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Preface

The recent popularity gained by the field of machine learning (ML) has led to its
adaptation into almost all the known applications. The applications range from smart
homes, smart grids, and forex markets to military applications and autonomous
drones. There exists a plethora of machine learning techniques that were introduced
in the past few years, and each of these techniques fits greatly for a specific set of
applications rather than a one-size-fits-all approach.

In order to better determine the application of ML for a given problem, it is non-
trivial to understand the current state of the art of the existing ML techniques, pros
and cons, their behavior, and existing applications that have already adopted them.
This book thus aims at researchers and practitioners who are familiar with their
application requirements, and are interested in the application of ML techniques
in their applications not only for better performance but also for ensuring that the
adopted ML technique is not an overkill to the considered application. We hope that
this book will provide a structured introduction and relevant background to aspiring
engineers who are new to the field, while also helping to revise the background
for the researchers familiar with this field. This introduction will be further used to
build and introduce current and emerging ML paradigms and their applications in
multiple case studies.

Organization This book is organized into three parts that consist of multiple
chapters. The first part introduces the relevant background information pertaining
to ML, traditional learning approaches that are widely used.

• Chapter 1 introduces the concept of applied machine learning. The metrics
used for evaluating the machine learning performance, data pre-processing, and
techniques to visualize and analyze the outputs (classification or regression or
other applications) are discussed.

• Chapter 2 presents a brief review of the probability theory and linear algebra that
are essential for a better understanding of the ML techniques discussed in the
later parts of the book.

v
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• Chapter 3 introduces the machine learning techniques. Supervised learning is
primarily discussed in this chapter. Multiple supervised learning techniques,
learning techniques, and applications along with pros and cons for each of
the techniques are discussed. A qualitative comparison of different supervised
learning techniques is presented along with their suitability to different kinds of
applications.

• Unsupervised learning is introduced in Chap. 4. The differences compared to
the supervised learning and application scenarios are discussed first. Different
supervised learning for different applications including classification and feature
selection is discussed along with examples in this chapter.

• Reinforcement learning is a human learning-inspired technique, which can be
laid between supervised and unsupervised learning techniques in the spectrum.
Chapter 5 discusses the basics of reinforcement learning along with its variants
together with a comparison among different techniques.

Building on top of the basic concepts of machine learning, advanced machine
learning techniques used in real-world applications are discussed in the second part
of this book.

• The majority of the supervised learning techniques and their learning mecha-
nisms discussed in the first part of this book focus on offline or batch learning.
However, the learning in real-world applications needs to happen in an online
manner. As such, Chap. 6 introduces the online learning technique and different
variants of online learning techniques.

• With a diverse spectrum of Web applications demonstrating the importance of
learning from user behavior, recommender systems are widely used by the bulk
of social media companies. Chapter 7 of this book discusses approaches for
recommender learning.

• Chapter 8 offers approaches for graph learning. Graphs are used to depict things
and their connections in a variety of real-world applications, including social
networking, transportation, and disease spreading. Methods for learning graphs
and the relationships between nodes are discussed.

• In addition to advancements in machine learning algorithms, researchers have
also focused on exploiting the vulnerabilities in machine learning techniques.
Chapter 9 introduces adversarial machine learning techniques that discuss tech-
niques to inject the adversarial perturbations into the input samples to mislead the
machine learning algorithms. In addition, the techniques to harden the machine
learning techniques against these adversarial perturbations are discussed.

In addition to the advanced learning techniques, the application of machine
learning algorithms with entire discussions dedicated to real-world applications is
presented in the third part of this book.
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• The application of machine learning techniques for health monitoring is one of
the critical real-world applications, especially with the introduction of wearable
devices including fitness trackers. Chapters 10 and 11 focus on the application of
machine learning techniques for health applications, particularly in the context
of wearable devices.

• Another pivotal application of machine learning is anomaly detection in the
context of security. Here, security refers to the security of the computing systems
including mobile devices. Chapter 12 focuses on the application of machine
learning to detect malware applications in resource-constrained devices, where
lightweight machine learning techniques are preferable compared to heavy deep
learning techniques.

• In contrast to other applications discussed, the final chapter of this book discusses
the application of machine learning for cloud resource management applications.
In particular, memory management, and resource distribution according to
the workload in a cognitive manner through machine learning techniques is
discussed in this chapter.

What’s New?
Numerous publications exist that give readers theoretical insights, and similarly,
there are books that focus on practical implementation through programming
exercises. However, our proposed book incorporates theoretical and practical
perspectives, as well as real-world case studies, and covers advanced machine
learning ideas. Additionally, this book contains various case studies, examples,
and solutions covering topics ranging from simple forecasting to enormous net-
work optimization and housing price prediction employing a massive database.
Finally, this book includes real implementation examples and exercises that allow
readers to practice and enhance their programming skills for machine learning
applications.

Scope of Book
This book introduces the theoretical aspects of machine learning (ML) algorithms
starting from simple neuron basics all the way to the complex neural networks
including generative adversarial neural networks and graph convolutional networks.
Most importantly, this book helps the readers in understanding the concepts of ML
algorithms and provides the necessary skills for the reader to choose an apt ML
algorithm for a problem that the reader wishes to solve.
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Basics of Machine Learning



Chapter 1
What Is Applied Machine Learning?

We begin this chapter by discussing the importance of understanding data in order
to address various problems about the distribution of data, significant features, how
to transform features, and how to construct models to perform a specific machine
learning task in various problem domains. Let us begin our conversation with
Artificial Intelligence (AI), a collection of concepts that enables computers to mimic
human behavior. The primary objective of the field of artificial intelligence is to
develop artificial algorithms that can be used to inform intelligent future judgments.
Machine learning (ML) is an area of artificial intelligence that is concerned with
instructing/training an algorithm to execute such tasks. It is a scientific technique
for uncovering hidden patterns and conclusions in structured and unstructured data
by building mathematical models using a sample dataset referred to as training
set. Computing systems use machine learning models to transform data into
actionable results and carry out specific tasks, such as detecting malicious activity
in an IoT system, classifying an object in an autonomous driving application, or
discovering interesting correlations between variables in a patient dataset in a health
application domain. Machine learning algorithms include regression, instance-
based learning, regularization, decision tree, Bayesian, clustering, association-rule
learning, reinforcement learning, support vector machines, ensemble learning,
artificial neural network, deep learning, adversarial learning, federated learning,
zero-shot learning, and explainable machine learning.

Requirements of such techniques and applications will be discussed in the first
part of this book.

1.1 Introduction

Machine learning can be approached in two distinct ways: theoretical machine
learning and applied machine learning (Applied ML). Both the paths empower an
individual to solve problems in disparate ways. Theoretical machine learning is con-
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4 1 What Is Applied Machine Learning?

cerned with an understanding of the fundamental concepts behind machine learn-
ing algorithms, mathematics, statistics, and probability theory. However, applied
machine learning is about achieving the potential and impact of theoretical machine
learning developments. Thus, the purpose of Applied Machine Learning is to get a
sufficient understanding of fundamental machine learning principles and to address
real-world issues utilizing tools and frameworks that incorporate machine learning
algorithms. It is concerned with developing a workable learning system for a
particular application. Indeed, skill in applied machine learning comes from solving
numerous issues sequentially in multiple areas, which requires a grasp of the data
and the challenges encountered. This is not an easy undertaking, as no dataset or
algorithm exists that is optimal for all applications or situations.

Applied machine learning can be thought of as a search problem, where the
objective is to find the optimal mapping of inputs to outputs given a set of
data and a machine learning method. In other words, Applied Machine Learning
illustrates how an algorithm learns and the justification for combining approaches
and algorithms. The application of machine learning techniques has developed
dramatically from a specialty to a mainstream practice. They have been applied
to a variety of sectors to address specific issues, including autonomous driving,
Internet of Things (IoT) security, computer system cybersecurity [1–3], multimedia
computing, health [4, 5], and many more. Machine learning encompasses a broad
variety of tasks, from data collection to pre-processing and imputation, from data
exploration to feature selection, and finally, model construction and evaluation.
At each stage of this pipeline, decisions are made based on two key factors: an
awareness of the application’s characteristics and the availability of the required
data. The primary objective is to overcome machine learning issues posed by these
factors. For instance, in autonomous driving, some of the machine learning problems
include the size, completeness, and validity of the training set, as well as the safety
of the deep neural networks utilized against adversarial perturbations that could
force the system to misclassify an image [6]. Adversarial perturbations comprise
minor image manipulations such as scaling, cropping, and changing the lighting
conditions.

Another rapidly expanding application of machine learning is security for the
Internet of Things (IoT). Due to advancements in the IoT technology stack,
massive amounts of data are being generated in a variety of sectors with distinct
characteristics. As a result, computing devices have become more connected than
ever before, spanning the spectrum from standard computing devices (such as
laptops) to resource-constrained embedded devices, servers, edge nodes, sensors,
and actuators. The Internet of Things (IoT) network is a collection of internet-
connected non-traditional computer devices that are often low power and have
limited processing and storage capabilities. Parallel to the exponential growth of the
Internet of Things, the number of IoT assaults has risen tremendously. Due to a lack
of security protection and monitoring systems for IoT devices and networks, we are
in desperate need of creating secure machine learning approaches for IoT device
protection. As a result, such solutions must be sturdy, yet resource-constrained,
making their development a difficult challenge. Thus, tasks such as developing safe
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and durable models and performing hardware analysis on trained models (in terms
of hardware latency and area) are significant applied machine learning problems to
address in this sector [1, 7, 8].

The majority of this book discusses the difficulties and best practices associated
with constructing machine learning models, including understanding an applica-
tion’s properties and the underlying sample dataset.

1.2 The Machine Learning Pipeline

What is Machine Learning Pipeline? How do you describe the goal of machine
learning? What are the main steps in the machine learning pipeline? We will answer
these questions both through formal definitions and practical examples. Machine
learning pipeline is meant to help with automating the machine learning workflow,
in order to obtain actionable insights from big datasets. The goal of machine
learning is to train an accurate model to solve an underlying problem. However, the
term pipeline is misleading as many of the steps involved in the machine learning
workflow may be repeated iteratively so to enhance and improve the accuracy of the
model. The cyclical architecture of machine learning pipelines is demonstrated in
Fig. 1.1.

Initially, the input (or collected) data is prepared before performing any analysis.
This step includes tasks such as data cleaning, data imputation, feature engineering,
data scaling/standardization, and data sampling for dealing with issues includ-
ing noise, outliers, transforming categorical variables, normalizing/standardizing
dataset features, and imbalanced (or biased) datasets.

In the Exploratory Data Analysis step (EDA), data is analyzed to understand
its characteristics such as having a normal or skewed distribution (see Fig. 1.2).
Skewedness in data affects a statistical model’s performance, especially in the case
of regression-based models. To prevent harming the results due to skewness, it is a
common practice to apply a transformation over the whole set of values (such as log
transformation) and use the transformed data for the statistical model.

Fig. 1.1 The cyclical architecture of machine learning pipelines
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(a) (b) (c)

Fig. 1.2 Comparison of different data distributions. In Right-Skewed or positive distribution, most
data falls to the positive, or the right side of the peak. In Left-Skewed or negative distribution, most
data falls to the negative, or the left side the peak. (a) Right-skewed. (b) Normal distribution. (c)
Left-skewed

Another prominent task performed during EDA is discovering the correlations
between attributes of the dataset to identify the independent variables that are
eventually used in the training process. For instance, if feature a1 is highly correlated
with feature a2, then only one of those features should be considered for training
a model. Furthermore, in datasets where there is a linear relationship between
input and output variables, it is important to realize the relationships between the
variables such as positive correlations (when an input variable increases/decreases
as the target (i.e., output) variable increases/decreases) and negative correlations
(when an input variable increases/decreases as the target (i.e., output) variable
decreases/increases), or no correlation. Visualization techniques such as plotting
the colinearity in the data using a correlation map, or a scatter plot matrix (also
called pair-plot) can show a bi-variate or pairwise relationships between different
combinations of variables in a dataset. An example of a correlation matrix is
illustrated in Fig. 1.3.

Next, in the Feature Selection step, important features for training a machine
learning model using a dataset are identified. Important benefits of Feature Selection
include reducing over-fitting, improving the accuracy of the model, and reducing the
training time. Attribute selection can be conducted in different ways. Leveraging
known relationships between the variables can guide the selection of features.
However, when the number of features grows, data-driven exploratory techniques
come in handy. Some of the most common dimensionality reduction techniques
include Principal Component Analysis (PCA), t-distributed Stochastic Neighbor
Embedding (t-SNE), Independent Component Analysis (ICA), and clustering algo-
rithms (e.g., Gaussian mixture model).

Real-world datasets contain many attributes, among which, just a subset of them
help with the analysis. For instance, for lane detection in the autonomous driving
applications, important features include edge, gradient, and intensity [9, 10] as they
rely on the different intensity between the road surface and the lane markings. Once
important features are identified to perform a particular machine learning task in
an application, the prepared dataset is partitioned into a training and testing set; the
training data is used to train a machine learning algorithm to construct a model,
followed by the evaluation process, which is relied on the test data.
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Fig. 1.3 A correlation matrix for an airline dataset

As illustrated in Fig. 1.1, training a model is an iterative process; depending on
the performance factors and accuracy of the generated model, it is usually tuned
iteratively to enhance the weights of its parameters until no further improvements
are possible, or a satisfactory outcome is obtained.

1.3 Knowing the Application and Data

We live in the age of big data where data lives in various sources and repositories
stored in different formats: structured and unstructured. Raw input data can contain
structured data (e.g., numeric information, date), unstructured data (e.g., image,
text), or a combination of both, which is called semi-structured data. Structured data
is quantitative data that can fit nicely into a relational database such as the dataset in
Table 1.2 where the information is stored in tabular form. Structured attributes can
be transformed into quantitative values that can be processed by a machine. Unlike
structured data, unstructured data needs to be further processed to extract structured
information from it; such information is referred to as data about data, or what we
call metadata in this book.

Table 1.1 demonstrates a dataset for a sample text corpus related to research
publications in the public domain. This is an example of a semi-structured dataset,
which includes both structured and unstructured attributes: the attributes of year and
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citation are structured variables (categorical and numerical, respectively), whereas
the title, authors, conference, and abstract contain unstructured data (i.e., raw text).

In applied machine learning problems, we begin with understanding the data
behind an application in case there is no limited background knowledge available
about an application. Knowing the application can help make accurate decisions
about the important metadata to extract from the unstructured variables, which
techniques to entertain for metadata extraction—e.g., in case of raw text, extract
information such as the frequency of concepts using bag-of-words model, which
metadata standard to use, how to encode features (e.g., one-hot encoding), as well
as the selection of top features to help with generating the output model, which will
be later deployed on unseen data (Table 1.2).

Understanding the data behind an application transpires through performing
Exploratory Data Analysis (EDA), which is an approach used by the data analysts
to use visual explorations to understand what is in the dataset and the data
characteristics such as the relationships between the attributes and distribution of
data. There are many visualization techniques to use for understanding the data
within an application such as correlation matrix, histogram, box plot, and scatter
plot.

Let us take a look at a sample customer airline dataset in Table 1.4, which
contains 7 attributes including INDEX, FARE, SEATCLASS, GUESTS, GENDER,
AGE, and the class variable SUCCESS for a fictitious airline A. The ultimate goal is
to identify the factors that are helpful to understand why some customers are flying
with the airline, and why others are canceling. Here is a brief description of the
features:

• CUSTOMERID: A unique ID associated to a customer.
• GUESTS: Number of guests accompanying the customer.
• SUCCESS: Categorical variable that displays whether customer traveled or not.
• SEATCLASS: Categorical variable that displays the seat class of the customer.
• AGE: Numerical variable corresponding to the age of the customer.
• GENDER: Categorical variable describing the gender of the customer.
• FARE: Numeric variable for the total fare paid by the customer.
• SUCCESS: Categorical class variable indicating if the customer flies with the

airline.

The correlation matrix illustrated in Fig. 1.3 is an example of a technique used to
understand the relationships between the attributes of a dataset.

A correlation matrix is a tool to show the degree of association between a
pair of variables in a dataset. It visually describes the direction and strength of
a linear relationship between two variables. This correlation matrix visualizes the
correlations between the variables of the airline dataset. According to this plot,
GENDER and SEATCLASS have the highest correlations with the class variable;
GENDER is positively correlated with SUCCESS (with the degree of +0.54), while
SEATCLASS is negatively correlated (with the degree of −0.36).

Histogram is a graphical technique used to understand the distribution of data.
Figure 1.4 illustrates the distribution of the airline dataset over its structured vari-
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Table 1.4 A sample dataset of an airline’s customers

Index Description Success Guests Seat class Customer ID Fare Age Title Gender

0 Braund,
Mr. Owen
Harris; 22

0 1 3 1 7.25 22 Mr Male

1 Cumings,
Mrs. John
Bradley . . .

1 1 1 2 71.3 38 Mrs Female

2 Heikkinen,
Miss. Laina; 26

1 0 3 3 7.92 26 Miss Female

3 Futrelle,
Mrs. Jacques
Heath. . .

1 1 1 4 53.1 35 Mrs Female

4 Allen,
Mr. William
Henry. . .

0 0 3 5 8.05 35 Mr Male

5 Moran,
Mr. James;

0 0 3 6 8.46 0 Mr Male

6 McCarthy,
Mr. Timothy J;
54

0 0 1 7 51.9 54 Mr Male

Fig. 1.4 Data distribution over the variables of an airline dataset

ables including SEAT CLASS, GUESTS, FARE, and customer TITLE. Histograms
display a general distribution of a set of numeric values corresponding to a dataset
variable over a range.

Plots are great means to help with understanding the data behind an application.
Some example application of such plots is described in Table 1.5. It is important to
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note that every plot is deployed for a different purpose and applied to a particular
type of data. Therefore, it is crucial to understand the need for such techniques
used during the EDA step. Such graphical tools can help maximize insight, reveal
underlying structure, check for outliers, test assumptions, and discover optimal
factors.

As indicated in Table 1.5, several Python libraries offer very useful tools to plot
your data. Python is a real generic programming language with a very large user
community. It is purpose-built for large datasets and machine learning analysis. In
this book, we focus on using Python language for various machine learning tasks
and hands-on examples and exercises.

1.4 Getting Started Using Python

Before getting started using Python for applying machine learning techniques
on a problem, you may want to find out which IDEs (Integrated Development
Environment) and text editors are tailored for Python programming or looking
at code samples that you may find helpful. IDE is a program dedicated to
software development. A Python IDE usually includes an editor to write and handle
Python code, build, execution, debugging tools, and some form of source control.
Several Python programming environments exist depending on how advanced is
a Python programmer to perform a machine learning task. For example, Jupyter
Notebook is a very helpful environment for beginners who have just started with
traditional machine learning or deep learning. Jupyter Notebook can be installed in
a virtual environment using Anaconda-Navigator, which helps with creating virtual
environments and installing packages needed for data science and deep learning.
While Jupyter Notebook is more suitable for beginners, there are other machine
learning frameworks such as TensorFlow that are mostly used for deep learning
tasks. As such, depending on how advanced you are in Python programming, you
may end up using a particular Python programming environment. In this book, we
will begin with using Jupyter Notebook for programming examples and hands-on
exercises. As we move toward more advanced machine learning tasks, we switch to
TensorFlow. You can download and install Anaconda-Navigator on your machine
using the following link by selecting Python 3.7 version: https://www.anaconda.
com/distribution/.

Once it is installed, navigate to Jupyter Notebook and hit “Launch.” You will then
have to choose or create a workspace folder that you will use to store all your Python
programs. Navigate to your workspace directory and hit the “New” button to create a
new Python program and select Python 3. Use the following link to get familiar with
the environment: https://docs.anaconda.com/anaconda/user-guide/getting-started/.

In the remaining part of this chapter, you will learn how to conduct preliminary
machine learning tasks through multiple Python programming examples.

https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://docs.anaconda.com/anaconda/user-guide/getting-started/
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Table 1.5 Popular Python tools for understanding the data behind an application. https://
github.com/dgrtwo/gleam

Plot Python Usage
Exampletype library description

Line plot Plotly Trends in data

Scatter plot Gleam Multivariate data
2.5

1 2 3 4
petal_length

pe
ta

l_
w

id
th

5 6 7

2.0

1.5

1.0

0.5

0.0

Layered
area chart

ggplot Compare trend over time

Nullity
matrix

Missingno Data sparsity

Bar plot Bokeh Streaming & real-time data

Scatter plot
matrix

Seaborn Bivariate data correlations

Box plot Pygal, Seaborn Outliers and data distribution

1

2

3

4

5

6

7

pe
ta

l_
le

ng
th

species
setosa versicolor virginica

Histogram Matplotlib Outliers & data distribution
3.0

2.5

2.0

1.5

1.0

0.5

0.0 1 2 3 4 5 6 7 8

petal_length

species
setosa
versicolor
virginica

Heatmap,
dot-density

Seaborn Uses a system of color coding
to represent different values

https://github.com/dgrtwo/gleam
https://github.com/dgrtwo/gleam
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1.5 Metadata Extraction and Data Pre-processing

It is a no-brainer that data is a crucial aspect of machine learning. Data is used to
train machine learning models and tune their parameters to improve their accuracy
and performance. Data is available in various types, and different forms: structured
and unstructured. Metadata contains information about a dataset. Such information
describes the characteristics of data such as format, location, author, content,
relationship, and data quality. It can also include information about features, models,
and other artifacts from the machine learning pipeline. Metadata is highly structured
and actionable information about a dataset.

The popularity of metadata grows due to the proliferation of devices that generate
data and data integration, dealing with heterogeneity and diversity of data. Metadata
extraction is the process of extracting salient features from a dataset. Depending
on the type of data (e.g., text, image, so forth), its metadata is extracted and
represented in different ways. For instance, weather information (metadata) can be
generated using the timestamp and location information of the image provided in
the image’s EXIF tag that is used largely to encode contextual information related
to image generation by digital cameras. Another example of metadata is Bag-
of-Words (BOW) and its flavors such as Frequency Vectors, One Hot Encoding
(OHE), and Term Frequency/Inverse Document Frequency (TF/IDF), which are
used to generate metadata corresponding to a text document. Such representation
encompasses words that stand for entities in a dataset, leading to the notion of entity
extraction. Feature representation in a dataset is an important step. In some datasets,
features are numeric, such as the attributes displayed in a tabular view in Table 1.2.
However, there are many other datasets that contain categorical information, which
would need feature engineering before performing any machine learning task.
For instance, recording weather information in a dataset using categories such as
cloudy, windy, rainy. Furthermore, applications such as text classification, concept
modeling, language modeling, image captioning, question answering, and speech
recognition are some examples where feature engineering is required to represent
features numerically.

Let us consider a topic modeling application where the goal is to perform
text classification. Table 1.6 illustrates a sample dataset that has ID, content, and
Topic as the original attributes. However, the machine cannot use these attributes
as is to perform mathematical computations as these features (except ID) are not
numeric. Therefore, metadata extraction followed by feature engineering is required
to transform these attributes into numeric values. Let us make this more concrete by
focusing on the content attribute that contains the unstructured raw text. The data in
this column cannot be directly used as features in its original form unless we extract
metadata from it and provide a numeric encoding. For instance, one way is to extract
N-grams, which is a contiguous sequence of n items (such as phonemes, syllables,
letters, words, or base pairs) from a given sample of text or speech.
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Example 1.1 (N-Gram Extraction)
Problem: Extract the N-grams from a given string of text and display all the
extracted N-grams.
Solution: To extract N-grams as metadata, off-the-shelf Natural Language
Processing (NLP) tools such as Natural Language Toolkit (NLTK) can be
used, which is a leading platform for building Python programs to work with
human language data. A widely used feature engineering technique in this
situation is One-Hot-Encoding, which provides the mapping of categorical
values into integer values. But first, we need to extract the categories. To
perform this, one can use re and nltk.util packages to apply regular
expression matching operation and finding n-grams to only retain useful
content terms. The Python code below can be used to extract 2-grams and
4-grams. The result is displayed.

1 import re
2 from nltk.util import ngrams
3

4 #input text
5 text = """tighter time analysis for real-time traffic in on-chip \
6 networks with shared priorities"""
7 print(’input text: ’ + text)
8

9 tokens = [item for item in text.split(" ") if item != ""]
10

11 output2 = list(ngrams(tokens, 2)) #2-grams
12 output4 = list(ngrams(tokens, 4)) #4-grams
13

14 allOutput=[]
15 for bigram in output2:
16 if bigram[0]!= "for" and bigram[1]!= "for" and bigram[0]!="in" and \
17 bigram[1]!="in" and bigram[0]!="with" and bigram[1]!="with":
18 allOutput.append(bigram)
19

20 print(’\nall extracted bigrams are:’)
21 print(allOutput)
22

23

24 allOutput=[]
25

26 for quadgram in output4:
27 if quadgram[0]!= "for" and quadgram[1]!= "for" and quadgram[2]!= "for" \
28 and quadgram[3]!= "for" and quadgram[0]!="in" and quadgram[1]!="in" \
29 and quadgram[0]!="with" and quadgram[1]!="with":
30 allOutput.append(quadgram)
31

32 print(’\nall extracted quadgrams are:’)
33 print(allOutput)
34

35 >input text: tighter time analysis for real-time traffic in on-chip \
36 >networks with shared priorities
37

38 >all extracted bigrams are:
39 >[(’tighter’, ’time’), (’time’, ’analysis’),\
40 >(’real-time’, ’traffic’), (’on-chip’, ’networks’), (’shared’, ’priorities’)]
41
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Table 1.6 A sample dataset for text classification

ID Content Topic

1 Using benes networks at fault-tolerant and deflec-
tion routing based network-on-chips

Fault tolerant systems

2 Tighter time analysis for real-time traffic in on-chip
networks with shared priorities

Network-on-chip analysis

3 Loosely coupled in situ visualization: a perspective
on why it’s here to stay

Scientific visualization

4 Lessons learned from building in situ coupling
frameworks

In Situ visualization

5 An approach to lowering the in situ visualization
barrier

In situ visualization

6 PROSA: protocol-driven NoC architecture Computer architecture

7 Hybrid large-area systems and their interconnection
backbone

Sensor phenomena and character-
ization

8 Bubble budgeting: throughput optimization for
dynamic workloads by exploiting dark cores in
many core systems

Resource management

42 >all extracted quadgrams are:
43 >[(’real-time’, ’traffic’, ’in’, ’on-chip’), \
44 >(’on-chip’, ’networks’, ’with’, ’shared’)]

Metadata extraction is an important phase in machine learning. Once the features
are extracted, the dataset should be pre-processed to get prepared for training.
Preprocessing includes data cleaning and data imputation, outlier detection, and
data exploration. Outliers in a dataset are those samples that show abnormal distance
from the other samples in the dataset. There are various methods to detect outliers.
One simple technique is to visually identify irregular sample using a scatter plot, or
a histogram when the problem is not very complex. For more complex problems,
techniques such as one-class SVM, Local Outlier Factor, and Isolation Forest. In
outlier detection, it is important to include the output variable as the outliers form
around the clusters related to the output variable.

1.6 Data Exploration

Data Exploration or Exploratory Data Analysis (EDA) is an important part of data
analysis. It is a systematic process to understand the data, maximize insight, discover
latent correlations between variables, identify important variables, outliers, and
anomalies, and perform dimensionality reduction using various data visualization
and statistical techniques. Data exploration or data understanding is where an
analyst takes a general view of the data to make some sense of it.

Exploratory Data Analysis (EDA) is understanding the datasets by summarizing
their main characteristics often plotting them visually. This step is very important
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especially when we arrive at modeling the data in order to apply machine learning.
Plotting in EDA consists of histograms, box plot, scatter plot, and many more. It
often takes much time to explore the data. Through the process of EDA, we can ask
to define the problem statement or definition on our dataset, which is very important.
Some of the common questions one can ask during EDA are:

• What kind of variations exist in data?
• What type of knowledge is discovered from the covariance matrix of data in

terms of the correlations between the variables?
• How are the variables distributed?
• What kind of strategy to follow with regard to the outliers detected in a dataset?

Some typical graphical techniques widely used during EDA include histogram,
confusion matrix, box plot, scatter plot, principal component analysis (PCA), and so
forth. Some of the available popular Python libraries used for EDA include seaborn,
pandas, matplotlib, and NumPy. In this section, we will illustrate multiple examples
showing how EDA is conducted on a sample dataset.

1.7 A Practice for Performing Exploratory Data Analysis

The selection of techniques for performing Exploratory Data Analysis (EDA)
depends on the dataset. There is no single method or common methods in order
to perform EDA. Based on this section, you can practice some common methods
and plots that would be used in the EDA process.

We will perform the EDA for Fisher’s Iris dataset to illustrate different EDA
techniques. The Iris dataset contains 3 classes of 50 instances each, where each
class refers to a type of iris flower. The features in the dataset are sepal length, sepal
width, petal length, and petal width (Fig. 1.5). One class is linearly separable from
the other two; the latter are NOT linearly separable from each other. The predicted
attribute is the class of the Iris flower. The objective is to classify flowers into one
of the categories. In this section, we will perform the EDA on the Iris dataset and
observe the trend.

Fig. 1.5 Flower attributes
“Sepal and Petal”
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1.7.1 Importing the Required Libraries for EDA

Let us begin the EDA by importing some libraries required to perform EDA.

1 import pandas as pd
2 import seaborn as sns #visualization
3 import matplotlib.pyplot as plt #visualization
4 import numpy as np

1.7.2 Loading the Data Into Dataframe

The first step to performing EDA is to represent the data in a Dataframe form, which
provides one with extensive usage for data analysis and data manipulation. Loading
the data into the Pandas dataframe is certainly one of the most preliminary steps in
EDA, as we can see that the value from the dataset is comma separated. So all we
have to do is to just read the CSV file into a dataframe and pandas dataframe does
the job for us. First, download iris.csv from https://raw.githubusercontent.com/uiuc-
cse/data-fa14/gh-pages/data/iris.csv. Loading the data and determining its statistics
can be done using the following command:

1 import pandas as pd
2 import matplotlib.pyplot as plt
3

4 data = pd.read_csv(’iris.csv’)
5 print(’size of the dataset and the number of features are:’)
6 print(data.shape)
7 print(’\ncolumn names in the dataset:’)
8 print(data.columns)
9 print(’\nnumber of samples for each flower species:’)

10 print(data["species"].value_counts())
11

12 data.plot(kind=’scatter’, x=’petal_length’, y=’petal_width’)
13 plt.show()
14

15 > # size of the dataset and the number of features are:
16 >(150, 5)
17

18 ># column names in the dataset:
19 >Index([’sepal_length’, ’sepal_width’, ’petal_length’, ’petal_width’,’species

’], dtype=’object’)
20

21 ># number of samples for each flower species:
22 >virginica 50
23 >setosa 50
24 >versicolor 50
25 >Name: species, dtype: int64

The value_counts() method helps to understand whether the dataset is balanced
or imbalanced. Based on the output of this method, Iris dataset is a balanced dataset
with 50 samples/data points per species. Now let us use some visualization to
better understand data including distribution of observations, classes, correlation
of attributes, and identifying potential outliers.

https://raw.githubusercontent.com/uiuc-cse/data-fa14/gh-pages/data/iris.csv
https://raw.githubusercontent.com/uiuc-cse/data-fa14/gh-pages/data/iris.csv
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Fig. 1.6 2D scatter plot for iris dataset, based on two attributes “petal-length” and “petal-width”

1.7.3 Data Visualization

2D Scatter Plot

A scatter plot can display the distribution of data. Figure 1.6 shows a 2D scatter
plot for visualizing the iris data (the command is included in the previous code
snippet). The plot observed is a 2D scatter plot with petal_length on x-axis and
petal_width on y-axis. However, with this plot, it is difficult to understand per class
distribution of data. Using a color-coded plot can help plot the color coding for
each flower/species/type of class. This can be done using seaborn(sns) library by
executing the following commands:

1 import seaborn as sns
2 sns.set_style("whitegrid")
3 sns.FacetGrid(data, hue="species", height=4) \
4 .map(plt.scatter, "petal_length", "petal_width") \
5 .add_legend()
6 plt.show()

Looking at this scatter plot in Fig. 1.6, it is a bit difficult to make sense of the
data since all data points are displayed with the same color regardless of their label
(i.e., category). However, apply color coding to the plot and we can say a lot about
the data by using a different color for each label. Figure 1.7 shows the color-coded
scatter plot coloring setosa with blue, versicolor with orange, and virginica with
green. One can understand how data is distributed across the two axes of petal-width
and petal-length based on the flower species. The plot clearly shows the distribution
across three clusters (blue, orange, and green), two of which are non-overlapping
(blue and orange), and two overlapping ones (i.e., orange and green).

One important observation that can be realized from this plot is that petal-
width and petal-length attributes can distinguish between setosaa and versicolor
and between setosa and versicolor. However, the same attributes cannot distinguish
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Fig. 1.7 2D color-coded
scatter plot for iris dataset to
visualize the distribution of
the iris dataset
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versicolor from virginica due to their overlapping clusters. This implies that the
analyst should explore other attributes to train an accurate classifier and perform a
reliable classification. So here is the summary of our observations:

• Using petal-length and petal-width features, we can distinguish setosa flowers
from others. How about using all the attributes?

• Separating versicolor from viginica is much harder as they have considerable
overlap using petal-width and petal-length attributes. Would one obtain the same
observation if instead sepal-width and sepal-length attributes were used?

We have also included the 3D scatter plot in the Jupyter notebook for
this tutorial. A sample tutorial for 3D scatter plot with Plotly Express can
be found here, which needs a lot of mouse interaction to interpret data.
https://plot.ly/pandas/3d-scatter-plots/ (What about 4D, 5D, or n-D scatter plot?)

Pair-Plot

When the number of features in a dataset is high, pair-plot can be used to clearly
visualize the correlations between the dataset variables. The pair-plot visualization
helps to view 2D patterns (Fig. 1.8) but fails to visualize higher dimension patterns
in 3D and 4D. Datasets under real-time study contain many features. The relation
between all possible variables should be analyzed. The pair plot gives a scatter plot
between all combinations of variables that you want to analyze and explains the
relationship between the variables (Fig. 1.8).

To plot multiple pairwise bivariate distributions in a dataset, you can use the
pairplot() function in seaborn. This shows the relationship for (n, 2) combination of
variables in a Dataframe as a matrix of plots and the diagonal plots are the univariate
plots. Figure 1.8 illustrates the pair-plot for iris dataset, which lead to the following
observations:

https://plot.ly/pandas/3d-scatter-plots/
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Fig. 1.8 Pair-plot over the variables of iris dataset

• Petal-length and petal-width are the most useful features to identify various
flower types.

• While Setosa can be easily identified (linearly separable), Virnica and Versicolor
have some overlap (almost linearly separable).

With the help of pair-plot, we can find “lines” and “if-else” conditions to build a
simple model to classify the flower types.

1 plt.close();
2 sns.set_style("whitegrid");
3 sns.pairplot(iris, hue="species", height=3);
4 plt.show()
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Fig. 1.9 Histogram plot showing frequency distribution for variable “petal_length”

Histogram Plot

A histogram plot is a diagram, which shows the underlying frequency plot/distribu-
tion of different variables in a dataset. The plot will allow us to inspect the data for
its underlying distribution (e.g., normal distribution), outliers, skewness, and many
more Fig. 1.9. We can view a histogram plot by using seaborn library with the help
of following commands:

1 sns.FacetGrid(iris, hue="species", height=5) \
2 .map(sns.distplot, "petal$\_$length") \
3 .add_legend();
4 plt.show()

Probability Distribution Function

A probability distribution function (PDF) is a statistical function that describes all
the possible values, likelihoods that a random variable is possible within a given
range. The range is bounded between the minimum and maximum possible values,
but where the possible value is likely to be plotted on the probability distribution
depends on several factors that include the distribution’s mean (average), standard
deviation, skewness, and kurtosis.
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Cumulative Distribution Function

The cumulative distribution function (CDF) of a random variable is another method
to describe the distribution of random variables. The advantage of the CDF is that
it can be defined for any kind of random variable (discrete, continuous, and mixed).
The cumulative distribution function is applicable for describing the distribution of
random variables that is either continuous or discrete.

Box Plot

A box and whisker plot also called a box plot displays the five-number summary
of a set of data. The five-number summary is the minimum, first quartile, median,
third quartile, and maximum. In a box plot, we draw a box from the first quartile to
the third quartile. A vertical line goes through the box at the median. The whiskers
go from each quartile to the minimum or maximum. A box and whisker plot is a
way of summarizing a set of data measured on an interval scale. It is often used
in explanatory data analysis. This type of graph is used to show the shape of the
distribution, its central value, and its variability. In a box and whisker plot:

• The ends of the box are the upper and lower quartiles, so the box spans the
interquartile range.

• The median is marked by a vertical line inside the box.
• The whiskers are the two lines outside the box that extend to the highest and

lowest observations.

The following code snippet shows how a box plot is used to visualize the
distribution of the iris dataset. Figure 1.10 shows the box plot visualization across
the iris dataset “species” output variable.

1 sns.boxplot(x=’species’,y=’petal_length’, data=data)
2 plt.show()

Violin Plots

Violin plots are a method of plotting numeric data and can be considered a
combination of the box plot with a kernel density plot. In the violin plot (Fig. 1.11),
we can find the same information as in box plots:

• Median.
• Interquartile range.
• The lower/upper adjacent values are defined as first quartile-1.5 IQR and third

quartile + 1.5 IQR, respectively. These values can be used in a simple outlier
detection (Turkey’s fence) techniques, where observations lying outside of these
“fences” can be considered outliers.
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Fig. 1.10 Box plot for Iris dataset over “species” variable

Fig. 1.11 Violin plot over
the variable “petal_length” of
the iris dataset

Violin plots can be easily visualized using seaborn library as follows:

1 sns.violinplot(x="species", y="petal$\_$length", data=iris, size=8)
2 plt.show()

Univariate, Bivariate, and Multivariate Analysis

Univariate is a term commonly used in statistics to describe a type of data that
consists of observations on only a single characteristic or attribute. A simple
example of univariate data would be the salaries of workers in the industry. Like
all the other data, univariate data can be visualized using graphs, images, or other
analysis tools after the data is measured, collected, reported, and analyzed.
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Fig. 1.12 Bivariate
relationship of two attributes
in Iris dataset. The univariate
profiles are plotted in the
margin

Data in statistics are sometimes classified according to how many variables are
in a study. For example, “height” might be one variable and “weight” might be
another variable. Depending on the number of variables being looked at, the data is
univariate, or it is bivariate.

Multivariate data analysis is a set of statistical models that examine patterns in
multi-dimensional data by considering at once with several data variables. It is
an expansion of bivariate data analysis, which considers only two variables in its
models. As multivariate models consider more variables, they can examine more
complex analyses/phenomena and find the data patterns that can more accurately
represent the real world. These three analyses can be done by using seaborn library
in the following manner, depicted in Fig. 1.12, showing the bivariate distribution of
“petal-length” and “petal-width,” as well as the univariate profile of each attribute
in the margin.

1 sns.jointplot(x="petal_length", y="petal_width", data=data, kind="kde")
2 plt.show()

Visualization techniques are very effective, helping the analyst understand the
trends in data.
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1.7.4 Data Analysis

In addition to data visualization, extracting the information related to data is non-
trivial. Here, we discuss different kinds of information that can be extracted related
to the data.

Standard Deviation

The standard deviation is a statistic that measures the dispersion of a dataset relative
to its mean and is calculated as the square root of the variance. The standard
deviation is calculated as the square root of variance by finding each data point’s
deviation in the dataset relative to the mean. If the data points are far from the
mean, there is a higher deviation within the dataset. The more dispersed the data,
the larger the standard deviation; conversely, the more dispersed the data, the smaller
the standard deviation.

1 print("\n Std-dev:");
2 print(np.std(iris_setosa["petal_length"]))
3 print(np.std(iris_virginica["petal_length"]))
4 print(np.std(iris_versicolor["petal_length"]))
5

6 >Std-dev:
7 >0.17191858538273286
8 >0.5463478745268441
9 >0.4651881339845204

Mean/Average

The mean/average is the most popular and well-known measure of central tendency.
It can be used with both discrete and continuous data, although its use is most often
with continuous data. The mean is the sum of all values in the dataset divided by all
the values in the dataset. So, if we have n data points in a dataset and they have values
x1, x2, · · · , xn, the sample mean, usually denoted by x, is x = (x1+x2+· · ·+xn)/n

1 print("Means:")
2 print(np.mean(iris_setosa["petal_length"]))
3 # Mean with an outlier.
4 print(np.mean(np.append(iris_setosa["petal_length"],50)))
5 print(np.mean(iris_versicolor["petal_length"]))
6

7 >Means:
8 >1.4620000000000002
9 >2.4137254901960787

10 >4.26

Run the above commands to see the output.
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Variance

Variance in statistical context is a measurement of the spread between numbers in
a dataset. That is, it measures how far each number in the set is from the mean and
therefore from every other number in the set. Variance is calculated by taking the
differences between each number in the dataset and the mean, then squaring the
differences to make them positive, and finally dividing the sum of the squares by the
number of values in the dataset.

