the minimal diagnoses.

The direct method computes the minimal diagnoses sequentially after

their cardinality as described in Algorithm 1: A constraint is added to the

constraint system that limits the size of the computed diagnoses (Line 3).

By definition, all supersets of diagnoses are also diagnoses. To prevent the

reporting of these supersets, blocking clauses for each found diagnosis have

to be added to the constraint system (Line 6) before diagnoses of higher

cardinality are computed.

Example 13.6 (Direct diagnosis computation). For the value-based

model from Example 13.2, the direct computation starts with searching

for single-fault diagnoses. The solver returns one single fault diagnosis,

in our case {D2}. A blocking clause for this diagnosis is added to the

constraints and the solution size is set to two. The solver reports {D5, E2}
and {D6, E2} as double fault diagnoses. After adding the blocking clauses

for these diagnoses and increasing the solution size to three, the diagnoses

{C2, C6, E2} and {C5, C6, E2} are found. After adding the blocking

clauses and increasing the solution size, the solver returns {B5, B6, C6,

E2} as a solution. This diagnosis is again added as a blocking clause to

the constraint system. Increasing the diagnosis size further does not detect

any other diagnoses.

June 2, 2021 15:43 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-13 page 390

390 Artificial Intelligence Methods for Software Engineering

Algorithm 1 ConDiag(M,COMP, n) (adapted from [48])

Input: System model M , components COMP

Output: All minimal diagnoses

1: diagnoses = {}
2: for i = 1 to |COMP| do

3: M = M ∪

{(
|COMP|∑

j=1

AB[j]

)
== i

}
4: S = solve(M)

5: diagnoses = diagnoses ∪ S

6: M = M ∪
⋃

s∈S ¬(s)

7: end for

8: return diagnoses

Both the direct and the indirect methods rely on a solver for computing

the diagnoses respectively conflict sets. Since the majority of the constraint

solvers does not support real-valued numbers (e.g., Minion5) or does not

support the reification of constraints containing real numbers (e.g. Choco6),

[49] proposed to use the state-of-the-art SMT solver Z3.7 The use of Z3

has not only made it possible to solve value-based models that contain

real-valued numbers but also has significantly reduced the solving time

compared to Choco and Minion.

Finding the faulty formulas is only the first step in the debugging pro-

cess, where the ultimate goal is to fix (or: repair) the faulty formulas. Some

approaches in the literature exist to compute repair operations from diag-

noses. [50] use genetic programming techniques to determine which cells

have to be changed in order to create repair candidates that satisfy the

provided test case. Unfortunately, the number of such repair candidates

can be large in this approach. Therefore, [51] proposed an alternative ap-

proach that uses the concepts of MBD to generate distinguishing test cases

that filter out invalid repair candidates.

13.4.4 Tool support

The MS Excel add-in Exquisite [5] is based on the described MBD prin-

ciples and supports users during the testing and debugging process. It

5https://constraintmodelling.org/minion/.
6https://choco-solver.org/.
7https://github.com/Z3Prover.

https://constraintmodelling.org/minion/
https://choco-solver.org/
https://github.com/Z3Prover

June 2, 2021 15:43 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-13 page 391

AI-based Spreadsheet Debugging 391

provides visual feedback about the different types of cells, i.e., input, in-

termediate, and output cells and users can create test cases by providing

values for the input cells and expected values for output cells. Whenever a

computed value differs from the expected value, Exquisite computes the

diagnoses using the approach described before with a value-based model

and indirect diagnosis computation. Then, users can either manually in-

spect the formulas provided by the diagnosis engine or create additional

test cases which can be added to the CSP in order to narrow down the

number of diagnoses [52].

Unfortunately, users may sometimes struggle to provide test cases for

large spreadsheets because (i) it is difficult to provide input values which

test all branches of a nested IF-formula when the IF-formula is far away

from the input cells in the calculation chain, and (ii) it is cumbersome to

provide input values for a large number of similar input cells. Therefore, [53]

developed an extension of Exquisite that enables users to create test cases

for smaller parts of a spreadsheet, so-called fragments. Similar to regular

test cases, fragment test cases have input, intermediate and output cells,

but the input cells need not to be real input cells, but could also be formula

cells.

Besides the manual creation of fragment test cases, the tool extension

can automatically split a spreadsheet into fragments using a genetic algo-

rithm. The algorithm’s fitness function considers the number of input and

output cells, the area spanned by these cells, and the cells’ formula complex-

ities. The fragmentation process keeps two competing aspects in mind. On

the one hand, the size of these automatically generated fragments should

be small so that users can easily find input values that cover all branches

of nested IF-formulas. On the other hand, the size of the fragment has to

be large enough to keep logically connected cells together.

13.4.5 Empirical evaluations and limitations

Many of the model-based techniques discussed in this book chapter were

mostly evaluated using small spreadsheets [42] or spreadsheets with arti-

ficially seeded faults such as the modified EUSES corpus [38]. [37] and

[53], however, evaluated their approaches on spreadsheets with real faults,

namely the INFO1 and the Enron Error corpus. These evaluations show

the effectiveness of model-based methods but also indicate that their usage

in industrial applications may be hampered by the fact that they often re-

turn many diagnosis candidates. One approach to deal with such problem

June 2, 2021 15:43 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-13 page 392

392 Artificial Intelligence Methods for Software Engineering

is to use fragmentation techniques. An evaluation of the fragment-based

spreadsheet debugging approach [53] using the Enron Error corpus showed

that it significantly improved the debugging process by narrowing down the

number of diagnoses and also the number of manually inspected formulas.

The fragmentation and test case creation process of this approach have

been successfully evaluated in a user study. The main outcome of the

study was that the fragmentation approach enabled users to efficiently and

effectively test their spreadsheets. To the best of our knowledge, none of the

other model-based spreadsheet debugging approaches so far was evaluated

by means of a user study. However, uses studies are important because

they can reveal unrealistic assumptions about the debugging process in

general and the capabilities of users for handling such an approach, as the

seminal study of [54] in the software engineering domain has shown. In

addition, automated methods for test case creation and evaluation, similar

to [55,56] for general software artifacts, should be investigated to speed up

and simplify testing procedures.

13.5 Benchmarks

The availability of representative collections of faulty spreadsheets is an

important prerequisite for the development and evaluation of debugging

approaches. Over the last decades, researchers created a number of such

corpora, which were widely used in the approaches presented in this chapter.

In this section, we provide an overview of the most important ones. Their

details are summarized in Table 13.2.8

EUSES [20] and Fuse [57] are collections of spreadsheets obtained via

Internet search. They contain spreadsheets from different domains that

vary in size and structure. However, these spreadsheets have no annotated

faults and are mostly used by researchers to derive corpora that contain

fault information. For example, a modified version of the EUSES corpus

presented by [38] contains 576 spreadsheets, where each spreadsheet com-

prises at least one known fault randomly inserted using mutation operators.

The Enron spreadsheet corpus contains more than 15,000 spreadsheets

that were attached to emails sent by employees of Enron [58]. The Enron

Errors corpus lists 36 faults in 31 of these spreadsheets [36]. Since the Enron

spreadsheets are extracted from email attachments, [59] created the VEn-

ron corpus that comprises more than 12,000 spreadsheets in 1,609 clusters,

8See https://spreadsheets.ist.tugraz.at/index.php/corpora-for-benchmarking/

for further information and download links.

https://spreadsheets.ist.tugraz.at/index.php/corpora-for-benchmarking/

June 2, 2021 15:43 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-13 page 393

AI-based Spreadsheet Debugging 393

Table 13.2: Comparison of spreadsheet corpora.

Corpus Spreadsheets Origin Faults

EUSES 4498 Internet search Unknown

Mod. EUSES 576 EUSES corpus Seeded

Fuse 249,376 Internet search Unknown

Enron 15,770 Email attachments Unknown

Enron Errors 31 Enron corpus Real

VEnron 12,254 Enron corpus Unknown

INFO1 119 Student assignment Real

Hawaii Kooker 75 Student assignment Real

Payroll/Gradebook 2 User study Seeded

Mod. P/G 349 Payroll/Gradebook Seeded

Integer 231 Real-life + artificial Seeded

where each cluster comprises different versions of the same spreadsheet.

The Hawaii Kooker corpus [31] and the INFO1 [37] collection comprise

spreadsheets with real faults that were created by business and civil engi-

neering students, resp., using Excel to solve practical problems. Faults that

were found in these spreadsheets are indicated in the meta-information.

The Payroll/Gradebook corpus consists of versions of two small spread-

sheets with five faulty cells that were used in a user study [60]. The original

spreadsheets were written in Form/3, but Excel versions of these spread-

sheets are also available [61].

Finally, the Integer corpus is a collection of 21 real-life and 12 artificially

created spreadsheets. There are faulty versions of each spreadsheet with

randomly seeded faults. The special feature of this corpus is that it contains

only integer values [49].

13.6 Summary and Outlook

The discussions in the previous sections show that both main paradigms

of modern AI research — machine learning and model-based reasoning —

as well as heuristic-based approaches can be successfully applied for sup-

porting the spreadsheet debugging process. An important aspect in that

context is that many of the proposed solutions were evaluated on the basis

of real-world spreadsheets. Despite this success and recent progress, there

are still a number of important directions for future work in this area. Next,

we will discuss three main areas for future research.

June 2, 2021 15:43 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-13 page 394

394 Artificial Intelligence Methods for Software Engineering

Development of Spreadsheet Fault Corpora. Today’s research in

algorithmic spreadsheet debugging is mostly evaluated on a small number

of collections containing faults. These faults are either artificially injected,

e.g., by using mutation operators [62], or they are real faults made by

users like in the collection provided in [36]. While the existing corpora,

listed in Table 13.2, are diverse in terms of their creators and the types

of faults that can be found in them, larger collections would be desirable

in particular from the perspective of approaches that are based on fault

patterns and machine learning.

Furthermore, like in the Mining Software Repositories field in general

software engineering, one problem of such corpora is that many faults that

are made by the developers might have been corrected before the software

is versioned. Therefore, many faults that were made on the way might not

be present anymore in the repositories or the released spreadsheets. As a

result, further research — maybe in the form of laboratory experiments —

is required to understand which types of temporary faults users make and

if specific debugging aids are required to capture these faults.

Algorithmic Improvements. From an algorithmic perspective, further

improvements are possible, both for machine learning approaches and for

model-based techniques. In particular, for the latter set of approaches,

a deeper investigation of qualitative reasoning methods seems promising.

Instead of reasoning with exact numerical values, qualitative reasoning ap-

proaches, as discussed above, can help us, for example, to work with inter-

vals or bounds. In some cases, when observing a problem in a spreadsheet,

users might not be immediately able to inform the debugger about the exact

expected outcome for a certain cell. However, they might feel comfortable

with providing a lower bound for the expected value in a cell.

Generally, many of today’s AI-based debugging techniques assume a

“one-shot” interaction paradigm, where the debugger — given a filled

spreadsheet and potentially additionally test cases — determines and high-

lights a set of potentially faulty cells for the user to inspect. Such a set of

fault candidates can, however, be large, and might involve dozens of suspi-

cious cells. In the context of traditional model-based diagnosis techniques,

a common approach to deal with such problems is to make additional “mea-

surements”. In a debugging scenario, this translates into interactively ask-

ing the user questions, e.g., about the correctness of a certain cell. While

algorithmic approaches for sequential fault localization already exist [63],

they are often designed to minimize the number of measurements. In a

June 2, 2021 15:43 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-13 page 395

AI-based Spreadsheet Debugging 395

debugging context, one has however also to consider the complexity of an-

swering the question for the end-user, which has not been investigated in

the literature before.

Human-Debugger Interface. Finally, and probably most importantly,

many questions are open regarding the design of appropriate user interfaces

of debugging tools for spreadsheets. A particular problem in the context of

spreadsheets is that users can be diverse in terms of their technical back-

ground and their capabilities. For more advanced and technically-skilled

users, comparably complex user interfaces (embedded in MS Excel) like

proposed in [5, 53] can be still manageable from the perspective of their

cognitive complexity. However, some less-experienced spreadsheet users

might be overwhelmed by such a system, even when it is more or less seam-

lessly embedded in their usual spreadsheet environment. For such users,

novel lightweight and self-explanatory interaction mechanisms are needed,

e.g., different forms of visualizing the “smelliness” of a certain formula or

subarea of the spreadsheet.

In general, more user studies are needed to understand the real value

of AI-based spreadsheet debugging tools. In the field of general software

engineering, [54] questioned if purely data-based analyses are sufficient to

answer the question: do debuggers really help software engineers. One out-

come of their study was that some of the core assumptions of algorithmic de-

bugging actually do not seem to hold in practice and that some approaches

might be less useful as one might guess from data-based experiments. While

previous user studies indicate that also more complex debugger interfaces

can be lead to increased fault localization performance [64] for experienced

users, it is unclear if these more complex interaction mechanisms would be

useful also for users that are not well-versed in the use of spreadsheets.

Acknowledgments

The work was funded by the Austrian Science Fund (FWF) project Interac-

tive Spreadsheet Debugging (iDEOS) under contract number P 32445-N38.

References

[1] R. R. Panko, Thinking is bad: Implications of human error research
for spreadsheet research and practice, CoRR abs/0801.3114 (2008),
arXiv:0801.3114.

http://arxiv.org/abs/0801.3114

June 2, 2021 15:43 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-13 page 396

396 Artificial Intelligence Methods for Software Engineering

[2] D. Jannach, T. Schmitz, B. Hofer and F. Wotawa, Avoiding, finding and
fixing spreadsheet errors - A survey of automated approaches for spreadsheet
QA, Journal of Systems and Software 94, pp. 129–150 (2014).

[3] P. Koch, K. Schekotihin, D. Jannach, B. Hofer and F. Wotawa, Metric-based
fault prediction for spreadsheets, IEEE Transactions on Software Engineer-
ing forthcoming (2019).

[4] R. Singh, B. Livshits and B. Zorn, Melford: Using neural networks to find
spreadsheet errors, Microsoft Technical Report MSR-TR-2017-5 (2017).

[5] D. Jannach and T. Schmitz, Model-based diagnosis of spreadsheet programs:
a constraint-based debugging approach, Automated Software Engineering
23, 1, pp. 105–144 (2016).

[6] W. E. Wong, R. Gao, Y. Li, R. Abreu and F. Wotawa, A survey on soft-
ware fault localization, IEEE Transactions on Software Engineering 42, 8,
pp. 707–740 (2016).

[7] D. Radjenovic, M. Hericko, R. Torkar and A. Zivkovic, Software fault pre-
diction metrics: A systematic literature review, Information & Software
Technology 55, 8, pp. 1397–1418 (2013).

[8] C. Catal, Software fault prediction: A literature review and current trends,
Expert Systems with Applications 38, 4, pp. 4626–4636 (2011).

[9] M. Erwig and M. M. Burnett, Adding apples and oranges, in S. Krishna-
murthi and C. R. Ramakrishnan (eds.), 4th International Symposium on
Practical Aspects of Declarative Languages, pp. 173–191 (2002).

[10] Y. Ahmad, T. Antoniu, S. Goldwater and S. Krishnamurthi, A type sys-
tem for statically detecting spreadsheet errors, in 18th IEEE International
Conference on Automated Software Engineering, pp. 174–183 (2003).

[11] T. Antoniu, P. A. Steckler, S. Krishnamurthi, E. Neuwirth and M. Felleisen,
Validating the unit correctness of spreadsheet programs, in 26th Interna-
tional Conference on Software Engineering, pp. 439–448 (2004).

[12] R. Abraham and M. Erwig, UCheck: A spreadsheet type checker for end
users, Journal of Visual Languages & Computing 18, 1, pp. 71–95 (2007).

[13] C. Chambers and M. Erwig, Automatic detection of dimension errors in
spreadsheets, Journal of Visual Language & Computing 20, 4, pp. 269–283
(2009).

[14] W. Dou, S. Cheung and J. Wei, Is spreadsheet ambiguity harmful? detecting
and repairing spreadsheet smells due to ambiguous computation, in 36th
International Conference on Software Engineering, pp. 848–858 (2014).

[15] W. Dou, C. Xu, S. C. Cheung and J. Wei, CACheck: Detecting and repairing
cell arrays in spreadsheets, IEEE Transactions on Software Engineering 43,
3, pp. 226–251 (2017).

[16] L. Xu, S. Wang, W. Dou, B. Yang, C. Gao, J. Wei and T. Huang, Detecting
faulty empty cells in spreadsheets, in IEEE International Conference on
Software Analysis, Evolution and Reengineering, pp. 423–433 (2018).

[17] S.-C. Cheung, W. Chen, Y. Liu and C. Xu, CUSTODES: automatic spread-
sheet cell clustering and smell detection using strong and weak features, in
38th International Conference on Software Engineering, pp. 464–475 (2016).

[18] D. Li, H. Wang, C. Xu, F. Shi, X. Ma and J. Lu, WARDER: Refining Cell

June 2, 2021 15:43 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-13 page 397

AI-based Spreadsheet Debugging 397

Clustering for Effective Spreadsheet Defect Detection via Validity Proper-
ties, in 19th International Conference on Software Quality, Reliability and
Security, pp. 139–150 (2019a).

[19] D. Li, H. Wang, C. Xu, R. Zhang, S.-C. Cheung and X. Ma, SGUARD:
A Feature-Based Clustering Tool for Effective Spreadsheet Defect Detec-
tion, in 34th IEEE/ACM International Conference on Automated Software
Engineering, pp. 1142–1145 (2019b).

[20] M. Fisher II and G. Rothermel, The EUSES spreadsheet corpus: a shared re-
source for supporting experimentation with spreadsheet dependability mech-
anisms, ACM SIGSOFT Software Engineering Notes 30, 4, pp. 1–5 (2005).

[21] D. W. Barowy, E. D. Berger and B. G. Zorn, ExceLint: automatically find-
ing spreadsheet formula errors, Proceedings of the ACM on Programming
Languages 2, pp. 148:1–148:26 (2018).

[22] R. Abreu, J. Cunha, J. P. Fernandes, P. Martins, A. Perez and J. Saraiva,
Smelling faults in spreadsheets, in 30th IEEE International Conference on
Software Maintenance and Evolution, pp. 111–120 (2014).

[23] F. Hermans, M. Pinzger and A. van Deursen, Detecting and visualizing
inter-worksheet smells in spreadsheets, in 34th International Conference on
Software Engineering, pp. 441–451 (2012a).

[24] F. Hermans, M. Pinzger and A. van Deursen, Detecting code smells in
spreadsheet formulas, in International Conference on Software Maintenance,
pp. 409–418 (2012b).

[25] J. Cunha, J. P. Fernandes, P. Martins, J. Mendes and J. Saraiva, Smellsheet
detective: A tool for detecting bad smells in spreadsheets, in IEEE Sym-
posium on Visual Languages and Human-Centric Computing, pp. 243–244
(2012a).

[26] J. Cunha, J. P. Fernandes, H. Ribeiro and J. Saraiva, Towards a catalog
of spreadsheet smells, in 12th International Conference on Computational
Science and Its Applications, pp. 202–216 (2012b).

[27] R. Abreu, J. Cunha, J. P. Fernandes, P. Martins, A. Perez and J. Saraiva,
FaultySheet Detective: When Smells Meet Fault Localization, in 30th IEEE
International Conference on Software Maintenance and Evolution, pp. 625–
628 (2014).

[28] A. A. d. S. Meyer, A. A. F. Garcia, A. P. d. Souza and C. A. L. d. Souza Jr.,
Comparison of similarity coefficients used for cluster analysis with dominant
markers in maize (Zea mays L), Genetics and Molecular Biology 27, pp. 83–
91 (2004).

[29] R. Abreu, P. Zoeteweij and A. J. C. van Gemund, An evaluation of similarity
coefficients for software fault localization, in 12th Pacific Rim International
Symposium on Dependable Computing, pp. 39–46 (2006).

[30] Lucia, D. Lo, L. Jiang, F. Thung and A. Budi, Extended comprehensive
study of association measures for fault localization, Journal of Software:
Evolution and Process 26, 2, pp. 172–219 (2014).

[31] S. Aurigemma and R. R. Panko, The detection of human spreadsheet errors
by humans versus inspection (auditing) software, in EuSpRIG 2010 Confer-
ence, pp. 1–14 (2010).

June 2, 2021 15:43 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-13 page 398

398 Artificial Intelligence Methods for Software Engineering

[32] I. J. Goodfellow, Y. Bengio and A. C. Courville, Deep Learning. MIT Press
(2016).

[33] C. Cortes and V. Vapnik, Support-vector networks, Machine Learning 20,
3, pp. 273–297 (1995).

[34] R. E. Schapire, A brief introduction to boosting, in 16th International Joint
Conference on Artificial Intelligence, pp. 1401–1406 (1999).

[35] L. Breiman, Random forests, Machine Learning 45, 1, pp. 5–32 (2001).
[36] T. Schmitz and D. Jannach, Finding errors in the enron spreadsheet corpus,

in IEEE Symposium on Visual Languages and Human-Centric Computing,
pp. 157–161 (2016).

[37] E. Getzner, B. Hofer and F. Wotawa, Improving spectrum-based fault local-
ization for spreadsheet debugging, in 2017 IEEE International Conference
on Software Quality, Reliability and Security (QRS), pp. 102–113 (2017).

[38] B. Hofer, A. Riboira, F. Wotawa, R. Abreu and E. Getzner, On the empirical
evaluation of fault localization techniques for spreadsheets, in Proceedings of
the 16th International Conference on Fundamental Approaches to Software
Engineering, pp. 68–82 (2013).

[39] R. Reiter, A theory of diagnosis from first principles, Artificial Intelligence
32, 1, pp. 57–95 (1987).

[40] R. Dechter, Constraint processing. Elsevier Morgan Kaufmann (2003).
[41] D. Jannach and U. Engler, Toward model-based debugging of spreadsheet

programs, in 9th Joint Conference on Knowledge-Based Software Engineer-
ing, pp. 252–262 (2010).

[42] R. Abreu, A. Riboira and F. Wotawa, Debugging Spreadsheets: A CSP-
based Approach, in International Workshop of Program Debugging (IWPD)
at ISSREW 2012, pp. 159–164 (2012).

[43] R. Abreu, B. Hofer, A. Perez and F. Wotawa, Using constraints to diagnose
faulty spreadsheets, Software Quality Journal 23, 2, pp. 297–322 (2015).

[44] B. Hofer, A. Höfler and F. Wotawa, Combining models for improved fault
localization in spreadsheets, IEEE Transactions on Reliability 66, 1, pp. 38–
53 (2017a).

[45] B. Hofer, I. Nica and F. Wotawa, Qualitative deviation models for spread-
sheet debugging, in International Workshop on Program Debugging (IWPD)
at ISSRE, pp. 191–198 (2017b).

[46] U. Junker, QUICKXPLAIN: preferred explanations and relaxations for over-
constrained problems, in Proceedings of the 19th National Conference on
Artificial Intelligence / IAAI, pp. 167–172 (2004).

[47] K. Shchekotykhin, D. Jannach and T. Schmitz, MergeXplain: Fast computa-
tion of multiple conflicts for diagnosis, in 24th International Joint Conference
on Artificial Intelligence (IJCAI 2015), pp. 3221–3228 (2015).

[48] I. Nica and F. Wotawa, ConDiag - computing minimal diagnoses using a
constraint solver, in 23rd International Workshop on Principles of Diagnosis,
pp. 185–191 (2012).

[49] S. Außerlechner, S. Fruhmann, W. Wieser, B. Hofer, R. Spork,
C. Mühlbacher and F. Wotawa, The Right Choice Matters! SMT Solving
Substantially Improves Model-Based Debugging of Spreadsheets, in 13th In-
ternational Conference on Quality Software, pp. 139–148 (2013).

June 2, 2021 15:43 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-13 page 399

AI-based Spreadsheet Debugging 399

[50] B. Hofer and F. Wotawa, Mutation-based spreadsheet debugging, in Inter-
national Workshop on Program Debugging at ISSRE, pp. 132–137 (2013).

[51] R. Abreu, S. Außerlechner, B. Hofer and F. Wotawa, Testing for Distinguish-
ing Repair Candidates in Spreadsheets - the Mussco Approach, in 27th Inter-
national Conference on Testing Software and Systems, pp. 124–140 (2015).

[52] T. Schmitz and D. Jannach, An AI-based interactive tool for spreadsheet
debugging, in IEEE Symposium on Visual Languages and Human-Centric
Computing, pp. 333–334 (2017).

[53] D. Jannach, T. Schmitz, B. Hofer, K. Schekotihin, P. W. Koch and
F. Wotawa, Fragment-based spreadsheet debugging, Automated Software
Engineering 26, 1, pp. 203–239 (2019).

[54] C. Parnin and A. Orso, Are automated debugging techniques actually help-
ing programmers? in 2011 International Symposium on Software Testing
and Analysis, pp. 199–209 (2011).

[55] R. Almaghairbe and M. Roper, Automatically classifying test results by
semi-supervised learning, in ISSRE. IEEE Computer Society, pp. 116–126
(2016).

[56] M. Roper, Using machine learning to classify test outcomes, in AITest. IEEE,
pp. 99–100 (2019).

[57] T. Barik, K. Lubick, J. Smith, J. Slankas and E. Murphy-Hill, Fuse: A
reproducible, extendable, internet-scale corpus of spreadsheets, in 2015
IEEE/ACM 12th Working Conference on Mining Software Repositories,
pp. 486–489 (2015).

[58] F. Hermans and E. Murphy-Hill, Enron’s spreadsheets and related emails:
A dataset and analysis, in 37th International Conference on Software Engi-
neering, ICSE ’15, Vol. 2, pp. 7–16 (2015).

[59] W. Dou, L. Xu, S. Cheung, C. Gao, J. Wei and T. Huang, Venron:
A versioned spreadsheet corpus and related evolution analysis, in 2016
IEEE/ACM 38th International Conference on Software Engineering Com-
panion (ICSE-C), pp. 162–171 (2016).

[60] J. R. Ruthruff, M. Burnett and G. Rothermel, Interactive fault localization
techniques in a spreadsheet environment, IEEE Transactions on Software
Engineering 32, 4, pp. 213–239 (2006).

[61] E. Getzner, Improvements for Spectrum-based Fault Localization, Master’s
thesis, Graz University of Technology (2015).

[62] R. Abraham and M. Erwig, Mutation operators for spreadsheets, IEEE
Transactions on Software Engineering 35, 1, pp. 94–108 (2009).

[63] K. Schekotihin, T. Schmitz and D. Jannach, Efficient sequential model-based
fault-localization with partial diagnoses, in 25th International Joint Confer-
ence on Artificial Intelligence, pp. 1251–1258 (2016).

[64] P. Rodler, D. Jannach, K. Schekotihin and P. Fleiss, Are query-based ontol-
ogy debuggers really helping knowledge engineers? Knowledge-based Systems
179, pp. 92–107 (2019).

B1948 Governing Asia

B1948_1-Aoki.indd 6B1948_1-Aoki.indd 6 9/22/2014 4:24:57 PM9/22/2014 4:24:57 PM

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank

June 2, 2021 15:45 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-14 page 401

© 2021 World Scientific Publishing Company
https://doi.org/10.1142/9789811239922 0014

Chapter 14

Artificial Intelligence Methods for
Software Debugging

Wolfgang Mayera and Franz Wotawab

aUniversity of South Australia, Adelaide, Australia
bGraz University of Technology, Graz, Austria

14.1 Introduction

Software systems can be difficult to develop and maintain due to their

complexity and sheer size. As software code is written, faults may be in-

troduced, some of which may not be found until later when users report

undesirable software behavior. Developers of popular software systems re-

ceive hundreds of bug reports each day and expend considerable effort on

understanding the reported issue, diagnosing its root cause, and develop-

ing fixes. As debugging and resolving problems in software consumes a

significant fraction of the resources devoted to software development, au-

tomated technologies that can help improve the efficiency and effectiveness

of software debugging have been desired for some time.

Creating intelligent support tools that can support software engineers

with debugging tasks has been an active topic of research since the 1980’s.

Early approaches were mainly based on hand-crafted algorithms and heuris-

tics designed to minimize some measure of effort for isolating faults in

software code. More recently, artificial intelligence techniques have been

introduced in automated debugging assistants.

Artificial intelligence techniques for debugging span a variety of tasks.

They can help design tests to aid discovering faults, complement code anal-

ysis techniques by identifying patterns that are indicative of (in)correct use

of libraries and interfaces, exonerate parts of code that is likely correct,

401

https://doi.org/10.1142/9789811239922_0014

June 2, 2021 15:45 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-14 page 402

402 Artificial Intelligence Methods for Software Engineering

highlight code fragments that are likely faulty, and focus the developer’s

attention by ranking the remaining candidate explanations. In some cases,

artificial intelligence techniques can even synthesize corrections that re-

place faulty code. The underlying artificial intelligence technologies include

mining patterns from past test runs and program versions, counterfactual

reasoning about the effects of code fragments to infer explanations from

observations, use of natural language processing techniques to extract in-

formation from bug trackers and code repositories, and machine learning

approaches capable of generating and ranking candidate explanations.

In this chapter we survey artificial intelligence techniques for software

debugging. Our focus will be on debugging, excluding test generation and

program repair techniques. We begin with a general outline of the role of

artificial intelligence techniques in the software debugging context, present

two common approaches for localizing the origin of a fault in the program’s

source code and summarize machine learning approaches aiming to support

the human software developer. We conclude by summarizing the capabili-

ties of the current methods and avenues for further research.

14.2 AI in the Debugging Life Cycle

Software developers seeking to find and resolve faults in complex programs

generally engage in a sequence of activities that aim to detect faults, inves-

tigate the root causes of detected faults, document faults and their causes,

and repair the program to resolve the faults. Figure 14.1 illustrates a view

of this process. The activities highlighted in bold are the focus of this

chapter.

Fault detection is usually achieved through testing, where the program

is exercised on one or more test cases that aim to trigger a fault in the

program, or through analysis of the source code of the program, which can

be done manually or with the help of automated program analysis tools.

Once a fault has been detected, its root cause must be determined, and

relevant elements of the program’s source code associated with the root

cause identified. Once that is accomplished the fault has been localized in

the source code. The outcomes of the diagnostic activities can be captured

Create Tests Detect
Faults

Diagnose
Faults

Report
Faults

Fix
Faults

Fig. 14.1: Activities in the Debugging Life Cycle.

June 2, 2021 15:45 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-14 page 403

A.I. Methods for Software Debugging 403

in a repository, for example, as reports in an issue tracking system. Once the

root cause of the fault has been localized, the program can be modified to

resolve the fault, and the test and detection regime can be amended to catch

similar faults that may arise as the program evolves. The associated changes

to the source code are generally captured in a version control system.

Tools that can partly automate this process and provide intelligent sup-

port to software developers have been sought for decades, as the complex-

ity of software and number of potential faults therein has rendered purely

manual investigations infeasible. The opportunities for using artificial in-

telligence techniques to augment the debugging process can be summarized

as follows:

Create tests. Automated test generation mechanisms have been devel-

oped that can synthesize test cases that can detect and isolate specific faults

in large programs, and methods for optimizing the collective efficiency of

test cases in large test suites have been developed. Automated methods to

isolate failure inducing changes [1], test suite minimization [2] and prioriti-

zation [3], and test generation [4] are well-known methods. [5] presented a

survey of related techniques in this field.

Detect faults. Learning methods can infer patterns from execution

traces that help discriminate normal program states from abnormal pro-

gram states to detect errors within a program execution and help isolate

where in a program execution an incorrect program state may have been

entered. Moreover, pattern mining methods can be applied to source code

to infer code patterns that are indicative of faults in programs. Selected

techniques for fault detection are presented in Sec. 14.3.