1 print("Variance:")
2 print(np.var(iris_setosa["petal_length"]))
3 # Variance with an outlier.
4 print(np.var(np.append(iris_setosa["petal_length"],50)))
5 print(np.var(iris_versicolor["petal_length"]))
6

7 >Variance:
8 >0.02955600000000001
9 >45.31804690503652

10 >0.21640000000000012

Median

The median is the central/middle number in a set of sorted ascending or descending
list of numbers and can be more descriptive of that dataset than the average. If there
is an odd amount of numbers, the median value is the number that is in the middle,
with the same amount of numbers below and above. If there is an even amount of
numbers in the list, the middle pair must be determined, added together, and divided
by two to find the median value.

1 print("\n Medians:")
2 print(np.median(iris_setosa["petal_length"]))
3 # Median with an outlier
4 print(np.median(np.append(iris_setosa["petal_length"],50)))
5 print(np.median(iris_virginica["petal_length"]))
6 print(np.median(iris_versicolor["petal_length"]))
7

8 >Medians:
9 >1.5

10 >1.5
11 >5.55
12 >4.35

Percentile

Percentiles are used to understand and interpret data. The nth percentile of a set of
data is the value at which n percent of the data is below it. They indicate the values
below which a certain percentage of the data in a dataset is found. Percentiles can be
calculated using the formula n = (P/100)×N , where P = percentile, N = number
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of values in a dataset (sorted from smallest to largest), and n = ordinal rank of a
given value.

1 print("\n 90th Percentiles:")
2 print(np.percentile(iris_setosa["petal_length"],90))
3 print(np.percentile(iris_virginica["petal_length"],90))
4 print(np.percentile(iris_versicolor["petal_length"], 90))
5

6 >90th Percentiles:
7 >1.7
8 >6.3100000000000005
9 >4.8

Quantile

A quantile is a statistical term describing a division of observations into four defined
intervals based upon the values of the data and how they compare to the entire set
of observations. The median is an estimator but says nothing about how the data
on either side of its value is spread or dispersed. The quantile measures the spread
of values above and below the mean by dividing the distribution into four groups.
We can map the four groups formed from the quantiles. The first group of values
contains the smallest number up to Q1; the second group includes Q1 to the median;
the third set is the median to Q3; and the fourth category comprises Q3 to the highest
data point of the entire set. Each quantile contains 25% of the total observations.
Generally, the data is arranged from smallest to largest: 1. First quantile: the lowest
25% of numbers 2. Second quantile: between 25.1 and 50% (up to the median) 3.
Third quantile: 51–75% (above the median) 4. Fourth quantile: the highest 25% of
numbers

1 print("\n Quantiles:")
2 print(np.percentile(iris_setosa["petal_length"],np.arange(0, 100, 25)))
3 print(np.percentile(iris_virginica["petal_length"],np.arange(0, 100, 25)))
4 print(np.percentile(iris_versicolor["petal_length"], np.arange(0, 100, 25)))
5

6 >Quantiles:
7 >[1. 1.4 1.5 1.575]
8 >[4.5 5.1 5.55 5.875]
9 >[3. 4. 4.35 4.6 ]

Interquartile Range

The IQR describes the middle 50% of values when ordered from lowest to highest.
To find the interquartile range (IQR), initially, find the median (middle value) of the
lower and upper half of the data. These values are quartile 1 (Q1) and quartile 3
(Q3). The IQR is the difference between Q3 and Q1.
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Mean Absolute Deviation

The mean absolute deviation of a dataset is the average distance between each data
point and the mean. It gives us an idea about the variability in a dataset. The idea is to
calculate the mean, calculate how far away each data point is from the mean using
positive distances, which are also called absolute deviations, add those deviations
together, and divide the sum by the number of data points.

1 from statsmodels import robust
2

3 print ("\n Median Absolute Deviation")
4 print(robust.mad(iris_setosa["petal_length"]))
5 print(robust.mad(iris_virginica["petal_length"]))
6 print(robust.mad(iris_versicolor["petal_length"]))
7

8 >Median Absolute Deviation
9 >0.14826022185056031

10 >0.6671709983275211
11 >0.5189107764769602

1.7.5 Performance Evaluation Metrics

Evaluating the performance of machine learning classifiers is an important step in
implementing effective ML-based countermeasure techniques. In machine learning
and statistics, there are a variety of measures that can be deployed to evaluate the
performance of a detection method in order to show its detection accuracy. Table 1.7
lists the standard evaluation metrics used for performance analysis of malware and
side-channel attacks detection and classification. For analyzing the detection rate
of ML-based security countermeasures, malicious applications’ samples are often
considered as positive instances. As a result, the True Positive Rate (TPR) metric, or
the hit rate, represents sensitivity that stands for the proportion of correctly identified
positives. It is basically the rate of malware samples (i.e., positive instances)
correctly classified by the classification model. The True Negative Rate (TNR) also
represents specificity that measures the proportion of correctly identified negatives.
In addition, the False Positive Rate (FPR) is the rate of benign files (i.e., negative
instances) wrongly classified (i.e., misclassified as malware samples).

The F-measure (F-score) in ML is interpreted as a weighted average of the
precision (p) and recall (r). The precision is the proportion of the sum of true
positives versus the sum of positive instances and the recall is the proportion of
instances that are predicted positive of all the instances that are positive. F-measure
is a more comprehensive evaluation metric over accuracy (percentage of correctly
classified samples) since it takes both the precision and the recall into consideration.
More importantly, F-measure is also resilient to the class imbalance in the dataset,
which is the case in our experiments. The Detection Accuracy (ACC) measures the
rate of the correctly classified positive and negative samples, which evaluates the
correct classification rate across all tested samples.
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Table 1.7 Evaluation metrics for performance of ML security countermeasures

Evaluation metric Description

True positive (T P ) Correct positive prediction

False positive (FP ) Incorrect positive prediction

True negative (TN ) Correct negative prediction

False negative (FN ) Incorrect negative prediction

Specificity: true negative rate TNR = TN/(T N + FP)
False positive rate FPR = FP/(FP + TN)
Precision P = T P/(FP + T P )
Recall: true positive rate T PR = T P/(T P + FN)
F-measure (F-score) Fmeasure = 2 × (P × R)/(P + R)
Detection accuracy ACC = (T P + TN)/(T P + FP + TN + FN)
Error rate ERR = (FP + FN)/(P +N)
Area under the curve AUC = ∫ 1

0 T PR(x)dx = ∫ 1
0 P(A > τ(x))dx

Precision and recall are not adequate for showing the performance of detection
even contradictory to each other because they do not include all the results
and samples in their formula. F-score (i.e., F-measure) is then calculated based
on precision and recall to compensate for this disadvantage. Receiver Operating
Characteristic (ROC) is a statistical plot that depicts a binary detection performance
while its discrimination threshold setting is changeable. The ROC space is supposed
by FPR and TPR as x and y axes, respectively. It helps the detector to determine
trade-offs between TP and FP, in other words, the benefits and costs. Since TPR and
FPR are equivalent to sensitivity and (1-specificity), respectively, each prediction
result represents one point in the ROC space in which the point in the upper left
corner or coordinate (0, 1) of the ROC curve stands for the best detection result,
representing 100% sensitivity and 100% specificity (perfect detection point).

Example 1.2 (Performance Evaluation of ML-Based Malware Detectors)
Problem: A neural network ML classifier is applied on various HPC samples
for hardware-assisted malware detection. Assuming that the FN=2, FP=1,
TP=8, and TN=6, evaluate the performance of the neural network ML in
classifying malware from benign samples by calculating Accuracy, Precision,
Recall, and F-measure metrics.
Solution: As mentioned before, the detection accuracy calculates the rate of
the correctly classified positive and negative samples:

ACC = T P + TN
T P + FP + TN + FN = 8 + 6

8 + 1 + 6 + 2
= 0.82. (1.1)

(continued)
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Example 1.2 (continued)
Precision measures the percentage of malware (positive) samples that are

correctly classified as malware:

P = T P

FP + T P = 8

1 + 8
= 0.89. (1.2)

Recall measures the percentage of actual malware samples that were
correctly classified by the ML-based detector:

R = T P

T P + FN = 8

8 + 2
= 0.8. (1.3)

Now, we can calculate F-measure that is interpreted as a weighted average
of the precision and recall:

F −Measure = 2 × (P × R)
P + R = 2 × (0.89 × 0.8)

0.89 + 0.8
= 0.84. (1.4)

1.8 Putting It All Together

Applied machine learning, is a rapidly growing field due to its interdisciplinary
nature. It is considered a search problem for finding the optimal mapping of inputs
and outputs given data and a machine learning method. We provided an intro-
duction to the machine learning pipeline and described data metadata extraction,
feature engineering, and preprocessing, data exploration and visualization, and data
standardization and analysis. Each of these important tasks was described using a
hands-on example. We deferred the training of machine learning models to the next
chapters. We also covered several performance evaluation metrics such as TPR,
TNR, precision and recall, F-measure, detection accuracy (ACC), and ROC. We
also covered the rationale for the application of these metrics.

1.9 Exercise Problems

Problem 1.1 Describe the Machine learning Pipeline.

Problem 1.2 Download Haberman Cancer Survival dataset from Kaggle. You
may have to create a Kaggle account to download data (https://www.kaggle.com/
gilsousa/habermans-survival-data-set). Then provide a comprehensive description

https://www.kaggle.com/gilsousa/habermans-survival-data-set
https://www.kaggle.com/gilsousa/habermans-survival-data-set


1.9 Exercise Problems 33

of the dataset including dataset size, the number of features (dimensions), type
of features (numeric, nominal, discrete, continuous, binary, so forth), and class
attribute (dependent variable).

Problem 1.3 Plot the distribution of data to show the number of data points per
class and describe if the dataset is balanced or not. If the dataset is imbalanced or
skewed, what solution do you propose as a remedy?

Problem 1.4 Identify outliers (if any) in the dataset and propose a solution to deal
with the outliers and explain why it is a suitable approach to be applied to this
dataset. You can use a visualization technique such as a box plot or a scatter plot to
identify outliers.

Problem 1.5 Perform a high-level statistical analysis of the dataset in terms of
reporting the mean, median, mean absolute deviation, and quantile before dealing
with potential outliers.

Problem 1.6 Perform Bi-variate analysis (correlation matrix, pair-plots) to find a
combination of useful features (i.e., independent variables) for classification.

Problem 1.7 Download the Airline .json file from
https://github.com/sathwikabavikadi/Machine-Learning-for-Computer-Scientists-
and-Data-Analysts and convert to .csv file and import into a dataframe.

Problem 1.8 Write your Python code to extract gender, age, and tile (such as “Mr”)
attributes from the “Description” field. Use pandas library.

Problem 1.9 Using the output of question 1.8, write a Python code to perform data
imputation on age and gender attributes. Explain your approach. You can use numpy
library.

Problem 1.10 Write a Python code to plot the distribution of Gender attributes after
imputation using a histogram plot.

Problem 1.11 Write a Python code to plot the distribution of Age attribute and plot
the box plots.

Problem 1.12 Write a Python code to plot the correlations between the dataset
attributes. You can use seaborn and matplotlib libraries. In case of finding correla-
tions between independent variables report them.

Problem 1.13 Outline the EDA techniques discussed in this chapter and the
significance of these techniques.

Problem 1.14 Discuss the prominence of data pre-processing.



Chapter 2
A Brief Review of Probability Theory
and Linear Algebra

2.1 Introduction

In daily life, we encounter various series of events and experiments that are based
on probability and have no certainty about the outcome. Probability theory is
an advantageous tool for quantitatively describing and forecasting the outcomes
of probability-based investigations. By applying probability theory to a problem,
one can simplify its understanding, evaluate it using the relevant mathematical
model, and forecast probable outcomes based on the probability. Two examples
are provided here to help you gain a better understanding of probability theory’s
applicability.

Consider rolling a fair dice as a simple example. When we are rolling a fair dice,
there is no certainty in the output to be achieved. It can be said that the output of this
experiment is based on probability. In more detail, in rolling a fair dice, the outcome
would be “1” with the probability of 1/6. Also, the outcome would be “2” with the
probability of 1/6. Similarly, each of the numbers of the dice would occur with the
probability of 1/6. In other words, if we repeat this experiment too many times, the
outcome “1” would be achieved in 16.66% of the time. A similar interpretation is
also applied to other possible outcomes. It can be seen that the possible outcome is
based on probability. This analysis and interpretation are possible using the concept
of the probability theory according to the definition of the probability theory.

Another example in this field is the entering and existing rate of the customers
in a restaurant. Using the probability theory, the entry rate of the costumers, the
time duration each customer spends in the restaurant, and their existing rate can be
easily modeled and analyzed mathematically. In particular, the average income of
the restaurant can be estimated. In fact, according to these predictions and analyzes,
one can take action to improve the performance of the restaurant.

Probability theory, in general, covers a broad range of applications. In any
subject where complete information is unavailable and hence no certainty about
the outcome, the issue can be controlled through the use of probability theory. Other

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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applications of probability theory include weather forecasting, victory or defeat in a
contest, wireless communication, machine learning, and even the drug distribution
problem in the medical area. This section is considered to be a discussion of the
fundamental notions of probability theory. Additionally, the topic of matrix algebra
is given and studied in relation to machine learning, which is one of the applications
of probability theory.

2.2 Fundamental of the Probability

Consider a probability-based experiment where there is no certainty in the outcome.
Each of the possible outcomes is known as an event. As an example, consider
we are tossing a coin. In this case, two possible outcomes could be achieved:
“Head” and “Tail,” each of them is called the event. Each of the events is specified
with a probability. In this example, the probability of achieving “Head” is 1/2, or
equivalently, we have:

P(Head) = 1

2
.

Similarly, the probability of achieving “Tail” would be 1/2. Generally, the proba-
bility of an event is shown as P(X = xi). In this example, xi could be “Head” or
“Tail.” Note that the probability of an event is always a non-negative, less than or
equal to one value:

0 ≤ P(X = xi) ≤ 1. (2.1)

The coin-tossing experiment is a simple example in which two possible outcomes
would be achieved. In order to express the concept of probability in a more complex
form, consider two random variables X and Y . Each of the random variables can
take value from their corresponding dictionaries. More precisely, if the random
variable X takes the value xi , and the random variable Y takes the value yj , then we
have:

i ∈ DX,
j ∈ DY ,

where DX and DX are the dictionaries corresponding to random variables X and
Y , respectively. Consider the case in which N possible outcomes could be achieved
from the combination of these two random variables. The probability of the event
xi corresponding to the random variable X is denoted by P(X = xi). Similarly,
the probability of the event yj corresponding to the random variable Y is denoted
by P(Y = yj ). Now, consider that we are interested in finding the probability of
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X = xi and Y = yj jointly. This probability is known as the joint probability and
is denoted by P(X = xi, Y = yj ). The joint probability of X and Y is written as
below:

P(X = xi, Y = yj ) = nij

N
, (2.2)

where nij denotes the number of events in which the probabilities X = xi and Y =
yj occurred jointly. The schematic of the joint probability is depicted in Fig. 2.1. In
this figure, P(X = xi) and P(Y = yj ) are denoted with the red and blue colors,
respectively. Note that the region where the events xi and yj are met simultaneously
is denoted by nij , as mentioned above.

As shown in Fig. 2.1, the number of events where X = xi is denoted by ci . Also,
the number of events where Y = yi is denoted by rj . Therefore, P(X = xi) and
P(Y = yj ) can be written as follows:

p(X = xi) = ci

N
,

p(Y = yj ) = rj

N
.

(2.3)

In the above equation, ci and rj are achieved as below:

ci =
∑

j∈DY
nij ,

rj =
∑

i∈DX
nij .

(2.4)

According to (2.3) and (2.4), the probability of X = xi and Y = yj can be
rewritten as below:

Fig. 2.1 Illustration of the
probability theory
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P(X = xi) =
∑

j∈DY

nij

N
,

P (Y = yj ) =
∑

j∈DX

nij

N
.

(2.5)

In particular, consider P(X = xi). It can be seen from the above formula that the
probability of X = xi is independent of the random variable Y by performing a
summation over j ∈ DY . This is called the “marginal probability” of X which can
be rewritten as below:

P(X = xi) =
∑

j∈DY
P (X = xi, Y = yj ). (2.6)

Similarly, the marginal probability of Y (or equivalently, P(Y = yj )) could be
found by performing a summation over i ∈ DX. Note that (2.6) is obtained referring
to (2.3) and (2.5). Also, note that (2.6) is known as the “sum rule” of the probability.

As an example, consider we have two random variables X and Y , where X
corresponds to a coin-tossing experiment, and Y corresponds to rolling a fair dice
experiment. The dictionaries of X and Y are specified as below:

DX = {1, 2, · · · , 6},
DY = {Head,Tail}.

Now, consider that we are interested in finding the probability of X =“Head” and
Y = 1. Here, nij = 1 where i corresponds to the event “Head” in random variable
X, and j corresponds to the event “1” corresponds to random variable Y . Moreover,
the total number of events obtained from the combination of X and Y is N = 12.
According to (2.2), the joint probability of X and Y would be obtained as below:

P(X = Head, Y = 1) = nij

N
= 1

12
. (2.7)

Also, inspired by (2.6), the marginal probabilities of X and Y would be obtained as
below:

P(X = Head) =
∑

j∈DY
P (X = Head, Y = yj ) = 6

12
,

P (Y = 1) =
∑

i∈DX
P (X = xi, Y = 1) = 2

12
. (2.8)

Consider the case in which the event X = xi occurred given the knowledge that
the event Y = yj has already occurred. The probability of X = xi given Y = yj



2.2 Fundamental of the Probability 39

is known as the conditional probability and is denoted by p(X = xi |Y = yj ). The
conditional probability is formulated as below:

P(X = xi |Y = yj ) = nij

rj
. (2.9)

It can be seen from the above equation that the given information (Y = yj ) limits
the denominator of (2.2) compared to the non-conditional case. Referring to (2.9),
the equation (2.2) can be reformulated as below:

P(X = xi, Y = yj ) = nij

N
= nij

rj
× rj

N
, (2.10)

which shows the relation between the joint probability and the conditional probabil-
ity. Using (2.3) and (2.9), the above equation is rewritten as below:

P(X = xi, Y = yj ) = P(X = xi |Y = yj )P (Y = yj ), (2.11)

which is known as the product rule of probability. Generally, we have:

sum rule : p(X) =
∑

Y

p(X, Y ),

product rule : P(X, Y ) = P(X|Y )P (Y ), (2.12)

where P(X = xi) and P(Y = yj ) are written as P(X) and P(Y ) for simplicity.
Again, consider the above example where the two experiments, coin-tossing and
rolling a fair dice, are considered. According to (2.4) and (2.9), the conditional
probability of X=“Head,” given the knowledge that Y = 1, is obtained as below:

P(X = Head|Y = 1) = 1

2
. (2.13)

Note that in the probability theory, we have symmetry property as below:

symmetry property : p(X, Y ) = p(Y,X).

According to the product rule and the symmetry property, we have:

P(Y |X)P (X) = P(X|Y )P (Y ). (2.14)

Dividing both sides of the above equation by P(X), we obtain:

P(Y |X) = P(X|Y )P (Y )
P (X)

. (2.15)
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This equation is known as the “Bayes rule.” This theorem is used in the cases in
which the conditional probability P(X|Y ) is known, but we are interested in the
conditional probability P(Y |X). Using the sum rule and the product rule presented
in (2.12), the Bayes theorem can be rewritten as follows:

P(Y |X) = P(X|Y )P (Y )
∑
y p(X|Y )P (Y ) . (2.16)

Independence

The random variables X and Y are said to be independent if the probability of the
events corresponding to random variable X does not affect the probability of the
events corresponding to random variable Y . For two independent random variables
X and Y we have:

P(X|Y ) = P(X) or P(Y |X) = P(Y ), (2.17)

which indicates that knowing that the event Y = yj occurred does not change
the value of the probability of X = xi . In the example discussed above where
the coin-tossing and rolling dice are considered as X and Y , it can be concluded
from (2.8) and (2.13) that X and Y are independent; knowing the probability of
Y = 1 does not affect the probability of X=“Head.” If two random variables X and
Y are independent, the joint probability would be formulated as below:

P(X, Y ) = P(X|Y )P (Y ) = P(X)P (Y ), (2.18)

which is concluded from (2.12) and (2.17). It can be seen from (2.18) that the
joint probability of two independent random variables equals the production of
the probability of each random variable. Note that X and Y are said to be
“unconditionally independent” if their joint distribution can be represented as the
product of their marginal probabilities.

2.3 Discrete Random Variable

In probability theory, a random variable is assigned to a variable that its value is
obtained from a random process or an experiment. It can be said that a random
variable is a function that maps a sample space into real numbers. For instance,
tossing a coin for three times can be considered as a random experiment. The
possible outcomes obtained from this experiment constitute the sample space
denoted by S:
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S = {HHH,HHT,HTH, THH,HT T , T HT, T TH, T T T }, (2.19)

where H and T stand for “head” and “tail,” respectively. It can be seen that the
sample space consists of 23 components. Now, consider that we want to find out
the number of obtained H s. Our goal in this example, or equivalently, the number
of heads obtained in this experiment, is defined as a random variable, denoted by
X. We assign a real number to each of the outcomes. In this example, we assign
the number “0” to the last case in which H occurred zero times. Also, the number
“1” would be assigned to the cases where one H occurred (e.g., THT ), and so
on. This is the meaning of mapping the sample space into real numbers. It can
be concluded that depending on the outcome of the experiment, the value of the
corresponding random variable would be 0, 1, 2, or 3. This set of possible values
that can be assigned to the random variable is considered as the range of the random
variable X, denoted by RX:

RX = {0, 1, 2, 3}. (2.20)

Note that the above example is a discrete random variable. Generally, random
variables can be categorized into two main parts: discrete random variables and con-
tinuous random variables. In this section, discrete random variables are discussed.
Continuous random variable would be described and explained in the next section.
Discrete or continuous nature of a random variable can be identified by its range;
discrete random variables are assigned to the random variables that their ranges are
countable, as it can be seen from the above example.

2.3.1 Probability Mass Function

Consider the range of the random variable X as follows:

RX = {x1, x2, x3, · · · }, (2.21)

where xis are the possible values that can be assigned to the random variable X.
Note that the random variables are usually denoted by the capital letters. Also, to
show the numbers in the range, the lowercase letters are usually used. Here, we
want to find out the probabilities of each event. The probability of occurring xi , or
equivalently, P(X = xi), is known as the probability mass function (PMF) of the
random variable X, which is denoted by PX(xi):

PX(xi) = P(X = xi), i = 1, 2, 3, · · · . (2.22)

It can be concluded that for a random variable, the probability of occurring an event
is identified by its PMF. In other words, the distribution of a discrete random variable
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is described using the PMF. Note that the PMF of a random variable should satisfy
the following two properties:

0 ≤ pX(xi) ≤ 1, for all xi, (2.23)
∑

xi∈S
pX(xi) = 1. (2.24)

From the first property, it can be seen that the PMF is a value between 0 and 1 that
shows how likely the event is. If PX(xi) is close to 0, it is very unlikely that event
xi occurs. Obviously, if PX(xi) is close to 1, the event ai is very likely to occur.
Consider the experiment where a coin is tossed for three times, similar to the
previous example, and we are interested in the number of H s. The sample space
and the range of the random variable X are shown in (2.19) and (2.20), respectively.
The PMF of this random variable is obtained according to (2.22). By expanding this
equation, we have:

pX(0) = P ({T T T }) = 1

8
,

pX(1) = P ({HT T, THT, T TH }) = 3

8
,

pX(2) = P ({HHT,HTH, THH }) = 3

8
,

pX(3) = P ({HHH }) = 1

8
.

(2.25)

In order to make sure that the PMF is written correctly, the properties of (2.24)
should be evaluated. It can be seen that the first property is satisfied. Moreover,
the summation of the probabilities equals 1, which satisfies the second property.
Therefore, it can be concluded that the PMF of this example is written correctly.
Figure 2.2 shows the PMF plot of this example.

Example 2.1 (Probability Mass Function (PMF))
Problem: Consider a contest where the probability of victory is p. The contest
is repeated continuously until the first victory is achieved. If the contest is
repeated for X times, the range of X is written as below:

RX = {1, 2, 3, · · · }.

Find the PMF.

(continued)
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Example 2.1 (continued)
Solution: To find the PMF of X, we have:

P(X = 1) = p
P (X = 2) = (1 − p)p

...

P (X = n) = (1 − p)(n−1)p

⇒ PX(x) = (1 − p)(n−1)p for n = 1, 2, · · · .

The above distribution is called the Geometric distribution. In order to check
if the result is correct or not, the property presented in (2.24) is used:

∞∑

n=1

(1 − p)(n−1)p = p
∞∑

j=0

(1 − p)j

= p × 1

1 − (1 − p) = 1,

which guarantees the correctness of the obtained PMF.

Fig. 2.2 The PMF plot
corresponding to (2.25)
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2.3.2 Cumulative Distribution Function

Another way to describe the distribution of a discrete random variable is possible
using the cumulative distribution function (CDF). Note that CDF can be defined for
the continuous random variables too. The CDF of the random variable X is defined
as below:

FX(x) = P(X ≤ x), for x ∈ R. (2.26)

From the above equation, it can be seen that the CDF of the random variable X is
obtained by accumulating the probability of occurring the events from −∞ until
the present x. Therefore, it can be concluded that the CDF of a random variable is
always a non-decreasing function. Note that the following property could be easily
obtained from the definition of the CDF:

P(a < x ≤ b) = FX(b)− FX(a), for a ≤ b. (2.27)

Again, consider the coin-tossing example mentioned above. The CDF of the
corresponding random variable could be obtained as below:

FX(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 for x < 0
1
8 for 0 ≤ x < 1
4
8 for 1 ≤ x < 2
7
8 for 2 ≤ x < 3

1 for x ≥ 3

. (2.28)

Figure 2.3 shows the plot of the above CDF. It can be seen from the figure that the
CDF is a non-decreasing function, as mentioned before.

Fig. 2.3 The CDF plot
corresponding to (2.28)
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Example 2.2 (Cumulative Distribution Function (CDF))
Problem: Consider a discrete random variable with the following PMF:

PN(n) = e−λλn

n! ,

which is called the Poisson distribution. Obtain the CDF.
Solution: According to the definition, the CDF of the above random variable
is obtained as below:

FN(n) =
{

0 for n < 0
∑n
k=0

e−λλk
k! for n ≥ 0

.

Note that FN(n) = 1 for n = ∞. Also, consider we are interested in finding
P(2 < n ≤ 5). According to (2.27) we have:

P(2 < N ≤ 5) =
5∑

k=0

e−λλk

k! −
2∑

k=0

e−λλk

k!

=
5∑

k=3

e−λλk

k!

= e−λ
(
λ3

3! + λ4

4! + λ5

5!
)

.

2.3.3 Expectation and Variance

The probability distribution can be described by its moments. However, in some
of the common probability distributions such as Poisson or Normal distributions,
only the first and the second moments are sufficient for the distributions to be
described. Therefore, it can be concluded that among the moments, the first and the
second moment are the most common parameters employed to describe and even
compare the distributions. The first-moment metric is known as the expectation.
Moreover, using the expectation and the second-moment metrics, another metric
named variance is defined. In this section, it is considered to introduce and explain
the expectation and the variance, as two common parameters, in more detail. Note
that some of the most common probability distributions would be introduced later in
Sect. 2.5 where the expectation and the variance parameters are sufficient to describe
them.
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Expectation

In probability theory, the expectation or the mean value of a random variable is
defined as the value that is expected, on average, to be obtained from a random
process after infinite repetition. This is one of the most common parameters which
is performed to describe the distribution of a random variable, predict the behavior
of the process, or compare the results of two or more random variables.

The expected value of the random variable X, denoted by E[X], is defined as
below:

E[X] �
∑

xi∈RX
xiPX(xi), (2.29)

which is formulated as the sum of the value of each event multiplied to its
corresponding probability. It can be seen from the formula that as the probability of
an event increases, the contribution of that event would be greater in the expectation
calculation. Consider g(X) as a function of the random variable X. In order to
calculate the expectation of g(X), we have:

E[g(X)] =
∑

x∈RX
g(x)PX(x). (2.30)

The above formula is known as the law of the unconscious statistician (LOTUS)
which is applicable in some cases where calculating the expectation value using the
direct formula is hard to solve.

Again, consider the previous example in which a coin is tossed three times.
Referring to (2.29), the expectation of the random variable in this example would
be obtained as below:

E[X] =
(

0 × 1

8

)

+
(

1 × 3

8

)

+
(

2 × 3

8

)

+
(

3 × 1

8

)

= 3

2

which means that the mean value of the process would be convergent or converges
only 3

2 if the experiment is repeated infinite times.

Example 2.3 (Expectation)
Problem: Consider the Geometric distribution with the following PMF:

PX(x) = (1 − p)(n−1)p for n = 1, 2, 3, · · · .

Find the expectation for the aforementioned Geometric distribution.

(continued)
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Example 2.3 (continued)
Solution: According to (2.29), the expectation of the above distribution is
obtained as below:

E[X] =
∞∑

n=1

n(1 − p)(n−1)p.

= p
∞∑

j=0

(j + 1)(1 − p)j . (2.31)

In order to obtain the solution of the above formula, consider the following
relation:

∞∑

j=0

(1 − p)(j+1) = 1 − p
p

.

Taking the derivation from both sides of the above equation with respect to p,
we have:

−
∞∑

j=0

(j + 1)(1 − p)j = −1

p2 . (2.32)

Referring to (2.31) and (2.32), the expectation would be obtained as below:

E[X] = p × 1

p2
= 1

p
.

Variance

In addition to the expectation (or equivalently, the mean) parameter, the variance of
a random variable is another important parameter that can be used to identify the
distribution of that random variable. The variance of a random variable indicates
how the samples are spread over the mean distribution of that random variable.
Consider the expectation value of a random variable X to be E[X] = μX. The
variance of the random variable would be defined as follows:
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V ar[X] � E[(X − μX)2]
= E[X2 − 2XμX + μ2

X]
= E[X2] − 2μXE[X] + μ2

X

= E[X2] − μ2
X

(2.33)

or equivalently:

V ar[X] = E[X2] − E
2[X], (2.34)

where E[X2] is the second-moment parameter of the distribution of the random
variable X. Note that the variance of a random variable X is also denoted by
σ 2
X. Also, note that the variance is always a non-negative parameter (σ 2

X ≥
0). Comparing the expectation and the variance, it can be concluded that the
expectation or the mean value of a random variable shows the average position of
the distribution. However, the variance metric shows how the samples are distributed
around the mean value. A lower value of the variance metric indicates that by
selecting a sample from the distribution, it is expected that the selected sample is
close to its mean value. It is worth to note that for a random variable X, we have:

V ar[aX + b] = a2V ar[X], (2.35)

where a and b are constant. The proof of the above relation is left as an exercise.
Referring to (2.34), the variance of the coin-tossing example mentioned before
would be obtained as below:

E[X2] =
(

02 × 1

8

)

+
(

12 × 3

8

)

+
(

22 × 3

8

)

+
(

32 × 1

8

)

= 3.

Therefore, we have:

V ar[X] = E[X2] − E
2[X] = 3 −

(
3

2

)2

= 3

4
.

Another measure, called the standard deviation, also could be defined which is
simply the square root of the variance. It is defined as:

std(X) � σX = √
V ar[X]. (2.36)

The concept of the standard deviation and the variance are similar, except that their
units are different. It is easy to find out that the standard deviation of the above

coin-tossing example would be
√

3
2 .
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Example 2.4 (Variance)
Problem: Consider the Geometric distribution with the following PMF:

PX(x) = (1 − p)(n−1)p for n = 1, 2, 3, · · · .

Find the variance for the above distribution.
Solution: In order to obtain the variance of the above distribution, one can use
LOTUS presented in (2.30). Accordingly, we have:

E[X(X − 1)] =
∞∑

n=1

n(n− 1)(1 − p)(n−1)p.

= p
∞∑

j=0

(j + 1)j (1 − p)j

= −p ∂
∂p

∞∑

j=0

j (1 − p)j+1

= −p ∂
∂p

⎡

⎣(1 − p)
∞∑

j=0

j (1 − p)j × (1 − p)−1

(1 − p)−1

⎤

⎦

= −p ∂
∂p

⎡

⎣(1 − p)2
∞∑

j=0

j (1 − p)j−1

⎤

⎦

= p ∂
∂p

⎡

⎣(1 − p)2 ∂
∂p

∞∑

j=0

(1 − p)j
⎤

⎦ . (2.37)

Also, we have:

∞∑

j=0

(1 − p)j = 1

p
.

Therefore, (2.37) can be rewritten as below:

E[X(X − 1)] = E[X2] − E[X]

= p ∂
∂p

[

(1 − p)2 ∂
∂p

(
1

p

)]

(continued)
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Example 2.4 (continued)

= 2(1 − p)
p2

. (2.38)

The expectation of the Geometric distribution is 1/p. Therefore, according
to (2.38) we have:

E[X2] = 2(1 − p)
p2

+ E[X]

= 2(1 − p)
p2 + 1

p
= 2 − p

p2 .

Finally, the variance of the Geometric distribution is obtained as below:

V ar[X] = E[X2] − E
2[X]

= 2 − p
p2

− 1

p2
= 1 − p

p2
.

2.4 Continuous Random Variable

In discrete random variables, the range of the random variable is countable, as
mentioned before. However, in a continuous random variable, the range is defined as
an interval (or the summation of intervals), and therefore, it would not be countable
anymore. Moreover, for a continuous random variable, we have P(X = x) = 0 for
all x ∈ R. In the following, the distribution of the continuous random variables will
be discussed in more detail.

2.4.1 Probability Density Function

In order to describe the distribution of a continuous random variable, the probability
density function (PDF) is defined (instead of the PMF defined for discrete random
variables). The PDF of the random variableX is denoted by fX(x) and its concept is
similar to the PMF defined for discrete random variables. The PDF of the continuous
random variable X would be defined as below:

fX(x) = dFX(x)

dx
, (2.39)
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where FX(x) is the CDF of the random variable X, as described in Sect. 2.3.2.
Note that FX(x) is differentiable at x. The above equation declares that the PDF
of a continuous random variable equals the derivative of its corresponding CDF.
The relation between the PDF and the CDF of a continuous random variable X is
obtained as follows:

FX(x) = P(X ≤ x) =
∫ x

−∞
fX(u)du, −∞ < x <∞. (2.40)

Similar to the result obtained from the CDF of a discrete random variable, for the
continuous random variable we can also conclude that the CDF is a non-decreasing
function. Moreover, we have

P(a < X ≤ b) = FX(b)− FX(a) =
∫ b

a

fX(u)du. (2.41)

Note that the above equation is similar to (2.27) described in the discrete random
variable section. Generally, it can be said that the formulas of the continuous random
variable are similar to the discrete random variables, except that the integral operator
is replaced with the summation operator. This issue will be more clearly seen in the
following.

Let us investigate the PDF and the CDF of the continuous random variable with
an example; consider an experiment in which a number is randomly chosen from the
interval [0, 10]. This can be considered as a continuous random variable according
to the definition of the continuous random variable. This example is known as the
Uniform distribution which will be discussed in more detail later in Sect. 2.5. The
PDF of this example would be written as below:

fX(x) =
{

1
10 for 0 ≤ x ≤ 10

0 otherwise
. (2.42)

Figure 2.4 shows the PDF plot of this example. It can be seen from the figure that
the Uniform distribution is a continuous random variable. According to (2.40), the
CDF would be obtained as below:

FX(x) =
∫ x

−∞
fX(u)du

=
∫ x

0

1

10
du = 1

10
x,

for 0 ≤ x ≤ 10. Also, for x < 0 and x > 10 intervals, the CDF would be 0 and 1,
respectively. In other words, we have:
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Fig. 2.4 The PDF plot
corresponding to (2.42)

Fig. 2.5 The CDF plot corresponding to (2.43)

FX(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 for x < 0
1
10x for 0 ≤ x ≤ 10

1 for x > 10

. (2.43)

Figure 2.5 depicts the CDF plot corresponding to (2.43). It can be clearly seen that
the CDF plot is a non-decreasing function, as mentioned before.

Example 2.5 (Continuous Random Variable)
Problem: Consider a random variable with the following PDF:

fX(x) = α2e−
α
5 x for x ≥ 0,

Determine the α value and CDF.
Solution: The properties of the discrete random variable are valid for
continuous random variables, except that the integral operator is replaced with
the summation operator. Therefore, according to (2.24), we have:

(continued)
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Example 2.5 (continued)∫ ∞

−∞
fX(x)dx = 1

∫ ∞

0
α2e−

α
5 xdx = 1 → α = 1

5
.

Also, the CDF of the above random variable is obtained as below:

FX(x) =
∫ ∞

0

1

25
e−

1
25 xdx

= 1 − e− 1
25 x.

2.4.2 Expectation and Variance

Similar to the discrete random variables, the expectation and variance are also
defined in continuous random variables. These two common parameters are appli-
cable in describing the probability distribution of the continuous random variables
such as Exponential distribution. In the following, these parameters are discussed
separately. As will be seen, the definition of the expectation and variance in
continuous random variables is similar to the ones in discrete random variables.
The difference is that the integral operator is replaced with the summation operator.

Expectation

The expectation value of a continuous random variable X would be obtained from
the following formula:

E[X] =
∫

x

xfX(x)dx. (2.44)

It can be seen that the above relation is similar to the expectation formula of the
discrete random variable, defined in (2.29), with this difference that the integral
operator is replaced with the summation operator. Considering the uniform distri-
bution example where its PDF is presented in (2.42), the corresponding expectation
value would be obtained as below:

E[X] =
∫ 10

0

x

10
dx = 5. (2.45)
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Example 2.6 (Continuous Random Variable Expectation)
Problem: Consider a continuous random variable with the following PDF:

fX(x) = 1

25
e−

1
25 x for x ≥ 0.

Determine the expectation.
Solution: The expectation of the random variable is calculated as below:

E[X] =
∫ ∞

0

x

25
e−

1
25 xdx

=
(
−xe− x

25 − 25e−
x
25

)∞
0

= 25.

Variance

Before computing the variance of the continuous random variable, LOTUS should
be formulated. For continuous random variables, LOTUS is formulated as below:

E[g(X)] =
∫ ∞

−∞
g(x)fX(x)dx. (2.46)

Comparing (2.30) and (2.46), it can be seen that the definition of LOTUS is
similar for discrete and continuous random variables. The difference is that for the
continuous random variable, the integral operator is replaced with the summation
operator, as shown in the above equation. Referring to the formulation of the
variance obtained in (2.34), the variance of the continuous random variable equals
E[(X − μX)2]. According to (2.46), it can be concluded that g(X) = (X − μX)2,
and therefore, the variance of the continuous random variable would be written as
follows:

V ar[X] � E[(X − μX)2]

=
∫ ∞

−∞
(x − μX)2fX(x)dx

=
∫ ∞

−∞
x2fX(x)dx − 2μX

∫ ∞

−∞
xfX(x)dx + μ2

X

∫ ∞

−∞
fX(x)dx

=
∫ ∞

−∞
x2fX(x)dx − μ2

X.

(2.47)
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As an example, consider the Uniform distribution in the interval [0, 10]. According
to the above formula, the variance of the distribution would be obtained as follows:

∫ ∞

−∞
x2fX(x)dx =

∫ 10

0
x2 1

10
dx = 100

3
.

Note that the expectation of the considered distribution is presented in (2.45).
Therefore, we have:

V ar[X] =
∫ ∞

−∞
x2fX(x)dx − μ2

X

= 100

3
− (5)2 = 25

3
.

Example 2.7 (Continuous Random Variable Variance)
Problem: Consider the following PDF:

fX(x) = 1

25
e−

1
25 x for x ≥ 0.

Determine the variance.
Solution: In order to obtain the variance of the above distribution, we have:

E[X2] =
∫ ∞

0

x2

25
e−

1
25 xdx = 2(25)2.

Also, it is obtained that the expectation of the above distribution is 25.
Therefore, the variance would be obtained as below:

V ar[X] = E[X2] − E
2[X] = 2(25)2 − (25)2 = 625.

2.5 Common Distributions

There exist some special distributions that have a wide range of applications in
the machine learning and are commonly used in modeling the experiments. These
common distributions are identified and separated with special names. Due to the
applicability of these distributions, it is worth investigating their properties and
memorize them. In the following, we will review some of the commonly used
probability distributions. The content is divided into two categories. In the first
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category, the discrete distributions are discussed. In the second category, some
continuous distributions are introduced and investigated.

2.5.1 Discrete Distributions

Bernoulli Distribution

The Bernoulli distribution is one of the most simple discrete distributions in which
two outcomes can occur with the probability of p and q = p − 1, respectively. As
an example, consider tossing a coin. If the outcome is H , the value “1” would be
assigned to the outcome. Also, If the outcome is T , the corresponding value would
be “0”. Each of the events occurs with a certain probability. It means we have:

P {Head} = p
P {Tail} = 1 − p.

The PMF of X can be written as

PX(x) =

⎧
⎪⎪⎨

⎪⎪⎩

p for x = 1

1 − p for x = 0

0 otherwise

. (2.48)

According to (2.29), the expected value of the Bernoulli distribution is:

E[X] = (1)(p)+ (0)(1 − p) = p. (2.49)

In order to compute the variance, we have:

E[X2] = (12)(p)+ (02)(1 − p) = p, (2.50)

and therefore, the variance of the Bernoulli distribution would be obtained as below:

V ar[X] = E[X2] − E
2[X] = p − p2 = pq. (2.51)

Note that the Bernoulli distribution is expressed as X ∼ Bernoulli(p).

Binomial Distribution

The Binomial distribution is also a discrete distribution. Consider we toss a coin n
times independently. Similar to the Bernoulli distribution, the probability of H is p,
and the probability of T is 1 − p for each trial. Consider that we are interested in
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finding the total number of obtained H s after n trials. The PMF of this distribution
is written as below:

PX(k) =
(
n

k

)

pk(1 − p)n−k, x = 0, 1, . . . , n. (2.52)

It can be seen that the Binomial distribution is identified by two parameters: n and
p. The Binomial distribution is expressed as X ∼ Binomial(n, p). It is worth
noting that the Binomial distribution can be considered as the sum of n independent
Bernoulli distributions. By taking this issue into account, the expectation of this
distribution would be easily calculated as below:

E[X] = np. (2.53)

Similarly, the variance of the Binomial distribution would be obtained from
summing the variance of n independent Bernoulli distributions:

V ar[X] = npq. (2.54)

Figure 2.6 shows three Binomial distributions with different parameters N and p.

The Multinomial Distributions

As it was described, The binomial distribution is defined when there are only
two possible outcomes, i.e., true/false or heads/tails. When the binomial case

Fig. 2.6 Illustration of the binomial distribution with different parameters N and p
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is extended to the multi-dimensional case, the distribution is called multinomial
distribution. In the multinomial distribution, there are a set of k possible outcomes
(X1, X2, X3, · · · , Xk)with associated probabilities (p1, p2, p3, · · · , pk). Note that
,the sum of probabilities must equal 1 because one of the results is sure to occur. Let
us assume n trials and let the number of times that Xi occurs be denote by xi . With
this notation, the PDF of concurrently observing {x1, · · · , xk} is given by

f (x1, · · · , xk; n, p1, . . . , pk) =
(

n

x1, . . . , xk

)

p
x1
1 . . . p

xk
k , (2.55)

where

(
n

x1, . . . , xk

)

= n!
x1! x2! ··· xk ! is the multinomial coefficient.

The Poisson Distribution

The Poisson distribution is one of the most common discrete distributions that has
a wide range of applications in different scenarios. It can be used for modeling a
series of discrete events in which the average time between the events is known, but
the exact timing of events is random. For instance, consider that we are interested in
observing the number of cars that visit a certain street at a given time interval (e.g.,
1 to 2 pm). Also, suppose that we know the number of cars visiting the considered
street is λ = 20, on average, according to the information obtained from the previous
days. We can model this scenario using the Poisson distribution with the parameter
λ = 20, and its PMF is of the form:

PX(k) = λke−λ

k! , k = 0, 1, 2, . . . . (2.56)

The Poisson distribution is expressed as X ∼ Poisson(λ). Note that in Poisson
distribution, the arrival of an event is independent of its previous events. According
to (2.29), the expected value of the Poisson distribution is calculated as below:

E[X] =
∞∑

k=0

k
λke−λ

k!

= e−λ
∞∑

k=1

λk

(k − 1)! = λ.
(2.57)

After some manipulation, one can show that the variance of Poisson distribution
is also given by λ. This is an interesting feature for this distribution where its
expectation and its variance are equal. Figure 2.7 shows the Poisson distribution
for different values of λ.
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Fig. 2.7 Illustration of the Poisson distribution with different values of λ

2.5.2 Continuous Distributions

In this section we review some commonly used continuous probability distributions.

Gaussian (Normal) Distribution

One of the most important probability distributions for continuous random variables
is the Normal, or the Gaussian distribution. This distribution plays an important
role in the probability theory and machine learning. The Normal distribution is a
symmetric distribution where most of the observations cluster around its central
peak (mean). Extreme values in both tails of the distribution are similarly unlikely.
The random variable X has a Normal distribution if its PDF is defined as follows:

fX(x) = 1

σX
√

2π
exp

[

− (x − μX)2
2σ 2
X

]

, −∞ < x <∞, (2.58)

where μX and σ 2
X are the mean value and the variance of the distribution,

respectively. The Normal distribution is identified by these two parameters and
expressed as X ∼ N(μX, σ 2

X). The shape of the distribution changes based on the
values of these parameters. Changing the mean value shifts the entire curve on the
X-axis. The variance defines the width of the Normal distribution. Changing the
variance either tightens or spreads out the width of the distribution along the X-
axis. Figure 2.8 shows the effect of changing the parameters on the shape of the
distribution.
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Fig. 2.8 Normal distribution with (a) σ 2
X = 2 and μX ∈ {1, 3}, (b) μX = 0 and σ 2

X ∈ {2, 4}

A continuous random variable X is said to be a standard Normal (or standard
Gaussian) random variable, X ∼ N(0, 1), if its mean value and its variance equal
to “0” and “1”, respectively. According to (2.58), the PDF of the standard Normal
distribution is written as:

fX(x) = 1√
2π
e−(x2/2). (2.59)

According to (2.40), it can be concluded that in order to obtain the CDF of the
Gaussian distribution, we can integrate the PDF function as follows:

FX(x) = Q(X − μ
σ

) =
x∫

−∞

1
√

2πσ 2
X

exp

[

− (u− μX)2
2σ 2
X

]

du, (2.60)

whereQ(.) is given by,

Q(x) =
x∫

−∞

1√
2π
eu

2/2du. (2.61)

Q-function does not have a closed-form solution and is available in tabulated form.
Another important function in the context of Normal distribution is “Error function,”
which is given by

erf(x) = 2√
π

∫ x

0
e−t2dt. (2.62)
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Fig. 2.9 The graph of the (a) PDF and (b) CDF of the standard Normal distribution

After some algebra, one can show thatQ(x) = 1
2 − 1

2 erf( x√
2
). Figure 2.9 shows the

PDF and the CDF plot of the standard Normal distribution.

Exponential Distribution

When events occur independently over non-overlapping intervals, the time interval
between the occurrence of two consecutive events can be modeled by the exponen-
tial distribution. The PDF of the exponential distribution is written as

fX(x) =
{
λe−λx for x ≥ 0,
0 otherwise

(2.63)

where λ is denoted as the rate parameter of the exponential distribution. According
to (2.40), the CDF of the exponential distribution would be obtained as below:

FX(x) =
x∫

0

λe−λudu = 1 − eλx. (2.64)

Figure 2.10 shows the PDF and the CDF of the exponential distribution for three
different values of λ. Following (2.44) and (2.47), the expectation and the variance
of the exponential distribution are obtained as

E[X] =
∫ ∞

0
xλe−λxdx = 1

λ
(2.65)

V ar[x] =
∫ ∞

0
x2λe−λxdx − 1

λ2 = 1

λ2 . (2.66)
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Fig. 2.10 The plot of the (a) PDF and (b) CDF of the Exponential distribution for three different
values of λ

Memory-Less Property of Exponential Distribution

Assume two positive real number, α, β ≥ 0. For two event of {X > α + β} and
{X > α}, we can write

P {X > α + β | X > α} = e−(α+β)

e−α

= P {X > β}.
(2.67)

For example, if X is the waiting time, then (2.67) implies that if an event does not
arrive at time α, and has to wait additional time β to arrive, the probability of waiting
for additional time β depends only on β (not on α), and this probability is identical
to the probability of waiting for time β. This fact is called “Memory-less” property
of exponential distribution.

Uniform Distribution

In continuous distributions, the uniform distribution is one of the most simple
probability distributions which plays an important role in machine learning. It is
concerned with events that are equally likely to occur. The continuous random
variable X is said to be uniformly distributed on the interval [a, b], and expressed
as X ∼ U(a, b), when its PDF on the given interval is written as:

fX(x) =
{

1
b−a for a ≤ x ≤ b
0 otherwise.

(2.68)
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Fig. 2.11 The plot of the (a) PDF and (b) CDF of the Uniform distribution for two different
intervals

Consequently, the CDF of the Uniform distribution would be:

FX(x) =
⎧
⎨

⎩

0 for x < a
x−a
b−a for a ≤ x ≤ b
1 for x > b

(2.69)

Figure 2.11 depicts the PDF and the CDF of uniform distribution for two different
intervals. According to (2.44), the expected value of the Uniform distribution would
be obtained as:

E[X] =
∫ b

a

xfX(x)dx =
∫ b

a

x

b − a da = a + b
2
. (2.70)

In order to calculate the variance of the uniform distribution, we have:

E[X2] =
∫ b

a

x2

b − a dx = a2 + ab + b2

3
, (2.71)

and therefore, the variance would be obtained as below:

V ar[X] = E[X2] − E
2[X] = (b − a)2

12
. (2.72)
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2.6 Joint Probability Distributions

The probability distribution of a random variable is discussed in both cases of
discrete and continuous forms in the previous sections. In this section, the joint
probability distribution will be discussed in which the distribution of two or
more random variables has to be considered jointly. If two random variables are
considered, the joint probability distribution is called the bivariate distribution. It
can be generalized to multivariate probability distribution as the number of random
variables increases. The joint probability distribution can be categorized into two
parts: the joint distribution of discrete and continuous random variables. Generally,
it can be said that the formulations of the joint distribution of discrete and continuous
random variables are similar, with this difference that in the joint distribution of
discrete random variables, the summation operator is used. However, in the joint
distribution of continuous random variables, the integral operator is replaced with
the summation operator. In the following, each of the categories will be discussed
separately in more detail.

2.6.1 Joint Distribution: Discrete Random Variables

From Sect. 2.3 we know that for a discrete random variable, the PMF can describe
the distribution of the random variable. Here, we are interested in investigating the
distribution of two (or more) discrete random variables at the same time. Therefore,
joint PMF should be defined as below:

PXY (x, y) = P(X = x, Y = y). (2.73)

Consider the range of the random variables X and Y as RX and RY , respectively.
The range of the joint problem would be written as below:

RXY {(x, y)|x ∈ RX, y ∈ RY }. (2.74)

Similar to the properties obtained in (2.24), for the joint PMF we have:

0 ≤ PXY (xi, yi) ≤1, for all xi, yi,
∑

xi ,yi∈RXY
PXY (xi, yi) =1. (2.75)

We will be focused on the joint PMF of two random variables. However, it should
be noted that the joint PMF can be defined for more random variables (e.g.,
PXYZ(x, y, z)) similar to this manner.

As an example, consider the following joint PMF (PXY (x, y)) consists of two
random variables X and Y :
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Y = 1 Y = 2

X = 1 1
3

1
12

X = 2 1
3

1
4

(2.76)

The range of the joint PMF is RXY = {(x, y)|x, y ∈ {1, 2}}. Note that the properties
mentioned in (2.75) are also met. It is worth noting that if two random variables
X and Y are independent, the joint distribution will be the multiplication of the
distribution of each random variable:

PXY (x, y) = PX(x)PY (y), (2.77)

Joint CDF

For two random variables X and Y , the joint CDF can be defined as:

FXY (x, y) = P(X ≤ x, Y ≤ y). (2.78)

Consider the above example, the joint CDF would be obtained as follows:

FXY (x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 for x < 1 or y < 1

P(X ≤ 1, Y ≤ 1) = 1
3 for 1 ≤ x, y < 2

P(X = 1, Y ≤ 2) = 5
12 for 1 ≤ x < 2, y ≥ 2

P(X ≤ 2, Y = 1) = 2
3 for 1 ≤ y < 2, x ≥ 2

1 for x, y > 2

Marginal PMF

In order to obtain the PMF of one random variable from the joint PMF, a summation
procedure should be applied over the range of the other random variable. This is
called the marginal PMF which is defined as below:

PX(x) =
∑

yi∈RY
PXY (x, yi),

PY (y) =
∑

xi∈RX
PXY (xi, y).

(2.79)
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Considering the previous example where its joint PMF is presented in (2.76), the
marginal PMF of X can be obtained as below:

PX(1) = PXY (1, 1)+ PXY (1, 2) = 1

3
+ 1

12
= 5

12
,

PX(2) = PXY (2, 1)+ PXY (2, 2) = 1

3
+ 1

4
= 7

12
.

Therefore, we have:

PX(x) =

⎧
⎪⎪⎨

⎪⎪⎩

5
12 for x = 1
7
12 for x = 2

0 otherwise

,

Similar to this manner, the marginal PMF of Y is written as below:

PY (y) =

⎧
⎪⎪⎨

⎪⎪⎩

2
3 for y = 1
1
3 for y = 2

0 otherwise

,

2.6.2 Joint Distribution: Continuous Random Variables

Similar to the discrete random variables, for continuous random variables the joint
PDF could be defined as fXY (x, y). Also, we have:

∫ ∞

−∞

∫ ∞

−∞
fXY (x, y)dxdy = 1, (2.80)

which is similar to the property of the discrete joint PDF mentioned in (2.75). For
instance, consider the following joint PDF:

fXY (x, y) = α
(x

2
+ y3

)
, 0 ≤ x, y ≤ 1, (2.81)

where α is a constant. According to (2.80), the constant α would be obtained as
below:
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∫ 1

0

∫ 1

0
α
(x

2
+ y3

)
dxdy = 1

∫ 1

0

∫ 1

0

(x

2
+ y3

)
dxdy = 1

α

∫ 1

0

(
1

4
+ y3

)

dy = 1

α
⇒ α = 2.

(2.82)

Note that if two random variables X and Y are independent, the joint distribution
would be fXY (x, y) = fX(x)fY (y).

Joint CDF

The joint CDF of two continuous random variables X and Y can be defined as:

FXY (x, y) =
∫ y

−∞

∫ x

−∞
fXY (x, y)dxdy. (2.83)

Consider the joint PDF expressed in (2.81). For 0 ≤ x, y ≤ 1, the joint CDF would
be obtained as below:

FXY (x, y) =
∫ y

0

∫ x

0

(
x + 2y3

)
dxdy

=
∫ y

0

(
x2

2
+ 2xy3

)

dy

= 1

2

(
x2y + xy4

)
.

Therefore, we have:

FXY (x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

0 for x, y < 0
1
2

(
x2y + xy4

)
for 0 ≤ x, y ≤ 1

1 for x, y > 1

,

Marginal PDF

The definition of the marginal PDF in continuous random variables is similar to
the discrete random variables, except that the integral operator is replaced by the
summation operator in (2.79). Therefore, the marginal PDF of the random variables
X and Y would be obtained as below:
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fX(x) =
∫

y∈RY
fXY (x, y)dy,

fY (y) =
∫

x∈RX
fXY (x, y)dx.

(2.84)

Again, consider the joint PDF in (2.81). The marginal PDF of X would be obtained
as follows:

fX(x) =
∫ 1

0

(
x + 2y3

)
dy

= x + 1

2
, 0 ≤ x ≤ 1.

(2.85)

Similarly, the marginal PDF of Y is:

fY (y) =
∫ 1

0

(
x + 2y3

)
dx

= 1

2
+ 2y3, 0 ≤ y ≤ 1.

(2.86)

Note that is this example, X and Y are not independent, since fXY (x, y) 
=
fX(x)fY (y).

2.6.3 Covariance and Correlation

The covariance and the correlation metrics are two parameters that are defined
between the random variables in order to evaluate the relation between them. In
the following, these two parameters are introduced and discussed.

Covariance

One parameter could be defined between two random variables, is the covariance
metric. This parameter gives some information about the relation between the
random variables. The covariance between two random variablesX and Y is defined
as below:

cov[X, Y ] = EXY [(X − E[X]) (Y − E[Y ])]
= EXY [XY ] − E[X]E[Y ]. (2.87)
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It is obvious from the above equation that cov[X, Y ] = cov[Y,X]. If two random
variables are independent, we have EXY [XY ] = E[X]E[Y ], and therefore, the
covariance metric will be “0”. Also, for two random variables X and Y , we have:

cov [(aX + b), (cY + d)] = ac × cov [X, Y ] , (2.88)

where a, b, c, and d are constant. For instance, consider the joint PDF in (2.81),
where the marginal PDFs of the random variables X and Y are calculated in (2.85)
and (2.86), respectively. In order to obtain the covariance between X and Y , we
have:

E [XY ] =
∫ 1

0

∫ 1

0
xy

(
x + 2y3

)
dxdy = 11

30
.

Also, according to (2.84), the expectation of X and Y would be obtained as follows:

E [X] =
∫ 1

0
x

(

x + 1

2

)

dx = 7

12
,

E [Y ] =
∫ 1

0
y

(
1

2
+ 2y3

)

dy = 13

20
.

(2.89)

Therefore, the covariance between X and Y is achieved as below:

cov[X, Y ] = 11

30
−
(

7

12

)(
13

20

)

= − 1

80
. (2.90)

Example 2.8 (Covariance)
Problem: Consider two independent random variables X ∼ N(0, 1) and Y ∼
N(1, 4). Two random variables V andW are defined as below:

V = 2X +XY
W = XY − Y.

Find the covariance between V andW .
Solution: In order to find cov [V,W ], we have:

cov [V,W ] = cov [(2X +XY), (XY − Y )]
= 2cov [X,XY ] − 2cov [X, Y ] + cov [XY,XY ] − cov [XY, Y ] .

(continued)
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Example 2.8 (continued)
Since X and Y are independent, we conclude that cov [X, Y ] = 0. Also, the
above relation can be rewritten as below:

cov [V,W ] = 2
(
E[X2Y ] − E[X]E[XY ]

)
+ E[X2Y 2] − E

2[XY ]
− E[XY 2] + E[XY ]E[Y ]

= 2E[X2]E[Y ] − 2E2[X]E[Y ] + E[X2]E[Y 2] − E
2[X]E2[Y ]

− E[X]E[Y 2] − E[X]E2[Y ].

We know that E[X] = 0, E2[X] = 1, E[Y ] = 1 and E
2[Y ] = 5. Replacing

these values into the above formula, the covariance of the random variables V
andW would be obtained:

cov [V,W ] = 2(1)(1)+ (1)(5) = 7.

Correlation

The correlation coefficient is another metric which is defined as a normalized
version of the covariance. The correlation coefficient between X and Y is denoted
by ρXY and is defined as below:

ρXY = cov[X, Y ]
σXσY

. (2.91)

This parameter can be changed between −1 ≤ ρ ≤ 1. If two random variables
X and Y are independent, the covariance between these two random variables, and
consequently, the correlation coefficient would be zero. However, the converse is
not necessarily true; if two random variables X and Y are uncorrelated, then X and
Y may or may not be independent.
As a practice, it is considered to calculate the correlation coefficient of two random
variablesX and Y that the corresponding joint PDF is presented in (2.81). Referring
to (2.85) and (2.86), we have

E[X2] =
∫ 1

0
x2
(

x + 1

2

)

dx = 5

12
,

E[Y 2] =
∫ 1

0
y2
(

1

2
+ 2y3

)

dy = 1

2
.
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Therefore, the variance of the random variables X and Y can be obtained as below:

σ 2
X = 5

12
−
(

7

12

)2

= 11

144
,

σ 2
Y = 1

2
−
(

13

20

)2

= 31

400
.

Note that the mean values of X and Y are calculated in (2.89). Also, the covariance
is presented in (2.90). The correlation coefficient can be easily obtained as follows:

ρXY = − 1
80√

11
144 × 31

400

� −0.16.

It can be concluded from the obtained value that the random variables X and Y
are negatively correlated; the random variable X would be decreased as the random
variable Y increases. Similarly, if the correlation between two random variables X
and Y is positive (i.e., ρXY > 0), it can be concluded that the random variables are
positively correlated in the way that one random variable is increased as the other
one increases.

Example 2.9 (Correlation)
Problem: Consider two independent random variables X ∼ N(0, 1) and Y ∼
N(1, 4). Two random variables V andW are defined as below:

V = 2X + Y
W = X + 1.

Determine the correlation between the variables.
Solution: In order to see if the random variables V and W are correlated or
not, the corresponding correlation coefficient should be obtained. At the first
step, the covariance of V andW is obtained as below:

cov [V,W ] = cov [(2X + Y ), (X + 1)]

= 2V ar [X] + cov [X, Y ] = 2.

Then, the variance of V andW are calculated separately as below:

σ 2
V = V ar [2X + Y ] = 4V ar [X] + V ar [Y ] = 8,

(continued)



72 2 A Brief Review of Probability Theory and Linear Algebra

Example 2.9 (continued)
σ 2
W = V ar [X + 1] = V ar [X] = 1.

Finally, the correlation coefficient would be obtained as follows:

ρVW = 2√
8 × 1

= 1√
2
,

which indicates that the random variables V andW are correlated.

2.6.4 Multivariate Gaussian Distribution

The one-dimensional normal random variable is introduced and expressed as one of
the most commonly used distributions in Sect. 2.5. In this section, we are focused
on the joint distribution of two or more normal random variables. Consider we have
N random variables X1, X2, . . . , XN . We can express them as a column vector X
as follows:

X =

⎡

⎢
⎢
⎢
⎣

X1

X2
...

XN

⎤

⎥
⎥
⎥
⎦
, (2.92)

where X is an N-dimensional vector since it consists of N random variables. The
expected value of the random vector X is defined as below:

μ = E[X] =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

X̄1

X̄2
...

X̄N

,

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(2.93)

The covariance matrix of the random vector X is denoted by 
, which is a N × N
matrix and is obtained from the following formula:


 = E

[
(X − E[X])(X − E[X])T

]
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=

⎡

⎢
⎢
⎢
⎣

var[X1] cov[X1, X2] · · · cov[X1, XN ]
cov[X2, X1] var[X2] · · · cov[X2, XN ]

...
...

. . .
...

cov[XN,X1] cov[XN,X2] · · · var[XN ]

⎤

⎥
⎥
⎥
⎦
. (2.94)

Note that the diagonal elements of the above matrix equal the variance of ith random
variable, or equivalently, σ 2

Xi
, for i = 1, 2, · · · , N . This is because of this fact that

cov[X,X] = σ 2
X. Also, note that the covariance matrix is symmetric with respect

to the diagonal elements of the matrix, since cov[X, Y ] = cov[Y,X], as mentioned
before. Now, considering theN×1 mean vector μ, and theN×N covariance matrix

, the multivariate Gaussian distribution is defined as follows:

N(X|μ,
) = 1

(2π)N/2|
|1/2 exp

{

−1

2
(X − μ)T 
−1(X − μ)

}

, (2.95)

where |.| indicates the determinant operator. For instance, consider we have two
normal distributions as X ∼ N(0, 1) and Y ∼ N(1, 4) with the correlation
coefficient ρXY = −1/2. We are interested in finding the joint PDF, or equivalently,
the bivariate normal distribution of X and Y . The mean vector can be constructed
using (2.93):

μ =
[
μX

μY

]

=
[

0
1

]

.

Also, according to (2.91), we obtain the covariance between X and Y :

cov[X, Y ] = ρXY (σXσY )

= −1

2
(1 × 2) = −1.

Therefore, the covariance matrix can be constructed according to (2.94):


 =
[

1 −1
−1 4

]

, and 
−1 = 1

3

[
4 1
1 1

]

.

Note that |
| = 3 and N = 2. By replacing the obtained mean vector and the
covariance matrix in (2.95), the bivariate normal distribution would be obtained as
below:

N(X|μ,
) = 1

(2π)
√

3
exp

{

−1

6

(
4x2 + (y − 1)2 + 2 (xy − x)

)}

.
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2.7 Matrix Decomposition

Many of the observations and realizations in machine learning are presented in
the form of vectors. It is mainly due to the pre-classification step, called “feature
extraction.” When a subject (image, text, voice, etc.) is going to be classified via
the machine learning algorithm, its features are extracted and a single observation
will be extended into a vector of features corresponding to the observation. As a
result, most of the calculations were manipulated in the vector and matrix domain.
So, matrix algebra plays a crucial role in machine learning. In this section, we are
going to review the matrix decomposition theory, which is widely used in different
aspects of machine learning, including but not limited to feature selection, principal
components analysis, and feature generation.

Just as integers can be decomposed into prime factors, matrices also can
be decomposed into factors. The various matrix decomposition techniques have
different properties. However, one of the most important computational methods
in machine learning is the Singular Value Decomposition(SVD). In this section, we
are going to discuss what the singular value decomposition is. But before that, we
should learn about Eigen value, Eigen vector, and Eigen decomposition.

2.7.1 Eigenvalue Decomposition

Let us assume A ∈ R
n×n be a square matrix. The eigenvector of this matrix is a

non-zero vector v which satisfies the linear equation

Av = λv, (2.96)

where scalar λ is an eigenvalue of A, corresponding to eigenvector v. If we move λv
to the left side in equation 2.96, we can rewrite it as (A − λI) = 0. Where I is the
identity matrix of dimension n. Hence, we can find the eigenvector v by solving this
equation, providing the eigenvalue λ is known. The eigenvalues of A are non-zero
solutions of the following “characteristic equation”:

P(λ) = det(A− λI) = 0, (2.97)

where det(·) is the determinant of a matrix. P(λ) is a polynomial equation of degree
n, called the “characteristic polynomial” of A, and its roots are the eigenvalues of A
as:

P(λ) = det(A− λI) = (λ1 − λ)(λ2 − λ) . . . (λn − λ), (2.98)

where the λ1, λ2, . . . , λn are eigenvalues of A. Let us have an example. Suppose we
have the following matrix and we want to find its λ’s and v’s.
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A =
[

2 1
1 2

]

. (2.99)

First, we should subtract λ from the diagonal of A to find A − λI . Having the
determinant of A− λI , the characteristic polynomial is written as

P(λ) = det

[
2 − λ 1

1 2 − λ
]

= λ2 − 4λ+ 3. (2.100)

By solving the characteristic polynomial, its roots are given by λ1 = 1 and λ2 = 3
which are two eigenvalues of A. Now, by solving equation (A− λI)v = 0 for each
eigenvalue, we have the corresponding eigenvectors as follows:

vλ=1 =
[

1
−1

]

, vλ=3 =
[

1
1

]

(2.101)

Eigendecomposition

Based on the presented eigenvalue and eigenvector of a matrix, now we can
introduce the “Eigendecomposition” of a matrix. Suppose matrix A be a square
real-valued n × n matrix with n linearly independent eigenvectors qi ∈ R

n. For
each eigenvector, we have

Aqi = λiqi , for i ∈ {1, 2, · · · , n}. (2.102)

We can define a square matrixQ with qi in each column as follows,

Q = [q1 | q2 | · · · | qn]. (2.103)

We define a diagonal matrix� whose diagonal elements are the eigenvalues of A as

� = diag(λ1, λ2, . . . , λn) =

⎡

⎢
⎢
⎢
⎢
⎣

λ1 0 · · · 0

0 λ2
...

...
. . . 0

0 · · · 0 λn

⎤

⎥
⎥
⎥
⎥
⎦
. (2.104)

We can rewrite Eq. (2.96) with all eigenvalues and eigenvectors of A as follows,

AQ = Q�. (2.105)
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Due to the linear independency of eigenvectors, we can write the eigendecomposi-
tion as

A = Q�Q−1. (2.106)

Following the previous example, we can writeQ and its inverse as

Q =
[

1 1
−1 1

]

, Q−1 =
[

1/2 −1/2
1/2 1/2

]

(2.107)

Then we can decompose A to three matrix as,

A =
[

1 1
−1 1

] [
1 0
0 3

] [
1/2 −1/2
1/2 1/2

]

(2.108)

2.7.2 Singular Value Decomposition

The eigendecomposition mentioned in Sect. 2.7.1 is applicable only to square
matrices. If A is not square, the eigendecomposition is undefined. Singular Value
Decomposition (SVD) is a generalized extension of the eigendecomposition, when
A is m × n matrix, for an arbitrary m and n. Using SVD, matrix Am×n can be
decomposed into the product of three simpler matrices called U ,
, and V as

A = U
V T , (2.109)

where U ∈ R
n×n and V ∈ R

m×m are unitary and orthogonal matrices, and

 ∈ R

n×m is a non-square diagonal matrix. the diagonal elements of 
 are called
singular values of A and they are sorted in descending order. columns of U are
called left singular vectors and columns of V are called right singular vectors.

If we want to express the relationship between the two methods of decomposition
and interpret SVD in terms of eigendecomposition, then we have the following
relation. Using SVD, we have:

ATA = (U
V T )T U
V T

= V
T UT U
V T .
(2.110)

Since U and V are unitary matrices, we have UT U = V T V = I , so we have
UT = U−1 and V T = V −1. We can simplify equation (2.110) as follows,

ATA = V
T
V T = V
2V T

= V
2V −1.
(2.111)
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Similarly we have,

AAT = U
2UT = U
2U−1. (2.112)

These two equations have the same format as eigendecomposition in (2.106). The
comparison of two decompositions reveals

− The columns of U are the left singular vectors of A and eigenvectors of AAT

− The columns of V are the right singular vectors of A and eigenvectors of ATA
− Non-zero singular values of A are non-zero elements of 
 and square roots of

eigenvalues of ATA or AAT

2.8 Putting It All Together

In applied machine learning, many real-world applications have a non-deterministic
nature and varying behavior, since there is no guarantee to always get the same
output for the same input. Since uncertainties in machine learning stem from various
factors such as several parameters and complex environments, probability theory has
a key role in machine learning.

We described the fundamentals of probability including joint probability and
conditional probability for dependent and independent events, discrete and continu-
ous random variables, types of probability distributions, and matrix decomposition.

Probability is the basis of machine learning in several algorithms such as Naive
Bayes and Bayesian Networks. It is used in classification algorithms to predict a
probability of class membership. Algorithms such as decision trees make decisions
based on probability. Probability frameworks such as Maximum Likelihood are used
to train machine learning algorithms such as logistic regression, neural networks, so
forth. Fundamentals of probability described in this chapter are used in the following
chapters to capture the uncertainty in non-deterministic application problems and
domains.

2.9 Exercise Problems

Problem 2.1 If X ∼ Poisson(λ), proof:

(a) E[X] = λ.
(b) var[X] = λ.

Problem 2.2 If A is an invertible square matrix

(a) Proof that the eigenvalues of A and AT are the same.
(b) Find the singular value decomposition of the inverse of A.
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Problem 2.3 (Maximum Likelihood Classifier) Assume there are two classes of ω0
and ω1. The distribution of a random variable, X, given a class of ωi for i ∈ {0, 1}
is given by

P(X|ωi) = N(μi, σ 2), for μ0 < μ1.

A classifier is going to determine the corresponding class of the observed random
variable X = x, based on the following rule:

x ∈
{
ω1 P(x|ω1) > P (x|ω0)

ω0 P(x|ω1) < P (x|ω0)

The error occurs when x ∈ ω0 but it is classified as ω1, and vice versa. Find the
probability of error for this classifier.

Problem 2.4 SupposeA = U
V T is a square matrix. Prove that the absolute value
of the determinant of A is obtained by the product of diagonal elements of 
.

Problem 2.5 Assume X1, X2, . . . .Xn are independent and identically distributed
(iid) random variables with common PDF and CDF of fX and FX, respectively.
Express the PDF and CDF of each of the following random variables in terms of the
fX and FX.

(a) Y1 = max {X1, X2, . . . Xn}
(b) Y2 = min {X1, X2, . . . Xn}
Problem 2.6 Assume continuous real random variable X defined in (−∞,+∞)
with PDF and CDF of fX(x) and FX(x), respectively. Find PDF and CDF of
conditional random variable {X|a ≤ X ≤ b}.
Problem 2.7 Assume X is a continuous random variable with the probability
density function as,

fX(x) =
{
x2(αx + 1

3 ) 0 ≤ x ≤ 1

0 Otherwise
.

(a) Find α such that fX be a PDF
(b) For a new random variable Y , defined as Y = 3

X
+ 6, find E(Y ) and V ar(Y ).

Problem 2.8 Assume X is a continuous random variable with the probability
density function as,
fX(x)= 1/10e−x for x≥ 0 Determine the variance.

Problem 2.9 Suppose that we have a continuous random variable X with the
uniform distribution over the interval [0, 1]. Let us define Y = −ln(1 − X). Find
the distribution of Y .
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Problem 2.10 Consider two independent random variables X ∼ N(0, 1) and Y ∼
N(1, 8). Two random variables V andW are defined as below:

V = X + 2Y

W = X + 10.

Determine the correlation between the variables.

Problem 2.11 Consider two independent random variables X ∼ N(0, 1) and Y ∼
N(1, 5). Two random variables V andW are defined as below:

V = X + Y
W = XY − 6.

Determine the correlation between the variables.

Problem 2.12 Suppose that we have two independent random variablesX and Y . If
we know that V ar(X+ Y ) = 3 and V ar(X− 2Y ) = 6. Find V ar(X) and V ar(Y ).

Problem 2.13 Assume that X is a multivariate Gaussian random variable with
mean μ and covariance matrix 
 defined as below:

μX = [0, 1]T , 
X =
[

1 0.5
0.5 2

]

.

(a) Use Python to generate and plot N = 100 observations of random variable X.
(b) Use Python to find the experimental mean and covariance matrix of the

multivariate Gaussian random variable, X, based on the observed data in the
previous part.

Problem 2.14 Assume that the random variable X is distributed with Poisson
distribution with parameter λ = 3.

(a) Use Python to generate N = 10 observations of random variable X.
(b) Use Python to estimate the parameter λ, based on the observations in part (a).
(c) Repeat parts (a) and (b) for N = 1000 trials, and plot the distribution of the

estimated parameter.
(d) Find the mean and the variance of the estimated parameter λ.
(e) Repeat part (c) for N = 1, N = 10, N = 100 N = 1000, and compare the

mean and the variance of the estimated parameter λ for N = 10 and N = 1000.
(f) Use Python to plot the Gaussian with calculated mean and variance for N = 10

and N = 1000, and compare it with the plotted distribution in part (c).



Chapter 3
Supervised Learning

3.1 Introduction

This chapter introduces multiple supervised machine learning techniques that are
vastly popular in the modern day applications. Supervised learning refers to learning
the data that is annotated with the labels and extracting the relationship between
input data and the labels. The supervised learning technique explores the relation
between the input X and output Y to learn the function f that maps the X and
Y , i.e., f : X �⇒ Y . In supervised learning, for the purpose of training, i.e.,
extracting the relationship between input and out to build a model, the input data X
is annotated with corresponding labels Y and fed to the machine learning algorithm,
i.e., (x1, y1), (x2, y2), · · · , (xn, yn) are fed to train the learning algorithm to build
the model f (·).

One of the main advantages of supervised learning compared to other learning
techniques (Unsupervised and Reinforcement learning techniques) is the low
complexity and forming a better model. Furthermore, for the applications whose
objective is defined or determined during the design time, supervised learning
techniques perform efficiently compared to unsupervised techniques or reinforce-
ment learning techniques and can be optimized for performance and other relevant
constraints.

Example 3.1 (Supervised Classification)
Problem: Explain supervised learning for classification.
Solution: Consider a problem of classification of different animals and
Supervised learning technique is constructed to address this. Figure shown
below is an illustrative example of supervised learning classification problem.
The leftmost part of the image shows the data input to the supervised learning.

(continued)
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Example 3.1 (continued)
The input data comprises the input images (X) and the corresponding labels
(Y ) for the classification task in the provided example. In this example, the
supervised learning technique is a fully connected neural network (details
presented in Sect. 3.4.3) with hidden layers.

•••

Example 3.2 (Supervised Regression)
Problem: Explain supervised regression with a prediction example.
Solution: In addition to classification, supervised learning can also be
utilized for different applications including regression. Consider a simple
case of house prediction. The input data X comprises information such as
# bedrooms and the output comprises the house price (Y ), as shown in
Fig. 3.1. The supervised learning technique aims to determine the curve that
fits the aforementioned X and Y , denoted by f (X, Y ). This is a simple case
comprising single variable, but, in reality, the input could comprise multiple
features such as area of the house, distance to the city center, and access to
the public transportation.

It needs to be noted that the input data can also be a sequence of symbols or
numbers or images or text, and the output can be labels (for classification) or the
prediction for the series, depending on the application. The above examples are
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Fig. 3.1 Regression showing # bedrooms/area vs price (in K$)

mere instances of supervised classifiers and the input could comprise plethora of
features.

3.2 Preparing Data

One of the main challenges in utilizing the machine learning techniques, especially
the supervised learning, is the reliability and nature of the data. Often the obtained
data from real-world scenarios such as autonomous driving or navigation systems
are embedded with noise and could be missing some features and can be of large
dimension for processing. While this chapter does not focus on the data cleaning
or preprocessing techniques, preprocessing the data is a pivotal challenge in the
machine learning applications. We discuss some of the most common problems and
solutions for those challenges.

3.2.1 Data Abstraction

In machine learning problems, it is indispensable to identify important subset of
features to train a model. Reducing the dimensionality of data by projecting it
onto a subspace improves the efficiency of the model and the accuracy of the
predictions. Data abstraction in machine learning is about applying techniques to
simplify the representation of a machine learning problem and enable the problem
to use less memory and computational power. Some of the popular techniques used
in machine learning to reduce the dimensionality of data include but not limited to
Linear Discriminant Analysis (LDA), Neural autoencoder, t-distributed stochastic
neighbor embedding (t-SNE), Principal component analysis (PCA), Pearson Cor-
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relation Coefficient, Recursive Feature Elimination (RFE), Self Organizing Maps
(SOM), Spearman Correlation Coefficient, Chi-Squared Test, Kendall Tau Test. The
choice of a dimensionality reduction method depends on the features and the class
label in a dataset, being numeric, or categorical feature(s). For instance, in filter
feature selection methods (such as Chi-Squared Test), the input X and output Y
variables should have one of the following traits: a) X and Y are numerical, b) X is
numerical and Y is categorical, c) X is categorical and Y is numerical, d) X and Y
are categorical.

An example scenario where Filter Methods are applied is when input variable
Genre in a music dataset can have four different categories (Rock, Jazz, Pop, and
Hip hop) and the output variable Y can represent the likelihood of popularity (high,
medium, low).

Unlike Filter Methods that are supervised, Principal component analysis (PCA)
is an unsupervised feature selection technique since it does not employ labels in the
computation. Principal Component Analysis is a matrix factorization technique used
widely in reducing the dimensionality of a dataset through maximizing the variance
in the dataset. Prior to applying PCA technique on a dataset D of n = N rows and M
features, first, the dataset needs to be normalized using a feature scaling technique
such as zero mean and unit variance. StandardScaler from sklearn can be used to
standardize unscaled data prior to PCA.

Example 3.3 (Data Abstraction)
Problem: Consider a dataset that has five attributes (Gender, Age, Fare,
Seatclass, and Guests) and the dependent variable “Success,” shown below.
Perform the data abstraction using Principal Component Analysis (PCA) and
display the principal components and plot the principal components and the
correlation matrix.

Solution: Figure in Example 3.3 displays the top 5 rows of an example
dataset with five attributes (Gender, Age, Fare, Seatclass, and Guests) and
the dependent variable “Success.” The following code snippet shows how this
dataset is scaled using StandardScaler from sklearn Python machine learning
library. Once a dataset is standardized, PCA is applied to the data. Principal

(continued)
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Example 3.3 (continued)
Component Analysis is a robust technique that uses the dependencies between
the features to reduce the number of attributes without losing too much
information. It identifies attributes with higher variations in the dataset and
discards those that have less to no variations. In other words, it discovers the
projections that maximize the variance in the data.
The following code snippet shows how PCA technique is applied on the
sample dataset in Figure of Example 3.3, and the principal components are
reported. Assuming there are two top attributes to identify, Fig. 3.2 shows
the top two principal components (i.e., the transformed features), and Fig. 3.3
visualizes the distribution of the principal components that shows that the
samples are separable based on the projected features.