Diagnose faults. Artificial intelligence techniques for localizing, ranking,

and isolating faults based on reasoning about execution traces and possible

faults can separate the parts of the program which may contain a fault from

those that are not consistent with the observed program behavior. These

techniques can reduce the human effort in fault localization. Model-based

reasoning and spectrum-based candidate ranking approaches are two promi-

nent techniques for debugging. Section 14.4 describes selected techniques

in detail. Intelligent assistants for manual debugging can learn from his-

toric debugging activity to guide human debugging tasks and help transfer

debugging-related knowledge among software developers. Section 14.4.3

June 2, 2021 15:45 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-14 page 404

404 Artificial Intelligence Methods for Software Engineering

summarizes selected artificial intelligence and machine learning methods

that can support debugging activities.

Report faults. Software repositories and related issue tracking systems

provide a rich source of data that can be exploited to complement code-

based analysis (see [6, 7]). Data mining of bug report texts and associated

program code can yield predictors of fault proneness in software. Such

predictions are useful to guide testing effort and to rank candidate faults

identified in the diagnostic phase of debugging.

Fix faults. Automated program repair techniques have emerged that

strive to automatically correct faulty programs. Methods include auto-

mated patching of program states at runtime to yield more resilient exe-

cutions [8], synthesis of candidate patches based on mining historic source

code patches [9], and automated synthesis of corrections using evolution-

ary, sub-symbolic, and other AI techniques. Monperrus [10] and Gazzola

and colleagues [11] survey the state of the art in automated program repair

techniques.

14.3 Fault Detection Techniques

Automated testing is one of the most widely used techniques for detect-

ing faults in programs. The effectiveness of testing depends on the quality

of the underlying test suite, and generating concise test suites that effec-

tively detect a variety of failures can be prohibitively expensive for com-

plex programs. The approaches to test suite generation and optimization

are too numerous to present them here. Instead, we refer the reader to re-

lated literature on this topic. Nie and Leung [12] presented an overview of

combinatorial test generation techniques, and Campos and colleagues [13]

discussed evolutionary approaches to test suite optimization. Moreover,

information about remaining candidate root causes in a debugging setting

can be used to generate additional tests that may help discriminate between

the candidate causes [14].

Although testing can determine that programs exhibit faults, identify-

ing which part of a program is the root cause for observed test failures can

be difficult since test runs can span many parts of a program. Assertions

embedded within a program can detect earlier that a program execution

has entered an incorrect state and help narrow the scope of the search for

the bug. However, selecting appropriate invariants that are effective for

June 2, 2021 15:45 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-14 page 405

A.I. Methods for Software Debugging 405

revealing faults can be difficult, and manually adding many invariants can

be tedious. Instead, machine learning methods can be utilized to learn

properties of programs that may indicate problems based on either the

source code (“static analysis” techniques) or the execution traces of pro-

grams (“dynamic analysis” techniques).

Static analysis techniques for identifying “code smells” that may be in-

dicative of incorrect use of language features are commonplace in many

development environments. For example, FindBugs [15] highlights poten-

tial problems in Java source code based on anti-pattern rules. Machine

learning methods can automatically learn models of correct programming

interface usage from code examples. Deviations from the learned protocol

model can then indicate potential problems in a program and can serve

as additional signals for fault localization. Xie and Pei [16] used frequent

sequence mining techniques to learn correct usage patterns based on a set

of example code fragments demonstrating the use of an object, whereas

Wasylkowski and colleagues [17] presented an approach that learns state

machines that capture the correct sequences of function invocations. Ma-

chine learning techniques for code clone detection can also be employed to

identify potentially incorrect or vulnerable code based on known instances

of incorrect program fragments [18].

Invariant learning methods can infer invariant expressions that hold

at a point in the program for all program executions resulting in passed

test cases while violating some of the failing test cases [19, 20]. Since

these methods exploit runtime information about programs, they belong

to the dynamic analysis category. Invariants can include properties, such

as value ranges for individual variables, relationships among multiple vari-

ables, application-specific predicates, and relations among object struc-

tures. Violations of invariants can indicate potential problems earlier in

the execution than the ultimate test outcome. Abreu and colleagues [21]

demonstrated that learned invariants can be included as additional signals

to improve spectrum-based fault localization (SBFL) methods even if only

simple range and bit mask invariants are employed.

Hybrid approaches that encompass elements of static, dynamic, heuris-

tic, and machine learning methods are best positioned to yield robust de-

tection of potential problems in complex programs. Ghaffarian and Shahri-

ari [22] present a review of such approaches for vulnerability detection.

June 2, 2021 15:45 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-14 page 406

406 Artificial Intelligence Methods for Software Engineering

14.4 Fault Localization Techniques

Algorithmic and automated approaches for locating faults in programs have

been of interest for several decades. Ehud Shapiro [23] was one of the first

providing an algorithmic solution for supporting programmers fixing bugs

in their Prolog programs. Mark Weiser [24,25] analyzed the way program-

mers manually search for bug fixes and provided a theoretical basis when

introducing the concept of static slices. Although, the general debugging

problem seems to be always the same comprising a program, and a set of

test cases where at least one test case is a failing one, debugging support

may vary depending on the programming languages and the experience

of the involved programmers. For experienced programmers we may con-

sider different techniques than for programming novices were for the lat-

ter programming tasks are usually well defined. Murray [26] utilized this

difference in his approach for guiding programming novices during their

assigned tasks. In this section, we focus on the foundations behind pro-

gramming tools for debugging supporting and automated debugging for

more experienced programmers.

In particular, we discuss the two currently most popular approaches to

fault localization in programs, i.e., model-based debugging and spectrum-

based fault localization. According to Wong and colleagues [27] more than

50% of all published research articles on debugging make use of one of these

two debugging techniques. We introduce the techniques making use of a

small program foo. In Fig. 14.2 we depict the source code of method foo.

This program takes two variables, x and s, as inputs and computes the

area a and circumference c of a square (if s is 0) or a circle (if s different

from 0). Depending on the value of s the other input variable x represents

either the length of a side of the square, or the radius of the circle. When

knowing the equations for the area and circumference of squares or circles

it is obvious that there is a bug in Line 6 of foo. However, in the case of

fault localization, we usually rely on test cases. So let us assume a set of

test cases for foo that is given in Table 14.1.

Obviously, foo fails on test cases TC3 and TC5 where a correct result

is computed for a but an incorrect result is derived for c. Hence, there is

at least one failing test case and we are interested in computing the root

cause of this observation. In principle, there are two more general ways

of providing a solution to this debugging problem. First, we may consider

information derived from the source code. For example, we know that

variable a assigned in lines 5 and 8 always depends on the input variable

June 2, 2021 15:45 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-14 page 407

A.I. Methods for Software Debugging 407

1. public void foo (float x, int s) {
2. float a;

3. float c;

4. if (s == 0) {
5. a = x * x;

6. c = 3 * x; // Bug! Should be c = 4 * x;

7. } else {
8. a = 3.14 * x * x;

9. c = 3.14 * 2.0 * x;

10. }
11. }

Fig. 14.2: A small program fragment implementing a method foo.

Table 14.1: A set of test cases for method foo.

x s a c passing

TC1 0.0 0 0.0 0.0
√

TC2 0.0 1 0.0 0.0
√

TC3 1.0 0 1.0 4.0 ×
TC4 1.0 1 3.14 6.28

√

TC5 2.0 0 4.0 8.0 ×
TC6 2.0 1 12.56 12.56

√

x. The same holds for variable c. Hence, when c is considered wrong, we

only need to make use of these dependencies to collect all statements, one

of which may be wrong. Second, we may make use of all available test cases

together with their concrete executions. In particular, we know that when

executing test case TC3 lines 1, 2, 3, 4, 5, and 6 are executed (ignoring lines

only comprising closing parentheses). When executing TC4 lines 1, 2, 3, 8,

and 9 are executed. Hence, considering the executions and the information

whether a test case is passing or failing, we are able to assign a certain

likelihood of being correct to each statement. The model-based debugging

approach discussed in following section adopts the first principle, whereas

the spectrum-based approach discussed in the subsequent section adopts

the second principle.

It is also worth noting that more recently the use of machine learning for

fault localization has been investigated [28–30]. These techniques mainly

focus on learning use patterns or syntax patterns in the source code that

June 2, 2021 15:45 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-14 page 408

408 Artificial Intelligence Methods for Software Engineering

often lead to trouble. Making use of past programs such patterns can be

learned and further used for locating suspicious code fragments.

14.4.1 Model-based fault localization

Model-based reasoning [31–33] is a method originating from artificial intel-

ligence that allows to compute diagnoses directly from a model of a system

comprising structural properties, such as components and their intercon-

nections, and the components’ behavior. A diagnosis is derived from the

model of the system and a given set of observations that may contradict the

expected behavior of the program. Diagnoses are computed using health

assumptions about the components. If a component is assumed to be in the

health state correct, the behavior of the component is equivalent to the one

described in the model for the component. Otherwise, the behavior of the

component is not specified. Using these health assignments, we are able to

determine those components that need to behave abnormally in order to

retract any inconsistency.

When adopting model-based reasoning for fault localization in pro-

grams, the main challenge is to find an appropriate model of the program we

want to debug. Console and colleagues [34] provided the first step towards

the objective of utilizing model-based reasoning for debugging. In their

seminal paper, they considered logic programs, where the logical model

used for reasoning is the program itself, and showed that the resulting de-

bugger improves Shapiro’s algorithmic debugging [23]. Bond [35] improved

the work of Console and colleagues in his Ph.D. thesis. Liver [36] introduced

a different approach requiring users to provide a model of a program, which

is less appealing when considering that programs can be large and that we

wish to automate the computation of diagnoses. Therefore, all other papers

dealing with model-based fault localization (also called model-based debug-

ging) rely on Console et al.’s paper where the model can be constructed

automatically.

In this section, we describe in detail how general programs can be con-

verted into models that can be directly used for debugging. We follow the

definitions of Wotawa and colleagues [37] where the authors propose to

map imperative programs to constraints. In Fig. 14.3 we summarize the

debugging approach. The first step is to convert a program Π into a rep-

resentation L(Π) using a compiler. The representation L(Π) is such that a

theorem prover or constraint solver can compute a set of diagnoses ∆S from

the model and a failing test case TC. Each diagnosis ∆ ∈ ∆S corresponds

June 2, 2021 15:45 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-14 page 409

A.I. Methods for Software Debugging 409

Π ℒ(Π)Compiler

TP / Constr. solver

TC

ΔS

The compiler reads in a program
and applies the following
conversion: 

1. Loop unrolling
2. SSA form conversion
3. Compilation into the 

solver’s input language

Fig. 14.3: The model-based fault localization flow chart.

to statements or expressions in the program Π that must all be faulty to

explain the behavior of the given failing test case.

We now discuss the compilation step in more detail. The underlying

idea behind the compilation is to create a model of the program, that is,

a formal representation of the program that can be used for computing

diagnoses. Here, we utilize a constraint representation where a constraint

is an equation that defines a relationship between variables. To represent

a program as a set of constraints we make use of the following observation:

An assignment statement such as a = x * x; states that the variable a will

have the value resulting from the multiplication of variable x with itself.

This relationship among the two variables may be expressed as a constraint

a = x·x where the constraint variable a corresponds to the program variable

a, and constraint variable x to program variable x, respectively.

Therefore, we are able to map assignment statements such as a = x *

x; more or less directly to a constraint, while paying close attention to

capturing the sequential nature of statements. Consider two consecutive

statements a = x * x; a = 1;. Regardless of the value of program vari-

able x, the value of a after executing both statements in the given sequence

is 1. Mapping both statements to equations would lead to a set of equations

{a = x · x, a = 1} also constraining the value of x to be 1 (or −1) as well,

but this is not what we want to achieve. Our constraint representation

June 2, 2021 15:45 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-14 page 410

410 Artificial Intelligence Methods for Software Engineering

must consider the sequence of statements as well! To ensure this, we use

the static single assignment form (SSA) of a program (see [38]). The SSA

form assures that every variable is only defined once, i.e., any variable in a

program is allowed to occur at most once at the left side of an assignment

statement. For the conversion, variables are associated with an index i that

is initially 0. Every time a variable is assigned, its index is incremented by

1. If the same variable is used in a subsequent expression, the new index is

used. For example, the SSA form of the program fragment a = x * x; a

= 1; is a1 = x0 * x0; a2 = 1. Mapping the SSA form of the program to

a set of equations represents the program correctly.

The SSA also requires mapping conditional statements, such as if-then-

else, and loops statements, such as while and repeat-until statements, to

a specific representation. For if-then-else (ITE) statements the SSA con-

version is as follows: For each assignment in the then- and else-block, we

introduce a new assignment with distinct indices. At the end of the ITE

statement, we introduce an additional assignment for every variable that

was assigned in any block of the ITE statement, where on the right hand

side a Φ function is used to select either the variable from the then-block

or from the else-block depending on the value of the condition expression

of the ITE statement. We expand (“unroll”) loops into nested ITE state-

ments, which yields a program that shares the same behavior as the original

one provided that the number of considered loop iterations does not exceed

the nesting depth of the ITE statements. For example, consider the state-

ment while C { S }. This statement is converted into nested if-then-else

statements if C { S if C { S if C { S ...} } }.
In summary, the conversion of a given program Π into a formal model

comprises the following steps: (1) Eliminating all loops and recursive func-

tion calls by unrolling or similar techniques. (2) Converting the resulting

loop-free program into its SSA form, and (3) mapping the SSA to a formal

representation.

Example 14.1. The resulting SSA form of our method foo from Fig. 14.2

is as follows:

June 2, 2021 15:45 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-14 page 411

A.I. Methods for Software Debugging 411

temp1 := (s0 == 0)

a1 := x0 * x0
c1 := 3.0 * x0
a2 := 3.14 * x0 * x0
c2 := 3.14 * 2.0 * x0
a3 := Φ(temp1, a1, a2)

c3 := Φ(temp1, c1, c2)

In this representation, the if-then-else statement (lines 4–10) is mapped

to a set of constraints. temp1 := (s1 == 0) is used to capture the value of

the conditional expression for later use in the Φ functions. The assignment

statements for variables a3 and c3 make use of the Φ function to deliver

new values for the original variables a and c respectively, after executing

the if-then-else statement. �

It is worth noting that the SSA of a program only comprises assign-

ment statements. The used indices guarantee to correctly represent the

sequence of statements, and each SSA statement can be also traced back to

its representation in the original program. What we have not discussed so

far in detail is the conversion into a formal constraint representation and

handling of the health states of certain program fragments. For represent-

ing a health state, we introduce a special variable ab for each statement

of the original program and make use of this variable to switch on or off

the behavior of the statement. For example, a statement 5. a = x * x; if

correct, would establish a relationship between variables a and x, which can

be represented as a constraint a = x · x. However, in case the statement is

regarded as faulty, this does not hold anymore. We can represent this using

the following constraint ab5 ∨ (a = x · x) meaning that either statement 5

is abnormal (i.e., not correct) or it has its stated behavior. In general, for

each statement i with corresponding constraint Ci, we create a constraint

model abi ∨ Ci. Note that for if-then-else statements we only use the ab

variable when assigning a value to its corresponding condition.