1 from sklearn.preprocessing import StandardScaler
2

3 features = [’GENDER’, ’AGE’, ’FARE’ , ’SEATCLASS’, ’GUESTS’]
4 # Separating out the features
5 x = df.loc[:, features].values
6 # Separating out the target
7 y = df.loc[:,[’SUCCESS’]].values
8 # Standardizing the features
9 x = StandardScaler().fit_transform(x)

10

11 from sklearn.decomposition import PCA
12 pca = PCA(n_components=2)
13 principalComponents = pca.fit_transform(x)
14 principalDf = pd.DataFrame(data = principalComponents
15 , columns = [’principal component 1’, ’principal component 2’])
16

17 print(’Principal Components’)
18 print(principalComponents)
19

20 # finalDf is the final DataFrame before plotting the data.
21 finalDf = pd.concat([principalDf, df[[’SUCCESS’]]], axis = 1) #Concatenating

DataFrame along axis = 1
22

23 ># Principal Components
24 >[[-1.28414106 0.20415353]
25 >[ 2.05402655 0.61501247]
26 >[-0.59366741 0.29796843]
27 >...
28 >[-0.55850761 1.15368635]
29 >[ 0.73639025 -0.57593183]
30 >[-0.96230157 -0.81250573]]
31

32

33 # finalDf is the final DataFrame before plotting the data.
34 finalDf = pd.concat([principalDf, df[[’SUCCESS’]]], axis = 1) #Concatenating

DataFrame along axis = 1
35

36 #showing the top five rows of ’final Df’, showing features of dataset D
projected on a #subspace with two principal components.

37 finalDf.head()
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Fig. 3.2 Principal components for the dataset in Example 3.3

Fig. 3.3 2-D distribution plot
of principal components for
the dataset in Fig. 3.2

To learn which two features in the dataset correspond to the principal compo-
nents, the following code snippet is used to perform cross-correlation between the
features and principal components. The plot is displayed in Fig. 3.4. The vertical
axis shows the principal components, and the horizontal axis indicates the features
of the dataset. The color map shows that the principal components are constructed
based on the combination of the dataset features.

1 #visualizing the principal components:
2 fig = plt.figure(figsize = (8,8))
3 ax = fig.add_subplot(1,1,1)
4 ax.set_xlabel(’Principal Component 1’, fontsize = 15)
5 ax.set_ylabel(’Principal Component 2’, fontsize = 15)
6 ax.set_title(’2 component PCA’, fontsize = 20)
7 targets = [1,0]
8 colors = [’r’, ’g’]
9 for target, color in zip(targets,colors):

10 indicesToKeep = finalDf[’SUCCESS’] == target
11 ax.scatter(finalDf.loc[indicesToKeep, ’principal component 1’]
12 , finalDf.loc[indicesToKeep, ’principal component 2’]
13 , c = color
14 , s = 50)
15 ax.legend(targets)
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Fig. 3.4 Correlation of principal components to dataset features. The principal components (PC)
correspond to combinations of the dataset features, and the PCs are captured as an attribute of the
fitted PCA object

16 ax.grid()
17

18 print(pca.explained_variance_ratio_)
19 percent_variance = np.round(pca.explained_variance_ratio_* 100, decimals =2)
20 print(percent_variance)
21

22 >[0.34471984 0.2789678 ]
23 >[34.47 27.9 ]

In PCA, the variance measures the spread of each feature from its average value.
In a dataset D with M number of attributes, for a feature Xi (a one dimensional
array), the variance σ 2 is calculated as follows:

σ 2
i =

N∑

j=1
X
(j)
i −Xi
N − 1

(3.1)

such that Xi represents the average value of Xi feature.

3.2.2 Dealing with Missing Data

In addition to cleaning the data, one of the main challenges faced by the machine
learning community is the lack of attributes1 in the input data. An example of
missing attributes is shown in Table 3.1. A sample population statistics for different
zip codes are collected, shown in Table 3.1. It can be observed for data sample 100,
196, the population information is missing and for the sample 350, the zip code

1 Attributes refer to the input data or the features in the input data.
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Table 3.1 Sample
population statistics (missing
attributes)

Sample # Zipcode Population

1 22,043 5000

2 95,616 10,000
.
.
.

.

.

.
.
.
.

100 20,001 —
.
.
.

.

.

.
.
.
.

196 43,604 —
.
.
.

.

.

.
.
.
.

350 — 675
.
.
.

.

.

.
.
.
.

Table 3.2 Population
Statistics with modified
attributes (replaced with out
of range values)

Sample # Zipcode Population

1 22,043 5000

2 95,616 10,000
.
.
.

.

.

.
.
.
.

100 20,001 -1
.
.
.

.

.

.
.
.
.

196 43,604 -1
.
.
.

.

.

.
.
.
.

350 -1 675
.
.
.

.

.

.
.
.
.

is missing. Such scenarios are encountered in real-world applications either due
to improper storage of data or deliberately missing the data or inability to collect
the data properly. Naïve technique to handle missing data include discarding the
samples with missing attributes when the number of data samples with missing
attributes is minimal. However, adopting such a technique can lead to information
loss and is inefficient.

To address such challenge efficiently, two classes of techniques are widely
utilized. One class of techniques proposes to replace the missing features with
values that are out of the range as shown in Table 3.2. The population and zip codes
cannot be negative numbers, i.e., negative numbers are out of range, thus the missing
numbers are replaced with −1 in the data. Utilizing the modified data, the machine
learning models will be trained. In some cases, the missing features will be replaced
by “unknown” or “ ± ∞”, depending on the data type (textual or numeric), as they
are outliers in all the cases.

On the other hand, the missing features are replaced with the average of the other
values, i.e., a smoothing is performed to replace the missing features. For instance,
in Table 3.3, the missing features are replaced with the averages for samples 100,
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Table 3.3 Population
Statistics with modified
attributes (replaced with
mean)

Sample # Zipcode Population

1 22,043 5000

2 95,616 10,000
.
.
.

.

.

.
.
.
.

100 20,001 7632
.
.
.

.

.

.
.
.
.

196 43,604 7632
.
.
.

.

.

.
.
.
.

350 34,231 675
.
.
.

.

.

.
.
.
.

196, and 350. In addition to replacing the missing attributes with the mean, as
in Table 3.3, interpolation techniques such as Inverse Distance Weighted (IDW)
interpolation, Natural Neighbor Inverse Distance Weighted (NNIDW) interpolation,
Linear interpolation, and Spline interpolation are adopted. Furthermore, other
central tendency measures such as Median are also used instead of the mean. To
make the missing feature estimation further realistic, the central tendency metric
(mean or median) is estimated for the samples belonging to the same class, rather
than the whole dataset.

Example 3.4 (Dealing with Missing Data)
Problem: Consider the example dataset of population statistics, it is missing
multiple values in different columns, performs the data preprocessing to drop
the rows of missing data, or fills the missing values with mean to provide an
approximate value.
Solution: Almost all real-world data has missing values due to many reasons
as errors in data collection. But for efficient modeling of a machine learning
algorithm, the input data must be uniform and the missing values in a dataset
must be handled before the training. When a dataset is loaded, first the missing
values in each column are identified and then deal with it by filling missing
values with mean values, as shown in Table 3.3, which can be applied for
variable type columns. The code snippet is shown below.

1 import pandas as pd
2 from numpy import nan
3 # load the dataset
4 dataset = pd.read_csv(’path to population dataset’, header=None)
5 # making missing values as missing or NaN
6 dataset[[columns]] = dataset[[columns]].replace(0, nan)
7 # fill missing values with mean column values
8 dataset.fillna(dataset.mean(), inplace=True)
9
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10 #Note: Filling missing values with mean values can be applied for variable
type columns only and can not be applied on categorical columns.

3.2.3 Dealing with Imbalanced Datasets

Another pivotal challenge in the domain of machine learning deployed in realistic
applications including security, autonomous systems, and other classification appli-
cations is lack of sufficient data samples for some classes, referred to as imbalanced
data. For instance, in the case of anomalous detection problems, the number of
anomalous samples does not need to be always the same as the normal samples or
vice versa. One way to deal with such a challenge is to deploy Ensemble techniques
(discussed in Sect. 3.6).

Oversampling and undersampling are standard techniques that are employed to
address the imbalanced data challenge.

Furthermore, instead of relying on the accuracy as the performance metric, the
literature describes utilizing other metrics such as precision, recall, moving the
threshold for the ROC curves are seen as the evaluation metrics to overcome the
data imbalance challenge.

Post addressing the data preprocessing challenges, the data can be fed to machine
learning algorithms for the purpose of classification or prediction or other purposes.
In the following sections, we describe some of the popular and widely used
supervised learning strategies for prediction and classification applications.

3.3 Regression

Regression analysis indicates the significant relationship between input and output,
as well as the strength and impact of the independent variables on the (output)
dependent variable. There are various types of regression methods to make pre-
dictions such as linear regression, polynomial regression, and logistic regression.

Regression is one of the most vital and traditional supervised learning techniques
utilized for predicting continuous values in various applications such as time-series
analysis. For instance, in a time-varying series, time is an independent variable
and the value of the series is a dependent variable. The data prediction for future
time instances can be performed through regression and building the model for
the time-series or the data samples under experimentation. Regression exploits
the relationship between dependent and independent variables of the signal, based
on which the analysis for new input data samples is carried out and validated
whether the relationship holds or not. Regression is mainly employed to forecast and
predict the signal by exploiting the dependency between dependent and independent
variables. Multiple regression techniques exist, which are employed depending
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Fig. 3.5 Representing the seasonality in the stock market price of a firm in the past 5 years. Based
on the seasonal pattern of the data future stock market price can be predicted.

on the application. The prominent and widely utilized supervised learning-based
regression techniques for signal analysis (prediction) are described below.

Example 3.5 (Regression)
Problem: Consider a stock market prediction problem. Based on the input of
the previous data, predict the future stock market value.
Solution: Regression is popularly used for predicting time series. Time series
regression is a statistical method used for predicting the future based on the
past. Here, past data serves as input to the regression model predicting the
future. The input data may follow certain seasonality in repeating the pattern
during different quarters of a year, as shown in Fig. 3.5. This is the important
information observed by the regression model for predicting the future.

3.3.1 Linear Regression

Linear regression is the basic analysis of the change of one variable with respect to
another variable. Linear regression is widely used to model the relationship between
input and output variables in a plethora of linear problems. Linear regression can be
further categorized as:
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• Simple linear regression: When there is only one independent variable and one
dependent variable, simple linear regression is used. For instance, the prediction
of weight value based on height attribute.

• Multiple linear regression: In this case, there will be multiple independent
variables and one dependent variable. For instance, predicting weight based on
age and height of a person is one simple example of multiple linear regression.

• Multivariate linear regression: If there are more than one dependent variables
to predict, the multivariate linear regression is effective. This type of linear
regression is also called multi-target prediction. For instance, predicting weight
and obesity based on age, height is a simple example of the multivariate
regression.

Consider a series of data samples with independent variable X and dependent
variable Y (X, Y can be matrices or vectors). The linear regression analysis [11–13]
can be mathematically defined as

Y = f (X, β),

where β indicates the set of unknown parameters, often termed as weights. In
general, β is calculated by minimizing the error in the least-square sense. For a
particular case of linear regression, β is derived based on the input X and the output
Y , and can be given as

β = (XT X)−1XT Y. (3.2)

For a multi-variable dependent regression, i.e., multiple linear regression, the
regression is given as

Y = f (X1, X2, . . . , Xn, β1, β2, . . . βn).

The function f (·) could be linear or a polynomial, depending on the class of
regression considered. This regression analysis is widely adopted for interpolation,
extrapolation, and prediction of the time-series sequences.

Example 3.6 (Linear Regression)
Problem: Consider the dataset from Kaggle.a Given two variables X and Y,
find the relation between them and model as a regression problem.
Solution: With the linear regression model, one can predict the change in
depending variable with respect to the independent variable, as shown in the
code snippet below. In this example, X_train represents the independent
features of a property, and Y_train is the depending variable changing
based on the input features. Here, the x_train and y_train represent the

(continued)
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Example 3.6 (continued)
training samples of independent and dependent variables, respectively. The
future predictions y_pred is obtained for the data X_test.

ahttps://www.kaggle.com/andonians/random-linear-regression.

The python code snippet looks as follows: (Fig. 3.6)

1 #importing the libraries
2 import pandas as pd
3 import numpy as np
4 import matplotlib.pyplot as plt
5 from sklearn.linear_model import LinearRegression
6

7 #loading train and test datasets
8 train = pd.read_csv(’...../input/train.csv’)
9 test = pd.read_csv(’....../input/test.csv’)

10

11 #Looking into the dataset info
12 train.info()
13 test.info()
14

15 #droping empty values from training set
16 train.dropna(inplace= True)
17

18 #Reshaping the data to split into x_train, y_train, x_test, y_test
19 x_train =train.iloc[:,0].values.reshape(-1,1)
20 y_train =train.iloc[:,1].values.reshape(-1,1)
21

22 x_test =test.iloc[:,0].values.reshape(-1,1)
23 y_test =test.iloc[:,1].values.reshape(-1,1)
24

25 #defining the model and fitting it for the input data
26 model = LinearRegression();
27 model.fit(x_train,y_train)
28

29 #Predicting on the test set
30 y_pred = linear.predict(x_test)
31

32 plt.title(’Ploting the prediction of test data’)
33

34

35 plt.scatter(x_train,y_train,label=’real data’,color=’blue’)
36 plt.scatter(x_test,y_pred,label=’predicted data’,color=’red’)
37 plt.xlabel(’x’)
38 plt.ylabel(’y’)
39 plt.legend()
40 plt.show()
41

42 #Evaluating the model
43 accuracy_score = linear.score(y_test,y_pred)
44 print(accuracy_score)
45

46 > 0.9883886222259362

https://www.kaggle.com/andonians/random-linear-regression
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Fig. 3.6 Prediction of the test data for the Example 3.6

3.3.2 Multi-Variable Linear Regression

The most commonly used linear regression is multi-variable linear regression.
Multi-variable linear regression [14–16], also known as multivariate regression,
exploits the relation between dependent and independent variables, with more than
2 independent variables:

y = β0 + β1x1 + β2x2 + . . .+ βNxN, (3.3)

where y is the output, i.e., the dependent variable with dependence on N input
variables xi , i = 1, 2, . . . , N . The weights are denoted by β.

Example 3.7 (Multi-Variable Linear Regression)
Problem: Construct a multi-variable linear regression model that can predict
the charges to be paid for insurance based on a person’s age, bmi of a person.
Solution: The code snippet for the multivariate linear regression is similar
to the previously depicted code snippet, except that there will be a vector of
variables in the X_train rather than a single column. In the case of the
multivariate linear regression both X_train and Y_train are matrices. In
this example, X_train represents the independent features of a property and
Y_train is the depending variable changing based on the input features.
With the linear regression model, we can predict the change in depending
variable with respect to the independent variable, as shown in the code snippet
below.

(continued)
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Example 3.7 (continued)
The performance of the prediction is shown below.a

ahttps://www.kaggle.com/mirichoi0218/insurance.

1

2 import warnings
3 warnings.filterwarnings(’ignore’)
4

5 #Import all important libraries
6 import numpy as np
7 import pandas as pd
8 import matplotlib.pyplot as plt
9 %matplotlib inline

10 import seaborn as sns
11 from sklearn.metrics import r2_score
12

13 #Load the dataset and check initial entries of the dataset
14 df=pd.read_csv(’...../input/insurance.csv’)
15 df.head()
16

17 df.sex=df.sex.apply(lambda x: 1 if x==’male’ else 0)
18 df.smoker=df.smoker.apply(lambda x: 1 if x==’yes’ else 0)
19 df.head()
20

21 # Lets convert region as dummy variables
22 region = pd.get_dummies(df[’region’], drop_first = True,prefix=’region’)
23 df = pd.concat([df, region], axis = 1)
24

25 #Dropping season variable
26 df.drop(’region’,axis=1,inplace=True)
27 df.head()
28

29 from sklearn.model_selection import train_test_split
30 df_train, df_test = train_test_split(df, train_size = 0.7, test_size = 0.3,

random_state = 100)
31

32 from sklearn.preprocessing import MinMaxScaler
33 scaler = MinMaxScaler()
34

https://www.kaggle.com/mirichoi0218/insurance
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35 # Scaling columns of numerical type
36 col = [’charges’, ’age’, ’bmi’]
37 df_train[col] = scaler.fit_transform(df_train[col])
38 df_train.head()
39

40 y_train = df_train.pop(’charges’)
41 X_train = df_train
42

43 from sklearn.linear_model import LinearRegression
44

45 # Fitting LinearRegression onto the train data
46 model = LinearRegression()
47 model.fit(X_train, y_train)
48

49 col = [’charges’, ’age’, ’bmi’]
50 df_test[col] = scaler.transform(df_test[col])
51

52 y_test = df_test.pop(’charges’)
53 X_test = df_test
54

55 y_pred = model.predict(X_test)
56

57 # Plotting y_test and y_pred to understand the spread
58

59 fig = plt.figure()
60 plt.scatter(y_test, y_pred)
61 # Plot heading
62 fig.suptitle(’y_test vs y_pred’, fontsize = 20)
63 plt.xlabel(’y_test’, fontsize = 18)
64 plt.ylabel(’y_pred’, fontsize = 16)
65 plt.show()
66

67 score = r2_score(y_test,y_pred)
68 print(score)
69

70 > 0.7772310511733103

3.3.3 Multi-Variable Adaptive Regression Splines (MARS)

Multi-variable Adaptive Regression Splines (MARS) [17, 18] is an extension of
the traditional linear regression, with added capabilities to effectively capture
nonlinearities and interactions between dependent and independent variables (Fig.
3.7).

As a simple example, consider a univariate linear regression with x, x ∈ R being
the independent variable and y, y ∈ R being the dependent variable. A traditional
linear regression (as discussed in the previous section) will model the behavior as

Fig. 3.7 Regression with: (a)
Traditional linear regression;
(b) MARS

y

x

y

x
(a) (b)
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Fig. 3.8 Showing the prediction of Boston housing costs and adding an error interval for the
predictions

ŷ = ax + b,

where a and b are constants and ŷ is the estimated value of y. Figure 3.8a
shows the solution of linear regression as a line passing through most of the data
points (indicated by boxes). For the sake of explanation, simple linear regression is
considered, but, multi-variable and multivariate regression techniques also follow
the same methodology. In contrast to linear regression, MARS builds the model
considering the nonlinearities in the data. As such, a model built with MARS looks
like

ŷ = a max(0, x − c)+ b,

where a, c, and b are constants. Note, that this formula is a simple example of
MARS. However, the hinge function max(0, x − c) could be in a different form
or could be the sum of multiple hinge functions, as discussed below. Thus, any
deviation from perfect linearities is captured effectively, as shown in Fig. 3.8b. In
general, the model of a MARS is given as follows:

ŷ =
k∑

i=1

aiBi(x), (3.4)

where ai is a constant and Bi(x) is a basis function, dependent on x. The basis
function can be a constant or a hinge function, or it can be a product of two or more
hinge functions. A hinge function is a function defined by a variable and a knot, and
takes the following possible forms: max(0, x − c) or max(0, c− x), where x is the
variable and c is a constant called knot.
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This MARS model is built in two steps: forward pass step and backward pass
step. In forward pass, the modeling starts with an initial intercept term, i.e., a
constant (which is the mean of the response values). Further, it keeps adding new
basis functions based on the input. New basis functions that give a maximum
reduction in sum-of-squares of residual error are often added. This is carried out
in a brute force manner. This forward pass is followed by backward pass step. In
order to avoid overfitting, the least effective basis functions are found and removed
from the model. The user can limit the number of terms in the forward pass and the
total number of basis functions, i.e., k in (3.4).

Example 3.8 (Multi-Variable Adaptive Regression Splines)
Problem: Consider a problem where we predict the number of houses being
sold based on their distance to the Walmart. Perform the model fitting.
Solution: In the real world, most of the problems cannot be solved by the
linear regression model. The real-world data is often nonlinear, even for
problems that are considered linear. For example, the problem of fitting the
number of houses being sold based on their distance to Walmart can be seen
as a simple linear regression problem, but to achieve better predictions MARS
is employed for model fitting. In the example code snippet, we can observe the
implementation of MARS model using the py-earth package. A code snippet
to perform MARS regression is shown below:

1 #importing libraries
2 from numpy import mean
3 from numpy import std
4 from sklearn.datasets import make_regression
5 from sklearn.model_selection import cross_val_score
6 from sklearn.model_selection import RepeatedKFold
7 from pyearth import Earth
8

9 # defining the dataset
10 X, y = make_regression(n_samples=10000, n_features=20, n_informative=15,

noise=0.5, random_state=7)
11

12 # define the model
13 model = Earth()
14

15 # defining the evaluation proceduce
16 cv_func = RepeatedKFold(n_splits=10, n_repeats=3, random_state=1)
17

18 # evaluating the model and collecting results
19 scores = cross_val_score(model, X, y, scoring=’neg_mean_absolute_error’, cv=

cv_func, n_jobs=-1)
20 print(’MAE: %.3f (%.3f)’ % (mean(scores), std(scores)))
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3.3.4 AutoRegressive Moving Average

Autoregressive Moving Average (ARMA) [19, 20] regression models the temporal
data to analyze the data and/or predict the future series. ARMA is mostly applied
especially when the data is non-stationary (a series whose probability distribution
changes when shifted in time).

For better understanding, AutoRegressive (AR) and Moving Average (MA)
models are individually presented first, followed by the ARMA model.
AutoRegressive: AutoRegressive (AR) models are utilized for predicting univariate
time-series or ordered data, purely based on its previous values. An autoregression
is expressed as

yt = f (yt−1, yt−2, . . . , yt−p, εt )

= c +
p∑

i=1

φiyt−i + εt ,
(3.5)

where yt represents value of variable y at time instant t ; εt is the prediction error
at time instant t ; p represents the order of AR model and φi represents the AR
parameters, i.e., weights for the model; c is a constant and f (·) represents the model
that fits the time series or the ordered variable set.
Moving average: Moving Average (MA) modeling is another regression technique
efficient for univariate time-series or signal prediction. The model for moving
average (MA(q)) regression, with order q is given by

yt = g(εt , εt−1, . . . , εt−q)

= γ + εt +
q∑

i=1

θiεt−i ,
(3.6)

where θ1, θ1, . . . , θq are the parameters for the moving average model, γ is a
constant, q denotes the order of the moving average model, and εt denotes the
error, as in (3.5). The order of the MA model indicates the number of error terms
considered from the previous predictions. Thus, moving average can be seen as a
linear regression of present and previous error terms.
Autoregressive Moving average: Based on the above-presented autoregression and
moving average models, ARMA can be given as

yt = γ + εt +
p∑

i=1

φiyt−i +
q∑

i=1

θiεt−i . (3.7)

ARMA is generally represented as ARMA(p, q) with p and q representing the
orders of AR and MA, respectively. The main advantage of ARMA is its capability
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to capture the impacts of noise from previous predictions effectively, resulting in
an improved prediction accuracy. This method is useful, especially for lower-order
polynomials.

To build ARMA regression, the data is initially modeled to estimate the AR
and MA models based on the previous values and errors, and then an ARMA
model is formed. Further, based on the differences in predicted signal and the actual
signal, the signal can be evaluated. The major drawback of ARMA is the amount
of computation increases proportional to the selected order, though the prediction
accuracy might not increase at the same scale.

Example 3.9 (AutoRegression)
Problem: Consider the data in [19],a perform an ARMA on time-series
analysis in fractional order systems.
Solution: In the presence of a diffusion or dispersion component, the
fractional behavior forces the estimated poles and zeros of the ARMA model
to form an alternating chain. This chain can be detected and consecutively be
compressed to finally result in a fractional order version of the ARMA model.
The plot for the regression is shown in Fig. 3.8.

ahttps://github.com/ispmarin/arima_example/blob/master/data/f_series.csv.

1 %matplotlib inline
2 %reload_ext rpy2.ipython
3

4 import pandas as pd
5 import matplotlib.pyplot as plt
6 import statsmodels.api as sm
7 import numpy as np
8 import warnings
9 warnings.simplefilter(action=’ignore’, category=FutureWarning)

10 warnings.simplefilter(action=’ignore’, category=UserWarning)
11

12

13 df = pd.read_csv(’...../data/f_series.csv’)
14 date_index = pd.date_range(’2015-01-01’, periods=len(df))
15 df = df.set_index(date_index)
16 df.y = df.y.astype(float)
17

18 model = sm.tsa.ARIMA(df, (2,1,0)).fit()
19

20 fig = model.plot_predict(start=’2015-02-01’, end=’2015-04-01’)
21 model.predict(start=70, end=80)

The above code snippet shows the technique for ARIMA regression. The fitting
model uses a ARIMA with a lag of 5 for prediction, MA model of 0, and makes the
series stationary with a difference order of 1.

https://github.com/ispmarin/arima_example/blob/master/data/f_series.csv


3.3 Regression 101

3.3.5 Bayesian Linear Regression

Bayesian linear regression (in short referred to as Bayesian regression) [21–23]
is a multivariate linear regression, where the output presents the probability of
the regression value for a particular point based on the given data. Other similar
approaches such as Maximum Likelihood Estimation (MLE) suffer from overfitting,
especially when the amount of trained data has a large variance and biasing when
the variance in the dataset is too less [24]. The basic principle of Bayesian regression
is to provide an inference of how good or bad (in terms of probability) the predicted
values are.

Consider a simple linear regression case, given by

yi = xTi β + εi (3.8)

here xi and β are vectors of size k × 1, and output is yi . β represents the model
fitting parameter vector. εi values are independent and normally distributed random
variables, i.e., it follows a Gaussian distribution with 0 mean (εi ∼ N(0, σ 2)). The
likelihood function for the output at an input with a given variance (variance is set
by user or already known) is given by

p(y|X, β, σ 2) ∝ (σ 2)exp(− 1

2σ 2
(y − Xβ)T (y − Xβ)), (3.9)

where X is a n × k matrix and each row is a vector xTi . y is the column n-vector
([y1, y2, . . . , yn]T ) with variance σ . β, denoting the weights, can be derived similar
to that in (3.2). For more in-depth analysis of how these are derived, please refer to
[22, 23, 25].

In practice, the objective of Bayesian linear regression is to maximize β (3.9) for
the given data. Hence, it is often desired to have higher probability for the estimated
output for a given input. A low probability indicates that the formed model does
not fit the data, hence needs to be further optimized. In case of time-series or signal
analysis, consider that a model is formed as given in (3.8) with output yi . However,
it is not known how good the derived model is and how reliable the output is. In
such cases, the Bayesian regression analysis is carried out to estimate the quality of
the derived model. A low probability to have the yi based on the given data indicates
that the model is not accurate and needs to be improved.
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Example 3.10 (Bayesian Linear Regression)
Problem: Use Bayesian Linear Regression to predict the housing cost of the
houses from Boston dataset.
Solution: First, we need to write a custom function definition for Bayesian
Linear Regression model. Further, one can load the Boston dataset from
sklearn datasets. Model and fit the data using predefined Bayesian Linear
Regression models and can perform the model evaluation.

1 #importing libraries
2 import numpy as np
3 from scipy import stats
4

5 #Defining Bayesian Linear Regression function
6 class BLR:
7

8 def __init__(self, n_features, alpha, beta):
9 self.n_features = n_features

10 self.alpha = alpha
11 self.beta = beta
12 self.mean = np.zeros(n_features)
13 self.cov_inv = np.identity(n_features) / alpha
14

15 def learn(self, x, y):
16

17 # Update the inverse covariance matrix
18 cov_inv = self.cov_inv + self.beta * np.outer(x, x)
19

20 # Update the mean vector
21 cov = np.linalg.inv(cov_inv)
22 mean = cov @ (self.cov_inv @ self.mean + self.beta * y * x)
23

24 self.cov_inv = cov_inv
25 self.mean = mean
26

27 return self
28

29 def predict(self, x):
30

31 # Obtain the predictive mean
32 y_pred_mean = x @ self.mean
33

34 # Obtain the predictive variance
35 w_cov = np.linalg.inv(self.cov_inv)
36 y_pred_var = 1 / self.beta + x @ w_cov @ x.T
37

38 return stats.norm(loc=y_pred_mean, scale=y_pred_var ** .5)
39

40 @property
41 def weights_dist(self):
42 cov = np.linalg.inv(self.cov_inv)
43 return stats.multivariate_normal(mean=self.mean, cov=cov)
44

45

46 #Importing libraries
47 from sklearn import datasets
48 from sklearn import metrics
49

50 #Importing dataset
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51 X, y = datasets.load_boston(return_X_y=True)
52

53 #Defining the model
54 model = BLR(n_features=X.shape[1], alpha=.3, beta=1)
55

56 # Predicting and evaluating the model
57 y_pred = np.empty(len(y))
58

59 for i, (x_i, y_i) in enumerate(zip(X, y)):
60 y_pred[i] = model.predict(x_i).mean()
61 model.learn(x_i, y_i)
62

63 print(metrics.mean_absolute_error(y, y_pred))
64

65 > 3.784125061857545

3.3.6 Logistic Regression

In contrast to other discussed regression techniques, logistic regression [26–29] is
used for the purpose of classification only. The underlying basic principle is similar
to that of a regression. A dependency among dependent and independent variables
is initially exploited, following the application of the logistic function (hence the
name logistic regression).

For a given dataD = {(X1, y1), (X2, y2), . . . , (Xn, yn)}, with Xi ∈ RN , i.e., N -
dimensional vector and yi represents the class to which it belongs, i.e., yi = {0, 1}
for the binary case. The logistic function

σ(a) = 1

1 + e−a (3.10)

has an output between 0 and 1, depending on a representing the hypothesis function
of the matrix form of βT X, such that βT is the transpose of the weight matrix and
X is the input matrix. This means that logistic regression returns a probabilistic
estimate, which may be compared against a threshold to generate a binary output
(i.e., 0 or 1):

Yi =
{

0, if σ(a) < threshold

1, if σ(a) ≥ threshold. (3.11)

This is very similar to Perceptron Learning Algorithm, which takes an input,
calculates the weighted sum, and returns 1 if the weighted sum is greater than a
threshold, or 0 otherwise.

Logistic regression produces a measure of uncertainty in occurrence of a binary
output. The output depends on the hypothesis function (a linear model). Therefore,
the logistic regression works for the given data as follows:
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Yi ∼ Pr(σ (βT ·Xi)), (3.12)

where Pr denotes the Bernoulli distribution (i.e., P(X = 1) = 1 − P(X = 0),
where P indicates the probability) and β indicates the weight vector, similar to
that described in (3.2). Vectors β and X are of the same dimension. Based on the
probability value, the class to which the input belongs to can be determined. The
above-mentioned example is for a simple binary classification, but it can be extended
for multiclass classification.

Example 3.11 (Logistic Regression)
Problem: Consider the Iris dataset and try to perform the classification of the
data using a minimal set of features with logistic regression.
Solution: To perform the classification of the Iris dataset, we first need to
load the dataset and choose the first two features from the dataset in this
example. Further, the data is fit into the logistic regression model using
the model.fit() command, similar to the previous cases. However, we
consider the first two features in this example, but, one can perform selection
through the aforementioned feature selection techniques. The code snippet is
shown below.

1 # Import the dependencies
2 import matplotlib.pyplot as plt
3 import seaborn as sns
4 from sklearn.linear_model import LogisticRegression
5 from sklearn.metrics import classification_report
6 from sklearn.metrics import accuracy_score
7 from sklearn.model_selection import train_test_split
8

9 # import some data to play with
10 iris = datasets.load_iris()
11 X = iris.data[:, :2] # we only take the first two features.
12 Y = iris.target
13

14 #Split the data into 80% training and 20% testing
15 x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.2,

random_state=42)
16

17 #Train the model
18 model = LogisticRegression()
19 model.fit(x_train, y_train) #Training the model
20

21 #Test the model
22 predictions = model.predict(x_test)
23 print(accuracy_score(y_test, predictions))
24

25 > 0.9

The above code snippet provides information on using the logistic regression for
classifying the data x into multiple classes by splitting the data into train and test
datasets. It needs to be noted that the provided code snippets are mere examples that
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outline the main usage of the techniques, and other parts such as importing data or
preprocessing are not included for the sake of conciseness.

3.4 Artificial Neural Networks

Many real-world problems cannot be categorized under linear problems or afore-
mentioned nonlinear regression techniques. To address complex classification
challenges, Artificial Neural Networks (ANN) are introduced. ANNs are basic
representations of a human brain that replicate nonlinear learning through a network
of neurons. In Neural Networks, these neurons are called artificial neurons. The
basic building block of artificial neural networks (ANNs) is the neuron. First, we
discuss the modeling of a neuron following which we describe the integration and
working of the artificial neural networks.

3.4.1 Modeling of Neuron

In the year 1943, McCulloch and Pitts first proposed the oversimplified model of
the biological neuron, popularly known as M-P model, which is widely adopted and
further enhanced in recent times. The M-P model of the neuron can be split into two
parts. Firstly, the neuron sums all the incoming signals coming in and aggregates
them, as shown in right-side zoom-out box of Fig. 3.9, mathematically described as
follows:

g(x) =
n∑

i=1

xi . (3.13)

Here, g(x) represents the aggregated sum of the inputs xi . Further, the aggregated
sum is passed through an activation function f (x), thus the model of a neuron is

Sum g()

Input 

layer

Hidden 

layer Output 

layer x1

x2

x3

b1w1

w2

w3

Fig. 3.9 A single hidden layer neural network with 2 inputs and 2 outputs
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Fig. 3.10 Artificial neural network

provided as f (g(x)). Over time, the models have improved, such advancements
include including the bias, weighted sum of the inputs, and working with non-binary
inputs (xi).

An artificial neuron aggregates incoming input data using a combination func-
tion, and the output of the combination function is fed to an activation function
(usually a nonlinear function such as sigmoid, binary step function, or softmax) and
produces an output that is channeled to the neurons in other layers of the network
downstream. Figure 3.10 shows a neural network in which each neuron aggregates
the incoming inputs and scales the output of the combination function (
) using
an activation function. The types of activation functions are discussed later in this
book.

One of the requirements of ANN is to standardize the attributes of the dataset
(categorical or continuous) to take a value between 0 and 1. In Python, sklearn
object MinMaxScalar can be used to scale continuous variables. For categorical
variables, flag variables or one-hot encoding can be applied if there are not too many
categorical features. An example of using a flag variable to encode a categorical
attribute is representing a male gender as 0 and a female gender as 1.

In a neural network, there are neurons in the input layer, hidden layer, and output
layer. The input layer is the layer that receives the attributes of the dataset, and
the output later is the last layer in the network that produces the outcome of the
classifier. The layers between the input and output layers are called hidden layer
(see Fig. 3.10). The number of neurons in these layers does not have to be always
same. This number can change case by case and depending on the problem. For
instance, we may have one output node in a neural network, or multiple output nodes
depending on the classification problem. For binary classification problems, one
neuron is used in the output layer. Also, if the output classes are ordered such as first-
winner, second-winner, so forth, still one neuron is sufficient to perform multiclass
classification. However, if the output labels are not ordered, more than one neuron
should be used in the output layer. This is called 1-of-n output encoding. The neural
network in Fig. 3.10 is a fully connected network since there is a connection from
every neuron to all other neurons in another layer downstream. The connecting
edges are associated with weights. Learning artificial neural network is about tuning
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these weights that serve as the model parameters, which will be described in the later
sections.

3.4.2 Implementing Logical Gates with ANN

Neural Networks or Artificial Neural Networks can be used to emulate the func-
tionality of logic gates. Figure 3.12 shows the truth table for different types of
logical gates. Let us understand how a logical gate functionality is implemented
using an ANN. We show two scenarios of emulating AND gate and a XOR gate with
a 2-layered (Perceptron) and 3-layered neural network (Multi-layer Perceptron),
illustrated in Fig. 3.11a and b, respectively.

In part (a), there is a single neuron, emulating the functionality of logical AND
gate with a threshold or hard limiting activation function such as Sigmoid function,
which scales the output to a desirable range between 0 and 1. Such scaled output of
the Sigmoid function is 1 if the output is greater than or equal to a threshold, and it
is 1 if the output is less than the specified threshold. In other words, the output of
the Sigmoid function represents the probability of the outcome, being either 0 or 1.
In this example, the threshold is 0.5.

The variable z is the input of the activation function g(z). This makes z represent
the output of the combination function.

y = 1

1 + e−z = 1

1 + e−g(wT x) . (3.14)

The input xi is obtained from the dataset and combined through the combination
function 
. Then, the output z is fed to the activation function to produce a binary
outcome. To implement the functionality of logical gate that generates a binary
output, the Sigmoid function uses a threshold. The value of the threshold is set a
priori to separate the outcome of classification. The threshold can be fine-tuned
heuristically.

The truth table for part (a) in Fig. 3.11 shows how the output y is computed based
on the weightsw0,w1,w2 and the inputs. In the input layer, the attribute values from
the dataset are fed to the single neuron N in the output layer; x0 is the bias and is
equal to 1. A similar procedure is applied in part (b). What makes part (b) different
from the Perceptron implementation of AND gate is the presence of a hidden layer
in the Artificial Neural Network. In this 3-layered ANN, there are two neurons in
the hidden layer (i.e., N1 and N2). The data in the dataset (i.e., the attribute values
for an observation) from the input layer enter the neurons at the hidden layer, then
combined using the
 combination function, then go to an activation function (here,
Sigmoid function). It is also possible to choose another activation function such as
Binary Step Function. Experiments show that replacing the neuron N1 and N2 with
NAND and OR gate functionality, respectively, facilitates the functionality of a XOR
gate. In fact, with the help of an additional layer (i.e., hidden layer) we made a more
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Fig. 3.11 Implementing logical gates with artificial neural networks

Fig. 3.12 Truth table for logical gates

complex model to emulate the functionality of logical XOR gate. The outcome of
N1 and N2 neurons from the hidden layer is fed to the single neuron output layer to
finally generate the outcome of XOR gate truth table according to Fig. 3.12.

3.4.3 Multi-Layer Perceptron

As aforementioned, the multi-layer Perceptron (MLP) or ANN comprises at least
three layers: an input layer, one or more hidden layers, and an output layer. In a
fully connected neural network, all the neurons (or nodes) in a succeeding layer are
connected to all the nodes in the preceding layer. Each node has inputs and outputs
and performs an operation based on its activation function. Different layers could
have different activation functions. The learning process in neural networks refers
to the adaptation of weights between layers and the update of activation functions.
A traditional neural network with one hidden layer is illustrated in Fig. 3.9.

As seen earlier, the output of a neuron in a hidden or output layer of an ANN or
MLP is given as
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yj = g(
n∑

i=1

wixi + bj ), (3.15)

where yj indicates the output of the j -th neuron with n inputs, given by xi , and bj
denotes the bias. The activation function of the node is given by g(·).

To improve the performance of the MLPs or ANNs, a common way is to tune
different parameters of the neural networks. The main parameters that are tunable
in neural networks are:

• Number of hidden layers (if the number of hidden layers is more than 1, it is
usually classified under a deep neural network; otherwise, it is classified as a
shallow neural network).

• Number of nodes in input, and hidden layers.
• Activation functions in the hidden and output layers.
• Update procedure for the weights between different layers (learning methodol-

ogy).

The number of nodes in the output layer denotes the number of output classes the
user expects from the data analysis. In the case of binary classification, the number
of neurons is 1, where the output is either zero or one. To classify a dataset into one
of the five categories, the neural network architecture will have five nodes in the
output layer and the number of input neurons depends on the input data dimensions.
The used activation functions and the methodology to update the weights in neural
network are discussed here.

Activation Functions

In neural networks, the activation function can be defined as an abstraction
representing the rate of action potential firing in the cell, i.e., the activation
function indicates the effectiveness with which the presented data will be helpful in
determining final output. Different activation functions are used in the literature. The
mathematical representation of some of the most widely used activation functions
in neural networks are presented in Table 3.4. The scikit learn library supports a
majority of the activation functions. The most widely used activation functions are
tanh(x) and ReLU functions. In Table 3.4, x0 is the x-value of sigmoid’s midpoint,
L is the curve’s maximum value, and k represents the steepness of the curve.

The graphs for most of the activation functions presented in Table 3.4 are shown
in Fig. 3.13. The shapes of logistic and sigmoid functions look similar, except the
change in the bounds of the function. Similarly, from the perspective of shapes, the
hyperbolic tangent, arctan, and softsign look similar with differences in the slope
of the curves and the bounds of the functions. It needs to be noted that the graphs
shown are a simpler representation of their corresponding shapes, not drawn to the
scale.
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Table 3.4 Activation
functions in a neural network

Name Formula

Identity f (x) = x
Binary step f (x) =

{
0, if x < 0

1, otherwise

Logistic f (x) = L

1+e−k(x−x0)
Sigmoid f (x) = 1

1+e−x
Hyperbolic tangent f (x) = tanh(x) = 2

1+e−2x − 1

ArcTan f (x) = tan−1(x)

Softsign f (x) = x
1+|x|

Exponential linear unit f (x) =
{
α(ex − 1), if x < 0

x, otherwise

SoftPlus f (x) = ln(1 + ex)
Sinusoid f (x) = sin(x)

Gaussian f (x) = e−x2

ReLU f (x) =
{

0, if x < 0

x, otherwise
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Fig. 3.13 Activation functions: (a) identity; (b) binary step; (c) sigmoid; (d) hyperbolic tangent;
(e) exponential linear unit; (f) soft plus; (g) sinusoid; (h) Gaussian

Activation functions are often the most computationally expensive part in
neural networks. Reducing the implementation complexity of these functions often
reduces the overall computational complexity. These activation functions could
be implemented in different manners, such as using Look-Up-Tables (LUTs),
BRAMs, utilizing CORDIC algorithms to compute the hyperbolic and trigonometric
functions [30, 31], and approximate computations [32, 33] such as Piecewise-
Linear-Approximations (PLAs).
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Example 3.12 (Multi-Layer Perceptron)
Problem: Perform a simple XOR function using a multi-layer Perceptron.
Solution: The code snippet below shows the use of 2 hidden layers ANN with
X and Y as input and outputs, respectively. The parameter alpha represents
the learning rate of the ANN. The hidden_layer_sizes shows the sizes
of the two hidden layers used. In order to predict for the new incoming sample
or for test data, clf.predict() function is used, where the inputs are
passed to the function. The parameter solver indicates the solver used for the
ANN. In this case, the LBFGS solver is used. Different solvers can be used as
discussed below. An example of XOR problem being solved with the help of
MLP can be observed in the code snippet below.

1 from sklearn.neural_network import MLPClassifier
2

3 X = [[1, 1], [1, 0]]
4 y = [0, 1]
5 clf = MLPClassifier(solver=’lbfgs’, alpha=2e-5, hidden_layer_sizes=(4, 2),

random_state=1)
6 clf.fit(X, y)
7 print(clf.predict([[0, 0]]))
8

9 > [1]

3.4.4 Training of MLPs

Weights in a neural network can be updated in multiple ways. One of the most
widely used rules is the Delta rule [34]:

�wij = α(tj − yj )xi, (3.16)

where i indicates the index of input xi and j represents the index of the j -th neuron
with tj and yj as target and actual outputs. α denotes the learning rate. Different
techniques and optimizers exist for training the MLP, as discussed below.

Stochastic Gradient Descent (SGD)

Backpropagation means updating the weights in the network architecture. In
backpropagation neural networks (BPNN) [13, 35–38], the input data is fed from the
input layer to the hidden layer and then to the output layer. However, the weights are
updated in a reverse manner. One popular method to update the weights of individual
nodes is the Delta rule (Eq. (3.16)). The weights between the hidden layer and the
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output layer are updated first based on the target outputs of the system, followed
by updating the weights between the hidden layer and the input layer. The overall
architecture is also termed popularly as a feed-forward neural network.

The stochastic gradient descent (SGD) can be performed using Scikit learn
libraries. The following code snippet shows the configuration and deployment of
SGD in ANNs:

1 from sklearn.linear_model import SGDClassifier
2 X = [[1, 1], [1, -1]]
3 y = [0, 1]
4 clf = SGDClassifier(loss="hinge", penalty="l2", max_iter=15)
5 clf.fit(X, y)
6 print(clf.predict([[0.8, -1.6666]]))
7

8 > [1]

Here, a simple classification is performed using SGD classifier with 5 iterations. A
similar strategy can be adopted in ANNs.

Example 3.13 (Stochastic Gradient Descent)
Problem: Show how to perform classification using SGD classifier.
Solution: The above code snippet has X and Y as input and outputs,
respectively. The parameter loss represents the loss function of the clas-
sifier. In order to predict for the new incoming sample or for test data,
clf.predict() function is used, where the inputs are passed to the
function.

The code below shows the updation of the gradient parameter for each sample in
the training data by evaluating the gradient at each training sample.

1 import numpy as np
2

3 for i in range(epochs):
4 np.random.shuffle(data)
5 for each_sample in data:
6 gradient_parameter = evaluate_gradient(loss_function, each_sample,

parameter)
7 parameter = parameter - learning_rate * grad_parameter

Mini-Batch Gradient Descent

SGD updates parameters after considering each single data entry. The frequent
updating makes convergence faster, yet each update is noisier and the parameters
maintain a high variance. Contrarily, Batch gradient descent, which is also known
as vanilla gradient descent, updates parameters only after computing the gradient
of the cost function w.r.t. the entire training set. It makes smooth updates on the
parameters, but takes a long time for making a single update.
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Mini-batch gradient descent makes a compromise between batch gradient
descent and SGD, balancing between the speedy convergence and the smoothness
of updates. It updates the parameters after the computation of the cost function of
each batch of the dataset. The speed of convergence and the variance of parameters
can be tuned by adjusting the way to divide the dataset into various batches. By now,
mini-batch gradient descent is considered as the best gradient descent algorithm
due to its flexibility and robustness.

Unfortunately, mini-batch gradient descent has not been implemented in classic
data science libraries such as Scikit Learn. Its pseudocode is presented below.

1 for i in nb_epochs:
2 shuffle(train_data)
3 for mini in divide_batches(train_data, batch_size):
4 params_grad = evaluate(cost_function, mini, params)
5 params = params - learning_rate * params_grad)

Masters and Luschi [39] suggest that using small batch sizes between 2 and
32 achieves the best performance on both training stability and generalization in
most scenarios. But it is recommended to review the trade-offs between the model
validation error and the training time under different batch-size settings.

Adagrad

One of the challenges faced by gradient descent algorithms is that a predefined
learning rate is applied to all parameter updates. It does not adapt neither to a
dataset’s characteristics nor to different features within the dataset. When we have
a sparse dataset and the features’ frequencies vary heavily, we would like to have
relatively larger updates for rarely occurring features than for frequent features.

Adagrad is a gradient-based optimization that adapts the learning rates to
the parameters. For parameters associated with features that occur frequently, it
performs small updates, while for parameters associated with rarely occurring
features, it makes larger updates. Comparing to gradient descent algorithms, it suits
better for sparse data, which is very common in the real world. A well-known neural
network learned to recognize cats in videos trained at Google used Adagrad and
found that it greatly improved the robustness of SGD [40].

One of the benefits brought by Adagrad is that the need to manually tune the
learning rate is removed. The default value of 0.01 can be simply adopted and
the algorithm will update the learning rate automatically. However, Adagrad has
its shortcomings. The greatest weakness is that the learning rate will keep shrink
and eventually decay, at which point the algorithm stops learning.

Adagrad can be implemented using TensorFlow with Keras library. Please refer
to the API of TensorFlow section tf.keras to find out the details.
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Adam

To solve the decaying learning rate problem of Adagrad, multiple methods have
been developed. AdaDelta and RMSprop are two of the most famous and widely-
used ones. They are independently developed but both take the route of an
exponentially decaying average of past squared gradients. Similar to Adagrad, with
these two optimizations we do not need to set a default learning rate since it is not
included in the update rule. The difference from Adagrad is that the learning rate
does not decay.

Another optimization that computes adaptive learning rates for each parameter
is Adaptive Moment Estimation (Adam) [41]. It stores an exponentially decaying
average of past squared gradients like AdaDelta and RMSprop do, and also keeps
track of an exponentially decaying average of past gradients. This method converges
very rapidly while performs well in practice.

Adam can be implemented with TensorFlow and keras too. The default values
for β1 and β2 are 0.9 and 0.999 respectively, and default ε is 10−8.

Which Optimizer Should We Use?
So, which optimizer should we really pick out from the multiple algorithms that

are listed above, as well as tens of those not even mentioned here? Long story
short, Adam is the best optimizer at this point of time. As we stated in Section
2-5-2-3, most of the practical datasets are sparse, and for sparse data, we should use
the optimizers with dynamic learning rates since they are capable of capturing the
variance in the rarely occurring features better than the optimizers without adaptive
learning rates.

Among the optimizers with the adaptive learning rates, Adam not only deals with
the problem of diminishing learning rate faced by Adamgrad, but also outperforms
AdaDelta and RMSprop toward the end of optimization due to its consideration
toward bias-correction and momentum. Despite that optimizers without the adaptive
learning rates such as SGD can be implemented easily with Scikit learn libraries, we
should use Adam if we care about fast convergence and the neural network we are
training is deep or complex.

If under some certain circumstances in which gradient descent algorithms are
more favorable, such as when computational capacity is lacking, mini-batch gradient
descent is the best optimizer due to its higher flexibility and robustness comparing
to vanilla gradient descent and SGD.

3.4.5 Inference

During the inference phase, the obtained hyperparameters will be utilized to perform
the predictions. In most of the classification examples, the softmax is the widely
considered and used output layer’s activation function.
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3.4.6 Issues with Multi-Layer Perceptron

Despite MLPs being widely deployed and effective for a wide range of applications,
careful consideration of the challenges is non-trivial to ensure the application and
MLP architectures are well matched. Four major challenges in the design of MLP
designs are the overfitting, underfitting, scaling of the inputs, and existence of
multiple optimum points.

Overfitting

Overfitting is a common issue with many machine learning including the previously
discussed regression, ANN, and other techniques. Given the learning capability of
the neural networks, they are often trained with complex data or highly nonlinear
and complex to extract the relationship between dependent and independent vari-
ables. In such scenarios, when a model tries to fit the data that is highly noisy it
overfits. The overfitting of a model indicates lack of generalization of the data and
does not reflect the underlying trends and relationship between the variables in the
data. In other words, the model performs well on the seen data and performs poorly
in the case of unseen data. There exist multiple solutions that aid in preventing
a neural network (or machine learning models, in general) from overfitting. We
discuss a few of them below.

Lowering the Model Complexity

As a practice, the programmers assume that providing a large model can capture
complex data. However, this is not often the case and can lead to overfitting
concerns. Thus, a simple solution to overcome the overfitting challenge is lower
the complexity of the network by reducing the number of hidden layers or reducing
the number of neurons in the hidden layer. However, there is no standard rule on
modifying the number of layers or the number of neurons. Thus, by experimenting
and verifying the performance and loss plots, one needs to fine-tune the model to
alleviate overfitting challenge.

Regularization

The training of the model happens with respect to the loss of the model, i.e.,
the loss value is fed back during the backpropagation based on which the model
hyperparameters will be tuned to fit the data. In the case of regularization, a penalty
term is added to the loss function to reduce the complexity of the model, leading to
better generalization. Two types of regularization terms are widely used in practice,
namely L1 and L2 regularization, as shown in Equations below.
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L(x, y) =
n∑

i=1

(yi − hθ (xi))2 + λ
n∑

i=1

|θi | (3.17)

L(x, y) =
n∑

i=1

(yi − hθ (xi))2 + λ
n∑

i=1

|θi |2. (3.18)

The first term indicates the loss and the last term indicates the regularization
term. As seen, the L1 penalty aims to minimize the absolute value of the weights,
whereas L2 aims to minimize the square value of the weights.

Limited Training

Termination of training the model within a limited number of iterations is considered
as a form of regularization. By limiting the number of training iterations one can
ensure that the model learns to fit the data well and capture the relationship between
the variables. Once the required performance is achieved, further trying to improve
the fitting accuracy often leads to minimizing the generalization capabilities. Thus,
limiting the training iterations will help to avoid overfitting scenarios.

Data Augmentation

Given that the data available during the training could be limited or biased to one
class often leads to overfitting. To avoid such a scenario, data augmentation could
be utilized to increase the training data and avoid the model to be fit to a specific
set of data. Some of the popular data augmentation techniques in computer vision
domain include flipping, translation, rotation, scaling, changing brightness, adding
noise to the existing data. A sample image with data augmentation is shown below.

1 from keras.preprocessing.image import ImageDataGenerator
2

3 datagen = ImageDataGenerator(
4 rotation_range = 45,
5 shear_range = 0.5,
6 zoom_range = 0.5,
7 horizontal_flip = True,
8 brightness_range = (0.5, 1.5)
9 )

Dropout

Dropout is another technique that is seen as an anti-dote to overfitting challenge.
In the case of dropout, the connections between the neurons in the hidden layers
are removed, i.e., no propagation of values. The aforementioned techniques such
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as regularization perform the modification of the cost function to minimize the
overfitting. However, the dropout technique randomly drops the neurons in the
ANN. Different neural networks with different dropout values will overfit in
different manners, thus, the net impact of overfitting is mitigated.

In addition to addressing the overfitting challenge, it also helps to prevent
underfitting. Performing dropout in every iteration will improve the generalization
capability by ensuring that the information leading to underfitting is randomly
removed or not learned. Reducing the dropout also aids in improving the complexity
of the model and helps to better learn the training data.

Underfitting

In addition to overfitting challenges, underfitting is another hurdle in fitting the
machine learning classifiers, including neural networks to the input data. Under-
fitting occurs when the neural network is unable to perform well on the training
data, i.e., not able to capture the relationship between dependent and independent
variables during the training phase. The underfitting challenge signifies that the
deployed neural network is unable to learn and exploit the relationship in the
underlying data, making it inefficient to use. Poor training performance and high
variations in the inference are seen as indicators of the underfitting. To overcome
the challenge of underfitting multiple solutions are suggested as discussed below.

Adding More Layers or Neurons

Given that the underfitting leads to capturing the complexity of the fitting, adding
hidden layers and/or neurons will aid in improving the learning of the underlying
data and limiting the underfitting challenge. Additionally, increasing the number of
input parameters can also help in better understanding the complex data and enables
better fitting. For instance, instead of reducing the features through the techniques
such as principal component analysis (PCA), feeding the raw data or more pre-
processed features will help in avoiding the underfitting challenge.

Decreasing Regularization Parameter

As seen in Eqs. (3.17) and (3.18), adding the penalty term to the loss function aids
in tuning the complexity of the model based on the penalty term λ. Thus, by tuning
the penalty term, ideally, reducing the penalty term helps in improving the fitting
and reduce the bias.
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Fig. 3.14 (a) Underfitting. (b) Correctly fitted. (c) Overfitted

Increasing the Training Data

Another solution to avoid underfitting of the model is to increase the training
samples. As underfitting indicates the inability to learn the training data and
exploit the underlying (complex) relationship, increasing the training data that better
represents the variance of parameters in the dataset at large will avoid underfitting
of the model.

Overfitting vs Underfitting

Overfitting and underfitting are two common problems in the training of neural
networks and machine learning algorithms. Underfitting refers to the model’s
inability to learn the training data, whereas overfitting refers to the inability of the
model to generalize well. As shown in Fig. 3.14, underfitting leads to improper
classification, whereas overfitting makes the model highly specialized to the data
and unable to generalize well. Thus, a network that is not overly fitted or underly
fitted, i.e., a learning technique that learns the training data well and showcases
capability to generalize well is the machine learning model that is anticipated to
perform better.

Scaling of Inputs

Scaling of inputs is not a challenge unlike overfitting or underfitting but can degrade
the performance of the neural networks. Given that the weights of the neural network
are initialized with small random values at the beginning of the training and updated
via training algorithms based on loss value, the scale of inputs and outputs plays
a critical role. Unscaled input data can lead to slower or unstable learning due
to inability to adapt to the gradients. Similarly, unscaled output data can result
in larger gradients leading to learning failures. Thus, it is non-trivial to scale the
data for efficient learning and convergence. Multiple scaling techniques such as
normalization and standardization to scale the input and output variables are widely
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supported by the machine learning libraries. Most of the scaling techniques scale
the data to be in the range of [0,1].

Data normalization technique converts the data to be in the range of 0 to 1. In
order to perform this, the following way is adopted.

y = (x −min)/(max −min). (3.19)

Here, the unscaled value is represented by x, which has a minimum of min and
maximum value of max. The scaled value is represented by y. Libraries such as
scikit extend support to perform the data normalization.

1 from sklearn.preprocessing import MinMaxScaler
2 data = iris.dat
3 scaler = MinMaxScaler()
4 scaler.fit(data)
5 normal_value = scaler.transform(data)

Here, the MinMaxScaler is used to estimate the minimum and maximum
values from the whole training dataset. The transform function normalizes the data
into the desired range. The range of scaling can be specified in MinMaxScaler as
follows:

1 scaler = MinMaxScaler(feature_range=(-1,1))

Here, the range of the data will be set between -1 and 1.
Standardization is another data scaling technique whose goal is to rescale the

distribution of the values such that the mean of the data distribution is 0 with a
standard deviation of 1. The underlying assumption is that the data distribution
closely fits the Gaussian distribution. The standardization is performed as follows:

y = (x −mean)/(standard_deviation). (3.20)

Here mean and standard_deviation represent the mean and standard deviation
of the data x, respectively. Scikit library supports the data standardization through
StandardScaler function as shown in the following code snippet:

1 from sklearn.preprocessing import MinMaxScaler
2 data = iris.data
3 scaler = StandardScaler()
4 scaler.fit(data)
5 normal_value = scaler.transform(data)

Batch normalization is another form of normalization technique, which not
only scales the inputs and outputs but also scales the values and weights in the
intermediate layers, leading to better learning efficiency and convergence.

1 from keras.models import Sequential
2 from keras.layers import Activation, BatchNormalization, Dense
3 model = Sequential
4 model.add(Dense(32))
5 model.add(BatchNormalization())
6 model.add(Activation(’relu’))
7 ...
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Multiple Optimum Points

Given the fact that the ANN is primarily focused on minimizing the loss function
during the training phase, existence of multiple optimum points can lead to
inefficient training. Furthermore, searching solely for the global optima can lead
to non-convergence or large training times. As a solution, one can utilize opting for
the local minima as the local and global minima can be close and furthermore, the
neural networks are resilient to errors.

3.4.7 Instances of Deep Neural Networks

Previously presented MLP technique assumes there is a single hidden layer, often
termed as shallow neural networks. Such technique is sufficient as long as the dataset
is small and has low levels of noise and irregularities. But, the presence of noise and
large datasets adversely affect the performance of the traditional MLP techniques.
Deep learning has been introduced to address these issues.

Deep learning [42] can be seen as an extension traditional MLP with abstractions
and processing at multiple levels. Deep neural networks are an extended version
of neural networks with an increased number of processing layers (hidden layers).
Different deep learning architectures [42, 43] including convolutional neural net-
works [44, 45], recursive neural networks [46, 47], deep stacking networks [48, 49],
and so on are introduced depending on the application, with architecture, i.e., the
connectivity between and within layers, and the kernels as the main differentiating
factor. For instance, deep stacking networks are a straightforward extension of
traditional 3-layer networks. They contain a stack of hidden layers with the outputs
of one layer forming the inputs to the succeeding. As such, the weights for the
individual hidden layer networks are calculated. This hierarchical processing has
the advantages of abstracting the input data at different levels.

Convolutional Neural Networks

As the processing of images of large feature vectors that comprise few thousand
of input features will increase the computational complexity of the deep neural
networks or MLPs, convolutional neural networks are introduced. A Convolutional
Neural Network (CNN) is a variant of feed-forward neural networks with deep
learning [50–53]. The input provided for CNN will be tiled into several smaller
segments, with two successive segments having an overlap. The amount of overlap
can be modified depending on the application and the input data size. Each input
neuron/node will be fed with this smaller segment of input data and convoluted
with a mask. A mask is a filter with which the convolution is performed. Consider
an object recognition task, the mask could be a small matrix that represents a
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Fig. 3.15 Convolutional neural network architecture

subset of the image. The main necessity of masks also termed as filters is for
extracting different levels of features in image processing applications. A similar set
of parallel layers are arranged with each layer having specific masks, i.e., different
filters. Further, the output from each layer is transferred to the next layer. Thus,
the whole CNN comprises a set of parallel layers arranged in a serial manner. The
output of each node is smaller in dimension compared to the input. This dimension
reduction continues. Finally, this reduced dimensional output is provided to a fully
connected network, i.e., a traditional neural network for final processing. CNN finds
applications for multi-dimensional data classification and object recognition.

A convolution-based neural network implementation is shown in Fig. 3.15. The
input is convoluted with different masks at the beginning states, and the convolution
formed with different masks are concatenated. The yellow color rectangle represents
the mask or the activation function used in the layer. This procedure is repeated and
the output is finally obtained by providing the convoluted results to a fully connected
neural network. It needs to be noted that the input and outputs of the CNN layers
are often termed as input feature map (ifmap) and output feature map (ofmap). The
filters are termed as activation maps. The process of convolution is mathematically
defined as follows:

O[m, n] =
∑

j

∑

k

h[j, k]f [m− j, n− k]. (3.21)

Here, the o(m, n) denotes the output feature map of the convolution of the input
feature map f and kernel h. In the above scenario, the convolution is a two-
dimensional convolution, i.e., the input feature map has only single channel. In
many applications, the input can comprise multiple channels, thus a 3D convolution
is performed, defined as follows:

o[m, n, c] =
∑

i

∑

j

∑

k

h[i, j, k]f [m− i, n− j, c − k]. (3.22)

Here, the c represents the channel index. For instance, for RGB images, there are
three channels at the input.
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As the convolution operations can lead to large dimensional data, it is advised to
reduce the dimensionality for minimizing the complexity. In order to reduce the
dimension, pooling stages are used in between. For example, a moving average
filter, mean filter, applied to reduce the size of the data can be seen as a Pooling
stage. CNNs are widely used in image processing applications where the amount of
data to be processed is often large.

Example 3.14 (Convolutional Neural Network)
Problem: Classify the Fashion_MNIST dataset into different classes
using a CNN.
Solution: We have 10 different classes in Fashion_MNIST dataset each
class representing a piece of clothing. With the help of CNN, we can classify
this image data into their respective classes. For which we need to load the
training and test set from the dataset, reshape the size of each image so that
we can train them through a defined CNN model.

A simple code snippet for CNN is shown below.

1 #Importing Libraries
2 import tensorflow as tf
3 import numpy as np
4 import matplotlib.pyplot as plt
5

6 #Loading Data of Fashion MNIST dataset
7 fashion_mnist = tf.keras.datasets.fashion_mnist
8 (train_images, train_labels), (test_images, test_labels) = fashion_mnist.

load_data()
9

10 #Defining the class names
11 class_names = [’T-shirt/top’, ’Trouser’, ’Pullover’, ’Dress’, ’Coat’,
12 ’Sandal’, ’Shirt’, ’Sneaker’, ’Bag’, ’Ankle boot’]
13

14 #Reshaping the training and test set
15 train_images = train_images / 255.0
16 test_images = test_images / 255.0
17

18 #Defining the CNN model
19 model = tf.keras.Sequential([
20 tf.keras.layers.Flatten(input_shape=(28, 28)),
21 tf.keras.layers.Dense(128, activation=’relu’),
22 tf.keras.layers.Dense(10)
23 ])
24

25 #Compiling and fitting the model
26 model.compile(optimizer=’adam’,
27 loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=

True),
28 metrics=[’accuracy’])
29

30 model.fit(train_images, train_labels, epochs=10)
31

32 #Evaluating the model
33 test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
34 test_acc
35

36 > 0.86949



3.4 Artificial Neural Networks 123

The above code is a snippet for Alexnet implementation using the Keras
framework. As shown, one can add convolution layers using the add command.
Furthermore, post convolution layer, batch normalization and max-pooling are
performed to reduce the dimensionality. Some of the frameworks such as Keras
and Tensorflow allow users to use the state-of-the-art directly without requiring to
design the network from scratch.

Radial Basis Function (RBF) Neural Networks

Radial basis functions (RBF) have proven their efficiency in many applications such
as predictions, classifications, approximations, system controls, and many others
[12, 13, 54–56]. [57] proposes a neural network with RBF as activation functions.
Similar to traditional neural networks, the architecture consists of three kinds of
layers. However, the activation functions in the hidden layers use RBF, and the
output layer simply can be seen as the linear combination of outputs from the
last hidden layer, i.e., RBFs and the neuron parameters such as bias. Different
applications of this hybrid technique can be seen as fault detection [58, 59], control
optimization [60], and so on.

1 class RBFNet(object):
2 """Implementation of a Radial Basis Function Network"""
3 def __init__(self, k=2, lr=0.01, epochs=100, rbf=rbf, inferStds=True):
4 self.k = k
5 self.lr = lr
6 self.epochs = epochs
7 self.rbf = rbf
8 self.inferStds = inferStds
9

10 self.w = np.random.randn(k)
11 self.b = np.random.randn(1)

Recurrent Neural Networks

So far we have discussed different deep neural networks; however, most of the
aforementioned techniques lack the temporal information. To consider the temporal
information and understand the temporal variations, different classes of DNNs are
introduced. Recurrent neural networks (RNNs) [61–63] are deep neural networks
with the notion of memory; hence, they remember the previous state of the network
and can be seen as a class of Elman networks. The state of a node is defined by the
input weights of the neuron. An RNN is modeled as

ht = f (ht−1, xt ), (3.23)

where ht represents the state of the neural network at time t , xt is the input at time t ,
and f (·) represents the next-state function. The state of a neural network is defined
as the weights in the network.
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Fig. 3.16 Recurrent neural
network architecture
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Figure 3.16 illustrates the RNN. The X-axis represents the notion of time and
Y-axis represent the network. Each block can be seen as a layer (or several layers)
in the network, i.e., a set of nodes. The current state and the previous state of the
hidden layers determine the output at a time instant. In the following equation, the
hyperbolic tangent is considered as the activation function of the hidden layer node,
and it takes the product of the previous state (ht−1) and a weight vector (Whh) along
with the input xt and the weight vector Wxh. Based on the current state and the
output weight vectorWhy , the output yt is determined.

ht = tanh(Whhht−1 +Wxhxt )
yt =Whyht .

(3.24)

Note, that the number of states that are considered to determine ht is variable. In
this example, only the previous state (ht−1) is considered, but more history states
ht−1 · · · ht−k could be used. If a large number of previous states is considered, the
system may require a significant amount of memory.

In general, the current state ht with tanh() activation functions can be given as

hlt = tanh

(

Wl

(
hl−it
hlt−1

))

, (3.25)

where l represents the hidden layer number. Wl is the weight vector of the current
layer (Wl can be seen as [WxhWhh], for this case, the hl−1

t is the input xt , as only
one hidden layer is used). This indicates that the current state is derived based on
the previous state of the current layer and the current state of the one layer below the
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hidden layer in the hierarchy. It is not necessary to consider the state of lower-level
hidden layers of all the times, which, however, depends on the application.

RNNs are employed widely in applications like image captioning, predicting
strings, predicting words or characters, language translation, with training set
comprised of few words or characters [61, 64], and so on.

Example 3.15 (Recurrent Neural Networks)
Problem: Construct a model that can do image classification of malignant
and benign tumor images.
Solution: To build a model that can do the image classification of malignant
and tumor images, we not only need a CNN classifier but also RNN to add
the memory element, for making the connection between various images. To
do this we take a pretrained model ResNet50 on Imagenet and stack RNN on
top of it.

1 #Example showing the combination of CNN and RNN for image classification
2

3 from keras.applications.resnet50 import ResNet50
4 from keras.models import Model, Sequential
5 from keras.layers import GlobalAveragePooling2D, Dense, RNN
6

7 #Initializing CNN pretrained model for transfer learning
8 pretrained_model = ResNet50(weights=’imagenet’, include_top=False, pooling=

None)
9

10 x = pretrained_model.output
11 x = GlobalAveragePooling2D()(x)
12 pretrainedmodel.outputs = Dense(1024, activation=’relu’)(x)
13

14 #Stacking RNN on the pretrained CNN model
15 X = Model(inputs=base_model.input, outputs=pretrainedmodel.outputs)
16 model = Sequential()
17 model.add((X))
18 model.add(RNN(64, return_sequences=True, stateful=True))
19 model.add(Dense(N, activation=’softmax’))

The above code snippet explains the model architecture that uses a pretrained CNN
model and stacking it on an RNN model for image classification. CNN adds the
features extracted in the images and RNN combines them with memory elements
between the images. Based on this information, CNN and RNN are useful in
applications related to medical image processing.

Vanishing Gradient Problem

As we have seen in Stochastic Gradient Descent, information travels from front
input neuron to output neuron, the error is calculated and each neuron’s weight
is updated by using backpropagation. Similar to this, in RNN we have a gradient
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updation process, but here the information travels in terms of time and we can
calculate the error at each time point. The problem in RNN is that the weight update
process does not occur one neuron at a time, but all the neurons have participated in
the calculation of the error function. So weights of all the neurons far back in time
are updated at a time. In backpropagation with the increase in the number of epochs,
the number of updations increases and the gradient gets smaller. At some point, the
gradient gets much smaller, and at some point, the gradient is not useful for updating
weights of neurons that are way back in time. Due to which lower half neurons are
not updated, and for the prediction, the model depends on all the neurons. Thus,
the performance of the model degrades because of the untrained neurons from the
vanishing gradient problem.

Long-Short-Term Memory Neural Networks

Long short term-memory (LSTM) neural network [62, 65, 66] is an extension of
RNNs. The main issue in RNNs is the need for large storage to remember a large
number of states and computations performed on each of the previous states. As a
remedy, LSTM is activated with forget and remember gates. During the training the
network evaluates the impact of the previous and current states. The current input
and the states that have impact on the output are kept while the rest is discarded. It
can be mathematically given as
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tanh(clt ).

(3.26)

The notations in the aforementioned equation are the same as that in Eq. (3.24).
Here,

⊙
represents the point-wise computations. LSTMs are very popular in

language processing. Similar to RNNs, LSTMs combined with CNNs are employed
for image captioning [67] purposes.

Example 3.16 (Long-Short-Term Memory Neural Networks)
Problem: Predict the next character that may occur in a sentence from the
IMDB dataset.

(continued)
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Example 3.16 (continued)
Solution: To solve this problem, we need to start by importing the IMDB
dataset, then building the model using LSTM, which can observe the pattern
and predict the future characters. Then, we fit the input padded X_train
data onto the defined model.

1 # Importing the libraries
2 import numpy as np
3 from tensorflow import keras
4 from tensorflow.keras import layers
5

6 max_features = 50000
7 max_len = 200
8

9 # Input for variable-length sequences of integers
10 inputs = keras.Input(shape=(None,), dtype="int32")
11 # Embed each integer in a 128-dimensional vector
12 x = layers.Embedding(max_features, 128)(inputs)
13

14 #Adding the LSTM layers
15 x = layers.LSTM(64, return_sequences=True)(x)
16 x = layers.LSTM(64)(x)
17

18 # Adding a classifier for the model
19 outputs = layers.Dense(1, activation="sigmoid")(x)
20 model = keras.Model(inputs, outputs)
21 model.summary()
22

23 #Importing the data from IMDB dataset
24 (x_train, y_train), (x_val, y_val) = keras.datasets.imdb.load_data(num_words=

max_features)
25

26 #Padding the sentences in training and validation set to maximum length
27 x_train = keras.preprocessing.sequence.pad_sequences(x_train, maxlen=max_len)
28 x_val = keras.preprocessing.sequence.pad_sequences(x_val, maxlen=max_len)
29

30 model.compile("adam", "binary_crossentropy", metrics=["accuracy"])
31 model.fit(x_train, y_train, batch_size=32, epochs=2, validation_data=(x_val,

y_val))

3.5 Support Vector Machines

Support Vector Machines (SVMs) [13, 68, 69] are another class of ML, which is
used for classification and regression analysis. An SVM builds a model based on
the input data with labels such that it could be classified as clear as possible (as
provided in labels). Here, the label indicates the class or a group to which the input
data belongs to. For example, consider an ECG signal, here the label could be the
name of the component at a particular time instant. Every new input is mapped to
the corresponding category. SVMs operate on vectors rather than individual points,
making them robust. For estimating the distances, SVMs make use of dot products.
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In SVMs, the objective is to find a hyper-plane that could separate the positive
and negative samples (considering a simple binary classification) with a clear
boundary. Let us assume a sample space with vector w being normal to the hyper-
plane that separates the dataset and a constant b. Then the following equation has to
be satisfied:

ti (w
T · xi + b) ≥ 1,

where xi is a sample, and ti is the target output, i.e., the class to which it should
belong. ti = +1 for the sample belonging to positive class and ti = −1 for the
sample belonging to the negative class. The width of the hyper-plane is given by

max(
1

‖w‖ ),

where w represents the normal vector to the hyper-plane. Considering all these
assumptions, it boils down to optimizing the following equations that could be
performed using Karush–Kuhn–Tucker (KKT) conditions [70].

λi(1 − ti (wT · xi + b)) = 0

1 − ti (wT · xi + b) ≤ 0

λi ≥ 0,

(3.27)

where λi is a Lagrange multiplier. The main objective here is to find w and b, such
that for any sample, the classification can be carried out.

A simple example, explaining this SVM method is shown in Fig. 3.17. The goal
is to perform the classification of new input based on the existing data. In this
figure, the positive samples are indicated by circles and negative with squares. We
first find the normal vector w to the median of the hyper-plane and the width of
the hyper-plane. Further, the hyper-plane is formed and the classification can be
easily performed by calculating the distance of the sample to the plane, as given by
constraint 1 in Eq. (3.27).

Fig. 3.17 Binary
classification with (a) other
classifiers; (b) SVM

w

(a) (b)x1

x2 x2

x1
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Support vector machines (SVMs) [71–73] are employed in classification appli-
cations. The main objective of SVM is to compute the hyper-plane based on KKT
conditions as given in Eq. (3.27).

The basic process of SVM starts with training of labeled input data (labels
represent the class to which the data belongs). Further, based on the training data,
the normal vector w is calculated. Once the normal vector is obtained, the position
of new input data (test data) relative to the obtained hyper-plane has to be computed,
and based on the relative position, the class of the new input is determined.

The traditional SVM classifiers are capable of performing binary classification,
i.e., only two possible labels are possibles for a given input. Consider a simple case
of binary classification, i.e., the input data has two classes. A hyper-plane will be
formed in between those two classes. Class A is on the left side of hyper-plane
and class B to the right side, similar to that in Fig. 3.17. Any new input data whose
distance is negative, i.e., left side of the hyper-plane belongs to class A and the input
data whose distance to the hyper-plane is positive belongs to class B.

In the above code snippet, the SVM classifier is used from the Scikit Learn
library. The X and y represent the input data and corresponding labels. The SVM
with the linear kernel is used in the above snippet for fitting the data and further use
for inference.

As a simple illustrative example, consider the problem of images that contain
either apple or pear picture and labeled accordingly. Given a new image the task of
SVM is to classify the image into one of these classes. Once all the input images
are converted into data matrices, the SVM takes the previously seen images and
corresponding labels to fit the model, as described by the fit(X,y). For predicting
the new (unseen) image, the image is converted into a matrix and fed to the trained
model. The SVM uses a kernel function (Linear) in the above code snippet to obtain
the manifold that best separates both the classes. Different kernels can be used,
which are discussed below.

Example 3.17 (Support Vector Machines)
Problem: Classify the malignant and benign data from cancer dataset using
SVM classifier.
Solution: To do this, import the required libraries as shown in code below.
Then load the cancer dataset from datasets in sklearn. Then we need to split
the dataset to train and classify the data using the SVM classifier. Next we
predict on the test train and find the accuracy of the model.

1 #Importing required libraries
2 from sklearn import datasets
3 from sklearn.model_selection import train_test_split
4 from sklearn import svm
5 from sklearn import metrics
6

7 #Loading the cancer dataset



130 3 Supervised Learning

8 cancer_data = datasets.load_breast_cancer()
9

10 # Spliting dataset into training set and test set
11 X_train, X_test, y_train, y_test = train_test_split(cancer_data.data,

cancer_data.target, test_size=0.3,random_state=109)
12

13 #Creating a svm Classifier model
14 clf = svm.SVC(kernel=’linear’) # Linear Kernel
15

16 #Train the model using the training sets
17 clf.fit(X_train, y_train)
18

19 #Predict the response for test dataset
20 y_pred = clf.predict(X_test)
21

22 # Model Accuracy: how often is the classifier correct?
23 print("Accuracy:",metrics.accuracy_score(y_test, y_pred))
24

25 > 0.96491

3.5.1 SVM Kernels

SVM algorithms utilize different sets of Kernels to build the classification model.
The performance of the SVM classification highly depends on the type of Kernel
used. Kernel is a mathematical function that takes data as input and transforms it
into the required format for classification. Kernel functions output the dot product
between the input point and a point in the feature space. Different SVM kernels
include linear, nonlinear, and polynomial kernels. Widely used SVM kernel is the
radial basis function due to its localized and finite response. Some of the popularly
used SVM kernels include:

1. Polynomial Kernel: Used for image processing applications. It is mathematically
given by

k(x, y) = (x · y + 1)d . (3.28)

Here, the x, y represent two data points and d represents the polynomial degree.
2. Gaussian kernel: Widely used for general data for which distribution is assumed

to be Gaussian. Also used when no prior data assumptions are available. It is
mathematically given by

k(x, y) = exp(−||x − y||2
2σ 2

). (3.29)

Here, σ denotes the standard variance.
3. Gaussian radial basis function (RBF): This is similar to the Gaussian kernel and

is used when no prior data information is available. It is mathematically given as

k(x, y) = exp(−γ ||x − y||2).f orγ > 0 (3.30)
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4. Laplace RBF kernel: Similar to the above two kernels, Laplacian RBF kernel
is also deployed when no prior information regarding the data is available. The
kernel is mathematically defined as

k(x, y) = exp(−||x − y||
σ

. (3.31)

5. Hyperbolic Tangent kernel: This is used in neural networks, given by

k(x, y) = tanh(a · x · y + c), (3.32)

where a > 0 and c < 0.
6. Sigmoid Kernel: The kernel takes the shape of a sigmoid function and is used as

a proxy for the neural networks. This is mathematically defined as

k(x, y) = tanh(αxT y + c). (3.33)

7. ANOVA RBF Kernel: To meet the requirements of the regression problems,
ANOVA kernels are used. It is mathematically given by

k(x, y) =
n∑

k=1

exp(−σ(xa − ya)2)d . (3.34)

Here, a denotes the degree.
8. Linear Spikes Kernel: To perform the classification or regression of sparse data

vectors, this kernel is deployed. Text classifications are one of the applications
that use this kernel. This is mathematically given by

k(x, y) = 1+xy+xymin(x, y)− x + y
2

min(x, y)2 + 1

3
min(x, y)3. (3.35)

3.5.2 Multiclass Classification

SVMs are primarily introduced for binary classification. However, the SVMs can be
extended to multiclass classification as well. Unlike neural networks where training
the data from multiple classes and modifying the architecture of the neural network
(specifically the output later) aids in performing multiclass classification, SVMs
need a different approach.

In the case of SVMs, the multiclass classification happens through one vs all or
one vs rest approach. In this approach, the initial classification is modified to be a
binary classification, where the classifier first considers the classification problem
into two classes where one is related to a specific class and the rest of the classes
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are grouped into one class. This process happens iteratively to enable multiclass
classification.

SVMs are primarily supervised learning algorithms that are trained to classify
unseen or unknown data. Similar to neural networks, SVMs are deployed in a
wide range of applications. Some of the common applications of SVM include face
detection, text classification, object detection and classification and bioinformatics
such as cancer detection or pathology cell detection. Other applications include
handwriting recognition and predictive control applications. The efficiency of the
SVMs depends on the application and kernel used.

Example 3.18 (Multiclass SVM Classification)
Problem: Perform a multiclass classification on the Iris dataset using SVM
classifier.
Solution: To perform the multiclass classification on Iris data, we first need to
import the libraries. Then, we load the dataset from datasets available through
sklearn. We split the dataset in training and test sets, then define the model that
is fitted onto the training set and do predictions on the test set. We then observe
the accuracy and confusion matrix; confusion matrix gives the information of
number of correct and wrong classified values per class.

1 # importing necessary libraries
2 from sklearn import datasets
3 from sklearn.metrics import confusion_matrix
4 from sklearn.model_selection import train_test_split
5 from sklearn.svm import SVC
6

7 # loading the iris dataset
8 iris = datasets.load_iris()
9

10 X = iris.data
11 y = iris.target
12

13 # dividing X, y into train and test data
14 X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 0)
15

16 # training a linear SVM classifier
17 model = SVC(kernel = ’linear’, C = 1).fit(X_train, y_train)
18 y_pred = model.predict(X_test)
19

20 # model accuracy for X_test
21 accuracy = model.score(X_test, y_test)
22 print(accuracy)
23

24 # creating a confusion matrix
25 conf_m = confusion_matrix(y_test, y_pred)
26 print(conf_m)
27

28 > 0.9736842105263158
29

30 > [[13 0 0]
31 [ 0 15 1]
32 [ 0 0 9]]
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3.6 Ensemble Learning

Despite individual classifiers or predictors above discussed are efficient for a wide
range of applications, the presence of noisy data or smaller amounts of data or
features can lead to inefficiency of the individual classifiers. To address such sce-
narios, ensemble learning is introduced. Ensemble learning refers to using multiple
classifiers trained on different instances of data for the purpose of classification.
It fully exploits complementary information of different classifiers to improve the
decision accuracy and performance. In the field of machine learning, the ensemble
learning and joint decision procedure are widely used to devise learning methods
to achieve more accurate predictions and stronger generalization performance.
Multiple ensemble learning techniques exist, which are discussed below.

The idea of ensemble learning is to use the weak learners to build blocks to design
more complex models. This method tries to reduce the bias and/or variance of these
weak learners by combining them together to form a stronger learner. Ensemble
learning imitates our nature to seek several opinions before making a decision. It
involves designing two or more classifiers (or regressors) and combining them to
obtain a classifier (regressor) that outperforms each one individually.