Example 14.2. Taking care of the health states of statements, and the

SSA of method foo given in Fig. 14.2, we are able to finally come up with a

formal representation that can be directly used for fault localization. The

SMT-LIB1 model for foo used by constraint and SMT solvers such as Z32

looks as follows:
1See http://smtlib.cs.uiowa.edu/language.shtml.
2See https://github.com/Z3Prover.

http://smtlib.cs.uiowa.edu/language.shtml
https://github.com/Z3Prover

June 2, 2021 15:45 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-14 page 412

412 Artificial Intelligence Methods for Software Engineering

(declare-fun x_0 () Real)
(declare-fun s_0 () Int)
(declare-fun temp_0_0 () Bool)
(declare-fun ab_0 () Bool)
(declare-fun a_1 () Real)
(declare-fun ab_1 () Bool)
(declare-fun c_1 () Real)
(declare-fun ab_2 () Bool)
(declare-fun a_2 () Real)
(declare-fun ab_3 () Bool)
(declare-fun c_2 () Real)
(declare-fun ab_4 () Bool)
(declare-fun a_3 () Real)
(declare-fun c_3 () Real)

(assert (or ab_0 (= temp_0_0 (= s_1 0))))
(assert (or ab_1 (= a_1 (* x_0 x_0))))
(assert (or ab_2 (= c_1 (* 3.0 x_0))))
(assert (or ab_3 (= a_2 (* 3.14 x_0 x_0))))
(assert (or ab_4 (= c_2 (* 3.14 2.0 x_0))))
(assert (= a_3 (ite temp_0_0 a_1 a_2)))
(assert (= c_3 (ite temp_0_0 c_1 c_2)))
(minimize (+

(ite ab_0 1 0)
(ite ab_1 1 0)
(ite ab_2 1 0)
(ite ab_3 1 0)
(ite ab_4 1 0)))

(check-sat)

In this representation the health states of all assignments as well as the

conditional statement are represented using the ab i variables. �

In order to compute diagnoses, we have to specify a test case. For our

model, we define values of input and the output variables. Input variables

v use the constraint variable with index zero, whereas output variables use

the largest index of each variable. The resulting diagnosis problem is that

given a constraint model L(Π) of a program Π having statements 0, . . . , n,

and a failing test case TC, search for a set of statements that explain the

misbehavior. In model-based reasoning a diagnosis is usually defined as

follows:

Definition 14.1. Given a constraint model L(Π) of a program Π, a set of

statements S = {0, . . . , n}, and a failing test case TC. A set ∆ ⊆ S is a

diagnosis if and only if L(Π) ∪ TC ∪ {abi = true|i ∈ ∆} ∪ {abi = false|i ∈
S\∆} is consistent, i.e., satisfiable.

Using this definition fault localization becomes a search problem where

we are interested in identifying a subset of statements that when assumed

to behave incorrectly, render the model consistent with the given failing test

case. For more information regarding diagnosis algorithms and their run-

time performance we refer the interested reader to Nica and colleagues [39].

Example 14.3. Making use of the constraint representation given in Ex-

ample 14.2 for method foo, the test case TC = {x0 = 1, s0 = 0, a3 =

1, c3 = 4} (which has to be translated to fit the SMT-LIB format), and

the SMT solver Z3, we obtain only one diagnosis of cardinality one, i.e.,

∆1 = {6}. There is another diagnosis stating that the condition in the

if-then-else statement is wrong together with the statements in lines 8 and

9. However, usually someone is only interested in obtaining diagnoses that

are the smallest. �

June 2, 2021 15:45 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-14 page 413

A.I. Methods for Software Debugging 413

Model-based reasoning has been used for diagnosis in various program-

ming languages, including VHLD [40], Verilog [41], Java [42, 43], Logic

programs [34, 35], knowledge bases [44], functional languages [45], and

spreadsheets [46,47]. Depending on the underlying programming language

the models used for diagnosis vary. We may consider different program

fragments as diagnosis components, where we assign health state variables.

We may also consider the different programming language paradigms. For

sequential programming languages, the modeling steps given in this book

chapter are appropriate. For concurrent languages, we may not rely on the

SSA form. For functional languages, we need to consider the way func-

tions are called and how they return their results. For every programming

language, the modeling has to be adapted to fit the underlying seman-

tics. However, once fixed we can implement a compiler that converts every

program into its corresponding model.

In addition to differences originating from the underlying programming

languages and their paradigms, different models with varying characteristics

can be created for a program. The model presented here captures the se-

mantics in term of computing values of variables directly. However, we may

also make use of abstractions like in [48] for handling loops without the need

for unrolling. Moreover, we may only capture control or data dependencies

for diagnosis (see [40]). Wotawa [49] showed that such simple dependency

models provide the same diagnostic accuracy as static slicing [24]. In order

to improve upon these results while still using only dependencies a model

may consider using improved slicing methods such as dynamic slicing [50]

to capture more precise dependencies.

14.4.2 Spectrum-based fault localization

SBFL is an automated debugging technique implementing the following

underlying idea. Instead of making use of formal models derived from the

source code, SBFL solely relies on differences in program execution traces

induced by a set of test cases. An execution trace for a given test case is

a set of statements that are executed when running the program using the

input values specified in the test case. The set of statements in a trace

are sometimes called coverage. Execution traces for passing and failing

test cases affect the likelihood of statements being faulty. For example,

consider the case where a particular statement is only executed in failing

runs but never in passing ones. We would immediately conclude that such

a statement is very likely to be a root cause. Consider another statement

June 2, 2021 15:45 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-14 page 414

414 Artificial Intelligence Methods for Software Engineering

which is never executed in failing runs. Such a statement can hardly be the

root cause of a test failure. Unfortunately, there are many statements that

are executed in passing and in failing runs; hence, we need a way to ascribe

a likelihood of being faulty to these statements. In SBFL, a suspiciousness

index quantifies the likelihood of a statement being a root cause.

Jones and Harrold [51] were the first to develop the foundations underly-

ing SBFL. Using their Tarantula system, which was mainly working at the

module level rather than the level of individual statements, programmers

were able to visualize the suspiciousness of certain program fragments by

mapping suspiciousness index information to a color space. Later Janssen

and colleagues [52] described another SBFL system based on a different

computation of suspiciousness at the level of statements. In all these cases

it is necessary to have a set of test cases where at least one test case is a fail-

ing one, and the ability to extract execution traces or coverage. It is worth

noting that coverage information, i.e., information whether a statement is

executed in a certain run, is sufficient for computing the suspiciousness

index.

In Fig. 14.4 we summarize the overall SBFL process starting with a

program Π where we apply annotations allowing us to obtain execution

traces leading to a modified program Π′. The annotation basically are

program fragments that are executed when a corresponding statement is

executed and storing this information. Program Π′ is executed on every

given test case and the trace information is extracted. This information is

Π Annotation Π′

Test cases

√ ×Execution

Ranking of statements 
accordingly to their bug
likelihood

SBFL

Fig. 14.4: The SBFL flow chart.

June 2, 2021 15:45 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-14 page 415

A.I. Methods for Software Debugging 415

used to come up with a suspiciousness ranking of statements of the original

program Π that is returned to the user for inspection. In the following,

we outline the computation of the suspiciousness index and illustrate the

foundations of SBFL.

Given a set of test cases TS, we first log all statements of a program

that are executed in a certain test case run. We obtain a matrix called ob-

servation matrix where each row represents a statement i and each column

a test case j. An entry oij in the observation matrix O is 1 if statement i

is executed when running test case j, and 0 otherwise. In addition to the

observation matrix we consider an error vector E. An entry ej of E is 1 if

test case j is a failing test case, i.e., the program output differs from the

expected one, and 0 if test case j is a passing test case.

Example 14.4. In Fig. 14.5 we depict whether a certain test case stated

in Table 14.1 executes a statement in method foo from Fig. 14.2. For

example, test case 1 (TC1) is a passing test case where statements 2, 3, 4,

5, and 6 are executed. Note that we do not include non-executable code

fragments (lines 1, 7, 10, 11).

Test cases
1 2 3 4 5 6

1. public void foo (float x, int s) {
2. float a; × × × × × ×
3. float c; × × × × × ×
4. if (s == 0) { × × × × × ×
5. a = x * x; × × ×
6. c = 3.0 * x; // Bug! × × ×
7. } else {
8. a = 3.14 * x * x; × × ×
9. c = 3.14 * 2.0 * x; × × ×
10. }
11. }

PASS × × × ×

Fig. 14.5: The execution traces for the test cases TC1, . . . , TC6 of method

foo.

June 2, 2021 15:45 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-14 page 416

416 Artificial Intelligence Methods for Software Engineering

The observation matrix for foo is:

Ofoo =

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 0 1 0 1 0

1 0 1 0 1 0

0 1 0 1 0 1

0 1 0 1 0 1

where the 1st row represents statement 2 and so forth. Given the informa-

tion of which test case is a passing and which is a failing test case, we are

able to obtain the error vector for foo as well:

Efoo =
(

0 0 1 0 1 0
)

Next, we consider how to obtain a ranking of statements considering

their likelihood to be faulty. �

For computing a suspiciousness index for each statement from which

we obtain a ranking, we make use of the observation matrix O and the

error vector e. We first, compute values akl for each statement i where the

computed value indicates whether the given statement is executed or not

in a passing/failing test case. akl is defined as follows:

akl(i) = |{j|j ∈ TS ∧ oij = k ∧ ej = l}|

The meaning of the indicators akl is as follows: a11 is the number of

failing test cases where the statement was executed, a10 is the number of

passing test cases where the statement was executed, a01 is the number

of failing test cases where the statement was not executed, and finally a00
is the number of passing test cases where the statement was not executed.

The values akl(i) can now be used to compute the suspiciousness index s(i)

for every statement i, that is, s(i) = f(a11(i), a10(i), a01(i), a00(i)). It is

worth noting that there are many such functions f(.) defined in literature

including the following:

so(i) =
a11√

(a11 + a01) · (a11 + a10)
(Ochiai [53])

s(i) =
a11

a11 + a01 + a10
(Jaccard [54])

st(i) =
a11

a11+a01

a11

a11+a01
+ a10

a10+a00

(Tarantula [51])

June 2, 2021 15:45 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-14 page 417

A.I. Methods for Software Debugging 417

ss(i) =
a11

a11 + a10
(State bug isolation [55])

For all these definitions the case of a zero denominator is handled as-

suming a suspiciousness index (also called similarity coefficient) to be zero.

The rationale behind these coefficients is to try score statements based on

whether or not they were executed and if they were executed in more failing

than passing test runs.

Example 14.5. When using the Ochiai coefficient, we are able to provide a

ranking for the statements in program foo. We first compute the values for

akl(i) for each statement i. Afterwards, we compute the suspicious index so
for the statements, and rank the statements accordingly. Statements with

the same index share the same rank. Statements with the highest index so
are assigned to rank 1. The ones with the next lower index to rank 2, and

so forth. In Fig. 14.6 we summarize the values and rank for each statement.

�

a11 a10 a01 a00 so R

1. public void foo (float x, int s) {
2. float a; 2 4 0 0 0.57 2
3. float c; 2 4 0 0 0.57 2
4. if (s == 0) { 2 4 0 0 0.57 2
5. a = x * x; 2 1 0 3 0.81 1
6. c = 3.0 * x; // Bug! 2 1 0 3 0.81 1
7. } else {
8. a = 3.14 * x * x; 0 1 2 3 0.0 3
9. c = 3.14 * 2.0 * x; 0 1 2 3 0.0 3
10. }
11. }

Fig. 14.6: The similarity coefficients and rankings for method foo.

Besides the original SBFL approach several extensions and combina-

tions have been discussed in the scientific literature. This includes the

combination of slicing and SBFL (see for example, [56] and [57]) but also

the combination of SBFL and model-based diagnosis (see [58]). Abreu and

colleagues [59] introduced Barinel, a hybrid algorithm for multiple-fault

diagnosis where the suspiciousness indexes and probabilistic component

models were combined within a Bayesian reasoning framework. There are

also many papers including [53] and [60] that report on the comparison of

June 2, 2021 15:45 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-14 page 418

418 Artificial Intelligence Methods for Software Engineering

different definitions of suspiciousness indices and similarity coefficients. It

is also worth noting that the quality of the obtained ranking depends on

the structure of the program and the available test cases.

14.4.3 Machine-learning based fault localization

Machine learning methods are attractive for software analysis as they can

produce models and predictions based on data and may require little human

interaction. In the software debugging context, data can often be obtained

automatically, by analyzing the program’s source code, instrumentation and

logging of the program execution and outcomes at runtime, mining version

histories and associated bug report data. This data contains potentially

useful signals that can be identified by machine learning and data mining

methods and used for improving fault localization and debugging activities

in general.

The field of machine learning for debugging is still relatively young com-

pared to the established techniques described in previous sections. Many

techniques have been proposed for assisting fault localization using a vari-

ety of learning algorithms and input data. Some approaches aim to directly

predict the location of a bug from data, for example from test coverage data,

whereas others aim to augment existing debugging techniques with addi-

tional inputs or process their outputs to better pinpoint the true root cause

of a failure.

14.4.3.1 Learning for fault localization

Machine learning techniques for fault localization generally restate the de-

bugging problem as a prediction task, where a model learns to predict either

fault indicators or a suspiciousness ranking for program elements based on

the input data. Input data can include coverage information, similarity as-

sessments computed using other techniques, code complexity metrics, and

other features related to the program under consideration. Wong and col-

leagues [27] discussed some of the early works on machine learning and data

mining for fault localization.

Wong and colleagues [61, 62] proposed deep learning based models for

learning the relationship between the test coverage data and the corre-

sponding test outcome. The learned models were excited separately with

coverage vectors for each individual statement in the program to obtain

predicted test outcomes. The model’s prediction can be interpreted as the

likelihood that the statement is faulty. Zhang and colleagues [63] followed

June 2, 2021 15:45 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-14 page 419

A.I. Methods for Software Debugging 419

the same idea and use a deep neural net to quantify the suspiciousness of

each statement. In addition, backward slicing from a failed test output

was applied to focus the ranking on potentially faulty statements. Dutta

and colleagues [64] presented a hierarchical approach to fault localization

where the initial root cause was identified at the function level using a deep

neural net trained on function-level coverage data and function complexity

metrics. A separate neural net was used to identify likely faulty statements

within the function in a subsequent stage.

Zhang and colleagues [65] augmented SBFL with ideas from PageRank.

In their approach, the spectra obtained from the test suite were recomputed

using the PageRank algorithm to reflect the different contributions of each

test. The resulting augmented spectra were aggregated at different levels

of granularity and could yield better fault localization than the original

spectra.

Dutta and colleagues [66] proposed to learn an ensemble classifier ca-

pable of identifying potentially faulty statements. The ensemble consisted

of two SBFL methods and three neural net classifiers, and the scores were

combined using a weighted sum approach.

Several probabilistic approaches for learning debugging models have

been proposed. Zhang and Zhang [67] employed statistical relational learn-

ing to infer a joint model of fault indicators and coverage data, program

structure, and prior fault information. The joint inference mechanism had

the potential to outperform traditional statistical fault localization which

considers likelihood of statements being fault independently. Thaller and

colleagues [68] learned a probabilistic model for localizing incorrect program

elements that may be introduced as the program is modified. Their proba-

bilistic model was structured as a network that reflected the dependencies,

computations, and data flows in a program. The model was trained using

traces from executions of the correct version of the program to yield joint

distributions of related variables. Deviations in the distributions between

the trained model and the observed distributions of a faulty program were

used to rank candidate explanations. Nath and Domingos [69] proposed

to use the Tractable Probabilistic Models framework to learn models that

reflected program dependency structures from a corpus of faulty programs.

The approach had the potential to outperform simpler SBFL approaches

due to its ability to account for dependencies between program elements.

Fault prediction methods that aim to quantify how likely it is that a

program part may be at fault have been proposed to improve software di-

agnosis. The approach presented by Elmishali and colleagues [70] learned

June 2, 2021 15:45 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-14 page 420

420 Artificial Intelligence Methods for Software Engineering

to predict faultiness of each program element from features such as code

complexity metrics and program change history. Software diagnosis was

performed using a modification of the Barinel approach [59], where the con-

fidence score obtained from this binary classification model subsequently re-

placed the uniform prior probability of a statement being faulty. Elmishali

and colleagues [14] followed the same principle and presented an iterated

debugging cycle where test generation, fault diagnosis, and fault predic-

tion were iterated. In this model, the test generation and fault diagnosis

tasks were guided by a fault predictor that is trained on the bug reports

and change history of the program under consideration. The method pri-

oritized the candidate root causes effectively, while it would need to be

augmented with other techniques to effectively discard incorrect candidate

explanations.

The aforementioned works predominantly focus on debugging within a

single process. However, complementary techniques exist that seek to diag-

nose bugs manifested as problems in inter-process communication. Zaman

and colleagues [71] presented an approach for isolating inter-process failure

inducing system call sequences from operating system audit logs. Their ap-

proach rested on extracting segments of related system calls from the logs,

applying principal component analysis, and detecting potential anomalies

in the low-dimensional representation. Functions in application programs

related to the abnormal sequences were isolated through an off-line pro-

filing process, where sequences of system calls were associated with the

application functions issuing them.

Zhou and colleagues [72] developed an approach for fault prediction in

micro service orchestrations. Their approach used multiple classification

models that were trained to identify faulty services and the type of fault

that may have occurred in a service. The models were trained on a corpus of

normal and abnormal test case executions, where the abnormal cases were

created by fault injection. At runtime, the predictors continuously moni-

tored the execution and predicted what fault (if any) may have occurred

and in which service the fault may have occurred.

Gu and colleagues [73] presented a classification model for assessing

if the root cause of a crashing test run resided in the stack trace at the

time of failure. The classifier received as input the features extracted from

selected stack frames and their associated functions and computes a binary

outcome using a decision tree method. Although this approach could not

directly pinpoint root causes in general, it has the potential to help focus

the debugging activities on the relevant program parts.

June 2, 2021 15:45 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-14 page 421

A.I. Methods for Software Debugging 421

14.4.3.2 Learning for multiple-fault localization

Debugging tools making use of the parsimony heuristic to eliminate unlikely

root causes may be unsuitable for programs that bear multiple faults, as

the assumption that passing test cases exonerate program statements may

not be appropriate. Zakari and colleagues [74] reviewed debugging tech-

niques related to multiple fault localization. Further selected works related

to machine learning for multiple fault localization are summarized in this

section.

Clustering techniques are commonly used to deal with multiple faults

in a program [75]. Huang and colleagues [76] assessed the effectiveness of

multiple clustering methods on fault localization and found that k-means

clustering may outperform hierarchical clustering methods for fault local-

ization. Briand and colleagues [77] trained a decision tree to partition test

suites into clusters of tests that were likely to fail due to the same root cause.

Their method used test inputs and outputs to partition the test suite. A

separate fault localization method akin to Tarantula [78] was then applied

to each partition to rank each program statement, and rankings were con-

solidated into an overall ranking for inspection. Gao and Wong [79] used a

k-medoids clustering technique and a tailored distance metric to group test

cases that may have been affected by the same faults, and derived rank-

ings of candidate bug explanations from the failing test executions in each

cluster and all successful test executions. The clusters could be examined

in parallel to isolate different bugs at the same time.

Zheng and colleagues [80] adopted an evolutionary computation ap-

proach to finding multiple faults in programs. In their approach, a genetic

algorithm operated on chromosomes that indicated which statements are

considered to be faulty. A fitness function inspired by well-known suspi-

ciousness metrics used in SBFL guided the evolutionary process to retain

well performing chromosomes. According to the authors, this method out-

performed SBFL if multiple faults were present.

14.4.3.3 Learning to Rank

Fault localization techniques that are based on the learning to rank prin-

ciple [81] directly compute a ranked list of potentially faulty statements

without first identifying a set of faulty program elements. In this approach,

top-ranked elements are considered to be faulty whereas elements ranked

much lower are considered to be less likely explanations of the observed

failures. Machine learning techniques play an essential role in learning the

ranking function underpinning this technique.

June 2, 2021 15:45 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-14 page 422

422 Artificial Intelligence Methods for Software Engineering

Wang and colleagues [82] built on the observation that no single metric

outperforms all others in SBFL. An evolutionary search process synthesized

composite metrics that minimize average rank of faults in the training cor-

pus. Xuan and Monperrus [83] followed a similar idea where weights asso-

ciated with each of a set of base similarity metrics were learned from pairs

of faulty and correct statements. Sohn and Yoo [84] extended SBFL with

code and change metrics, applied evolutionary programming methods to

develop novel ranking formulas, and used support vector machines to learn

pairwise ranking models. The authors showed that their extended models

could outperform the underlying SBFL approaches.

Le and colleagues [85] proposed a multi-stage approach to computing

rankings, which rested on clustering, invariant learning, and ranking model

learning. First, functions were clustered by the passing test cases they

participated in. For each cluster, invariants were learned three times us-

ing the Daikon [20] tool: for all runs, only passing runs, and only failing

runs. The differences between the invariants learned for each group were

supplied as features in addition to the suspiciousness scores calculated by

different SBFL metrics sourced from the literature. A support vector ma-

chine (SVM) was then trained to rank faulty program elements higher than

correct ones. Li and Zhang [86] combined mutation-based fault localization

and SBFL techniques to determine the impact of mutations on test out-

comes and applied a SVM model to learn rankings. Li and colleagues [87]

relied on multiple neuronal nets in a deep learning framework to infer ef-

fective latent features and learn ranking models. This approach overcame

the limitation of traditional learning to rank methods that may face diffi-

culties scaling to the large number of input features arising from combining

SBFL-based features, mutation-based features, code complexity features,

and textual features.

14.4.3.4 Learning to prioritize issues

Developers of popular software systems can receive a large number of bug

reports each day. As the number of reported bugs grow, identifying which

reports should be investigated first can become challenging, and developers

can easily be overwhelmed by the number of reports received. Artificial in-

telligence techniques can help analyze and prioritize these reports to reduce

the burden on developers. Uddin and colleagues [88] discussed relevant bug

prioritization literature and systems. Classification models including the

Naive Bayes method, SVM, and clustering methods have been prevalent in

June 2, 2021 15:45 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-14 page 423

A.I. Methods for Software Debugging 423

the analysis of natural language based bug report repositories. Tian and col-

leagues [89] improved classification significantly by introducing additional

factors, including temporal, textual, author, related reports, severity, and

software product information into the classification model.

Kim and colleagues [90] found that a small number of crashes could

account for a large number of bug reports. To detect, at the time when a

crash report is first received, if the crash is likely to attract a large number

of reports in the future, a predictor using features extracted from code and

the bug report was learned from bug reports received in previous releases

of the same software. The results indicated that the top crashes could be

identified correctly in more than 75% of cases.

Wang and Lo [91] addressed the problem of selecting the source code

files that may contain a bug based on the contents of bug reports. Their

technique integrated version history, similar reports, and the report’s struc-

ture into an ensemble predicting a suspiciousness score for each file. The

combined approach was shown to outperform the individual methods by a

considerable margin.

Ashok and colleagues [92] considered the related problem of retrieving

bug reports that may be related to an observed failure. Contextual data

about the failure was used to retrieve relevant document which were then

linked with version control and bug repositories. Software repository mining

techniques and PageRank [93] were used to establish links among the doc-

ument and repositories and recommend relevant source code, documents,

and people to the user.

14.4.3.5 Method Selection

Choosing an appropriate debugging technique for a given debugging sce-

nario among the many proposed fault localization approaches can be a

daunting task. Le and Lo [94] addressed this problem by attempting to

predict the effectiveness of several debugging tools in a given debugging

setting. Characteristic features of program traces and properties of the

suspiciousness scores computed by each debugging tool were input to a

discriminative model that determined if a true root cause would likely be

among the top 10 ranked fault candidates. According to the authors, the

approach exhibited good recall but suffered from low precision.

Zou and colleagues [95] investigated the effectiveness and efficiency of

a range of fault localization techniques on real faults. The results revealed

that although individual techniques were effective on the benchmark cases,

June 2, 2021 15:45 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-14 page 424

424 Artificial Intelligence Methods for Software Engineering

combinations of techniques significantly outperformed any individual tech-

nique.

14.4.4 Automated oracles

Debugging techniques, whether machine learning based or using traditional

algorithmic approaches, rely on labeled data for their inferences. For ex-

ample, model-based and spectrum-based debugging both rely on a test

oracle that determines if a program state or test run is correct. Acquiring

this information can be expensive in terms of human input and computing

resources if many tests are run. Gao and colleagues [96] proposed an ap-

proach to automating the test oracle using a predictive model, where similar

tests were clustered and the outcome of unlabeled tests was predicted by

transferring the labels from known test outcomes in the same cluster. The

predicted test outcomes were subsequently used as input to fault localiza-

tion methods. Using the predicted outcomes for bug localization showed

superior results than using only the tests where verified known outcomes

were available.

14.4.5 Summary of Techniques

The characteristics of the machine-learning based methods discussed in this

chapter are summarized in Table 14.2. Column Input Data lists the data re-

quired to apply each method once it has been trained on the training data.

Many approaches require either test coverage information in the form of

an execution spectrum, or information extracted from the failing execution

at runtime. Fault localization methods that employ other techniques as

prerequisites also use suspiciousness scores and code metrics computed by

these methods. Column Output lists the result computed by each method.

Here, fault indicator vectors, which indicate which program elements may

be the root cause of a test failure, and suspiciousness scores, which indicate

how likely it is that a program element is a root cause, are common among

the considered approaches. Column Training Data lists the training data

required for each method. Many methods rely on a test suite and the asso-

ciated test outcomes; some methods require information about known bugs

that cause the test failures or information about change history and bug

reports collected for the program under consideration or similar programs.

Frequent inputs are spectra, that is, coverage information about each test

execution, test outcomes, that is, information if each test passed or failed,

and known bugs, that is, the location of the root cause(s) of the failing test

Ju
n

e
2

,
2

0
2

1
1

5
:4

5
w

s-b
o

o
k

9
x6

A
rtifi

cia
l

In
tellig

en
ce

M
eth

o
d

s
for

S
o

ftw
are

E
n

g
in

eerin
g

1
2

3
6

0
-1

4
p

a
g

e
4

2
5

A
.I.

M
eth

od
s

fo
r

S
o

ftw
a

re
D

ebu
ggin

g
4
2
5

Table 14.2: Characteristics of debugging methods.

Publication Input Data Training Data Output Learning Method

Fault Localization

[61] spectrum spectra, test outcomes suspiciousness scores Deep Learning
[62] spectrum spectra, test outcomes suspiciousness scores Deep Learning

[63] spectrum spectra, test outcomes suspiciousness scores Deep Learning + Slicing
[64] spectrum spectra, test outcomes fault indicator Deep Learning +

hierarchical abstraction

[65] spectrum spectra, test outcomes fault indicator SBFL+PageRank
[66] spectrum spectra, test outcomes,

suspiciousness scores
suspiciousness scores Ensemble classifier

[67] spectrum spectra, test outcomes,
known bugs

fault indicator Stat.rel.learning

[68] spectrum spectra, test outcomes,

program states

fault indicator Prob. Network model

[69] spectrum faulty source code fault indicator Probabilistic model
[70] spectrum metrics (code &

process),
known bugs

fault indicator SFL+Bayes+Classification

[14] spectrum metrics (code &

process),
known bugs

suspiciousness scores Classification+SBFL+Bayes

[71] audit log at

point of crash

audit logs failure inducing call

sequences

Dimensionality

reduction
[72] execution trace failing execution

traces,

injected fault

fault indicator Classification

[73] stack backtrace stack traces,

known bugs

fault indicator Classification

Ju
n

e
2

,
2

0
2

1
1

5
:4

5
w

s-b
o

o
k

9
x6

A
rtifi

cia
l

In
tellig

en
ce

M
eth

o
d

s
for

S
o

ftw
are

E
n

g
in

eerin
g

1
2

3
6

0
-1

4
p

a
g

e
4

2
6

4
2
6

A
rtifi

cia
l

In
telligen

ce
M

eth
od

s
fo

r
S

o
ftw

a
re

E
n

gin
eerin

g

Table 14.2: Characteristics of debugging methods (cont.)

Publication Input Data Training Data Output Learning Method

Fault Localization for Multiple Faults

[75] spectrum spectra, test outcomes suspiciousness scores Clustering + SBFL
[76] spectrum spectra, test outcomes suspiciousness scores Clustering + SBFL

[77] test suite test inputs, test
outcomes

suspiciousness scores Decision Tree + SBFL

[79] spectrum spectra, test outcomes suspiciousness scores Clustering
[80] spectrum spectra, test outcomes fault indicator Evolutionary Algorithm
Learning to Rank

[82] spectrum spectra, known bugs,

suspiciousness scores

suspiciousness scores Evolutionary Algorithm

[83] spectrum,

suspiciousness scores

spectra, known bugs,

suspiciousness scores

suspiciousness scores RankBoost

[84] execution trace execution traces,
known bugs,

code change metrics

suspiciousness scores Evolutionary Algorithm
+ Classification

[85] set of faulty programs spectra,
test outcomes,

change history

suspiciousness scores Clustering,
Invariant learning,

SBFL
[86] spectra of mutants,

test outcomes,

suspiciousness scores

spectra of mutants,

test outcomes,
suspiciousness scores

suspiciousness scores SBFL + Mutation +

Classification

[87] spectra of mutants,

test outcomes,
code metrics,
suspiciousness scores

spectra of mutants,

code metrics,
test outcomes,
suspiciousness scores

suspiciousness scores Mutation + Deep

Learning

Ju
n

e
2

,
2

0
2

1
1

5
:4

5
w

s-b
o

o
k

9
x6

A
rtifi

cia
l

In
tellig

en
ce

M
eth

o
d

s
for

S
o

ftw
are

E
n

g
in

eerin
g

1
2

3
6

0
-1

4
p

a
g

e
4

2
7

A
.I.

M
eth

od
s

fo
r

S
o

ftw
a

re
D

ebu
ggin

g
4
2
7

Table 14.2: Characteristics of debugging methods (cont.)

Publication Input Data Training Data Output Learning Method

Bug Repository Analysis
[89] reported issue issues, issue priority issue prioritization Classification

[90] reported issue issues, attention count future attention Classification

[91] reported issue issue, source code,
change history

files containing bug Classification

[92] failing execution

data

issues, bug reports,

change history

relevant bug reports PageRank

Method Selection

[94] spectrum,

scores by
debugging tools

spectra, scores by

debugging tools

recommended

debugging tool

Regression

[72] scores by

debugging tools

spectra, suspiciousness

scores

recommended

debugging tool

Classification

Automated Oracles

[96] spectrum spectra, test outcomes test outcome,
suspiciousness scores

Clustering + SBFL

June 2, 2021 15:45 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-14 page 428

428 Artificial Intelligence Methods for Software Engineering

executions. Some methods utilize suspiciousness scores calculated by other

methods, such as SBFL, and code metrics that aim to quantify various no-

tions of complexity derived from the source code. Column Learning Method

lists the inference algorithms used by each method. This aspect exhibits

the most diversity among the considered approaches. A variety of learning

algorithms are employed, including Classification, Clustering, Deep Learn-

ing, and combinations of these algorithms with other techniques, such as

SBFL, mutation testing, hierarchical abstraction, and probabilistic infer-

ence methods.

14.5 Outlook

This chapter presented an introduction to the field of automated debugging

and related artificial intelligence techniques for fault localization. The fault

localization techniques based on source code analysis are among the mature

techniques in the field, such that a variety of algorithms have demonstrated

an effective reduction in effort required to find bugs in programs. There is

opportunity for further research to utilize complementary information hid-

den in source code repositories, bug trackers, and other software engineering

resources to further improve the capabilities of automated debugging sys-

tems. Artificial intelligence methods can help unlock the vast amount of

human contributions and expertise hidden away in unstructured text dis-

cussions and uncover hidden patterns about design decisions, development

processes, preferences, and even social interactions among developers and

users to inform bug finding and resolution. Moreover, bringing together the

achievements in automated debugging and automated program repair may

foster advances beneficial to both research communities.