There are three primary ways of combining weak learners to design an ensemble
meta-algorithm:

• Bagging: A homogeneous set of weak learners that are trained independently
and in parallel are combined using some form of averaging process called
aggregation.

• Boosting: A homogeneous set of weak learners that are trained sequentially in
an adaptive way ( i.e., a base model depends on the previous ones) are combined
using a deterministic strategy.

• Stacking: A heterogeneous set of weak learners that are learned in parallel are
combined by training a meta-model to output a prediction based on the different
weak model predictions.

3.6.1 Bagging

Bagging, also known as Bootstrap Aggregation is an ensemble learning model that is
used for classification and regression problems. It is a statistical prediction technique
where a statistical value like a mean is estimated from multiple random samples of
training data that are drawn with replacement and used to train different ML models.
Each model is then exploited to make a prediction, and the results are averaged to
give a more robust and generalized prediction. Figure 3.18 illustrates the overview
of bagging model. Bagging is a technique that is best used with models with low bias
and high variance, in which the predictions of base learners are highly dependent on
the data from which they were trained. The most used algorithm for bagging that
fits the requirement of high variance is decision trees.
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Fig. 3.18 Procedure of bagging

Bagging algorithm is performed as follows: a) Create multiple datasets out of
existing dataset; b) build multiple classifiers—based on the created multiple subsets;
and c) combine the predictions—the predictions from individual classifiers are
combined using statistical techniques such as mean, median, or deviation depending
on the nature of problem. Using a large number of classifiers can lead to better
performance.

The Scikit implementation of the Bagging technique is presented below. Here,
the number of samples is set as 1000 with each having 8 features. The number of
estimators is set to 20.

Example 3.19 (Bagging)
Problem: Consider the dataset load_digits and perform bagging for
100 estimators classification. Also, display the classification accuracy of the
model.
Solution: The first step to solve the problem is to load load_digits()
dataset from sklearn dataset library using load_digits() command, fol-
lowed by splitting the dataset into train and test sets in ratio of 80:20. Bagging
is performed using BaggingClassifier and accuracy is obtained by
score function. n_estimators=100 is used to specify the number of
estimators. The code that performs above specified task is shown below.

1 from sklearn.ensemble import BaggingClassifier
2 from sklearn.model_selection import train_test_split
3 from sklearn.datasets import load_digits
4

5 digits = load_digits(n_class=10)
6 X = digits.data
7 y = digits.target
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8

9 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
random_state=50)

10 cls = BaggingClassifier(n_estimators=100).fit(X_train, y_train)
11 cls.score(X_test, y_test)
12

13 > 0.9222

3.6.2 AdaBoost

Adaptive Boosting (AdaBoost) is one of the most commonly used ensemble learning
methods for enhancing the performance of ML algorithms. In AdaBoost, each base
classifier is trained on a weighted form of the training set in which the weights
depend on the performance of the previous base classifier. Each instance in the
training data is weighed with initial weight set to weight (xi) = 1/n, where xi
denotes the i-th training sample and n denotes the number of training instances.
Once all the base classifiers are trained, they are combined to produce the final
classifier. Each training instance in the dataset is weighted and the weights are
updated based on the overall accuracy of the model and whether an instance
was classified correctly or not. Subsequent models are trained and added until a
minimum accuracy is achieved, or no further improvement is possible. In simple
words, a set of weak classifiers or models are added together to form a strong model.
The process continues until desired performance is achieved. Figure 3.19 depicts the
AdaBoost technique, where the individual weak models are added sequentially to
form a strong and efficient model.

In AdaBoost, for an incoming data sample that needs to be classified, each
weak learner predicts the value as 1 or −1. Further, as aforementioned, each of
the predictions from the individual classifiers is weighted, and the prediction for
the ensemble model is the weighted sum of the individual predictions. Including
a large number of noisy samples or outliers can enforce the AdaBoost to non-
convergence and inefficiency. Thus, preprocessing of the data is required to address
these concerns in AdaBoost. A majority of today’s ensemble learning techniques are
built on top of the AdaBoost algorithm, most notably stochastic gradient boosting
machines.

Example 3.20 (AdaBoosting Classification)
Problem: Consider the dataset load_digits and perform Gradient boost-
ing to train weaker models with 100 number of estimators. Also, finding the
classification accuracy of the model and estimate the expected error using
cross-validation.

(continued)
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Fig. 3.19 Block diagram of
Adaboost ensemble learning

Example 3.20 (continued)
Solution: The dataset is imported from sklearn dataset library, training is
performed with train and test dataset split in a ratio of 80:20. Boosting
is performed using AdaBoostClassifier and accuracy is obtained by
score function.

1 from sklearn.ensemble import AdaBoostClassifier
2 from sklearn.datasets import load_digits
3

4 digits = load_digits(n_class=10)
5 X = digits.data
6 y = digits.target
7

8 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
random_state=50)

9

10 clf = AdaBoostClassifier(n_estimators=100, random_state=0)
11 clf.fit(X_train, y_train)
12

13 from sklearn.model_selection import cross_val_score
14 all_accuracies = cross_val_score(estimator=clf.fit(X_train, y_train), X=

X_train, y=y_train, cv=5)
15 #Print accuracies
16 print(all_accuracies)
17 print(all_accuracies.mean())
18

19 > [0.35763889 0.26041667 0.27526132 0.26132404 0.24390244]
20 > 0.2797

The above code snippet shows the AdaBoost-based classification using Scikit
libraries. The number of estimators is set to 200 with each data sample having 10
features.
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3.6.3 Bootstrap

Bootstrap is another ensemble learning technique that performs data sampling to
estimate the statistical properties through data replacement, unlike cross-validation.
This is primarily used for data splitting that can be used to train and test different
classifiers and use them for ensembling. The statistical properties include mean or
standard deviation. Bootstrap method is a technique to estimate the dataset char-
acteristics despite having few data samples. This technique involves resampling of
the data iteratively to estimate the data statistics. Such iterative process with sample
replacement policy facilitates that each data sample be involved in estimating the
data statistics more than once.

The two main variables that impact the performance of the bootstrap are the
size of the samples and the number of repetitions of the data samples. Size of the
samples is similar to the traditional ML classifiers that signify the size of the original
dataset. Similarly, the number of repetitions signifies the number of iterations used
for estimating the data statistics such as mean, variance, and standard deviation or
errors. As a general rule, 20 to 30 repetitions are set; however, it could even be
few hundreds or thousands depending on the size of dataset. Also, the number of
iterations could be few hundreds to thousands depending on the time complexity.

Once the distribution of the data is determined, it could be used for training or
testing the classifiers. The bootstrap process is performed as follows: (a) Determine
the number of bootstrap samples; (b) extract the samples randomly and add it to the
observation, if the number of samples is less than the threshold; (c) the bootstrap
can estimate the properties of the data. These steps are performed iteratively.

Example 3.21 (Bootstrap)
Problem: Consider the scikit library function Bootstrap and perform
resample for the bootstrap technique.
Solution: The bootstrap splits the data with 9 values into three sets where
each set has 5 training samples and 4 test samples. For this purpose, one can
utilize the bootstrap command from the Sklearn library.

1 from sklearn import cross_validation
2 b = cross_validation.Bootstrap(9, random_state=0)
3 Bootstrap(9, num_bootstraps=3, num_train=5, num_test=4, random_state=0)
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3.6.4 Gradient Boosting

Gradient Boosting is another popular boosting algorithm just like AdaBoost; it
works by sequentially adding predictors to an ensemble, each one correcting its
predecessor. However, instead of tweaking the instance weights at every iteration,
gradient boosting tries to fit the new predictor to the residual errors made by the
previous predictor. Gradient Boosting is a procedure that can be used for both
regression and classification problems in a variety of areas including Web search
ranking and ecology.

At each stage m, 1 ≤ m ≤ M , assume an imperfect model Fm(x). Gradient
boosting improves on Fm(x) by constructing a new model that adds an estimate
h(x) to produce a better model,

Fm + 1(x) = Fm(x)+ h(x) = y. (3.36)

Here, Gradient boosting fits h(x) to the residual y−Fm(x). And Fm(x) will attempt
to correct the errors of the predecessor Fm − 1(x).

The scikit library provides a library function with the methods to perform both
the classification and regression via gradient boosted decision trees.

Example 3.22 (Gradient Boosting Classification)
Problem: Consider the dataset load_digits and perform Gradient boost-
ing to train weaker models with learning rate 0.1 and 100 estimators. Also,
find the classification accuracy.
Solution: The dataset is imported from sklearn dataset library, training is per-
formed with train and test dataset split ratio of 60:40. Boosting is performed
using GradientBoostingClassifier and accuracy is obtained by
score function.

1 from sklearn.datasets import load_digits
2 from sklearn.ensemble import GradientBoostingClassifier
3 from sklearn.model_selection import train_test_split
4

5 digits = load_digits(n_class=10)
6 X = digits.data
7 y = digits.target
8

9 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4)
10 clf = GradientBoostingClassifier(n_estimators=100, learning_rate=1.0,

max_depth=1, random_state=0).fit(X_train, y_train)
11 clf.score(X_test, y_test)
12

13 > 0.840055
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Example 3.23 (Gradient Boosting Regression)
Problem: Consider the dataset load_digits and perform Gradient boost-
ing to train weaker models with a learning rate 0.1 and 100 number of
estimators. Also, find the classification accuracy.
Solution: The dataset is imported from sklearn dataset library, training is
performed with a train and test dataset split ratio of 60:40. Boosting is per-
formed using GradientBoostingRegressor and accuracy is obtained
by score function.

1 from sklearn.ensemble import GradientBoostingRegressor
2 from sklearn.datasets import load_digits
3 from sklearn.model_selection import train_test_split
4

5 digits = load_digits(n_class=10)
6 X = digits.data
7 y = digits.target
8

9 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4,
random_state=50)

10

11 clf = GradientBoostingRegressor(n_estimators=100, learning_rate=1.0,
max_depth=1, random_state=0).fit(X_train, y_train)

12 clf.score(X_test, y_test)
13

14 > 0.60865

3.6.5 Stacking

Instead of using trivial functions (such as hard voting) to aggregate the predictions
of the predictors in an ensemble, a model is trained to perform this aggregation.
Stacking is a method for combining estimators to reduce their biases. More
precisely, the predictions of each individual estimator are stacked together and used
as input to a final estimator to compute the prediction. This final estimator is trained
through cross-validation.

Suppose we have an ensemble of three predictors performing a regression task
on a new instance. Each predictor predicts a different value, and the final predictor
called the blender takes these three predictions as an input and makes the final
prediction. In order to train the blender shown in Fig. 3.20, first, the training set
is split into two subsets. The first subset is used to train the predictors in the first
layer. These first layer predictors are used to make predictions on the second training
set. This ensures that the predictions are clean. A new training set is created using
the three predicted values as input features and keeping the target values. And the
blender is trained on this new training set. It learns to predict the target value given
the first layer’s predictions.
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Fig. 3.20 Block diagram of
Stacking ensemble learning

Example 3.24 (Stacking)
Problem: Consider the Iris dataset and perform Stacking to train with 500
estimators. Also, find the classification accuracy.
Solution: The dataset load_iris is imported from sklearn dataset library,
training is performed on train, and test datasets split in the ratio of 60:40.
Stacking is performed using StackingClassifier, which allows to
stack the output of individual estimators like RandomForestClassifier
LinearSVC with the final classifier and accuracy is obtained by score
function.

1 from sklearn.ensemble import StackingClassifier
2 from sklearn.datasets import load_iris
3 from sklearn.model_selection import train_test_split
4 from sklearn.ensemble import RandomForestClassifier
5 from sklearn.svm import LinearSVC
6 from sklearn.linear_model import LogisticRegression
7 from sklearn.preprocessing import StandardScaler
8 from sklearn.pipeline import make_pipeline
9

10 dataset = load_iris()
11 X_train, X_test, y_train, y_test = train_test_split(dataset.data, dataset.

target, test_size=0.2)
12

13 estimators = [(’rf’, RandomForestClassifier(n_estimators=10, random_state=42)
),(’svr’, make_pipeline(StandardScaler(),LinearSVC(random_state=42)))]

14 clf = StackingClassifier(estimators=estimators, final_estimator=
LogisticRegression())

15 clf.fit(X_train, y_train).score(X_test, y_test)
16

17 > 0.96666
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3.7 Other Machine Learning Techniques

In addition to above discussed techniques, there exist a plethora of additional
classification and prediction techniques. This section provides a glimpse of few
more popular supervised learning techniques that are widely used in different
applications.

3.7.1 Bayesian Model Combination

Bayesian model combination (BMC) is another ensemble learning technique that
utilizes Bayesian properties. It is seen as an extension of the Bayesian model
averaging (BMA) technique. Bayesian model averaging (BMA) makes predictions
using an average over several models with weights given by the posterior probability
of each model given the data [15]. BMA is known to generally give better answers
than a single model, obtained, e.g., via stepwise regression, especially where very
different models have nearly identical performance in the training set but may
otherwise perform quite differently.

In the BMC, the samples from the ensemble space are combined together
instead of sampling each model individually. The samples are extracted with model
weightings drawn from a Dirichlet distribution. BMC provides an advantage of
better convergence compared to the BMA technique, where it is possible that all
the weight could be assigned to a single model. The weights for individual models
are computed using Bayes’ law. The variation of the data distribution for each of the
models determines the weights assigned to each of the models. In other words, equal
weights are assigned to all the models if the data distribution for all the models is
same. The final ensemble result can be approximated through cross-validation.

3.7.2 Random Forest

Random forest technique can be seen as a tree-based ensemble learning technique,
where it builds an ensemble of decision trees. This is usually trained with the
bagging technique, which is presumed to improve the performance of the ensemble
classifier. In simple words, multiple decision trees are integrated together for better
performance and to get accurate predictions. The random forest can be employed
for both classification and prediction problems alike. Random forest instead of
searching for pivotal features among all the trees while splitting the nodes, it
searches for pivotal features among a random subset of features. This reduces the
computational complexity and convergence challenges. Furthermore, this increases
the diversity in the chosen features and leads to a better learning model. The
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diversity can be further enhanced by employing random thresholds for each feature
rather than setting optimal thresholds.

Scikit learn provides support to showcase the importance of each of the features
by observing the utilization of a particular feature by the trees. Furthermore, it
computes the score for each feature post-training and eventually scales the results
to make the sum of all the feature importance to one. Though random forest is
seen as a collection of decision trees, there exist significant differences between
both techniques. For a given dataset with annotations (labels), the decision tree will
formulate a set of rules for the purpose of predictions or classifications. However, the
random forest randomly selects the features and observations to build the decision
trees and then average results. For instance, in the case of product recommendations,
the decision trees look at the items viewed by the shoppers and formulate the rules
for the recommendation.

In addition, deep decision trees suffer from overfitting, whereas random forests
avoid overfitting by creating random subsets of features and forming smaller
subsets of trees. This can be seen as analogous to pruning technique discussed
earlier. However, building random forest with a large set of decision trees leads
to computational complexity, thus, a trade-off has to be observed.

The following code snippet shows the implementation of the random forest
algorithm using scikit library.

Example 3.25 (Random Forest)
Problem: Consider the make_moons dataset and use Random forest classi-
fication to build a strong classifier with a maximum depth of 5, 500 estimators
and find the classification accuracy. Also, investigate the effect of the number
of trees and the number of features used in the design of each tree on the
performance of the classifier.
Solution: The dataset load_moons is imported from sklearn dataset library,
training is performed on train, and test datasets split in the ratio of 80:20.
Classification is performed using RandomForestClassifier out-of-bag
estimate of ensemble classification error and accuracy is obtained by score,
oob_score_ function.

1 from sklearn.ensemble import RandomForestClassifier
2 from sklearn.datasets import make_moons
3

4 X, y = make_moons(noise=0.3, random_state=0)
5 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
6 cls = RandomForestClassifier(oob_score=True, max_depth=5, n_estimators=500)
7 cls.fit(X_train, y_train)
8 print("accuracy", cls.score(X_test,y_test))
9 print("oob score", cls.oob_score_)

10

11 > accuracy 0.8
12 > oob score 0.9125
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In the above code snippet, the random forest is built with 4 levels of depth. The
number of samples is 2000 with each having 8 features. The model fits x and y
using the fit command and uses the random forest classifier to do the fitting.

3.7.3 Tree-Based Methods

Tree-based algorithms is a popular class of supervised classification techniques
used. The decision trees are a popular tree-based classification algorithm that works
for both categorical and continuous input and output data variables. In the case of
decision trees, the dataset is split into two or more homogeneous sets based on the
differentiability of the input variables.

Consider a simple example of determining the probability that a student plays
tennis in a class of 30 students. Each student has three variables, namely gender
(Male or Female), class, and height (4ft to 5ft). 20 students play tennis in their
leisure time. Thus, in this problem, the decision tree segregates students who play
tennis based on the significant variable among the three aforementioned features.
The decision tree will help in determining the pivotal variable among the tree that
can be used to determine the probability of a student playing tennis.

The advantages of decision trees include ease to understand, derive the relation-
ships, and extract the rules for categorization. Furthermore, it does not require in-
depth knowledge of statistics to understand and the graphical representation makes
them easy to understand. Compared to other techniques, tree-based techniques do
not impose constraints on the data type. Determining the variable importance is
obtained based on Gini and Chi-Square features.

Example 3.26 (Decision Trees)
Problem: Consider the Iris dataset and use Decision tree classification to
build a classifier and report the classification accuracy. Also plot the trees.
Solution: The dataset load_iris is imported from sklearn dataset library,
training is performed on the train, and test datasets split in the ratio of
80:20. Classification is performed using DecisionTreeClassifier,
and accuracy is obtained by score and plotting the trees with the help of
plot_tree function from sklearn.

1 from sklearn.datasets import load_iris
2 from sklearn import tree
3

4 X, y = load_iris(return_X_y=True)
5 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
6 cls = tree.DecisionTreeClassifier()
7 cls = cls.fit(X_train, y_train)
8 print("accuracy",cls.score(X_test, y_test))
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Fig. 3.21 Decision tree for classifying Iris data

9 tree.plot_tree(cls)
10

11 > accuracy 0.9

In the above example, the Iris dataset is used and the decision tree determines the
features needed to classify the input images into different classes. The splitting of
features based on the decision tree is shown in Fig. 3.21.

Example 3.27 (Extra Trees)
Problem: Consider the Iris dataset and use Decision tree classification to
build a strong ensemble classifier and find the classification accuracy.
Solution: The dataset load_iris is imported from sklearn dataset library,
training is performed on train, and test datasets split in the ratio of 80:20.
Classification is performed using ExtraTreesClassifier, and accuracy
is obtained by score and plotting the trees using plot_tree function from
sklearn.
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1 from sklearn.datasets import load_iris
2 from sklearn.ensemble import ExtraTreesClassifier
3

4 X, y = load_iris(return_X_y=True)
5 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
6

7 cls = ExtraTreesClassifier(n_estimators=50, max_depth=3, min_samples_split=2,
oob_score=True, bootstrap=True)

8 cls = cls.fit(X_train, y_train)
9 print("accuracy",cls.score(X_test, y_test))

10 print("oob score", cls.oob_score_)
11

12 > accuracy 0.9666666666666667
13 > oob score 0.95

3.7.4 AutoEncoder

Autoencoders are an unsupervised learning technique that utilizes neural networks
for representation learning. Autoencoders encode the input data based on the
correlation between the features. In other words, if the provided input data features
were highly independent of each other, the compression is tedious. However, in
the scenario of correlated features, the structural dependencies can be exploited for
better compression.

The autoencoders are primarily used as preprocessing elements or for compress-
ing the input data to remove the redundancies among the features and utilize the
reduced features for further processing, i.e., transform high-dimensional inputs to
lower dimensionality. The converse of the autoencoders is the auto-decoders that
can reconstruct the data that was compressed by the autoencoders.

In contrast to the existing dimensionality reduction techniques such as principal
component analysis (PCA) and other techniques, autoencoders are sensitive to the
input data and its distribution, leading to accurate reconstruction. It is insensitive to
the inputs, so that the model does not merely memorize the encoding nor overfit the
trained data. In order to overfit the autoencoders, the regularization term is added
to alleviate any memorizing or overfitting concerns. Compared to traditional PCAs,
autoencoders are capable of learning the nonlinear manifolds. A manifold is defined
as a continuous non-intersecting surface that separates two or more classes.

An autoencoder is composed of two parts: an encoder that converts the inputs
to an internal representation, followed by a decoder that converts internal repre-
sentation to the outputs . A sample architecture of autoencoder representing the
chess memory experiment is shown in Fig. 3.22. One of the simplest techniques
for constructing the autoencoders is to limit the number of nodes in the hidden
layers of the network. Given that autoencoders encode based on the penalty, adding
a regularization term will aid in minimizing the reconstruction errors.

There are two different types of autoencoders structures.
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Fig. 3.22 Simple autoencoder

• Overcomplete Autoencoder: The structure has a larger hidden layer than the
input layer. Each hidden unit could copy a different input component and no
compression in hidden layer.

• Undercomplete Autoencoder: The structure has a smaller hidden layer than the
input layer. It compresses well for the input training set.

There exist multiple types of autoencoders as defined below.

Example 3.28 (Simple Autoencoder)
Problem: Consider the MNIST dataset and design a simple autoencoder using
fully connected layers and display the reconstructed images. Also, compare
the reconstructed images with the original images.
Solution: First step is to load the MNIST dataset using the command
load_data, which is imported from keras library. Design the encoder and
decoder models using fully connected layers; the models can be built using
keras.Model and to build these model based on a fully connected neural
network layer keras.layer.Dense is used. After building the model, in
order to train it, first, the model needs to compile and configure to use Adam
optimizer, binary_crossentropyloss function. Training can be done by
setting the hyperparameter values such as epoch to 10 and batch_size to
512. To visualize and compare the input image with the reconstructed image,
plt.imshow command from matplotlib library is used (Figs. 3.23 and
3.24).

1 #loading the data set
2 from keras.data sets import mnist
3 import numpy as np
4 (x_train, _), (x_test, _) = mnist.load_data()
5 x_train = x_train.astype(’float32’) / 255.
6 x_test = x_test.astype(’float32’) / 255.
7 x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:])))
8 x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:])))
9 print(x_train.shape)

10 print(x_test.shape)
11

12 #Simple fully connected autoencoder
13 import keras
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Fig. 3.23 Input image to an
autoencoder

14 from keras import layers
15 encoding_dim = 32
16 input_img = keras.Input(shape=(784,))
17 encoded = layers.Dense(encoding_dim, activation=’relu’)(input_img)
18 decoded = layers.Dense(784, activation=’sigmoid’)(encoded)
19 autoencoder = keras.Model(input_img, decoded)
20

21 # seperate encoder and decoder models
22 encoder = keras.Model(input_img, encoded)
23 encoded_input = keras.Input(shape=(encoding_dim,))
24 decoder_layer = autoencoder.layers[-1]
25 decoder = keras.Model(encoded_input, decoder_layer(encoded_input))
26

27 #training the model
28 autoencoder.compile(optimizer=’adam’, loss=’binary_crossentropy’)
29 autoencoder.fit(x_train, x_train,
30 epochs=10,
31 batch_size=512,
32 shuffle=True,
33 validation_data=(x_test, x_test))
34

35 # encode and decode images
36 encoded_imgs = encoder.predict(x_test)
37 decoded_imgs = decoder.predict(encoded_imgs)
38

39 #plot the images
40 import matplotlib.pyplot as plt
41 plt.imshow(x_test[5].reshape(28, 28))
42 plt.imshow(decoded_imgs[5].reshape(28, 28))
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Fig. 3.24 Reconstructed
image by the autoencoder
discussed earlier

Fig. 3.25 Stacked
autoencoder
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Stacked Autoencoders

Autoencoders can have multiple hidden layers. In this case they are called stacked
autoencoders or deep autoencoders. Adding more layers helps the autoencoder learn
more complex coding. It is often faster to train one shallow autoencoder at a time,
then stack all of them into a single stacked autoencoder. First the autoencoder
learns to reconstruct the inputs. Then it learns to reconstruct the output for the
first autoencoder layer. Finally, stack all the layers of the autoencoders as shown
in Fig. 3.25.

The architecture of a stacked autoencoder is typically symmetrical with regard to
the central hidden layer (the coding layer). To put it simply, it looks like a sandwich
as shown in Fig. 3.25.
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Example 3.29 (Stacked Autoencoder)
Problem: Consider the MNIST dataset and design a simple autoencoder
encompassing fully connected layers and display 10 reconstructed images.
Compare the reconstructed images with the original images.
Solution: First step is to load the MNIST dataset using the command
load_data, which is imported from keras library. Design the encoder
and decoder models using fully connected layers, the models can be
built using keras.Model and to build these models based on a couple
of fully connected neural network layers, keras.layer.Dense layer
from keras library is used. After building the model, in order to train it
first, the model needs to compile and configure to use Adam optimizer,
binary_crossentropyloss function. Training can be done by setting the
hyperparameter values such as epoch to 100 and batch_size to 256.
To visualize and compare the input image with the reconstructed image,
plt.imshow command from matplotlib library is used (Fig. 3.26).

1 #loading the dataset
2 from keras.datasets import mnist
3 import numpy as np
4 (x_train, _), (x_test, _) = mnist.load_data()
5 x_train = x_train.astype(’float32’) / 255.
6 x_test = x_test.astype(’float32’) / 255.
7 x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:])))
8 x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:])))
9 print(x_train.shape)

10 print(x_test.shape)
11

12 #Autoencoder code
13 import keras
14 from keras import layers
15 encoding_dim = 32
16 input_img = keras.Input(shape=(784,))
17 encoded = layers.Dense(128, activation=’relu’)(input_img)
18 encoded = layers.Dense(64, activation=’relu’)(encoded)
19 encoded = layers.Dense(32, activation=’relu’)(encoded)
20

21 decoded = layers.Dense(64, activation=’relu’)(encoded)
22 decoded = layers.Dense(128, activation=’relu’)(decoded)
23 decoded = layers.Dense(784, activation=’sigmoid’)(decoded)
24 autoencoder = keras.Model(input_img, decoded)
25

26 #training the model
27 autoencoder.compile(optimizer=’adam’, loss=’binary_crossentropy’)
28 autoencoder.fit(x_train, x_train,
29 epochs=100,
30 batch_size=256,
31 shuffle=True,
32 validation_data=(x_test, x_test))
33

34 decoded_imgs = autoencoder.predict(x_test)
35 import matplotlib.pyplot as plt
36 n = 10
37 plt.figure(figsize=(20, 4))
38 for i in range(n):
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Fig. 3.26 Input and
reconstructed output images
of stacked autoencoder

Fig. 3.27 Convolutional autoencoder

39 # Display original
40 ax = plt.subplot(2, n, i + 1)
41 plt.imshow(x_test[i].reshape(28, 28))
42 plt.gray()
43 ax.get_xaxis().set_visible(False)
44 ax.get_yaxis().set_visible(False)
45

46 # Display reconstruction
47 ax = plt.subplot(2, n, i + 1 + n)
48 plt.imshow(decoded_imgs[i].reshape(28, 28))
49 plt.gray()
50 ax.get_xaxis().set_visible(False)
51 ax.get_yaxis().set_visible(False)
52 plt.show()

Convolutional Autoencoders

When dealing with images the simple autoencoders are not effective. So far, it is
observed that the Convolutional neural networks (CNN) are most suitable for image
processing applications, so in order to build an autoencoder for image applications
a convolutional autoencoder must be built. The architecture of the convolutional
autoencoder contains the encoder that is regular CNN composed of convolutional
layers and pooling layers that does the dimensionality reduction of the input dataset
and the decoder must do the reverse, i.e., upscale the images. An example for
Convolutional Autoencoders is as shown in Fig. 3.27.
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Example 3.30 (Convolutional Autoencoder)
Problem: Consider the MNIST dataset and design a simple autoencoder with
Convolutional layers, fully connected layers for reconstruction of the images.
Also, plot the original and reconstructed images and visualize loss per epoch.
Solution: First step is to load the MNIST dataset using the command
load_data, which is imported from Keras library. The models can be built
using keras.Model and build the model based on Convolutional, Max-
pooling, fully connected neural network layers, keras.layer.Conv2D,
keras.layer.Maxpooling2D, keras.layer.Dense layers from
keras library are used. After building the model, we train using the Adam opti-
mizer and binary_crossentropyloss function. Training is performed by
setting the hyperparameter values such as epoch to 100 and batch_size
to 256. To visualize and compare the input image with the reconstructed
image, plt.imshow command from matplotlib library is used and to
visualize the loss per epoch plt.plot(), plt.show() commands are
used.

1 #loading the dataset
2 from keras.datasets import mnist
3 import numpy as np
4 (x_train, _), (x_test, _) = mnist.load_data()
5 x_train = x_train.astype(’float32’) / 255.
6 x_test = x_test.astype(’float32’) / 255.
7 x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:])))
8 x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:])))
9 print(x_train.shape)

10 print(x_test.shape)
11

12 #Autoencoder code
13 import keras
14 from keras import layers
15 input_img = keras.Input(shape=(28, 28, 1))
16

17 x = layers.Conv2D(16, (3, 3), activation=’relu’, padding=’same’)(input_img)
18 x = layers.MaxPooling2D((2, 2), padding=’same’)(x)
19 x = layers.Conv2D(8, (3, 3), activation=’relu’, padding=’same’)(x)
20 x = layers.MaxPooling2D((2, 2), padding=’same’)(x)
21 x = layers.Conv2D(8, (3, 3), activation=’relu’, padding=’same’)(x)
22 encoded = layers.MaxPooling2D((2, 2), padding=’same’)(x)
23

24 # at this point the representation is (4, 4, 8) i.e. 128-dimensional
25

26 x = layers.Conv2D(8, (3, 3), activation=’relu’, padding=’same’)(encoded)
27 x = layers.UpSampling2D((2, 2))(x)
28 x = layers.Conv2D(8, (3, 3), activation=’relu’, padding=’same’)(x)
29 x = layers.UpSampling2D((2, 2))(x)
30 x = layers.Conv2D(16, (3, 3), activation=’relu’)(x)
31 x = layers.UpSampling2D((2, 2))(x)
32 decoded = layers.Conv2D(1, (3, 3), activation=’sigmoid’, padding=’same’)(x)
33

34 autoencoder = keras.Model(input_img, decoded)
35

36 #training the model
37 autoencoder.compile(optimizer=’adam’, loss=’binary_crossentropy’)
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38 history = autoencoder.fit(x_train, x_train, epochs=100, batch_size=256,
shuffle=True,validation_data=(x_test, x_test))

39

40 decoded_imgs = autoencoder.predict(x_test)
41 import matplotlib.pyplot as plt
42 n = 10
43 plt.figure(figsize=(20, 4))
44 for i in range(n):
45 # Display original
46 ax = plt.subplot(2, n, i + 1)
47 plt.imshow(x_test[i].reshape(28, 28))
48 plt.gray()
49 ax.get_xaxis().set_visible(False)
50 ax.get_yaxis().set_visible(False)
51

52 # Display reconstruction
53 ax = plt.subplot(2, n, i + 1 + n)
54 plt.imshow(decoded_imgs[i].reshape(28, 28))
55 plt.gray()
56 ax.get_xaxis().set_visible(False)
57 ax.get_yaxis().set_visible(False)
58 plt.show()
59

60 plt.plot(history.history[’loss’])
61 plt.plot(history.history[’val_loss’])
62 plt.title(’model loss’)
63 plt.ylabel(’loss’)
64 plt.xlabel(’epoch’)
65 plt.legend([’train’, ’test’], loc=’upper left’)
66 plt.show()

Sparse Autoencoders

In contrast to merely reducing the number of nodes in the hidden layers, sparse
autoencoders provide an alternative for encoding the data. In the sparse encoders,
the loss function is constructed in such a way that the penalty is happening in the
activations within the layer. This is a different approach toward regularization where
the weights are normalized rather than the activation functions.

The opacity of the node denotes the level of activation. It needs to be noted
that different inputs lead to the activation of different nodes through the network.
This will result in limiting the memorization of the input data without confining the
network to extract the features from the data. This facilitates the regularization of the
network and the latent space representation of the data independent of each other.
Two different ways by which one can impose the sparsity constraint in the hidden
layers are by regularization. The regularization terms include L1 regularization and
KL-divergence term. The L1 regularization is discussed in the previous sections.

The KL-divergence term refers to measure of difference between two different
probability distributions. Thus, one can define a sparsity parameter that denotes
average activation of a neuron over a collection of samples. Thus, by constraining
the activation functions of neurons to a subset of neurons, the network forces to only
fire for a particular subset of neurons rather than all the features. Compared to the
autoencoders with no regularization term, the sparse autoencoders train the model
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according to the reconstruction loss ensuring the networks fits the data in a good
manner.

Example 3.31 (Sparse Autoencoders)
Problem: Consider the MNIST dataset and design a simple sparse autoen-
coder for reconstruction. Also, plot the original and reconstructed images and
visualize loss per epoch.
Solution: First step is to load the MNIST dataset using the command
load_data, which is imported from keras library. Add a dense layer with
L1 activity regularizer, which acts as the sparsity for the model.
Define the autoencoder model, compile, and fit on the dataset. To visualize
and compare the input image with the reconstructed image, plt.imshow
command from matplotlib library is used and to visualize the loss per
epoch plt.plot(), plt.show() commands are used.

1

2 # Loading the libraries
3 from keras.layers import Input, Dense
4 from keras.models import Model
5 from keras import regularizers
6 from keras.datasets import mnist
7 import numpy as np
8 import matplotlib.pyplot as plt
9

10 #Loading the data
11 (x_train, _), (x_test, _) = mnist.load_data()
12

13 #Reshaping the input images to feed the model
14 x_train = x_train.astype(’float32’) / 255.
15 x_test = x_test.astype(’float32’) / 255.
16 x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:])))
17 x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:])))
18

19 #Model definition
20 encoding_dim = 32
21 input_img = Input(shape=(784,))
22 # add a Dense layer with a L1 activity regularizer
23 encoded = Dense(encoding_dim, activation=’relu’,
24 activity_regularizer=regularizers.l1(10e-9))(input_img)
25 decoded = Dense(784, activation=’sigmoid’)(encoded)
26

27 autoencoder = Model(input_img, decoded)
28

29 encoder = Model(input_img, encoded)
30 # create a placeholder for an encoded (32-dimensional) input
31 encoded_input = Input(shape=(encoding_dim,))
32 # retrieve the last layer of the autoencoder model
33 decoder_layer = autoencoder.layers[-1]
34 # create the decoder model
35 decoder = Model(encoded_input, decoder_layer(encoded_input))
36

37 #Compiling the model
38 autoencoder.compile(optimizer=’adam’, loss=’binary_crossentropy’)
39 autoencoder.fit(x_train, x_train,
40 epochs=50,
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41 batch_size=256,
42 shuffle=True,
43 validation_data=(x_test, x_test))
44

45 #Doing predictions on the test set
46 encoded_imgs = encoder.predict(x_test)
47 decoded_imgs = decoder.predict(encoded_imgs)
48

49 # Plotting the predictions of 10 images
50 n = 10
51 plt.figure(figsize=(20, 4))
52 for i in range(n):
53 # display original
54 ax = plt.subplot(2, n, i + 1)
55 plt.imshow(x_test[i].reshape(28, 28))
56 plt.gray()
57 ax.get_xaxis().set_visible(False)
58 ax.get_yaxis().set_visible(False)
59

60 # display reconstruction
61 ax = plt.subplot(2, n, i + 1 + n)
62 plt.imshow(decoded_imgs[i].reshape(28, 28))
63 plt.gray()
64 ax.get_xaxis().set_visible(False)
65 ax.get_yaxis().set_visible(False)
66 plt.show()
67

68 encoded = Dense(encoding_dim, activation=’relu’,
69 activity_regularizer=regularizers.l1(10e-5))(input_img)

Recurrent Autoencoders

For applications like time-series sequence, text sequence, dimensionality reduction
traditional network, or a dense network are not well suited. Therefore, for processing
such sequences recurrent network is well suitable.

Building a recurrent autoencoder is not complex, it is a straightforward task; the
encoder is typically a sequence-to-vector recurrent neural network that compresses
the input sequence down to a single vector. The decoder is a vector-to-sequence
recurrent neural network that does the reverse.

Example 3.32 (Recurrent Autoencoders)
Problem: Construct a simple recurrent autoencoder to predict the next
elements in a sequence.
Solution: To construct a recurrent autoencoder, we import the relevant
libraries initially. Create a sequence with some relation between elements,
like a mathematical progression and give it as input to the model. Then define
the model that we fit on the training and do predictions on the test set. We
preprocess and train our model in such a way that it will predict all the next 8
elements in the series with given one element as input.
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1 # Import necessary libraries
2 from numpy import array
3 from keras.models import Sequential
4 from keras.layers import SimpleRNN
5 from keras.layers import Dense
6 from keras.layers import RepeatVector
7 from keras.layers import TimeDistributed
8 from keras.utils import plot_model
9

10 # define input sequence
11 seq_in = array([0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8])
12

13 # data preprocessing
14 n_in = len(seq_in)
15 seq_in = seq_in.reshape((1, n_in, 1))
16 # prepare output sequence
17 seq_out = seq_in[:, 1:, :]
18 n_out = n_in - 1
19

20

21 # define model
22 model = Sequential()
23 model.add(SimpleRNN(100, activation=’relu’, input_shape=(n_in,1)))
24 model.add(RepeatVector(n_out))
25 model.add(SimpleRNN(100, activation=’relu’, return_sequences=True))
26 model.add(TimeDistributed(Dense(1)))
27 model.compile(optimizer=’adam’, loss=’mse’)
28

29 # fit model
30 model.fit(seq_in, seq_out, epochs=300, verbose=0)
31

32 # demonstrate prediction
33 y_pred = model.predict(seq_in, verbose=0)
34 print(y_pred[0,:,0])
35

36 > [0.40000004 0.6000001 0.79999995 1. 1.2000002 1.4
37 1.6 1.8000002 ]

Denoising Autoencoders

The sparse or traditional autoencoders aim to compress the inputs and produce the
outputs after decoding as close to the input as possible. However, it is also needed
that the autoencoders need to be sometimes independent of the training data, i.e.,
insensitive to recreate original data and be generalizable enough to recreate the
data despite being fed with noisy or slightly corrupt input data. To facilitate this,
the denoising autoencoders learn a vector field to map the input data to a lower
dimension manifold and then recreate the data from the lower dimension manifold.
It needs to be noted that projecting to a lower dimension leads to cancellation of the
noise leading to an output that is noise-free and follows a clean distribution of the
original data.

This method prevents the autoencoder from trivially copying the inputs to the
outputs, and it ends up finding the patterns in the data. Adding noise to the inputs
and training to recover the original noise-free inputs is a useful method to learn the
features in the data. The architecture of this autoencoder is as shown in Fig. 3.28.
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Fig. 3.28 Denoising autoencoder

Example 3.33 (Image Denoising Autoencoder)
Problem: Consider the MNIST dataset and design an autoencoder using
Convolutional layers, fully connected layers to work on image denoising
problem. Also, plot the original, noisy, and reconstructed images and visualize
loss per epoch by the network.
Solution: First step is to load the MNIST dataset using the command
load_data, which is imported from Keras library. Design the encoder and
decoder models using keras.Model and build a model based on convo-
lutional autoencoder keras.layer.Conv2D, keras.layer.Dense,
keras.layer.Maxpooling2D layers from keras library. After building
the model, in order to train it first, the model needs to compile and configure
to use Adam optimizer, binary_crossentropyloss function. Training
can be done by setting the hyperparameter values such as epoch to 100 and
batch_size to 256. To visualize and compare the input image with the
reconstructed image, plt.imshow command from matplotlib library
is used and to visualize the loss per epoch plt.plot(), plt.show()
commands are used.