References

[1] A. Zeller and R. Hildebrandt, Simplifying and isolating failure-inducing in-
put, IEEE Transactions on Software Engineering 28, 2, pp. 183–200 (2002),
doi:10.1109/32.988498.

[2] G. Rothermel, M. Harrold, J. Ostrin and C. Hong, An empirical study of
the effects of minimization on the fault detection capabilities of test suites,
in Proceedings. International Conference on Software Maintenance (Cat.
No. 98CB36272), pp. 34–43 (1998), doi:10.1109/ICSM.1998.738487.

[3] S. Elbaum, A. Malishevsky and G. Rothermel, Test case prioritization: A
family of empirical studies, IEEE Transactions on Software Engineering 28,
2, pp. 159–182 (2002), doi:10.1109/32.988497.

June 2, 2021 15:45 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-14 page 429

A.I. Methods for Software Debugging 429

[4] P. McMinn, Search-based software test data generation: A survey, Software
Testing, Verification and Reliability 14, 2, pp. 105–156 (2004), doi:10.1002/
stvr.294.

[5] S. Yoo and M. Harman, Regression testing minimization, selection and pri-
oritization: A survey, Software Testing, Verification & Reliability 22, 2,
pp. 67–120 (2012), doi:10.1002/stv.430.

[6] H. H. Kagdi, M. L. Collard and J. I. Maletic, A survey and taxonomy of
approaches for mining software repositories in the context of software evo-
lution, J. Softw. Maintenance Res. Pract. 19, 2, pp. 77–131 (2007), doi:
10.1002/smr.344.

[7] O. Vandecruys, D. Martens, B. Baesens, C. Mues, M. D. Backer and R. Hae-
sen, Mining software repositories for comprehensible software fault predic-
tion models, J. Syst. Softw. 81, 5, pp. 823–839 (2008), doi:10.1016/j.jss.
2007.07.034.

[8] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach, M. Carbin,
C. Pacheco, F. Sherwood, S. Sidiroglou, G. Sullivan, W.-F. Wong, Y. Zibin,
M. D. Ernst and M. Rinard, Automatically patching errors in deployed
software, in Proceedings of the ACM SIGOPS 22nd Symposium on Op-
erating Systems Principles, SOSP ’09. ACM, Big Sky, Montana, USA,
ISBN 978-1-60558-752-3, pp. 87–102 (2009), ISBN 978-1-60558-752-3, doi:
10.1145/1629575.1629585.

[9] X. B. D. Le, D. Lo and C. L. Goues, History Driven Program Repair, in 2016
IEEE 23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), Vol. 1, pp. 213–224 (2016), doi:10.1109/SANER.
2016.76.

[10] M. Monperrus, Automatic Software Repair: A Bibliography, ACM Comput-
ing Surveys 51, 1, pp. 17:1–17:24 (2018), doi:10.1145/3105906.

[11] L. Gazzola, D. Micucci and L. Mariani, Automatic Software Repair: A Sur-
vey, IEEE Transactions on Software Engineering 45, 1, pp. 34–67 (2019),
doi:10.1109/TSE.2017.2755013.

[12] C. Nie and H. Leung, A survey of combinatorial testing, ACM Computing
Surveys 43, 2, pp. 11:1–11:29 (2011), doi:10.1145/1883612.1883618.

[13] J. Campos, Y. Ge, N. Albunian, G. Fraser, M. Eler and A. Arcuri, An
empirical evaluation of evolutionary algorithms for unit test suite generation,
Information and Software Technology 104, pp. 207–235 (2018), doi:10.1016/
j.infsof.2018.08.010.

[14] A. Elmishali, R. Stern and M. Kalech, DeBGUer: A Tool for Bug Prediction
and Diagnosis, Proceedings of the AAAI Conference on Artificial Intelligence
33, 01, pp. 9446–9451 (2019), doi:10.1609/aaai.v33i01.33019446.

[15] N. Ayewah, W. Pugh, D. Hovemeyer, J. D. Morgenthaler and J. Penix,
Using Static Analysis to Find Bugs, IEEE Software 25, 5, pp. 22–29 (2008),
doi:10.1109/MS.2008.130.

[16] T. Xie and J. Pei, MAPO: Mining API usages from open source reposito-
ries, in Proceedings of the 2006 International Workshop on Mining Software
Repositories, MSR ’06. ACM, Shanghai, China, ISBN 978-1-59593-397-3,
pp. 54–57 (2006), ISBN 978-1-59593-397-3, doi:10.1145/1137983.1137997.

June 2, 2021 15:45 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-14 page 430

430 Artificial Intelligence Methods for Software Engineering

[17] A. Wasylkowski, A. Zeller and C. Lindig, Detecting object usage anomalies,
in Proceedings of the the 6th Joint Meeting of the European Software En-
gineering Conference and the ACM SIGSOFT Symposium on The Founda-
tions of Software Engineering, ESEC-FSE ’07. ACM, Dubrovnik, Croatia,
ISBN 978-1-59593-811-4, pp. 35–44 (2007), ISBN 978-1-59593-811-4, doi:
10.1145/1287624.1287632.

[18] Q. U. Ain, W. H. Butt, M. W. Anwar, F. Azam and B. Maqbool, A Sys-
tematic Review on Code Clone Detection, IEEE Access 7, pp. 86121–86144
(2019), doi:10.1109/ACCESS.2019.2918202.

[19] M. D. Ernst, J. Cockrell, W. G. Griswold and D. Notkin, Dynamically dis-
covering likely program invariants to support program evolution, in Proceed-
ings of the 21st International Conference on Software Engineering, ICSE ’99.
ACM, Los Angeles, California, USA, ISBN 978-1-58113-074-4, pp. 213–224
(1999), ISBN 978-1-58113-074-4, doi:10.1145/302405.302467.

[20] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco,
M. S. Tschantz and C. Xiao, The Daikon system for dynamic detection
of likely invariants, Science of computer programming 69, 1–3, pp. 35–45
(2007).

[21] R. Abreu, A. González, P. Zoeteweij and A. J. C. van Gemund, Automatic
software fault localization using generic program invariants, in Proceedings of
the 2008 ACM Symposium on Applied Computing, SAC ’08. ACM, Fortaleza,
Ceara, Brazil, ISBN 978-1-59593-753-7, pp. 712–717 (2008), ISBN 978-1-
59593-753-7, doi:10.1145/1363686.1363855.

[22] S. M. Ghaffarian and H. R. Shahriari, Software Vulnerability Analysis and
Discovery Using Machine-Learning and Data-Mining Techniques: A Survey,
ACM Computing Surveys 50, 4, pp. 56:1–56:36 (2017), doi:10.1145/3092566.

[23] E. Shapiro, Algorithmic Program Debugging. MIT Press (1983).
[24] M. Weiser, Programmers use slices when debugging, Communication of the

ACM 25, 7, pp. 446–452 (1982).
[25] M. Weiser, Program slicing, IEEE Transactions on Software Engineering

10, 4, pp. 352–357 (1984).
[26] W. R. Murray, Automatic Program Debugging for Intelligent Tutoring Sys-

tems. Pitman Publishing (1988).
[27] W. Wong, R. Gao, Y. Li, R. Abreu and F. Wotawa, A survey on soft-

ware fault localization, IEEE Transactions on Software Engineering 42, 8,
pp. 707–740 (2016), doi:10.1109/TSE.2016.2521368.

[28] B. Livshits and T. Zimmermann, Dynamine: finding common error patterns
by mining software revision histories, ACM SIGSOFT Software Engineering
Notes 30, 5, pp. 296–305 (2005).

[29] T. Menzies, J. Greenwald and A. Frank, Data mining static code attributes
to learn defect predictors, IEEE Trans. Software Eng. 33, 1, pp. 2–13 (2007),
doi:10.1109/TSE.2007.256941.

[30] Z. Guan, X. Wang, W. Xin, J. Wang and L. Zhang, A survey on deep
learning-based source code defect analysis, in 2020 5th International Con-
ference on Computer and Communication Systems (ICCCS). IEEE, pp. 167–
171 (2020).

June 2, 2021 15:45 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-14 page 431

A.I. Methods for Software Debugging 431

[31] R. Davis, Diagnostic reasoning based on structure and behavior, Artificial
Intelligence 24, pp. 347–410 (1984).

[32] R. Reiter, A theory of diagnosis from first principles, Artificial Intelligence
32, 1, pp. 57–95 (1987).

[33] J. de Kleer and B. C. Williams, Diagnosing multiple faults, Artificial Intel-
ligence 32, 1, pp. 97–130 (1987).

[34] L. Console, G. Friedrich and D. T. Dupré, Model-based diagnosis meets error
diagnosis in logic programs, in International Joint Conference on Artificial
Intelligence (IJCAI). Chambery, pp. 1494–1499 (1993).

[35] G. W. Bond, Logic Programs for Consistency-Based Diagnosis, Ph.D. thesis,
Carleton University, Faculty of Engineering, Ottawa, Canada (1994).

[36] B. Liver, Modeling software systems for diagnosis, in International Workshop
on Principles of Diagnosis (DX). New Paltz, NY, pp. 179–184 (1994).

[37] F. Wotawa, M. Nica and I.-D. Moraru, Automated debugging based on a
constraint model of the program and a test case, The journal of logic and
algebraic programming 81, 4, pp. 390–407 (2012).

[38] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman and F. K. Zadeck, Effi-
ciently computing static single assignment form and the control dependence
graph, ACM Transactions on Programming Languages and Systems 13, 4,
pp. 451–490 (1991).

[39] I.-D. Nica, I. Pill, T. Quaritsch and F. Wotawa, The route to success -
a performance comparison of diagnosis algorithms, in International Joint
Conference on Artificial Intelligence. AAAI Press, ISBN 978-1-57735-633-2,
pp. 1039–1045 (2013), ISBN 978-1-57735-633-2.

[40] G. Friedrich, M. Stumptner and F. Wotawa, Model-based diagnosis of hard-
ware designs, Artificial Intelligence 111, 2, pp. 3–39 (1999).

[41] B. Peischl, N. Riaz and F. Wotawa, Automated debugging of VERILOG
designs, International Journal of Software Engineering and Knowledge En-
gineering 22, 05, pp. 695–723 (2012), doi:10.1142/S0218194012500209.

[42] C. Mateis, M. Stumptner and F. Wotawa, Modeling Java Programs for Di-
agnosis, in Proceedings of the European Conference on Artificial Intelligence
(ECAI). Berlin, Germany, pp. 171–175 (2000).

[43] W. Mayer, M. Stumptner, D. Wieland and F. Wotawa, Can ai help to
improve debugging substantially? debugging experiences with value-based
models, in Proceedings of the European Conference on Artificial Intelligence
(ECAI). IOS Press, Lyon, France, pp. 417–421 (2002).

[44] A. Felfernig, G. Friedrich, D. Jannach and M. Stumptner, Consistency-based
diagnosis of configuration knowledge bases, Artificial Intelligence 152, 2,
pp. 213–234 (2004).

[45] M. Stumptner and F. Wotawa, Debugging Functional Programs, in Interna-
tional Joint Conference on Artificial Intelligence (IJCAI). Stockholm, Swe-
den, pp. 1074–1079 (1999).

[46] D. Jannach and T. Schmitz, Model-based diagnosis of spreadsheet programs:
a constraint-based debugging approach, Automated Software Engineering,
pp. 1–40 (2014), doi:10.1007/s10515-014-0141-7.

[47] D. Jannach, T. Schmitz, B. Hofer and F. Wotawa, Avoiding, finding and

June 2, 2021 15:45 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-14 page 432

432 Artificial Intelligence Methods for Software Engineering

fixing spreadsheet errors: A survey of automated approaches for spreadsheet
QA, Journal of Systems and Software 94, pp. 129–150 (2014).

[48] W. Mayer and M. Stumptner, Debugging program loops using approximate
modeling, in Proceedings of the European Conference on Artificial Intelli-
gence (ECAI). Valencia, Spain, pp. 843–847 (2004).

[49] F. Wotawa, On the Relationship between Model-Based Debugging and Pro-
gram Slicing, Artificial Intelligence 135, 1–2, pp. 124–143 (2002).

[50] B. Korel and J. Laski, Dynamic Program Slicing, Information Processing
Letters 29, pp. 155–163 (1988).

[51] J. A. Jones and M. J. Harrold, Empirical evaluation of the tarantula auto-
matic fault-localization technique, in Proc. of the International Conference
on Automated Software Engineering (ASE). ACM, pp. 273–282 (2005).

[52] T. Janssen, R. Abreu and A. J. C. van Gemund, Zoltar: A toolset for au-
tomatic fault localization, in Proceedings of the International Conference on
Automated Software Engineering (ASE). IEEE Computer Society, pp. 662–
664 (2009).

[53] R. Abreu, P. Zoeteweij and A. J. c. Van Gemund, An evaluation of simi-
larity coefficients for software fault localization, in 2006 12th Pacific Rim
International Symposium on Dependable Computing, pp. 39–46 (2006).

[54] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox and E. Brewer, Pin-point:
Problem determination in large, dynamic internet services, in Proceedings
of the IEEE International Conference on Dependable Systems and Networks
(2002).

[55] B. Liblit, M. Naik, A. X. Zheng, A. Aiken and M. I. Jordan, Scalable statisti-
cal bug isolation, in V. Sarkar and M. W. Hall (eds.), Proceedings of the ACM
SIGPLAN 2005 Conference on Programming Language Design and Imple-
mentation, Chicago, IL, USA, June 12–15, 2005. ACM, pp. 15–26 (2005),
doi:10.1145/1065010.1065014.

[56] B. Hofer and F. Wotawa, Spectrum Enhanced Dynamic Slicing for better
Fault Localization, ECAI, Vol. 242. IOS Press, Netherlands, ISBN 978-1-
61499-097-0, pp. 420–425 (2012), ISBN 978-1-61499-097-0.

[57] W. Wen, B. Li, X. Sun and J. Li, Program slicing spectrum-based software
fault localization, in Proceedings of the International Conference on Soft-
ware Engineering and Knowledge Engineering (SEKE). Miami Beach, USA
(2011).

[58] R. Abreu, W. Mayer, M. Stumptner and A. J. C. van Gemund, Refining
spectrum-based fault localization rankings, in Proceedings of the 2009 ACM
Symposium on Applied Computing, SAC ’09. ACM, New York, NY, USA,
ISBN 9781605581668, pp. 409–414 (2009a), ISBN 9781605581668, doi:10.
1145/1529282.1529374.

[59] R. Abreu, P. Zoeteweij and A. J. van Gemund, Spectrum-Based Multiple
Fault Localization, in 2009 IEEE/ACM International Conference on Auto-
mated Software Engineering, pp. 88–99 (2009b), doi:10.1109/ASE.2009.25.

[60] B. Hofer, A. Perez, R. Abreu and F. Wotawa, On the empirical evaluation of
similarity coefficients for spreadsheets fault localization, Automated Software
Engineering 22 (2015), doi:10.1007/s10515-014-0145-3.

June 2, 2021 15:45 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-14 page 433

A.I. Methods for Software Debugging 433

[61] W. E. Wong and Y. Qi, Bp neural network-based effective fault localization,
International Journal of Software Engineering and Knowledge Engineering
19, 04, pp. 573–597 (2009), doi:10.1142/S021819400900426X.

[62] W. E. Wong, V. Debroy, R. Golden, X. Xu and B. Thuraisingham, Effective
Software Fault Localization Using an RBF Neural Network, IEEE Transac-
tions on Reliability 61, 1, pp. 149–169 (2012), doi:10.1109/TR.2011.2172031.

[63] Z. Zhang, Y. Lei, Q. Tan, X. Mao, P. Zeng and X. Chang, Deep Learning-
Based Fault Localization with Contextual Information, IEICE Transactions
on Information and Systems E100.D, 12, pp. 3027–3031 (2017), doi:10.
1587/transinf.2017EDL8143.

[64] A. Dutta, R. Manral, P. Mitra and R. Mall, Hierarchically Localizing Soft-
ware Faults Using DNN, IEEE Transactions on Reliability , pp. 1–26 (2019),
doi:10.1109/TR.2019.2956120.

[65] M. Zhang, Y. Li, X. Li, L. Chen, Y. Zhang, L. Zhang and S. Khur-
shid, An Empirical Study of Boosting Spectrum-based Fault Localization
via PageRank, IEEE Transactions on Software Engineering (2019), doi:
10.1109/TSE.2019.2911283.

[66] A. Dutta, N. Pant, P. Mitra and R. Mall, Effective Fault Localization using
an Ensemble Classifier, in 2019 International Conference on Quality, Relia-
bility, Risk, Maintenance, and Safety Engineering (QR2MSE), pp. 847–855
(2019), doi:10.1109/QR2MSE46217.2019.9021187.

[67] S. Zhang and C. Zhang, Software bug localization with markov logic, in
Companion Proceedings of the 36th International Conference on Software
Engineering, ICSE Companion 2014. ACM, Hyderabad, India, ISBN 978-
1-4503-2768-8, pp. 424–427 (2014), ISBN 978-1-4503-2768-8, doi:10.1145/
2591062.2591099.

[68] H. Thaller, L. Linsbauer, R. Ramler and A. Egyed, Probabilistic Software
Modeling: A Data-driven Paradigm for Software Analysis, arXiv:1912.07936
[cs] (2019).

[69] A. Nath and P. Domingos, Learning tractable probabilistic models for fault
localization, in Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence, AAAI’16. AAAI Press, Phoenix, Arizona, pp. 1294–1301 (2016).

[70] A. Elmishali, R. Stern and M. Kalech, Data-augmented software diagnosis,
in D. Schuurmans and M. P. Wellman (eds.), Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence, February 12–17, 2016, Phoenix,
Arizona, USA. AAAI Press, pp. 4003–4009 (2016).

[71] T. S. Zaman, X. Han and T. Yu, SCMiner: Localizing System-Level Concur-
rency Faults from Large System Call Traces, in 2019 34th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE), pp. 515–526
(2019), doi:10.1109/ASE.2019.00055.

[72] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, D. Liu, Q. Xiang and C. He,
Latent error prediction and fault localization for microservice applications by
learning from system trace logs, in Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/FSE 2019. ACM, Tallinn,
Estonia, ISBN 978-1-4503-5572-8, pp. 683–694 (2019), ISBN 978-1-4503-
5572-8, doi:10.1145/3338906.3338961.

June 2, 2021 15:45 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-14 page 434

434 Artificial Intelligence Methods for Software Engineering

[73] Y. Gu, J. Xuan, H. Zhang, L. Zhang, Q. Fan, X. Xie and T. Qian, Does
the fault reside in a stack trace? Assisting crash localization by predicting
crashing fault residence, Journal of Systems and Software 148, pp. 88–104
(2019), doi:10.1016/j.jss.2018.11.004.

[74] A. Zakari, S. P. Lee, R. Abreu, B. H. Ahmed and R. A. Rasheed, Mul-
tiple fault localization of software programs: A systematic literature re-
view, Information and Software Technology 124, p. 106312 (2020), doi:
10.1016/j.infsof.2020.106312.

[75] J. A. Jones, J. F. Bowring and M. J. Harrold, Debugging in Parallel, in Pro-
ceedings of the 2007 International Symposium on Software Testing and Anal-
ysis, ISSTA ’07. ACM, London, United Kingdom, ISBN 978-1-59593-734-6,
pp. 16–26 (2007), ISBN 978-1-59593-734-6, doi:10.1145/1273463.1273468.

[76] Y. Huang, J. Wu, Y. Feng, Z. Chen and Z. Zhao, An empirical study
on clustering for isolating bugs in fault localization, in 2013 IEEE Inter-
national Symposium on Software Reliability Engineering Workshops (ISS-
REW), pp. 138–143 (2013), doi:10.1109/ISSREW.2013.6688893.

[77] L. C. Briand, Y. Labiche and X. Liu, Using Machine Learning to Support
Debugging with Tarantula, in The 18th IEEE International Symposium on
Software Reliability (ISSRE ’07). IEEE, Trollhattan, Sweden, ISBN 978-
0-7695-3024-6, pp. 137–146 (2007), ISBN 978-0-7695-3024-6, doi:10.1109/
ISSRE.2007.31.

[78] J. Jones, M. Harrold and J. Stasko, Visualization of test information to assist
fault localization, in Proceedings of the 24th International Conference on
Software Engineering. ICSE 2002, pp. 467–477 (2002), doi:10.1145/581396.
581397.

[79] R. Gao and W. E. Wong, MSeer — An Advanced Technique for Locating
Multiple Bugs in Parallel, IEEE Transactions on Software Engineering 45,
3, pp. 301–318 (2019), doi:10.1109/TSE.2017.2776912.

[80] Y. Zheng, Z. Wang, X. Fan, X. Chen and Z. Yang, Localizing multiple soft-
ware faults based on evolution algorithm, Journal of Systems and Software
139, pp. 107–123 (2018), doi:10.1016/j.jss.2018.02.001.

[81] T.-Y. Liu, Learning to Rank for Information Retrieval. Springer (2011),
ISBN 978-3-642-14266-6, doi:10.1007/978-3-642-14267-3.

[82] S. Wang, D. Lo, L. Jiang, Lucia and H. C. Lau, Search-based fault local-
ization, in 2011 26th IEEE/ACM International Conference on Automated
Software Engineering (ASE 2011), pp. 556–559 (2011), doi:10.1109/ASE.
2011.6100124.

[83] J. Xuan and M. Monperrus, Learning to Combine Multiple Ranking Metrics
for Fault Localization, in IEEE International Conference on Software Main-
tenance and Evolution, pp. 191–200 (2014), doi:10.1109/ICSME.2014.41.

[84] J. Sohn and S. Yoo, FLUCCS: Using code and change metrics to improve
fault localization, in Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2017. ACM, Santa
Barbara, CA, USA, ISBN 978-1-4503-5076-1, pp. 273–283 (2017), ISBN 978-
1-4503-5076-1, doi:10.1145/3092703.3092717.

[85] T.-D. B. Le, D. Lo, C. Le Goues and L. Grunske, A learning-to-rank based

June 2, 2021 15:45 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-14 page 435

A.I. Methods for Software Debugging 435

fault localization approach using likely invariants, in Proceedings of the 25th
International Symposium on Software Testing and Analysis, ISSTA 2016.
ACM, Saarbrücken, Germany, ISBN 978-1-4503-4390-9, pp. 177–188 (2016),
ISBN 978-1-4503-4390-9, doi:10.1145/2931037.2931049.

[86] X. Li and L. Zhang, Transforming programs and tests in tandem for fault
localization, Proceedings of the ACM on Programming Languages 1, OOP-
SLA, pp. 92:1–92:30 (2017), doi:10.1145/3133916.

[87] X. Li, W. Li, Y. Zhang and L. Zhang, DeepFL: Integrating multiple fault
diagnosis dimensions for deep fault localization, in Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2019. ACM, Beijing, China, ISBN 978-1-4503-6224-5, pp. 169–180
(2019), ISBN 978-1-4503-6224-5, doi:10.1145/3293882.3330574.

[88] J. Uddin, R. Ghazali, M. M. Deris, R. Naseem and H. Shah, A survey on
bug prioritization, Artificial Intelligence Review 47, 2, pp. 145–180 (2017),
doi:10.1007/s10462-016-9478-6.

[89] Y. Tian, D. Lo, X. Xia and C. Sun, Automated prediction of bug report
priority using multi-factor analysis, Empirical Software Engineering 20, 5,
pp. 1354–1383 (2015), doi:10.1007/s10664-014-9331-y.

[90] D. Kim, X. Wang, S. Kim, A. Zeller, S. Cheung and S. Park, Which Crashes
Should I Fix First?: Predicting Top Crashes at an Early Stage to Priori-
tize Debugging Efforts, IEEE Transactions on Software Engineering 37, 3,
pp. 430–447 (2011), doi:10.1109/TSE.2011.20.

[91] S. Wang and D. Lo, Version history, similar report, and structure: Putting
them together for improved bug localization, in Proceedings of the 22nd
International Conference on Program Comprehension, ICPC 2014. ACM,
Hyderabad, India, ISBN 978-1-4503-2879-1, pp. 53–63 (2014), ISBN 978-1-
4503-2879-1, doi:10.1145/2597008.2597148.

[92] B. Ashok, J. Joy, H. Liang, S. K. Rajamani, G. Srinivasa and V. Vangala,
DebugAdvisor: A recommender system for debugging, in Proceedings of the
7th Joint Meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on The Foundations of Software Engineering,
ESEC/FSE ’09. ACM, Amsterdam, The Netherlands, ISBN 978-1-60558-
001-2, pp. 373–382 (2009), ISBN 978-1-60558-001-2, doi:10.1145/1595696.
1595766.

[93] L. Page, S. Brin, R. Motwani and T. Winograd, The PageRank Citation
Ranking: Bringing Order to the Web. (1999).

[94] T.-D. B. Le and D. Lo, Will fault localization work for these failures? an au-
tomated approach to predict effectiveness of fault localization tools, in 2013
IEEE International Conference on Software Maintenance. IEEE, pp. 310–
319 (2013).

[95] D. Zou, J. Liang, Y. Xiong, M. D. Ernst and L. Zhang, An Empirical Study
of Fault Localization Families and Their Combinations, IEEE Transactions
on Software Engineering, pp. 1–1 (2019), doi:10.1109/TSE.2019.2892102.

[96] R. Gao, W. E. Wong, Z. Chen and Y. Wang, Effective software fault local-
ization using predicted execution results, Software Quality Journal 25, 1,
pp. 131–169 (2017), doi:10.1007/s11219-015-9295-1.

B1948 Governing Asia

B1948_1-Aoki.indd 6B1948_1-Aoki.indd 6 9/22/2014 4:24:57 PM9/22/2014 4:24:57 PM

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank

June 1, 2021 9:21 ws-book9x6-index-9x6 Artificial Intelligence Methods for Software Engineering 12360-999-index page 437

© 2021 World Scientific Publishing Company
https://doi.org/10.1142/9789811239922 bmatter

Index

2COMM, 58, 76

accountability, 80
Action, 312
active learning, 171
AdaBoost, 149
additive attention, 115
agent, 87, 311
Agent-oriented programming, 87
Agile, 307
agnostic framework, 319
AI techniques, 29, 32
algebraic structures, 202
analytic hierarchy process (AHP), 33
arrays of formula cells, 377
Artificial Intelligence (AI), 8, 308
Artificial Neural Networks (ANN),

308
Attention Mechanism, 114
attentional encoder-decoder model,

115
automate testing, 244
Automated program repair, 404
Automatic software generation, 169
autonomous agent, 87
Average Percentage of Faults

Detected (APFD), 322

Background on Test Oracles
sectional Test Oracles Structure

Based on Test Cases

subsection, 272
sectional Test Oracles Structure

Based on Test Data
(Inputs)

subsection, 273
Behavioral Programming, 3
BLEU, 116
Boundary test data generation, 361
business artifacts, 56
Business Process Model and

Notation, 55
Business Processes, 55
business relevance, 33

Case Management Model and
Notation, 56

Choco, 39
CI, 141, 142, 146, 308
clustering, 378
clusters, 320
cocircuits, 332, 344
code integration, 316
code reviews, 141–143, 149
coding guidelines, 142
coding rules, 145
combinatorial testing tools, 326
comparative analysis and

envisionment, 333
Conceptual Integrity, 179
Conceptual-Disconnect, 177
Conflict, 389

437

https://doi.org/10.1142/9789811239922 bmatter

June 1, 2021 9:21 ws-book9x6-index-9x6 Artificial Intelligence Methods for Software Engineering 12360-999-index page 438

438 Artificial Intelligence Methods for Software Engineering

conflict detection, 29
conflict sets, 41
conflicts, 38
consensus, 39
constraint programming, 384
constraint reasoning, 29
constraint solvers, 39
constraints, 32, 40
content-based recommendation, 42
Continuous Integration, 141, 308
convex polytope, 344, 353
coordination, 54
cost reduction, 319
covector, 343
coverage, 43
critical systems, 169
customer feedback, 317, 320

data analysis learning method, 310
data collection and analysis, 319
data type inference, 376
decision biases, 44
decision making, 44
decision support, 29
decision-making process, 307
Deep Learning, 170
Deep Neural Networks, 309, 381
defect clustering, 316
defect detection rate, 314
defect prediction, 309
dependencies, 30
dependency-based model, 386
design pattern, 180
Deterministic, 171
Diagnosis, 384
dimensionality reduction, 35
divide and conquer, 320

early requirements engineering, 30, 33
Eclipse, 44
eigenvalues/eigenvectors, 183
embedded system, 323
Encoder-Decoder Model, 113
envision graph, 355, 356
event, 315
evolutionary testing, 332

Execution Cycle, 319

fair, 39
fairness, 39
Fault detection, 402
Fault Localization, 406
fault prediction, 244
feature extraction, 148, 162
Fiedler vector, 183
finite domain variables, 40
fragmentation, 334, 337, 350, 356, 392
Functionals, 179

GCN (Graph Convolutional
Networks), 170

genetic algorithm, 332
graph adjacency matrix, 188
Graph Auto-Encoders (GAE), 187
Graph Neural Networks (GNN), 187

heuristic procedures, 376
heuristic techniques, 308
hidden features, 36
higher-abstraction Software Design,

170
homodromies, 331, 337
homodromy graph, 356
Hybrid-DeepCom, 119
hyperplane arrangement, 343

Impacted(x), 311
inconsistencies, 41
intelligent Risk Based Analysis

methodology (iRBA), 306
interest dimensions, 32, 33
Interoperability, 310
irba, 311
iRBA-3D-Graph, 312
iRBA-Dynamic-Scope, 311
iRBA-Link, 311
iRBA-Prioritization, 311
iRBA-Queue-Management iQ(), 311
iRBA-Reward, 311
iRBA-Reward-Functions, 311

JaCaMo, 76

June 1, 2021 9:21 ws-book9x6-index-9x6 Artificial Intelligence Methods for Software Engineering 12360-999-index page 439

Index 439

Laplacian matrices, 170

Laplacian Spectral Verifier, 172

limit test data, 332, 334, 355, 362

Linear Software Models, 170

linkage criteria, 314

liquid-democracy, 34

loss, 29

Machine Learning (ML), 212–214,
219, 220, 231, 244, 308

Machine-learning based fault
localization, 418

manual reviews, 142, 145

matrix factorization, 29, 36

METEOR, 117

minimal viable product (MVP), 31

minimum viable product, 36, 45

Model-based Diagnosis, 29, 383

Model-based reasoning, 403

Modern code reviews, 143

Modularity, 171

Modularity Matrix, 179

module Cohesion, 184

Modules-Sparsity, 185

Multiagent Systems, 51

multiple applications-under-test, 320

mutual clusters, 321

MVP, 36

Natural Language Processing (NLP),
309

next release problem, 38

Non-iRBA, 312

Non-standard analysis, 359

objective coordination, 63

online machine learning, 310

open source, 44

opportunity costs, 29

Optimal-non-iRBA, 322

optimization, 29, 32, 36, 212, 225,
227, 229, 230, 232, 312

Organizations, 57

oriented matroid, 331, 334, 337, 343

out-of-vocabulary (OOV) tokens, 118

pesticide paradox, 315
plan-creation process, 307
Pointer Generator, 124
post-release, 320
pre-release, 320
precedence logic, 58
preferences, 30, 38, 41
prioritization, 29–33, 36, 38, 43, 310,

312
probability, 314
product quality, 317
programming patterns, 54, 67
protocol, 52
PRSummarizer, 124
pull requests (PRs), 123

Q-learning, 310
qualitative deviation model, 387
qualitative execution, 360
qualitative model, 331, 364
qualitative reasoning, 331, 333, 334,