1 #loading the dataset
2 from keras.datasets import mnist
3 import numpy as np
4 (x_train, _), (x_test, _) = mnist.load_data()
5 x_train = x_train.astype(’float32’) / 255.
6 x_test = x_test.astype(’float32’) / 255.
7 x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:])))
8 x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:])))
9 print(x_train.shape)

10 print(x_test.shape)
11

12 #adding noise to the data
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13 noise_factor = 0.5
14 x_train_noisy = x_train + noise_factor * np.random.normal(loc=0.0, scale=1.0,

size=x_train.shape)
15 x_test_noisy = x_test + noise_factor * np.random.normal(loc=0.0, scale=1.0,

size=x_test.shape)
16

17 x_train_noisy = np.clip(x_train_noisy, 0., 1.)
18 x_test_noisy = np.clip(x_test_noisy, 0., 1.)
19

20 #Autoencoder code
21 import keras
22 from keras import layers
23 input_img = keras.Input(shape=(28, 28, 1))
24

25 x = layers.Conv2D(16, (3, 3), activation=’relu’, padding=’same’)(input_img)
26 x = layers.MaxPooling2D((2, 2), padding=’same’)(x)
27 x = layers.Conv2D(8, (3, 3), activation=’relu’, padding=’same’)(x)
28 x = layers.MaxPooling2D((2, 2), padding=’same’)(x)
29 x = layers.Conv2D(8, (3, 3), activation=’relu’, padding=’same’)(x)
30 encoded = layers.MaxPooling2D((2, 2), padding=’same’)(x)
31

32 x = layers.Conv2D(8, (3, 3), activation=’relu’, padding=’same’)(encoded)
33 x = layers.UpSampling2D((2, 2))(x)
34 x = layers.Conv2D(8, (3, 3), activation=’relu’, padding=’same’)(x)
35 x = layers.UpSampling2D((2, 2))(x)
36 x = layers.Conv2D(16, (3, 3), activation=’relu’)(x)
37 x = layers.UpSampling2D((2, 2))(x)
38 decoded = layers.Conv2D(1, (3, 3), activation=’sigmoid’, padding=’same’)(x)
39

40 autoencoder = keras.Model(input_img, decoded)
41

42 #training the model
43 autoencoder.compile(optimizer=’adam’, loss=’binary_crossentropy’)
44 history = autoencoder.fit(x_train_noisy, x_train, epochs=100, batch_size=256,

shuffle=True,validation_data=(x_test, x_test))
45

46 decoded_imgs = autoencoder.predict(x_test_noisy)
47 import matplotlib.pyplot as plt
48 n = 10
49 plt.figure(figsize=(20, 4))
50 for i in range(n):
51 # Display original
52 ax = plt.subplot(2, n, i + 1)
53 plt.imshow(x_test[i].reshape(28, 28))
54 plt.gray()
55 ax.get_xaxis().set_visible(False)
56 ax.get_yaxis().set_visible(False)
57

58 # Display noisy data
59 ax = plt.subplot(1, n, i)
60 plt.imshow(x_test_noisy[i].reshape(28, 28))
61 plt.gray()
62 ax.get_xaxis().set_visible(False)
63 ax.get_yaxis().set_visible(False)
64

65 # Display reconstruction
66 ax = plt.subplot(2, n, i + 1 + n)
67 plt.imshow(decoded_imgs[i].reshape(28, 28))
68 plt.gray()
69 ax.get_xaxis().set_visible(False)
70 ax.get_yaxis().set_visible(False)
71 plt.show()
72

73 plt.plot(history.history[’loss’])
74 plt.plot(history.history[’val_loss’])
75 plt.title(’model loss’)
76 plt.ylabel(’loss’)
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77 plt.xlabel(’epoch’)
78 plt.legend([’train’, ’test’], loc=’upper left’)
79 plt.show()

Variational Autoencoders (VAE)

The task for the autoencoders is to train to encode and decode with as little informa-
tion loss as possible. In the case of lower-dimensional latent space the encoded data
can be decoded by the autoencoder with zero loss; this leads to overfitting problem.
To address this problem, a special autoencoder called, Variational Autoencoder
(VAE) was introduced in 2014 by Diederik Kingma and Max Welling. VAE is
quite different from traditional autoencoders; it is a deep generative model-based
autoencoder that learns from the input dataset by using a latent variable model is
introduced.

Because VAE is a generative model, there is a slight modification in the encoder–
decoder process of the VAE. The encoder of the VAE behaves like a generative
autoencoder, meaning it can generate new instances with the available input sample
dataset from a point in latent space. This encoding of the input is then distributed
over the latent space. Then during the decoding process, the VAE decoder decodes
the outputs based on a probabilistic approach and computes the reconstruction errors
(as opposed to denoising autoencoders, which use randomness only during training).

During the training, the model parameters are trained via two loss functions:

• The usual reconstruction loss that pushes the autoencoders to produce outputs
that match with the initial inputs.

• The latent loss that

After training a VAE can easily generate a new instance by using just the samples
from the random Gaussian distribution and decode it.

Example 3.34 (Variational Autoencoder)
Problem: Consider the MNIST dataset and design a variational autoencoder
with Convolutional layers, fully connected layers to work on the image
denoising problems. Also, plot the original, noisy, and reconstructed images
and visualize loss per epoch by the network.
Solution: First step is to load the MNIST dataset using the command
load_data, which is imported from keras library. Design the encoder and
decoder models using keras.Model and build a model based on convo-
lutional autoencoder keras.layer.Conv2D, keras.layer.Dense,
keras.layer.Maxpooling2D layers from keras library are used. After
building the model, in order to train it, first, the model needs to com-
pile and configure to use Adam optimizer, binary_crossentropy loss

(continued)
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Example 3.34 (continued)
function. Training can be done by setting the hyperparameter values such
as epoch to 100 and batch_size to 256. To visualize and compare
the input image with the reconstructed image, plt.imshow command
from matplotlib library is used and to visualize the loss per epoch
plt.plot(), plt.show() commands are used.

1 #loading the dataset
2 from keras.datasets import mnist
3 import numpy as np
4 (x_train, _), (x_test, _) = mnist.load_data()
5 x_train = x_train.astype(’float32’) / 255.
6 x_test = x_test.astype(’float32’) / 255.
7 x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:])))
8 x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:])))
9 print(x_train.shape)

10 print(x_test.shape)
11

12 #adding noise to the data
13 noise_factor = 0.5
14 x_train_noisy = x_train + noise_factor * np.random.normal(loc=0.0, scale=1.0,

size=x_train.shape)
15 x_test_noisy = x_test + noise_factor * np.random.normal(loc=0.0, scale=1.0,

size=x_test.shape)
16

17 x_train_noisy = np.clip(x_train_noisy, 0., 1.)
18 x_test_noisy = np.clip(x_test_noisy, 0., 1.)
19

20 #Autoencoder code
21 import keras
22 from keras import layers
23 input_img = keras.Input(shape=(28, 28, 1))
24

25 x = layers.Conv2D(16, (3, 3), activation=’relu’, padding=’same’)(input_img)
26 x = layers.MaxPooling2D((2, 2), padding=’same’)(x)
27 x = layers.Conv2D(8, (3, 3), activation=’relu’, padding=’same’)(x)
28 x = layers.MaxPooling2D((2, 2), padding=’same’)(x)
29 x = layers.Conv2D(8, (3, 3), activation=’relu’, padding=’same’)(x)
30 encoded = layers.MaxPooling2D((2, 2), padding=’same’)(x)
31

32 x = layers.Conv2D(8, (3, 3), activation=’relu’, padding=’same’)(encoded)
33 x = layers.UpSampling2D((2, 2))(x)
34 x = layers.Conv2D(8, (3, 3), activation=’relu’, padding=’same’)(x)
35 x = layers.UpSampling2D((2, 2))(x)
36 x = layers.Conv2D(16, (3, 3), activation=’relu’)(x)
37 x = layers.UpSampling2D((2, 2))(x)
38 decoded = layers.Conv2D(1, (3, 3), activation=’sigmoid’, padding=’same’)(x)
39

40 autoencoder = keras.Model(input_img, decoded)
41

42 #training the model
43 autoencoder.compile(optimizer=’adam’, loss=’binary_crossentropy’)
44 history = autoencoder.fit(x_train_noisy, x_train, epochs=100, batch_size=256,

shuffle=True,validation_data=(x_test, x_test))
45

46 decoded_imgs = autoencoder.predict(x_test_noisy)
47 import matplotlib.pyplot as plt
48 n = 10
49 plt.figure(figsize=(20, 4))
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50 for i in range(n):
51 # Display original
52 ax = plt.subplot(2, n, i + 1)
53 plt.imshow(x_test[i].reshape(28, 28))
54 plt.gray()
55 ax.get_xaxis().set_visible(False)
56 ax.get_yaxis().set_visible(False)
57

58 # Display noisy data
59 ax = plt.subplot(1, n, i)
60 plt.imshow(x_test_noisy[i].reshape(28, 28))
61 plt.gray()
62 ax.get_xaxis().set_visible(False)
63 ax.get_yaxis().set_visible(False)
64

65 # Display reconstruction
66 ax = plt.subplot(2, n, i + 1 + n)
67 plt.imshow(decoded_imgs[i].reshape(28, 28))
68 plt.gray()
69 ax.get_xaxis().set_visible(False)
70 ax.get_yaxis().set_visible(False)
71 plt.show()
72

73 plt.plot(history.history[’loss’])
74 plt.plot(history.history[’val_loss’])
75 plt.title(’model loss’)
76 plt.ylabel(’loss’)
77 plt.xlabel(’epoch’)
78 plt.legend([’train’, ’test’], loc=’upper left’)
79 plt.show()

3.8 Putting It All Together

We explored many supervised models in this chapter, spanning from regression
through SVMs and autoencoders. Each of these strategies varies in complexity.
Apart from the computational difficulty, the application and functioning of each
of these strategies vary.

The primary application of supervised learning techniques such as regression
and its derivatives is in prediction applications. The type of regression that is most
appropriate for a given application is strongly dependent on the distribution of the
underlying data. When the data distribution is uniform and the variables are highly
correlated, low complex linear regression may perform better than the other complex
regression techniques outlined. ANNs or MLPs can also be used for prediction
tasks. In comparison to linear regression techniques, these strategies are superior
at capturing nonlinear relationships between variables.

Another critical application in real-world applications is classification. Classifi-
cation approaches such as ANNs, SVMs, and tree-based techniques are commonly
employed. SVMs are typically used for binary classification tasks. However,
using the aforementioned methodologies, they could be expanded to multiclass
categorization. However, the complexity and training time for SVMs might rise as
the number of classes increases. On the other hand, ANNs and DNNs are highly
effective at extracting latent features and performing classification, even when
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dealing with large and complicated datasets. While ensemble learning approaches
are computationally intensive, they can be used for classification when the input
data is noisy or the sample size is small.

Random forest techniques are commonly employed in classification applications.
These strategies begin by extracting latent features in order to establish rules and
construct trees for classification purposes. The depth of the trees is proportional
to the number of latent characteristics and the data’s complexity. On the other
hand, autoencoders are frequently employed for data denoising and classification
applications. These strategies are commonly used in adversarial machine learning
to improve robustness to adversarial samples. Denoising can be used to improve
classification performance. However, the computational complexity involved may
be greater than that of typical DNNs and ANNs.

3.9 Exercise Problems

Problem 3.1 Build a Support Vector Machine regressor (sklearn.svm.SVR)
with various hyperparameters, such as different kernels and C values on the airline
dataset discussed in Chap. 1. Note which combination produces the best output.

Problem 3.2 Consider the airline dataset discussed in Chap. 1 and build a regres-
sion model with fare as a dependent variable and class, guests, and age as
independent factors. Evaluate and compare the prediction accuracy and loss with
linear, logistic regression and SVM regression.

Problem 3.3 Build an AlexNet and perform the CIFAR-10, CIFAR-100, and
MNIST digits data classification with dropout rate of (a) 0.1, (b) 0.2, and (c) 0.5.
Compare the classification performance in terms of accuracy and the loss function.
Also, plot the loss plots.

Problem 3.4 Build a ResNet-18 and perform CIFAR-10 and CIFAR-100 classifi-
cation. Compare the results with the above provided problem. Show the differences
in terms of loss plots and confusion matrices.

Problem 3.5 Perform the MNIST and Iris data classification with (i) a five-layer
neural network and (ii) a 3 convolutional layer and 2 fully connected layer networks
and compare the performance and loss function for each of them.

Problem 3.6 Consider the data in the problem of time series prediction from
Example3.9 AutoRegression and use the data to build a simple MLP. Discuss
which one is better and why?

Problem 3.7 Consider the airline dataset discussed in Chap. 1 and build Bagging
and Boosting based ensemble models and compare the performance with SVM and
tree-based techniques.



162 3 Supervised Learning

Problem 3.8 Build different regression models using AdaBoost regressor,
Bagging regressor, Gradient Boosting regressor, and XGBoost regressor on
make_regression dataset from sklearn.datasets. Observe the Mean absolute
error, Mean Squared error, and R2 score of all these regression models. Discuss
which model has a better score and discuss which model is better.

Problem 3.9 Consider the make_classification dataset from sklearn.datasets
and build a classification that contains model stacking with KNeighborsClassifier(),
DecisionTreeClassifier(), SVC(), GaussianNB(), and RandomForestClassifier()
as estimators and LogisticRegression() as final_estimator.Compare the
accuracy of stacking model with individual classification models.

Problem 3.10 Build a similar stacking model similar to Problem 3.9, but,
instead use regressor models in stacking with make_regression dataset from
sklearn.datasets. Compare them in terms of MSE, MAE scores and discuss which
is better.

Problem 3.11 Build a regressor using Random Forest on make_regression
dataset from sklearn.datasets. Do predictions using different max_depth and
random_state values and discuss which combination produces the best predic-
tions and why?

Problem 3.12 Consider the code Example 3.32 Recurrent Autoencoder, replace
the SimpleRNN layers with LSTM and GRU layers, and observe which combination
produces the best predicted sequence.

Problem 3.13 Complete a classification task using an autoencoder. Consider the
dataset make_classification from sklearn.datasets library that has a binary
classification task and build an autoencoder architecture to do this.

Problem 3.14 Build a basic autoencoder on fashion_mnist dataset. Compare
the performance with the variational autoencoder.



Chapter 4
Unsupervised Learning

4.1 Introduction

Unlike supervised learning techniques, unsupervised techniques are provided with
data that is not labeled, classified, and categorized. Hence, the “teacher” is absent
for these techniques. Considering an example of a set of images of dogs and cats,
the classifier is allowed to learn the patterns or the similarities and dissimilarities in
the data points. For both the animals, the commonality is the number of legs, while
the dissimilar feature could be their average weight/size, and so on and so forth. The
classifier, based on a variety of techniques, learns the patters in the data to classify
data into different categories. Again, the classifier does not know that the object
class is either a “dog” or a “cat,” yet it can segregate the data points into two main
classes based on the patterns. Some of the techniques that help the classification in
unsupervised scenarios are discussed next.

We will be discussing the clustering algorithms, their sub-categories, unsu-
pervised neural networks, classification techniques, multi-dimensional scaling,
assignment-based clustering, and Google’s page ranking algorithm in this chapter.

4.2 Clustering

Clustering is an unsupervised learning technique that deals with finding a pattern
or a structure in an unlabeled dataset. It clusters the objects based on “similar”
and “dissimilar” features; in other words, classification is performed based on
the similarity (and dissimilarity) of the objects. The decision of building clusters
can be based on popular similarity measures such as the “Cosine Distance” and
the “Euclidean Distance.” Equation 4.1 shows the formula to calculate the cosine
similarity between the two vectors A and B. The cosine distance is then calculated
as 1 −Cosinesimilarity. Another popular technique for clustering is based on the
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Euclidean distance as shown in Eq. 4.2. The Cosine distance is commonly used for
the distance between two vectors, while the Euclidean distance is for the distance
between two points in a space.

cos(θ) =
∑n
i=1AiBi√∑n

i=1A
2
i

√∑n
i=1 B

2
i

(4.1)

d(a, b) =
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√
√

n∑

i=1

(bi − ai)2. (4.2)

Figure 4.1 shows the clustering methodology. The algorithm is provided with a
sample space that contains a mix of different shapes. Clustering tries to form groups
or “clusters” of objects that are similar in characteristics and close—in distance—to
each other. The result is shown for a cluster size of 4, but if we do not know the
optimum size, we can use the Elbow method explained further, or experiment with
some values until satisfactory results are achieved. For example, if the cluster size
is set to 3, it might happen that clusters 1 and 4 combine to form one cluster, given
some similarity in the object characteristics.

Let us consider a dataset containing different characteristics of humans, such
as age, color of the eyes, hair, height, weight, bodily features, etc. An example
of a problem that can be addressed by clustering is grouping people based on
their different features. What features are considered depends on the outcome
of clustering and the application. For instance, a cosmetic company’s marketing
department could target a cluster/group of people with a particular skin color for
different shades the company produces. An apparel manufacturer could design
garments for people with different heights, bodily features, their choice of fabric,
price range, etc. That way, clustering algorithms are very crucial in today’s day and
age to help the user with clustering unlabeled data.

Fig. 4.1 Clustering at a high level
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4.2.1 K-Means Clustering

The K-Means is a greedy algorithm for partitioning data points in a given space. K-
Means is a popular yet simplest algorithm in the unsupervised learning category that
helps partition the data points into a given number of clusters. The cluster size or
the amount of clusters is fixed a prior, say “c” clusters. The centers of these clusters
are placed as far as possible from each other to obtain better results. Initially, the
position of the centroids in a given space is chosen randomly by the algorithm; the
user selects the number of clusters, c. The data points are selected from the dataset
and placed in one of the c clusters. The placement decision is based on the Euclidean
distance between the data point and centroids; the data point is placed in a centroid
that is the least distance away compared to the distances from other centroids.
After all the points are placed, the process is repeated again by re-calculating new
centroids. These new centroids are data points chosen from each cluster to become
the new centroids. Again, the distances between data points and new centroids are
calculated, based on which the points are re-located. The process repeats until there
is no further change possible. The objective of the algorithm is to minimize the sum
of the squared error function.

“How does one know what value to set initially for c?” is a common question
when it comes to K-Means. It is worth noting that the results of K-Means vary with
the number of clusters and the position of the initially chosen random centroids. One
of the well-known methods is the “Elbow” method employed to derive the optimum
number of clusters, c. The Elbow method plots a graph between a range of c values
and the value of the sum of squared distances for each point to its assigned center.
A sample Elbow plot is shown in Fig. 4.2 for c values from 1 to 10 on the X-axis,
while the calculated sum of squared distances is plotted on the Y-axis. The point of
inflection on the curve is the optimum value of c.
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The steps followed by the K-Means algorithm are outlined below:

1. A dataset contains a set of data points. Let X = {x1, x2, x3, . . . , xn}, and C =
{c1, c2, c3, . . . , cc} be the number of centers.

2. Select c clusters randomly.
3. Calculate the distance between data point and centroids.
4. Assign the data point to the centroid, the distance of which from the center is the

minimum of all the other centroids.
5. Calculate the new centroid using Eq. 4.3, where Cc refers to the points in the c-th

cluster.
6. If there are no further changes, then stop; else continue.

Ci = 1

ci

c∑

i=1

xi. (4.3)

K-Means being a simple yet powerful clustering technique finds itself in a variety
of real-world applications, some of them include biological studies such as classify-
ing plants, animals, and cells, business marketing applications to group customers,
image clustering and document classification, crime location identification, and
cyber-security applications.

Similar to other ML techniques, K-Means also has strengths and weaknesses as
listed below:

• Low complexity in terms of understanding and implementation.
• Efficient in regard to time complexity. O(tkn), where n is the number of data

points, k is the clusters, and the number of iterations is denoted by t . Hence,
K-Means is also considered as a linear algorithm, when t and k are small.

• K-Means depends on the user to specify an optimum value of k.
• Sensitive to outliers.
• Sensitive to initial seed—initial points considered as clusters’ centers.
• Generally, it is difficult to evaluate the results, meaning that the final result of the

algorithm depends on various factors as explained above. There is no optimum
method that finds the “best cluster.” It really depends on the application of the
algorithm and the expected result.

Example 4.1 (K-Means Clustering)
Problem: Generate a random dataset with 500 data points, perform clustering
using the K-Means algorithm, and output a scatter plot.
Solution: To solve this problem, one can generate a random dataset using
make_blob command with n_samples, centers, and cluster_std parameters.
In the code snippet below, we first import the KMeans from sklearn package
followed by matplotlib package required for plotting the graphs. Numpy is a

(continued)
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Fig. 4.3 Clusters with three
centroids generated by a
K-Means algorithm

Example 4.1 (continued)
commonly used package for data transformation, array processing, and much
more. Hence, it is a common practice to import it. The make_blobs is imported
to support data generation within the code. The X is assigned after generating
data with the make_blobs function. The arguments of the function generate
the data with the specified values for samples, centers, and the standard
deviation of the data points. The generated data points are plotted with a
scatter function to visualize the data. The next three lines fit the K-Means
algorithm on the data and derive the predicted values in the y_kmeans. The
data is plotted again to visualize the clusters, and the centers of the clusters
are highlighted. The scatter plot is as shown in Fig. 4.3.

A sample code snippet for implementing K-Means clustering is shown below.

1 import numpy as np
2 from sklearn.cluster import KMeans
3 import matplotlib.pyplot as plt
4 from sklearn.datasets.samples_generator import make_blobs
5

6 X, y_label = make_blobs(n_samples = 500, centers = 4,
7 cluster_std=0.70)
8 plt.scatter(X[:, 0], X[:, 1], s=10);
9 # K-Means technique is one of the clustering techniques, discussed in the

following sections.
10 k_means = KMeans(n_clusters=4)
11 k_means.fit(X)
12 y_kmeans = k_means.predict(X)
13
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14 plt.scatter(X[:, 0], X[:, 1], c=y_kmeans, s=50)
15

16 centers = k_means.cluster_centers_
17 plt.scatter(centers[:, 0],
18 centers[:, 1], c=’green’, s=100, alpha=0.5);

Example 4.2 (K-Means Clustering)
Problem: Perform K-Means clustering on the Mall Customer dataset.a Load
the libraries necessary in plotting the data, K-Means algorithm, numpy, etc.
Load the dataset and generate an Elbow plot to decide on the optimum number
of clusters for the Age and Spending Score features in the data. After
deciding the number of clusters, proceed with fitting the data on the K-Means
algorithm. Finally, generate a plot showing all the clusters with data points
and their centroids.
Solution: A sample code snippet for implementing K-Means clustering is
shown in the code below. The dataset consists of the gender, age, annual
income, and spending scores for 200 customers. The problem statement is
to find the optimum number of clusters for the K-Means algorithm. Another
aspect of the problem is to use K-Means to cluster the customers according to
their age and spending scores. An example to address the problem statement is
presented below along with the plots after K-Means clustering on the dataset.
The clustering is done on Age and Spending Score. The Elbow plot in Fig. 4.4
clearly shows that the optimum value of the clusters is 4. In Fig. 4.5, the
Spending Score versus the Age of the customers is grouped in 4 clusters.
The “*” markers in red color are the centroids for each cluster.

ahttps://www.kaggle.com/vjchoudhary7/customer-segmentation-tutorial-in-python.

Fig. 4.4 Elbow method plot to find the optimum value of K

https://www.kaggle.com/vjchoudhary7/customer-segmentation-tutorial-in-python
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Fig. 4.5 K-Means clustering of age and spending score

1 ## Importing the libraries
2 import numpy as np
3 import pandas as pd
4 import matplotlib.pyplot as plt
5 import seaborn as sns
6 import plotly as py
7 import plotly.graph_objs as go
8 from sklearn.cluster import KMeans
9 import warnings

10 import os
11

12 ## Loading the Mall Customers dataset
13

14 df = pd.read_csv(r’../input/Mall_Customers.csv’)
15 df.head()
16

17 ## Clustering using K-Means on Age and Spending Score
18

19 ## The lines of code below generate an Elbow plot
20

21 X1 = df[[’Age’ , ’Spending Score (1-100)’]].iloc[: , :].values
22 inertia = []
23 for n in range(1 , 11):
24 algorithm = (KMeans(n_clusters = n ,init=’k-means++’, n_init = 10 ,

max_iter=300,
25 tol=0.0001, random_state= 111 , algorithm=’elkan’)

)
26 algorithm.fit(X1)
27 inertia.append(algorithm.inertia_)
28

29 plt.figure(1 , figsize = (15 ,6))
30 plt.plot(np.arange(1 , 11) , inertia , ’o’)
31 plt.plot(np.arange(1 , 11) , inertia , ’-’ , alpha = 0.5)
32 plt.xlabel(’Number of Clusters’) , plt.ylabel(’Inertia’)
33 plt.show()
34

35 ## The elbow plot shows the optimum number of clusters is ‘4’. Hence, proceed
with the clustering using K-Means algorithm with four clusters

36

37 algorithm = (KMeans(n_clusters = 4 ,init=’k-means++’, n_init = 10 ,max_iter
=300, tol=0.0001, random_state= 111 , algorithm=’elkan’) )

38 algorithm.fit(X1)
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39 labels1 = algorithm.labels_
40 centroids1 = algorithm.cluster_centers_
41

42 ## Here we prepare to plot the Clusters with data points and their centroids
43

44 h = 0.02
45 x_min, x_max = X1[:, 0].min() - 1, X1[:, 0].max() + 1
46 y_min, y_max = X1[:, 1].min() - 1, X1[:, 1].max() + 1
47 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
48 Z = algorithm.predict(np.c_[xx.ravel(), yy.ravel()])
49

50 plt.figure(1 , figsize = (15 , 7) )
51 plt.clf()
52 Z = Z.reshape(xx.shape)
53 plt.imshow(Z , interpolation=’nearest’,
54 extent=(xx.min(), xx.max(), yy.min(), yy.max()),
55 cmap = plt.cm.Pastel2, aspect = ’auto’, origin=’lower’)
56

57 plt.scatter( x = ’Age’ ,y = ’Spending Score (1-100)’ , marker = ’*’, data =
df , c = labels1 , s = 200 )

58 plt.scatter(x = centroids1[: , 0] , y = centroids1[: , 1] , s = 300 , marker
= ’x’,c = ’red’ , alpha = 0.5)

59 plt.ylabel(’Spending Score (1-100)’) , plt.xlabel(’Age’)
60 plt.show()

4.2.2 Hierarchical Clustering

Hierarchical clustering is similar to what we studied about clustering so far, but it
is useful in scenarios where a hierarchy is more appropriate than “flat” clustering.
Flat clustering here refers to the K-Means clustering. For hierarchical clustering,
you may imagine it as a cluster-of-clusters. Hierarchical clustering (HC) delivers
similarity between clusters (clusters built out of similar data points), and similarity
between one cluster and other clusters, all of them belonging to a common root node.
HC is usually accompanied by a dendrogram, which is a graphical representation of
which samples are mostly similar, when were they clustered, and so on.

Figure 4.6 shows the hierarchical clustering on sample data points, while
Fig. 4.6a–d shows a sample dendrogram with different features and samples. Only
the top left of Fig. 4.6 would refer to a K-Means method, but it is seen that the
hierarchical clustering takes it to another level by combining different clusters, in
this case, clusters A through F. The clusters are combined in a hierarchy because
the data samples fall under a hierarchy. Meaning, the data points show similar
characteristics given the parent level characteristics; hence, the clustering method
converges to a single large cluster. Figure 4.6a–d shows a dendrogram for a dataset.
The link between the clusters, for example, between clusters A and B, and clusters
D and E, shows that the clusters were grouped based on the distance between the
data points. In the next step, referring to Fig. 4.6b, the clusters AB now combine
with C, based on the characteristics found in the data. Likewise, all the clusters
are combined to form one large cluster. The horizontal line depicts the combined
clusters (the width of the link also depicts the similarity between the clusters), while
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Fig. 4.6 Hierarchical clustering process and dendrogram representation of the clustering

the sequence of formation of the clusters is represented in the dendrogram by a
tree-like structure. The algorithm for hierarchical clustering is presented below:

• Initiate the process by assigning all data points as being their own clusters.
• Find similar (closest data point) data point (also a cluster in case of hierarchical

clustering) and merge it with another single cluster. The closest cluster can be
found by Euclidean distance, Manhattan distance, and other methods.

• Find another nearby similar cluster and combine all clusters until only one cluster
remains.

Hierarchical clustering is used for many applications. The applications include:
Fake news identification: This technique works by considering the content of fake
news (articles, prints, web pages, etc.) and then examining the words used to cluster
the data. Based on the clustering, it then becomes possible to separate fake from
true news. Spam filters: Spam filtering algorithms are used by email clients to
group “spam” data from genuine emails. The clustering algorithm takes into account
the header, content, originating email address, words, etc., to group similar emails
together. Document analysis: Clustering is successfully employed in this domain
to organize information in far less time compared to other methods. The algorithm
considers the words in the document and then groups them into similar categories
based on their characteristics. Some other applications of hierarchical clustering are
in network traffic analysis, criminal activity trackers, and social media analysis.

The strengths and weaknesses of hierarchical clustering are listed below:

• No need to specify the number of clusters.
• The desired number can be obtained by pruning the resultant dendrogram at

desired level.
• On the other hand, it leads to lower flexibility on the decision to combine two

clusters.
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• The clusters are sensitive to outliers, and irregular size of clusters is complex to
handle.

• Not suitable for data that has no hierarchical structure.

Example 4.3 (Hierarchical Clustering)
Problem: Perform hierarchical clustering on Online Retail Dataseta to obs-
erve the resultant dendrograms. The dataset contains all the transactions
occurring between a certain range for a UK-based and registered non-store
online retail. The company mainly sells unique all-occasion gifts. Many
customers of the company are wholesalers.
Solution: To solve the above-stated problem, follow the steps below:

1. Load the necessary libraries for generating plots, sklearn, numpy, etc.
2. Load the Online Retail Dataset from your local machine.
3. Clean the dataset by removing NaN (not a number) values. Prepare the data

such that the Amount, Frequency, and Recency features are considered.
4. After individually preparing the data for Amount, Frequency, and Recency,

merge all to generate one single dataframe.
5. Scale the dataset using StandardScaler.
6. Generate dendrogram plots for single, complete. and average linkages. Use

Euclidean distance for generating all the plots.

Figures 4.7, 4.8, and 4.9 show the results of hierarchical clustering as
explained in the example above. The figures correspond to dendrograms
corresponding to single, complete, and average linkages.

ahttps://archive.ics.uci.edu/ml/datasets/online+retail.

Fig. 4.7 Hierarchical
clustering and dendrogram
representation with single
linkage

https://archive.ics.uci.edu/ml/datasets/online+retail
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Fig. 4.8 Hierarchical
clustering and dendrogram
representation with complete
linkage

Fig. 4.9 Hierarchical
clustering and dendrogram
representation with average
linkage

1 import numpy as np
2 import pandas as pd
3 import matplotlib.pyplot as plt
4 import seaborn as sns
5 import datetime as dt
6

7 # import required libraries for clustering
8 import sklearn
9 from sklearn.preprocessing import StandardScaler

10 from sklearn.cluster import KMeans
11 from sklearn.metrics import silhouette_score
12 from scipy.cluster.hierarchy import linkage
13 from scipy.cluster.hierarchy import dendrogram
14 from scipy.cluster.hierarchy import cut_tree
15

16 retail = pd.read_csv(’../input/online-retail-customer-clustering/OnlineRetail
.csv’, sep=",", encoding="ISO-8859-1", header=0)

17 retail.head()
18

19 ## Data cleaning
20

21 df_null = round(100*(retail.isnull().sum())/len(retail), 2)
22 df_null
23
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24 retail = retail.dropna()
25 retail.shape
26 retail[’CustomerID’] = retail[’CustomerID’].astype(str)
27

28 ## Data preparation
29

30 retail[’Amount’] = retail[’Quantity’]*retail[’UnitPrice’]
31 rfm_m = retail.groupby(’CustomerID’)[’Amount’].sum()
32 rfm_m = rfm_m.reset_index()
33 rfm_m.head()
34

35 # Frequency attribute
36

37 rfm_f = retail.groupby(’CustomerID’)[’InvoiceNo’].count()
38 rfm_f = rfm_f.reset_index()
39 rfm_f.columns = [’CustomerID’, ’Frequency’]
40 rfm_f.head()
41

42 # Merge the dataframes
43

44 rfm = pd.merge(rfm_m, rfm_f, on=’CustomerID’, how=’inner’)
45 rfm.head()
46

47 # Convert to datetime to proper datatype
48

49 retail[’InvoiceDate’] = pd.to_datetime(retail[’InvoiceDate’],format=’%d-%m-%Y
%H:%M’)

50

51 # Compute the maximum date to know the last transaction date
52

53 max_date = max(retail[’InvoiceDate’])
54 max_date
55

56 # Compute the difference between max date and transaction date
57

58 retail[’Diff’] = max_date - retail[’InvoiceDate’]
59 retail.head()
60

61 # Compute last transaction date to get the recency of customers
62

63 rfm_p = retail.groupby(’CustomerID’)[’Diff’].min()
64 rfm_p = rfm_p.reset_index()
65 rfm_p.head()
66

67 # Extract number of days only
68

69 rfm_p[’Diff’] = rfm_p[’Diff’].dt.days
70 rfm_p.head()
71

72 # Merge tha dataframes to get the final RFM dataframe
73

74 rfm = pd.merge(rfm, rfm_p, on=’CustomerID’, how=’inner’)
75 rfm.columns = [’CustomerID’, ’Amount’, ’Frequency’, ’Recency’]
76 rfm.head()
77

78 # Rescaling the attributes
79

80 rfm_df = rfm[[’Amount’, ’Frequency’, ’Recency’]]
81

82 # Instantiate
83 scaler = StandardScaler()
84

85 # fit_transform
86 rfm_df_scaled = scaler.fit_transform(rfm_df)
87 rfm_df_scaled.shape
88 rfm_df_scaled = pd.DataFrame(rfm_df_scaled)
89 rfm_df_scaled.columns = [’Amount’, ’Frequency’, ’Recency’]
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90 rfm_df_scaled.head()
91

92 ## Hierarchical Clustering ##
93 # Single linkage:
94

95 mergings = linkage(rfm_df_scaled, method="single", metric=’euclidean’)
96 dendrogram(mergings)
97 plt.show()
98

99 # Complete linkage
100

101 mergings = linkage(rfm_df_scaled, method="complete", metric=’euclidean’)
102 dendrogram(mergings)
103 plt.show()
104

105

106 # Average linkage
107

108 mergings = linkage(rfm_df_scaled, method="average", metric=’euclidean’)
109 dendrogram(mergings)
110 plt.show()

4.2.3 Mixture Models

The previously discussed clustering algorithms face some issues in dealing with
data points that are not circular in their distribution in space, or the pattern of
their distribution is such that the circle-sized K-Means cluster cannot correctly
group them. Also, the K-Means algorithm groups data points based on the distance.
This may not be applicable to certain datasets. Hence, Gaussian Mixture Models
(GMMs) are proposed as a panacea to address the problems with previous clustering
methods explained. GMMs group data based on their distribution. The assumption
in GMMs is that the data has a certain number of Gaussian distributions, and each
represents a cluster.

Figure 4.10 shows a Gaussian distribution curve for different data points. The
distributions have a mean (μ) and variance (σ 2). The probability distribution
function (PDF) is given by Eq. 4.4, where x is the input vector, μ is the 2-
dimensional mean vector, and 
 is the 2x2 covariance matrix. For multivariate
GMM, it would consist of x and μ as vectors with length d, and 
 would
be a d × d covariance matrix. Finally, for a d-feature data, we would need k
cluster size Gaussian distributions, each with its mean and variance matrix. And,
a technique known as Expectation-Maximization (EM) is used to assign the mean
and covariance values. The EM is a statistical algorithm for finding optimum model
parameters. The point to note here is that the EM method is used in cases where the
data has latent or missing variables.

GMMs assume that the optimum number of clusters is unknown. Because the
latent variables are unknown, the EM helps find the optimum values and then the
model parameters. The EM does so based on the existing data. The EM follows a
two-step approach, the E-step and the M-step. In the E-step, the data is used to guess



176 4 Unsupervised Learning
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Fig. 4.10 Gaussian (normal) distribution curve with multiple mean and variance

the latent variables’ values, while, in the M-step, the complete data is used to update
the model parameters. This step uses the values guessed during E-step.

f (x|μ,
) = 1√
2π |
| exp

[

−1

2
(x − μ)t (
)−1(x − μ)

]

. (4.4)

Mixture models are used in speech recognition systems, multiple object tracking,
and text and color database retrieval systems. The GMM techniques have faster
convergence with flexible cluster assignment compared to K-Means clustering.
Furthermore, in contrast, K-Means is a hard algorithm—a data point can belong to
only one cluster. Despite the effectiveness, GMM can fail to work for data with very
high dimensionality and depends on the user to set the number of mixture models to
fit on the data.

Example 4.4 (Gaussian Mixture Model)
Problem: Use the “Clustering_gmm” dataseta to test a GMM model.
Solution: To build a GMM model, import the pandas library, the GMM
algorithm from sklearn, matplotlib library, load the dataset, and plot the same

(continued)
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Example 4.4 (continued)
to visualize the data points. Based on how scattered the data points look,
decide the number of components, defined by “n_components” parameter to
the GaussianMixture function. Fit the model on the data, and generate
the predictions. Plot the results, each cluster in a different color.

ahttps://cdn.analyticsvidhya.com/wp-content/uploads/2019/10/Clustering_gmm.csv.

Sample code for a Gaussian Mixture Model is given below.

1 ## Importing the libraries and necessary packages
2

3 import pandas as pd
4 from sklearn.mixture import GaussianMixture
5 import matplotlib.pyplot as plt
6

7 ## Load the dataset
8

9 data = pd.read_csv(’Clustering_gmm.csv’)
10

11 ## Visualize the dataset
12

13 plt.figure(figsize=(7,7))
14 plt.scatter(data["Weight"],data["Height"])
15 plt.xlabel(’Weight’)
16 plt.ylabel(’Height’)
17 plt.title(’Data Distribution’)
18 plt.show()
19

20 ## Train GMM on the data
21

22 gmm = GaussianMixture(n_components=4)
23 gmm.fit(data)
24

25 ## Generate predictions from the GMM model
26

27 labels = gmm.predict(data)
28 frame = pd.DataFrame(data)
29 frame[’cluster’] = labels
30 frame.columns = [’Weight’, ’Height’, ’cluster’]
31

32 ## Use different colors for each cluster
33

34 color=[’blue’,’green’,’cyan’, ’black’]
35 for k in range(0,4):
36 data = frame[frame["cluster"]==k]
37 plt.scatter(data["Weight"],data["Height"],c=color[k])
38 plt.show()

4.3 Unsupervised Neural Networks

In this section, you will learn how to apply unsupervised learning techniques to
identify patterns and structures within datasets.

https://cdn.analyticsvidhya.com/wp-content/uploads/2019/10/Clustering_gmm.csv
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Unsupervised learning techniques are a valuable set of tools for exploratory anal-
ysis. They bring out patterns and structure within datasets, which yield information
that may be informative in itself or serve as a guide to further analysis. It is critical
to have a solid set of unsupervised learning tools that you can apply to help break
up unfamiliar or complex datasets into actionable information.

We will begin by discussing Kohonen’s Self-Organizing Map (SOM), a method
of topological clustering that enables the projection of complex datasets into two
dimensions. Next, we will discuss generative adversarial networks’ (GANs) some
very popular neural models that can be employed to perform a data-generating
process and new samples that can be drawn from it. Then, we will review Deep
Belief Networks (DBNs), a very famous generative model that, in an unsupervised
scenario, can be employed in order to perform the dimensionality reduction of input
dataset X, drawn from a predefined data-generating process.

4.3.1 Self-Organizing Maps

A SOM is a technique to generate topological representations of data in reduced
dimensions. It is one of the number of techniques with such applications, with a
better-known alternative being PCA. However, SOMs present unique opportunities,
both as dimensionality reduction techniques and as a visualization format.

The SOM algorithm involves iteration over many simple operations. When
applied at a smaller scale, it behaves similarly to K-Means clustering (as we will
see shortly). At a larger scale, SOMs reveal the topology of complex datasets in a
powerful way. A SOM is made up of a grid (commonly rectangular or hexagonal) of
nodes, where each node contains a weight vector that is of the same dimensionality
as the input dataset. The nodes may be initialized randomly, but an initialization that
roughly approximates the distribution of the dataset will tend to train faster.

The algorithm iterates as observations are presented as input. Iteration takes the
following form: (1) Identifying the winning node in the current configuration—the
Best Matching Unit (BMU). The BMU is identified by measuring the Euclidean dis-
tance in the data space of all the weight vectors; (2) The BMU is adjusted (moved)
toward the input vector; and (3) Neighboring nodes are also adjusted, usually by
lesser amounts, with the magnitude of neighboring movement being dictated by
a neighborhood function. (Neighborhood functions vary. In this section, we will
use a Gaussian neighborhood function.) This process repeats over potentially many
iterations, using sampling if appropriate, until the network converges (reaching a
position where presenting a new input does not provide an opportunity to minimize
loss).

A node in a SOM is not unlike that of a neural network. It typically possesses
a weight vector of length equal to the dimensionality of the input dataset. This
means that the topology of the input dataset can be preserved and visualized
through a lower-dimensional mapping. Let us start working with understanding the
implementation of the SOM algorithm in a familiar context.
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Implementing SOM As discussed previously, the SOM algorithm is iterative,
being based around Euclidean distance comparisons of vectors. This mapping tends
to form a fairly readable 2D grid. In the case of the commonly used Iris tutorial
dataset, a SOM will map it out pretty cleanly as shown in Figs. 4.11 and 4.12.