394
qualitative space algebra, 331
Quality Evaluation System, 321

real time, 310
real time analysis, 313
real-world environment, 322
recommendation, 29
Recurrent Neural Network (RNN),

113
regression, 308
Reinforcement Learning (RL), 309
release planning, 31, 37, 39, 40, 45
requirement, 29, 31, 38, 40, 42
requirement change request, 317
requirement review, 319
requirements engineering, 32
Resource saving, 325
resources, 317
review comments, 153
review process, 146
reward, 311
reward function, 315
Risk Assessment, 319
Risk Identification, 319

June 1, 2021 9:21 ws-book9x6-index-9x6 Artificial Intelligence Methods for Software Engineering 12360-999-index page 440

440 Artificial Intelligence Methods for Software Engineering

Risk-Based Testing (RBT), 306
RL Loss, 125
RoboCup, 88
robotics, 88
ROUGE, 117
RRGen, 129

Scenario-Based Programming, 5
Search-Based Software Engineering, 6
Sentiment analysis, 153
sequence-to-sequence (seq2seq)

learning, 111
severity of the defect, 316
Shannon entropy, 379
similarity, 42
single applications-under-test, 320
social commitment, 52, 58
social networks, 32, 43
software artifact generation (SAG),

112
software concepts, 202
software correctness, 169
software debugging, 402
Software Design Generation, 170
Software Development Life Cycle

(SDLC), 319
software development methodology, 8
Software Fusion, 170
software releases, 29
Software testing, 244
software testing principles, 315
spatial reasoning, 333
Spectral Verification, 171
Spectrum-based Fault Localization,

380, 405
Spreadsheet Fault Corpora, 394
spreadsheet smells, 379
stakeholder, 30, 32, 34, 35, 38, 39
stakeholder recommendation, 42
State, 312
Structors, 179
Structural-Based Traversal method

(SBT), 120
subjective coordination, 57
super-covector, 337, 348
supervised learning, 381

Support Vector Machine (SVM), 309

suspiciousness measure, 380

Ternary Decision Tree, 331, 339

test case, 312

test case generation, 244

Test Case Prioritization (TCP), 308

test cases, 385

test cycle, 312

test data, 332

test execution, 313

Test Oracles Based on Machine
Learning Techniques

sectional Summary and Findings

subsection, 284

sectional Test Oracles Based on
Supervised Learning
Techniques

subsection, 277

sectional Test Oracles Based on
Unsupervised Learning
Techniques

subsection, 283

sectionalTest Oracles Based on
Semi-Supervised Learning
Techniques

subsection, 280

Test Schedule, 319

test suite, 312

test suite reduction, 244

testing coverage, 313

testing quality, 317

Time to market (TTM), 322

transparency, 44

triage, 37

UML Class Diagram, 180

unit testing, 331–333, 364

unsupervised learning, 378

utility, 33

utility-based prioritization, 33

value-based constraint model, 386

weight, 315

	Contents
	Preface
	AI for Software Design
	1. Interweaving AI and Behavioral Programming Towards Better Programming Environments
	1.1 Introduction
	1.2 Preliminaries
	1.2.1 Behavioral and Scenario-Based Programming
	1.2.2 Model-Driven Engineering
	1.2.3 Search-Based Software Engineering (SBSE)
	1.2.4 Evolutionary Computation

	1.3 The Proposed Approach
	1.4 Sandboxing
	1.5 State Space Exploration
	1.6 Heuristics and Smart Exploration
	1.7 Examples
	1.7.1 StarCraft
	1.7.2 Robocode
	1.7.3 RoboSoccer

	1.8 Conclusions
	References

	2. AI Techniques for Software Requirements Prioritization
	2.1 Introduction
	2.2 Early Requirements Engineering
	2.3 Minimum Viable Products
	2.4 Basic Release Planning
	2.5 Integrated Release Planning
	2.6 Stakeholder Recommendation
	2.7 Research Issues
	2.8 Conclusions
	Acknowledgment
	References

	Agent-Based Software Programming
	3. Social Commitments for Engineering Interaction in Distributed Systems
	3.1 Introduction
	3.2 Background on Goal Distribution and Coordination
	3.3 Background on Social Commitments
	3.4 Business Artifacts with Social Commitments
	3.5 Patterns for Programming Agents with Social Relationships
	3.6 The Hiring Process Scenario
	3.7 Conclusions
	References

	4. Intelligent Agents are More Complex: Initial Empirical Findings
	4.1 Introduction
	4.2 Background
	4.3 Software Project Data Collection and Curation
	4.3.1 Data Sources
	4.3.2 Automatic Data Harvesting
	4.3.3 The Measurement Pipeline

	4.4 Statistical Analysis
	4.5 Machine Learning Analysis
	4.6 Discussion
	4.7 The Big Picture and Future Directions
	References

	AI for Software Development
	5. Sequence-to-Sequence Learning for Automated Software Artifact Generation
	5.1 Introduction
	5.2 Preliminary Knowledge of Seq2Seq Learning
	5.2.1 Recurrent Neural Network (RNN)
	5.2.2 Encoder-Decoder Model
	5.2.3 Attention Mechanism
	5.2.4 Evaluation Metrics for Software Artifact Generation

	5.3 Automated Generation of Code Comments
	5.3.1 Problem and Challenges
	5.3.2 The Seq2Seq Model: Hybrid-DeepCom
	5.3.2.1 Capture Syntactic Information of Source Code
	5.3.2.2 Fuse Lexical and Syntactic Information
	5.3.2.3 Reduce OOV tokens

	5.3.3 Dataset
	5.3.4 Evaluation

	5.4 Automated Generation of Pull Request Descriptions
	5.4.1 Problem and Challenges
	5.4.2 The Seq2Seq Model: PRSummarizer
	5.4.2.1 Pointer Generator
	5.4.2.2 RL Loss

	5.4.3 Dataset
	5.4.4 Evaluation

	5.5 Automated Generation of App Review Responses
	5.5.1 Problem and Characteristics
	5.5.2 The Seq2Seq Model: RRGen
	5.5.2.1 Integrating High-Level Attributes
	5.5.2.2 Integrating Keywords

	5.5.3 Dataset
	5.5.4 Evaluation

	5.6 Case Study Comparison
	5.7 Challenges and Opportunities
	5.7.1 Challenges
	5.7.2 Opportunities

	5.8 Summary
	References

	6. Machine Learning to Support Code Reviews in Continuous Integration
	6.1 Introduction
	6.2 Code review in CI
	6.3 Code analysis toolchain
	6.4 Code extraction
	6.5 Feature extraction
	6.5.1 Bag-of-words analysis of source code
	6.5.2 Sentiment analysis of review comments

	6.6 Model development
	6.7 Making a recommendation
	6.8 Visualization of the results
	6.9 Full example
	6.10 Using other techniques in the workow
	6.11 Related work
	6.12 Conclusions
	References

	7. Software Fusion: Deep Design Learning with Deterministic Laplacian Verification
	7.1 Introduction
	7.1.1 Software Design Generation instead of Lower-Abstraction Assets
	7.1.2 Experimental Results Obtained
	7.1.3 Chapter Organization

	7.2 Fragility of Lower-Abstraction Software Deep Learning
	7.2.1 Lower Abstraction Levels of Software Generation
	7.2.2 Fault Lines of Lower Software Abstractions

	7.3 Robustness of Software Fusion Design
	7.3.1 Conceptual Integrity for Software Design
	7.3.2 Modularity Matrix from UML Class Diagram
	7.3.3 Bipartite Graph from the Modularity Matrix
	7.3.4 Deterministic Spectral Verification of Software Design Graph
	7.3.5 Closing the Design Cycle: Modularized Class Diagram

	7.4 Flexibility of Graphs’ Deep Learning
	7.4.1 Graph Convolutional Networks
	7.4.2 Graph Auto-Encoders

	7.5 Software Fusion for Software Design Graphs: Case Studies
	7.5.1 Graph Deep Learning — Synthetic Data: Experiments
	7.5.2 Graph Deep Learning — Synthetic Data: Results
	7.5.3 Command Design Pattern — Laplacian Spectral Verification: Experiments
	7.5.4 Command Design Pattern — Laplacian Spectral Verification: Results

	7.6 Related Work
	7.6.1 Active Learning
	7.6.2 Graphs Deep Learning Alternatives
	7.6.3 Theoretical Approaches for Neural Network Architectures
	7.6.4 Other Possible Applications

	7.7 Discussion
	7.7.1 Preserving Conceptual Integrity: Between Software Concepts and Algebra
	7.7.2 The Ultimate Meaning of Software Fusion
	7.7.3 Possible Obstacles to Complete Automation
	7.7.4 Future Work
	7.7.5 Main Contribution

	References

	8. Using Artificial Intelligence for Auto-Generating Software for Cyber-Physical Applications
	8.1 Introduction
	8.2 Related Work
	8.2.1 Model-Based Methods
	8.2.2 Learning-Based Methods
	8.2.3 Fault Trees

	8.3 Model-Based Software Engineering
	8.3.1 MBSE Languages
	8.3.2 Traditional MBSE Process
	8.3.3 CPS Model Representation
	8.3.4 Model Development and Validation

	8.4 Running Example
	8.4.1 Process-Control Example: Three Tank System
	8.4.2 Requirements
	8.4.3 Model Construction
	8.4.3.1 Approach
	8.4.3.2 Modeling Language: ODEs

	8.5 AI-Based Framework for MBSE Task
	8.5.1 Data-Driven MBSE
	8.5.2 Optimization-Based MBSE
	8.5.2.1 Model Accuracy
	8.5.2.2 Model Complexity
	8.5.2.3 Model Development Cost

	8.5.3 System Verification

	8.6 AI-based MBSE Model Construction Methods
	8.6.1 Data-Driven Approach
	8.6.2 Hybrid Approach: Multi-Fidelity (Surrogate-Based) Optimization
	8.6.2.1 Model-based Multi-Fidelity Approach
	8.6.2.2 Data-Driven Surrogate Approach

	8.6.3 Hybrid Approach: Model-Constrained Optimization

	8.7 Running Example: Continued
	8.7.1 Model-based Multi-Fidelity Approach
	8.7.2 Data-Driven Surrogate Approach

	8.8 MBSE Trade-O� Framework
	8.8.1 Approaches Compared
	8.8.2 Model Library Costs
	8.8.3 Data-Driven Model Costs
	8.8.4 Comparative Analysis

	8.9 Empirical Modeling Cost Comparison
	8.9.1 Empirical Analysis
	8.9.2 Data
	8.9.2.1 Baseline: Model-Based Approach
	8.9.2.2 Data-Driven Approach
	8.9.2.3 Model-Based Hybrid Approach
	8.9.2.4 Data-Driven Hybrid Approach

	8.9.3 Results and Discussion
	8.9.3.1 Accuracy
	8.9.3.2 Time
	8.9.3.3 Combined (Weighted) Objective

	8.9.4 Discussion of Trade-Offs

	8.10 Conclusion
	References

	AI for Software Testing
	9. On the Application of Machine Learning in Software Testing
	9.1 Introduction
	9.2 Background
	9.2.1 Software testing
	9.2.2 Machine Learning

	9.3 Applications of Machine Learning in software testing
	9.3.1 Machine Learning for software fault prediction
	9.3.2 Machine Learning for test oracles automation
	9.3.3 Machine learning for test cases generation
	9.3.4 Machine learning for test suite reduction, prioritization and evaluation
	9.3.5 Other tasks
	9.3.5.1 Software Quality Prediction
	9.3.5.2 Test cost estimation

	9.4 Conclusions
	References

	10. Creating Test Oracles Using Machine Learning Techniques
	10.1 Introduction
	10.2 Background on Test Oracles
	10.2.1 Test Oracles Based on Individual Test Cases
	10.2.2 Test Oracles Based on Formal Specifications

	10.3 Related Work
	10.4 Test Oracles Based on Machine Learning Techniques
	10.4.1 Test Oracles Based on Supervised Learning Techniques
	10.4.2 Test Oracles Based on Semi-Supervised Learning Techniques
	10.4.3 Test Oracles Based on Unsupervised Learning Techniques
	10.4.4 Summary and Findings

	10.5 Discussion
	10.6 Further Research Direction
	10.6.1 Improving the Accuracy
	10.6.2 Improving the Scalability

	10.7 Conclusion
	References

	11. Intelligent Risk Based Analysis Methodology
	11.1 Introduction
	11.2 Motivation and Related Works
	11.3 iRBA Solution
	11.3.1 iRBA Unique Techniques and Elements
	11.3.2 Test Case Prioritization — Problem Formulation, Statement and Definition
	11.3.3 TCP Method Using RL — iRBA Vs. Non-iRBA
	11.3.4 The iRBA-Reward-Functions
	11.3.4.1 iRBA Reward Function — Test Case Passed Event
	11.3.4.2 iRBA-Reward-Functions — New Defect Event
	11.3.4.3 iRBA-Reward-Functions — Defect Rejected Event
	11.3.4.4 iRBA-Reward-Functions — New Code Integration Event
	11.3.4.5 iRBA-Reward-Functions — New Test Case Creation Event
	11.3.4.6 iRBA-Reward-Functions — Customer Feedback or Unplanned Change Event

	11.4 iRBA Benefits Demonstrations
	11.4.1 Project's Cost Challenge
	11.4.1.1 Become Much More Effective with Cost-Effective Manpower and Limited Resources

	11.4.2 Project's Quality Challenge
	11.4.2.1 Effective Use of Customer Feedback to Drive Product Quality
	11.4.2.2 Risk Prioritization of Multiple Applications and Early Detection of Major Interoperability Issues
	11.4.2.3 Quality Evaluation System

	11.4.3 Project's Time Challenge

	11.5 Industrial Project Case Study
	11.6 Summary and Conclusions
	11.7 Future Work
	Acknowledgments
	References

	12. A Qualitative Reasoning Model for Software Testing, based on Combinatorial Geometry
	12.1 Introduction
	12.2 What the model contains
	12.2.1 Conditions, Equations, Paths, Super-covectors, and Homodromies
	12.2.2 Running example
	12.2.3 How the model is built technically

	12.3 Which mathematical results will be needed
	12.3.1 Preliminaries on Oriented Matroid theory
	12.3.2 Encoding regions with super-covectors
	12.3.3 Super-covectors versus covectors
	12.3.4 Representative of a super-covector
	12.3.5 Contiguity between super-covectors
	12.3.6 Border of a super-covector

	12.4 How the model is used
	12.4.1 Relations between Homodromies and the Envision Graph
	12.4.2 Order-of-Magnitude Reasoning and Qualitative Execution
	12.4.3 Boundary Test Data Generation

	12.5 Conclusion
	Acknowledgments
	References

	AI for Software Debugging
	13. AI-based Spreadsheet Debugging
	13.1 Introduction
	13.2 Spreadsheet Debugging
	13.3 Heuristic and statistical approaches
	13.3.1 Heuristic-based approaches
	13.3.2 Statistics-based approaches
	13.3.3 Empirical evaluations and limitations

	13.4 Model-based diagnosis techniques
	13.4.1 Basic definitions
	13.4.2 Model types
	13.4.3 Solving mechanism
	13.4.4 Tool support
	13.4.5 Empirical evaluations and limitations

	13.5 Benchmarks
	13.6 Summary and Outlook
	Acknowledgments
	References

	14. Artificial Intelligence Methods for Software Debugging
	14.1 Introduction
	14.2 AI in the Debugging Life Cycle
	14.3 Fault Detection Techniques
	14.4 Fault Localization Techniques
	14.4.1 Model-based fault localization
	14.4.2 Spectrum-based fault localization
	14.4.3 Machine-learning based fault localization
	14.4.3.1 Learning for fault localization
	14.4.3.2 Learning for multiple-fault localization
	14.4.3.3 Learning to Rank
	14.4.3.4 Learning to prioritize issues
	14.4.3.5 Method Selection

	14.4.4 Automated oracles
	14.4.5 Summary of Techniques

	14.5 Outlook
	References

	Index