In this diagram, the classes have been separated and also ordered spatially. The
background coloring in this case is a clustering density measure. The X and Y axis in
these figures represent the classes and the shading represents the clustering density.
There is some minimal overlap between the blue and green classes, where the SOM
performed an imperfect separation. On the Iris dataset, a SOM will tend to approach
a converged solution on the order of 100 iterations, with little visible improvement
after 1000. For more complex datasets containing less clearly divisible cases, this
process can take tens of thousands of iterations.

Unfortunately, there are not implementations of the SOM algorithm within the
pre-existing Python packages such as scikit-learn. This makes it necessary for us to
use our own implementation.

Fig. 4.11 Representation of
clusters for Iris dataset using
the heatmap
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Fig. 4.12 Iris data
distribution in clusters
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Example 4.5 (Self-Organizing Map)
Problem: Employ SOM on digits dataset that is built-in scikit-learn.
Solution: To begin the implementation of SOM, the reader must first import
the necessary libraries and dataset. Then import SOM class provided in file
Som.py. Set the values for sigma and learning rate. Iterate through each data
point and set up label and color assignments for each class, so that one can
distinguish classes on the plotted SOM.

For now, let us take a look at the relevant script and get an understanding of how
the code works:

1 import numpy as np
2 from sklearn.datasets import load_digits
3 from som import Som
4 from pylab import plot,axis,show,pcolor,colorbar,bone
5

6

7 digits = load_digits()
8 data = digits.data
9 labels = digits.target

At this point, we have loaded the digits dataset and identified labels as a separate
set of data. Doing this will enable us to observe how the SOM algorithm separates
classes when assigning them to map:

1 som = Som(16,16,64,sigma=1.0,learning_rate=0.5)
2 som.random_weights_init(data)
3 print("Initiating SOM.")
4 som.train_random(data,10000)
5 print("\n. SOM Processing Complete")
6

7 bone()
8 pcolor(som.distance_map().T)
9 colorbar()

At this point, we have utilized a Som class that is provided in a separate file,
Som.py, in the repository. This class contains the methods required to deliver the
SOM algorithm we discussed earlier in the chapter. As arguments to this function,
we provide the dimensions of the map (After trialing a range of options, we will
start out with 16 x 16 in this case—this grid size gave the feature map enough space
to spread out while retaining some overlap between groups.) and the dimensionality
of the input data. (This argument determines the length of the weight vector within
the SOM’s nodes.) We also provide values for sigma and learning rate.

Sigma, in this case, defines the spread of the neighborhood function. As noted
previously, we are using a Gaussian neighborhood function. The appropriate value
for sigma varies by grid size. For an 8 × 8 grid, we would typically want to use a
value of 1.0 for Sigma, while in this case, we are using 1.3 for a 16 × 16 grid. It is
fairly obvious when one’s value for sigma is off; if the value is too small, values tend
to cluster near the center of the grid. If the values are too large, the grid typically
ends up with several large, empty spaces toward the center.
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The learning rate self-explanatorily defines the initial learning rate for the SOM.
As the map continues to iterate, the learning rate adjusts according to the following
function:

learning rate(t) = learning rate/(1 + t/(0.5 × t)). (4.5)

Here, t is the iteration index. We follow up by first initializing our SOM with
random weights. Next, we set up labels and color assignations for each class, so that
we can distinguish classes on the plotted SOM. Following this, we iterate through
each data point. On each iteration, we plot a class-specific marker for the BMU as
calculated by our SOM algorithm. When the SOM finishes iteration, we add a U-
Matrix (a colorized matrix of relative observation density) as a monochrome-scaled
plot layer:

1 labels[labels == ’0’] = 0
2 labels[labels == ’1’] = 1
3 labels[labels == ’2’] = 2
4 labels[labels == ’3’] = 3
5 labels[labels == ’4’] = 4
6 labels[labels == ’5’] = 5
7 labels[labels == ’6’] = 6
8 labels[labels == ’7’] = 7
9 labels[labels == ’8’] = 8

10 labels[labels == ’9’] = 9
11

12 markers = [’o’, ’v’, ’1’, ’3’, ’8’, ’s’, ’p’, ’x’, ’D’, ’*’]
13 colors = ["r", "g", "b", "y", "c", (0,0.1,0.8), (1,0.5,0), (1,1,0.3), "m",

(0.4,0.6,0)]
14 for cnt,xx in enumerate(data):
15 w = som.winner(xx)
16 plot(w[0]+.5,w[1]+.5,markers[labels[cnt]],
17 markerfacecolor=’None’, markeredgecolor=colors[labels[cnt]],
18 markersize=12, markeredgewidth=2)
19 axis([0,som.weights.shape[0],0,som.weights.shape[1]])
20 show()

This code delivers a 16 × 16 node SOM plot. As we can see, the map has done
a reasonably good job of separating each cluster into topologically distinct areas of
the map. Certain classes (particularly the digits five in cyan circles and nine in green
stars) have been located over multiple parts of the SOM space. For the most part,
though, each class occupies a distinct region, and it is fair to say that the SOM has
been reasonably effective. The U-Matrix shows that regions with a high density of
points are co-habited by data from multiple classes (Fig. 4.13).

Some advantages of SOM are that the data is easily interpreted and understood.
Further, the reduction of dimensionality and grid clustering makes it easy to observe
similarities in the data. On the other hand, it does not build a generative model for
the data, i.e., the model does not understand how data is created. Also, SOM does
not behave so gently when using categorical data, even worse for mixed types of
data. The time for preparing SOM is slow, hard to train against slowly evolving
data.
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Fig. 4.13 Iris data
distribution in clusters
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4.3.2 Generative Adversarial Networks

Generative adversarial network (GAN) is a class of machine learning frameworks
designed by Ian Goodfellow and his colleagues in 2014. Generative adversarial
networks, or GANs for short, are an approach to generative modeling using deep
learning methods, such as convolutional neural networks.

Generative modeling is an unsupervised learning task in machine learning that
involves automatically discovering and learning the regularities or patterns in input
data in such a way that the model can be used to generate or output new examples
that plausibly could have been drawn from the original dataset. GANs are a clever
way of training a generative model by framing the problem as a supervised learning
problem with two sub-models: the generator model that we train to generate new
examples, and the discriminator model that tries to classify examples as either real
(from the domain) or fake (generated) as shown in Fig. 4.14. The two models are
trained together in a zero-sum game, adversarial, until the discriminator model is
fooled about half the time, meaning the generator model is generating plausible
examples.

GANs are an exciting and rapidly changing field, delivering on the promise of
generative models in their ability to generate realistic examples across a range of
problem domains, most notably in image-to-image translation tasks such as trans-
lating photos of summer to winter or day to night, and in generating photorealistic
photos of objects, scenes, and people that even humans cannot tell are fake.

GANs are widely used, and some of the applications of GANs are as follows:(1)
GAN can be used to detect glaucomatous images helping the early diagnosis that is
essential to avoid partial or total loss of vision, (2) GANs that produce photorealistic
images can be used to visualize the interior design, industrial design, shoes, bags,
and clothing items or items for computer games’ scenes. Such networks were
reported to be used by Facebook, (3) GANs can be used to age face photographs
to show how an individual’s appearance might change with age, (4) GANs have
been used to visualize the effect that climate change will have on specific houses,
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Fig. 4.14 GAN model architecture

and (5) A GAN model called Speech2Face can reconstruct an image of a person’s
face after listening to their voice.

Example 4.6 (Generative Adversarial Networks)
Problem: Develop a generative adversarial network with deep convolutional
networks for generating handwritten digits.
Solution: To begin this, first define and train the standalone discriminator
model for learning the difference between real and fake images. Define the
standalone generator model and train the composite generator and discrim-
inator model. Then evaluate the performance of the GAN and use the final
standalone generator model to generate new images.

1

2 # example of training a gan on mnist
3 from numpy import expand_dims
4 from numpy import zeros
5 from numpy import ones
6 from numpy import vstack
7 from numpy.random import randn
8 from numpy.random import randint
9 from keras.datasets.mnist import load_data

10 from keras.optimizers import Adam
11 from keras.models import Sequential
12 from keras.layers import Dense
13 from keras.layers import Reshape
14 from keras.layers import Flatten
15 from keras.layers import Conv2D
16 from keras.layers import Conv2DTranspose
17 from keras.layers import LeakyReLU
18 from keras.layers import Dropout
19 from matplotlib import pyplot
20

21 # define the standalone discriminator model
22 def define_discriminator(in_shape=(28,28,1)):
23 model = Sequential()
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24 model.add(Conv2D(64, (3,3), strides=(2, 2), padding=’same’, input_shape=
in_shape))

25 model.add(LeakyReLU(alpha=0.2))
26 model.add(Dropout(0.4))
27 model.add(Conv2D(64, (3,3), strides=(2, 2), padding=’same’))
28 model.add(LeakyReLU(alpha=0.2))
29 model.add(Dropout(0.4))
30 model.add(Flatten())
31 model.add(Dense(1, activation=’sigmoid’))
32 # compile model
33 opt = Adam(lr=0.0002, beta_1=0.5)
34 model.compile(loss=’binary_crossentropy’, optimizer=opt, metrics=[’accuracy

’])
35 return model
36

37 # define the standalone generator model
38 def define_generator(latent_dim):
39 model = Sequential()
40 # foundation for 7x7 image
41 n_nodes = 128 * 7 * 7
42 model.add(Dense(n_nodes, input_dim=latent_dim))
43 model.add(LeakyReLU(alpha=0.2))
44 model.add(Reshape((7, 7, 128)))
45 # upsample to 14x14
46 model.add(Conv2DTranspose(128, (4,4), strides=(2,2), padding=’same’))
47 model.add(LeakyReLU(alpha=0.2))
48 # upsample to 28x28
49 model.add(Conv2DTranspose(128, (4,4), strides=(2,2), padding=’same’))
50 model.add(LeakyReLU(alpha=0.2))
51 model.add(Conv2D(1, (7,7), activation=’sigmoid’, padding=’same’))
52 return model
53

54 # define the combined generator and discriminator model, for updating the
generator

55 def define_gan(g_model, d_model):
56 # make weights in the discriminator not trainable
57 d_model.trainable = False
58 # connect them
59 model = Sequential()
60 # add generator
61 model.add(g_model)
62 # add the discriminator
63 model.add(d_model)
64 # compile model
65 opt = Adam(lr=0.0002, beta_1=0.5)
66 model.compile(loss=’binary_crossentropy’, optimizer=opt)
67 return model
68

69 # load and prepare mnist training images
70 def load_real_samples():
71 # load mnist dataset
72 (trainX, _), (_, _) = load_data()
73 # expand to 3d, e.g. add channels dimension
74 X = expand_dims(trainX, axis=-1)
75 # convert from unsigned ints to floats
76 X = X.astype(’float32’)
77 # scale from [0,255] to [0,1]
78 X = X / 255.0
79 return X
80

81 # select real samples
82 def generate_real_samples(dataset, n_samples):
83 # choose random instances
84 ix = randint(0, dataset.shape[0], n_samples)
85 # retrieve selected images
86 X = dataset[ix]
87 # generate ’real’ class labels (1)
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88 y = ones((n_samples, 1))
89 return X, y
90

91 # generate points in latent space as input for the generator
92 def generate_latent_points(latent_dim, n_samples):
93 # generate points in the latent space
94 x_input = randn(latent_dim * n_samples)
95 # reshape into a batch of inputs for the network
96 x_input = x_input.reshape(n_samples, latent_dim)
97 return x_input
98

99 # use the generator to generate n fake examples, with class labels
100 def generate_fake_samples(g_model, latent_dim, n_samples):
101 # generate points in latent space
102 x_input = generate_latent_points(latent_dim, n_samples)
103 # predict outputs
104 X = g_model.predict(x_input)
105 # create ’fake’ class labels (0)
106 y = zeros((n_samples, 1))
107 return X, y
108

109 # create and save a plot of generated images (reversed grayscale)
110 def save_plot(examples, epoch, n=10):
111 # plot images
112 for i in range(n * n):
113 # define subplot
114 pyplot.subplot(n, n, 1 + i)
115 # turn off axis
116 pyplot.axis(’off’)
117 # plot raw pixel data
118 pyplot.imshow(examples[i, :, :, 0], cmap=’gray_r’)
119 # save plot to file
120 filename = ’generated_plot_e%03d.png’ % (epoch+1)
121 pyplot.savefig(filename)
122 pyplot.close()
123

124 # evaluate the discriminator, plot generated images, save generator model
125 def summarize_performance(epoch, g_model, d_model, dataset, latent_dim,

n_samples=100):
126 # prepare real samples
127 X_real, y_real = generate_real_samples(dataset, n_samples)
128 # evaluate discriminator on real examples
129 _, acc_real = d_model.evaluate(X_real, y_real, verbose=0)
130 # prepare fake examples
131 x_fake, y_fake = generate_fake_samples(g_model, latent_dim, n_samples)
132 # evaluate discriminator on fake examples
133 _, acc_fake = d_model.evaluate(x_fake, y_fake, verbose=0)
134 # summarize discriminator performance
135 print(’>Accuracy real: %.0f%%, fake: %.0f%%’ % (acc_real*100, acc_fake*100)

)
136 # save plot
137 save_plot(x_fake, epoch)
138 # save the generator model tile file
139 filename = ’generator_model_%03d.h5’ % (epoch + 1)
140 g_model.save(filename)
141

142 # train the generator and discriminator
143 def train(g_model, d_model, gan_model, dataset, latent_dim, n_epochs=100,

n_batch=256):
144 bat_per_epo = int(dataset.shape[0] / n_batch)
145 half_batch = int(n_batch / 2)
146 # manually enumerate epochs
147 for i in range(n_epochs):
148 # enumerate batches over the training set
149 for j in range(bat_per_epo):
150 # get randomly selected ’real’ samples
151 X_real, y_real = generate_real_samples(dataset, half_batch)
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152 # generate ’fake’ examples
153 X_fake, y_fake = generate_fake_samples(g_model, latent_dim, half_batch)
154 # create training set for the discriminator
155 X, y = vstack((X_real, X_fake)), vstack((y_real, y_fake))
156 # update discriminator model weights
157 d_loss, _ = d_model.train_on_batch(X, y)
158 # prepare points in latent space as input for the generator
159 X_gan = generate_latent_points(latent_dim, n_batch)
160 # create inverted labels for the fake samples
161 y_gan = ones((n_batch, 1))
162 # update the generator via the discriminator’s error
163 g_loss = gan_model.train_on_batch(X_gan, y_gan)
164 # summarize loss on this batch
165 print(’>%d, %d/%d, d=%.3f, g=%.3f’ % (i+1, j+1, bat_per_epo, d_loss,

g_loss))
166 # evaluate the model performance, sometimes
167 if (i+1) % 10 == 0:
168 summarize_performance(i, g_model, d_model, dataset, latent_dim)
169

170 # size of the latent space
171 latent_dim = 100
172 # create the discriminator
173 d_model = define_discriminator()
174 # create the generator
175 g_model = define_generator(latent_dim)
176 # create the gan
177 gan_model = define_gan(g_model, d_model)
178 # load image data
179 dataset = load_real_samples()
180 # train model
181 train(g_model, d_model, gan_model, dataset, latent_dim)

4.3.3 Deep Belief Nets

In this subsection, we will focus on some more sophisticated techniques, drawing
from the area of deep learning. This subsection is dedicated to building an
understanding of how to apply the Restricted Boltzmann Machine (RBM) and
manage the deep learning architecture one can create by chaining RBMs—the Deep
Belief Network (DBN). DBNs are trainable to effectively solve complex problems
in the text, image, and sound recognition. They are used by leading companies for
object recognition, intelligent image search, and robotic spatial recognition.

A DBN is a graphical model, constructed using multiple stacked RBMs as shown
in Fig. 4.15. While the first RBM trains a layer of features based on input from the
pixels of the training data, subsequent layers treat the activations of preceding layers
as if they were pixels and attempt to learn the features in subsequent hidden layers.
This is frequently described as learning the representation of data and is a common
theme in deep learning.

From a practical perspective, it is a trade-off between increasing accuracy and
increasing computational cost. It is the case that each layer of RBMs will improve
the lower bound of the log probability of the training data. In other words; the DBN
almost inevitably becomes less bad with each additional layer of features. As far as
layer size is concerned, it is generally advantageous to reduce the number of nodes
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in the hidden layers of successive RBMs. One should avoid contexts in which an
RBM has at least as many visible units as the RBM preceding it has hidden units.

It can be advantageous (but is by no means necessary) when successive RBMs
decrease in layer size until the final RBM has a layer size approximating the
dimensionality of variance in the data. Affixing an MLP to the end of a DBN whose
layers have too many nodes will harm classification performance; Even an MLP
with many neurons may not successfully train in such contexts. On a related note, it
has been noted that even if the layers do not contain very many nodes, with enough
layers, more or less any function can be modeled.

Determining what the dimensionality of variance in the data is, is not a simple
task. One tool that can support this task is PCA; as we saw in the preceding
chapter, PCA can enable us to get a reasonable idea as to how many components
of meaningful size exist in the input data.

Training a DBN

Training a DBN is typically done greedily, which is to say that it trains to optimize
locally at each layer, rather than attempting to reach a global optimum. The steps
involved in the learning process are as follows: (1)The first layer of the DBN is
trained using the method that we saw in our earlier discussion of RBM learning. As
such, the first layer converts its data distribution into a posterior distribution using
Gibbs sampling over the hidden units, (2) This distribution is far more conducive
for RBM training than the input data itself so the next RBM layer learns that
distribution, (3) Successive RBM layers continue to train on the samples output
by preceding layers, and (4) All of the parameters within this architecture are tuned
using a performance measure.

This performance measure may vary. It may be a log-likelihood proxy used
in gradient descent, as discussed earlier in the chapter. In supervised contexts, a
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classifier (for example, an MLP) can be added as the final layer of the architecture,
and prediction accuracy can be used as the performance measure to fine-tune the
deep architecture.

Applying the DBN

We will be working in a similar way to the RBM, by walking through a DBN class
and connecting the code to the theory, discussing what to expect and how to review
the network’s performance, before initializing and training our network to see it in
action.

Example 4.7 (Deep Belief Networks)
Problem: Employ a DBN in order to find a low-dimensional representation
of the MNIST dataset.
Solution: As the complexity of these models can easily grow, we are going to
limit the process to 500 random samples. The implementation is based on
the deep-belief-network package (https://github.com/albertbup/deep-belief-
network), which supports both NumPy and TensorFlow. In the former case,
the classes (whose names remain unchanged) must be imported from the dbn
package, while in the latter, the package is dbn.tensorflow. In this example,
we are going to use the NumPy version, which has fewer requirements.

Let us take a look at the code:

1 import numpy as np
2

3 from sklearn.datasets import load_digits
4 from sklearn.utils import shuffle
5

6 nb_samples = 500
7

8 digits = load_digits()
9

10 X_train = digits[’data’] / np.max(digits[’data’])
11 Y_train = digits[’target’]
12

13 X_train, Y_train = shuffle(X_train, Y_train, random_state=1000)
14 X_train = X_train[0:nb_samples]
15 Y_train = Y_train[0:nb_samples]

We can now instantiate the UnsupervisedDBN class, with the following structure:
64 input neurons (implicitly detected from the dataset) 32 sigmoid neurons 32

sigmoid neurons 16 sigmoid neurons Hence, the last representation is made up of
16 values (one-quarter of the original dimensionality). We are setting a learning rate
of η = 0.025 and 16 samples per batch. The following snippet initializes and trains
the model:

https://github.com/albertbup/deep-belief-network
https://github.com/albertbup/deep-belief-network
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1 from dbn import UnsupervisedDBN
2

3 unsupervised_dbn = UnsupervisedDBN(hidden_layers_structure=[32, 32, 16],
4 learning_rate_rbm=0.025,
5 n_epochs_rbm=500,
6 batch_size=16,
7 activation_function=’sigmoid’)
8

9 X_dbn = unsupervised_dbn.fit_transform(X_train)

At the end of the training process, one can analyze the distribution, after
projecting it onto a bidimensional space. We employ the t-SNE algorithm, which
guarantees to find the most similar low-dimensional distribution:

1 from sklearn.manifold import TSNE
2

3 tsne = TSNE(n_components=2, perplexity=10, random_state=1000)
4 X_tsne = tsne.fit_transform(X_dbn)

Finally, we add a logistic regression layer to the end of the DBN so as to form an
MLP: t-SNE plot of the unsupervised DBN output representations.

As you can see, most of the blocks are quite cohesive, indicating that the peculiar
properties of a digit have been successfully represented in the lower-dimensional
space. In some cases, the same digit group is split into more clusters, but in
general, the amount of noisy (isolated) points is extremely low. For example, the
group containing the digit 2 is indicated with the symbol x. The majority of the
samples is in the range 0 < x0 < 30, x1 < −40; however, a subgroup is also
located in the range −10 < x1 < 10. If we check the neighbors of this small
cluster, they are made up of samples representing the digit 8 (represented by a
square). It is easy to understand that some malformed twos are very similar to
malformed eights, and this justifies the split of the original cluster. From a statistical
viewpoint, the explained variance can have a different impact. In some cases, a few
components are enough to determine the peculiar features of a class, but this cannot
generally be true. When samples belonging to different classes show similarities, a
distinction can only be made thanks to the variance of the secondary components.
This consideration is very important when working with datasets containing almost
(or even partially) overlapping samples. The main task of the data scientist, when
performing dimensionality reduction, is not to check the overall explained variance,
but rather, to understand whether there are regions that are negatively affected by the
dimensionality reduction. In such situations, it is possible to either define multiple
detection rules (for example, when a sample, xi ε R1 or xiε R4 → xi, has the yk
label) or to try to avoid models that create this segmentation.

4.3.4 Method of Moments

The moment is a term used generally in statistics and data science. Basically,
moments are used to measure the shape of data distribution, of a probability density
function. Mathematically, we define it as



190 4 Unsupervised Learning

μn =
∫ ∞

−∞
(x − c)nf (x)dx (4.6)

for moment n around value c. We take the difference between each value from
some value raised to the nth power, where n is the moment number and integrating
across the entire function from negative infinity to infinity.

The first moment works out to just be the mean of the data. The first moment is
the mean, the average. The second moment is the variance. The second moment of
the dataset is the same thing as the variance value. The variance is really based on
the square of the differences from the mean. The third moment is called skew, and
it is basically a measure of how lopsided distribution is.

You can see in these two examples above (in Fig. 4.16) that have a longer tail
on the left, now then that is a negative skew, and if one has a longer tail on the
right then, that is a positive skew. The dotted lines show what the shape of a normal
distribution would look like without skew. The dotted line out on the left side ends
up with a negative skew, or on the other side, a positive skew in that example.

The fourth moment is called kurtosis. It is a measure of the shape of the data
distribution. Kurtosis is how peaked, how squished together the data distribution is.

Example 4.8 (Method of Moments)
Problem: Compute the moments by creating a random data.
Solution: Create a normal distribution of a random data. Center it around
zero, with a 0.5 standard deviation and 10,000 data points, and then plot them.

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 vals = np.random.normal(0, 0.5, 10000)
5

6 plt.hist(vals, 50)
7 plt.show()

Negative skew Positive skew

Fig. 4.16 Positive and negative skews
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Now, we find the mean and variance. We have done this before; NumPy just gives
you a mean and var function to compute that. So, we just call np.mean to find the
first moment as shown in the following code:

1 np.mean(vals)

Now we find the second moment, which is just another name for variance. We
can do that with the following code, as we have seen before:

1 np.var(vals)

The third moment is skew, and to do that, we will have to use the SciPy package
instead of NumPy. But that again is built into any scientific computing package
such as Enthought Canopy or Anaconda. Once we have SciPy, the function call is
as simple as our earlier two:

1 import scipy.stats as sp
2 sp.skew(vals)

The fourth moment is kurtosis, which describes the shape of the tail. Again, for a
normal distribution that should be about zero. SciPy provides us with another simple
function call.

1 sp.kurtosis(vals)

In this way, one can compute the moments for any data distribution.

4.4 Feature Selection Techniques

In this subsection, we will introduce and discuss some important techniques that
can be implemented to perform both dimensionality reduction and component
extraction. In dimensionality reduction, the goal is to transform a high-dimensional
dataset into a lower-dimensional one, to try to minimize the amount of information
loss. While in the component extraction, it is necessary to find a dictionary of items
that can be mixed up so as to build samples.

4.4.1 Principal Component Analysis

Principal Component Analysis (PCA) is a famous feature extraction method in
which new independent features are created from old existing features. Furthermore,
only the most prominent features for predicting the target output are kept by
combining both old and new features. These new features are extracted from old
features, and any feature that is less dependent on predicting target output can be
dropped.

PCA is by far the most popular dimensionality reduction algorithm, and it is used
to interpret and visualize data and to find inter-relation between variables in the data.
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PCA is fast, simple to use, and absorbs the global variance of the data. PCA is also
used most widely in exploratory data analysis (EDA) and in machine learning for
predictive models.

The main limitation of PCA is that it does not consider class separability since
it does not take into account the class label of the feature vector. PCA simply
performs a coordinate rotation that aligns the transformed axes with the directions of
maximum variance. There is no guarantee that the directions of maximum variance
will contain good features for discrimination. While PCA is a common approach for
linear data, it faces some limitations when dealing with non-linear data. In higher-
dimensional space, PCA cannot distinguish non-linear structure from no structure.
In other words, PCA does not retain local variance in data. PCA is explained in
detail in the steps described below:

Step 1: Standardization—The aim of this step is to standardize the range of the
continuous initial variables so that each one of them contributes equally
to the analysis. More specifically, the reason why it is critical to perform
standardization prior to PCA is that the latter is quite sensitive regarding
the variances of the initial variables. That is, if there are large differences
between the ranges of initial variables, those variables with larger ranges
will dominate over those with small ranges (For example, a variable that
ranges between 0 and 100 will dominate over a variable that ranges
between 0 and 1.), which will lead to biased results. So, transforming
the data to comparable scales can prevent this problem. Mathematically,
this can be done by subtracting the mean and dividing by the standard
deviation for each value of each variable.

Step 2: Covariance matrix computation—The aim of this step is to understand
how the variables of the input dataset are varying from the mean with
respect to each other, or in other words, to see if there is any relationship
between them, because sometimes variables are highly correlated in such
a way that they contain redundant information. So, in order to identify
these correlations, we compute the covariance matrix. The covariance
matrix is a p × p symmetric matrix (where p is the number of dimensions)
that has as entries the covariances associated with all possible pairs of
the initial variables. Since the covariance of a variable with itself is
its variance (Cov(a,a)=Var(a)), in the main diagonal (top left to bottom
right), we actually have the variances of each initial variable. And since
the covariance is commutative (Cov(a,b)=Cov(b,a)), the entries of the
covariance matrix are symmetric with respect to the main diagonal, which
means that the upper and lower triangular portions are equal.

Step 3: Compute the eigenvectors and eigenvalues of the covariance matrix to
identify the principal components—Eigenvectors and eigenvalues are the
linear algebra concepts that we need to compute from the covariance
matrix in order to determine the principal components of the data. Before
getting to the explanation of these concepts, let us first understand what
do we mean by principal components. Principal components are new
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variables that are constructed as linear combinations or mixtures of the
initial variables. These combinations are done in such a way that the
new variables (i.e., principal components) are uncorrelated, and most of
the information within the initial variables is squeezed or compressed
into the first components. So, the idea is 10-dimensional data gives
you 10 principal components, but PCA tries to put maximum possible
information in the first component, then maximum remaining information
in the second, and so on. Organizing information in principal components
this way will allow you to reduce dimensionality without losing much
information, and this by discarding the components with low information
and considering the remaining components as your new variables. An
important thing to realize here is that the principal components are less
interpretable and do not have any real meaning since they are constructed
as linear combinations of the initial variables. Geometrically speaking,
principal components represent the directions of the data that explain a
maximal amount of variance, that is to say, the lines that capture the
most information of the data. The relationship between variance and
information here is that the larger the variance carried by a line, the larger
the dispersion of the data points along with it, and the larger the dispersion
along a line, the more information it has. To put all this simply, just think
of principal components as new axes that provide the best angle to see
and evaluate the data, so that the differences between the observations are
better visible.

Step 4: Feature vector—As we saw in the previous step, computing the eigenvec-
tors and ordering them by their eigenvalues in descending order allow us
to find the principal components in order of significance. In this step, what
we do is to choose whether to keep all these components or discard those
of lesser significance (of low eigenvalues) and form with the remaining
ones a matrix of vectors that we call feature vector. So, the feature vector
is simply a matrix that has as columns the eigenvectors of the components
that we decide to keep. This makes it the first step toward dimensionality
reduction because if we choose to keep only p eigenvectors (components)
out of n, the final dataset will have only p dimensions.

Step 5: Recast the data along the principal component axes—In the previous
steps, apart from standardization, you do not make any changes on the
data, you just select the principal components and form the feature vector,
but the input dataset remains always in terms of the original axes (i.e., in
terms of the initial variables). In this step, which is the last one, the aim is
to use the feature vector formed using the eigenvectors of the covariance
matrix, to reorient the data from the original axes to the ones represented
by the principal components (hence, the name Principal Components
Analysis). This can be done by multiplying the transpose of the original
dataset by the transpose of the feature vector.
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Example 4.9 (Principal Component Analysis)
Problem: Perform the Principal Component Analysis (PCA) on the Iris
dataset.
Solution: To perform PCA on Iris dataset, one must begin by importing
pandas library that helps to load the dataset into dataframe. Then from scikit-
learn (sklearn), import StandardScalar that standardizes the features in the
dataset. Now import the PCA class implemented in sklearn.decomposition,
and then simply pass the number of components to this constructor. Call the
fit and then transform methods by passing the feature set to these methods.
The transform method returns the specified number of principal components.
Plot the results and distribution of data points with respect to the principal
components (Fig. 4.17).

1 import pandas as pd
2

3 url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.
data"

4 # load dataset into Pandas DataFrame
5 df = pd.read_csv(url, names=[’sepal length’,’sepal width’,’petal length’,’

petal width’,’target’])
6

7 from sklearn.preprocessing import StandardScaler
8 features = [’sepal length’, ’sepal width’, ’petal length’, ’petal width’]
9 # Separating out the features

10 x = df.loc[:, features].values
11 # Separating out the target
12 y = df.loc[:,[’target’]].values
13 # Standardizing the features
14 x = StandardScaler().fit_transform(x)
15

16 from sklearn.decomposition import PCA
17 pca = PCA(n_components=2)
18 principalComponents = pca.fit_transform(x)
19 principalDf = pd.DataFrame(data = principalComponents
20 , columns = [’principal component 1’, ’principal component 2’])
21

22 finalDf = pd.concat([principalDf, df[[’target’]]], axis = 1)
23

24 fig = plt.figure(figsize = (8,8))
25 ax = fig.add_subplot(1,1,1)
26 ax.set_xlabel(’Principal Component 1’, fontsize = 15)
27 ax.set_ylabel(’Principal Component 2’, fontsize = 15)
28 ax.set_title(’2 component PCA’, fontsize = 20)
29 targets = [’Iris-setosa’, ’Iris-versicolor’, ’Iris-virginica’]
30 colors = [’r’, ’g’, ’b’]
31 for target, color in zip(targets,colors):
32 indicesToKeep = finalDf[’target’] == target
33 ax.scatter(finalDf.loc[indicesToKeep, ’principal component 1’]
34 , finalDf.loc[indicesToKeep, ’principal component 2’]
35 , c = color
36 , s = 50)
37 ax.legend(targets)
38 ax.grid()
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Fig. 4.17 2-component PCA
for Iris dataset

4.4.2 T-Distributed Stochastic Neighbor Embedding

Removing redundant information from non-linear/high-dimensional data to obtain
useful insights and make data-driven decisions calls for a common approach called
t-distributed Stochastic Neighbor Embedding (t-SNE). Unlike PCA that is a famous
approach to retain global variance, t-SNE is famous for capturing local and small
variances in higher-dimensional data. It converts multi-dimensional data into lower-
dimensional data and preserves only small pairwise distances, i.e., neighborhoods.
This non-linear algorithm can handle data with a non-linear structure. The t-
SNE algorithm tries to preserve neighborhoods from a high-dimensional space by
modeling the points in the low-dimensional space to mimic the distance matrix.
Similar instances would be modeled by nearby points, and dissimilar instances
would be distant points.

Figure 4.18 shows the effectiveness of t-SNE method applied on a non-linear
malware dataset. On the left side, this figure shows the result of applying PCA
technique, and t-SNE applied on the same dataset displayed on the right side. Due
to the non-linearity of this dataset and preserving large distances by PCA, PCA did
not produce non-overlapping clusters that would incorrectly preserve the structure
of the data. This is because PCA does not preserve local (i.e., small) distances. In
contrast with PCA, t-SNE preserves local distances. Hence, it results in clear and
non-overlapping clusters used to distinguish malware from benign applications.

The t-SNE algorithm projects high-dimensional data into a low-dimensional
space in such a way that the clustering of data in high-dimensional space is
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Fig. 4.18 Principal component analysis vs. t-distributed Stochastic neighbor embedding applied
on a non-linear malware dataset. While PCA results in polluted features for advanced malware
detection, t-SNE provides a clear distinction between malware and benign applications by using
local variances

preserved. In the malware dataset example in Fig. 4.18, such clustering of data
represents the type of applications in the dataset, i.e., malware or benign.

The t-SNE algorithm has multiple steps. In the first step, it finds the pairwise
similarity between similar data points in a high-dimensional space. For every data
point xi in a non-linear dataset, t-SNE considers its Euclidean distance with each
of the other data points, i.e., ||xi − xj ||2. Hence, the algorithm would have a
distance matrix. The pairwise instances are used to form a conditional probability
distribution. The t-SNE algorithm constructs a probability distribution over the
pairwise instances such that similar pairs are assigned a higher probability and non-
similar pairs get a minuscule probability. The similarity of a data point xj to xi is
represented as a conditional probability pj |i that is the probability that xi takes xj for
its neighbor. In other words, the conditional probability value will be proportional
to the pairwise similarity.

pj |i = exp(−||xi − xj ||2/2σ 2
i )∑

k 
=i exp(−||xi − xk||2/2σ 2
i )

(4.7)

In Eq. 4.7, xi picks the data point xj as its neighbor according to the proportion of
its probability density under a Gaussian distribution centered at xi . The variance of
the Gaussian distribution, i.e., σ 2

i , is centered on data point xi and is controlled by a
parameter called perplexity that controls the neighborhood size in t-SNE algorithm
by setting the number of effective neighbors that leads to the formation of clusters
around data points. In other words, perplexity is a parameter in the t-SNE algorithm
that indicates the expected density near a data point.

Next, the conditional probabilities are summarized in high-dimensional space
by averaging the two probabilities pj |i and pi|j as shown below to get the final
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Fig. 4.19 The impact of neighborhood density of data points on the variance of a distribution

similarities, where n refers to the number of data points (we are considering
probabilities from two different distributions), and pij is the probability of instances
xi and xj being in the same neighborhood. Due to the varying density of clusters
(determined by the neighborhood size around a data point), the width of the
Gaussian distribution centered at a data point can be different. Essentially, clusters
that are relatively less dense have a distribution with higher variance (i.e., larger
width), while clusters that are relatively more dense have low variance (i.e., smaller
width); this is illustrated in Fig. 4.19. As a result, the distance from xi to xj may
not be equivalent to the distance from xj to xi . Therefore, t-SNE takes the average
of the two distances to represent a bidirectional distance between xi and xj . In the
following equation, pij is the probability of data points xi and xj being in the same
neighborhood. For each data point xi , there would be a set of pij , referred as Pi .
Also, 2n refers to the number of data points, since we are considering probabilities
from two different distributions. The probabilities represent the similarities between
the two data points xi and xj .

pij = pj |i + pi|j
2n

. (4.8)

In the code snippet provided below, computeDistance(X) function computes the
pairwise distances and generates the distance matrixD. The function plotGaussian
plots the distance matrix related to the neighborhood of a data point (see Fig. 4.20).

1 import matplotlib.pyplot as plt
2 from scipy.stats import norm
3 import itertools
4

5 # Standardization
6 scaler = preprocessing.StandardScaler()
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Fig. 4.20 Visualization of the similarity matrix for a sample high-dimensional/non-linear dataset

7 X = scaler.fit_transform(df)
8

9 def plotGaussian(points, idx):
10 # points[idx] is the datapoint itself, which is 0.
11 axis = np.sort(points)
12 std = np.std(points) # In the t-SNE implementation, this would also be

controlled by PERPLEXITY
13 plt.plot(axis, norm.pdf(axis, points[idx] , std), color=’tab:grey’) # 0

refers to the center, which is the data point itself
14 plt.scatter(points[idx], 0, c=’tab:orange’)
15 plt.scatter(points[points != 0], np.zeros(len(points)-1), c=’tab:blue’,

alpha=.4)
16 plt.show()
17

18 def computeDistance(X):
19 N = X.shape[0]
20 D = np.zeros((N, N)) # D[i, i] is set to be 0 in t-SNE
21 for i, j in itertools.combinations(range(N), 2): # pairwise that like the

upper triangular matrix but skip diagonals
22 dist = np.linalg.norm(X[i, :] - X[j, :])**2
23 D[i, j] = dist
24 D[j, i] = dist
25 return D
26

27 dist_matrix = computeDistance(X)
28 idx = 0 # You can play with any other instances
29 plotGaussian(dist_matrix[idx, :], idx)

In the second step, each point in the high-dimensional space is mapped to a
low-dimensional space according to the pairwise similarities of data points in the
high-dimensional space. The data from step-1 is randomly projected into a lower-
dimensional space, and then the similarity values for the data points are calculated
in the lower-dimensional space.

In the very beginning, we would create random low-dimensional points,
{y1, y2, . . . , yn}, to represent our original data, {x1, x2, . . . , xn}. Then, we would
repeat roughly the same structure as what we do in the high-dimensional space,
except the probability distribution. Instead of Gaussian distribution, Student’s t-
distribution is used. That is why this technique is called t-Distributed Stochastic
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Neighbor Embedding. The difference between random low-dimensional data points
makes dissimilar points more farther apart. Similarly, for each instance yi , it would
also have a set of qij according to Eq. 4.9, referred to beQi .

qij = (1 + ||yi − yj ||2)−1
∑
k

∑
l 
=k(1 + ||yk − yl ||2)−1 . (4.9)

Finally, in the third step, the approximation Q is optimized to look like
the observations P . To evaluate how two probability distributions are different,
Kullback–Leibler divergence (aka relative entropy) is used to minimize their
difference. Kullback–Leibler (KL) divergence measures the difference between
two probability distributions. Using KL divergence, we can understand how the
approximationQ is different from the observations P :

KL(P |Q) =
∑

i

∑

j

pij log
pij

qij
, i 
= j. (4.10)

The objective here is to minimize Eq. 4.10 to letQ approximate P . To update y,
the low-dimensional representations, gradient descent can be used. Once updated,
step 2 is repeated to recomputeQ, and each iteration would repeat steps 2 and 3.

The code snippet below shows how t-SNE from sklearn.manifold is applied on
a high-dimensional dataset to map the high-dimensional data to a low-dimensional
2-D space. The result of such mapping using t-SNE creates clear non-overlapping
clusters (i.e., class 0, class 1, class2), which is illustrated in Fig. 4.21.

Fig. 4.21 Mapping of a
high-dimensional dataset into
a 2-D lower-dimensional
space using t-SNE algorithm
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1 from sklearn import preprocessing
2 from sklearn.manifold import TSNE
3

4 scaler = preprocessing.StandardScaler()
5 tsne = TSNE(n_components=2)
6 X = scaler.fit_transform(df)
7

8 X_tsne = tsne.fit_transform(X) # Get the projected points
9

10 colors = [’tab:blue’, ’tab:orange’, ’tab:green’]
11 plt.figure(figsize=(7,7))
12 for c in classes.unique():
13 plt.scatter(X_tsne[(classes == c), 0], X_tsne[(classes == c), 1], c=

colors[c], alpha=0.5, label=f’Class {c}’)
14 plt.legend()
15 plt.xticks([], [])
16 plt.yticks([], [])
17 plt.show()
18

Example 4.10 (T-Distributed Stochastic Neighbor Embedding)
Problem: Perform the T-distributed Stochastic Neighbor Embedding (t-SNE)
on the Wine Dataset from UCI (https://archive.ics.uci.edu/ml/datasets/wine).
The data is the results of a chemical analysis of wines grown in the same
region in Italy. There are 13 different measurements taken from 3 types of
wines (cultivators/grapevines). Use this dataset to demonstrate how t-SNE
dimensionality reduction method works.
Solution: To perform t-SNE on the Wine Dataset, one must begin by import-
ing pandas library that helps to load the dataset into dataframe. Then from
scikit-learn (sklearn), import StandardScalar that standardizes the features in
the dataset. Then import the t-SNE class implemented in sklearn.manifold
and then simply pass the number of components to this constructor. Call the
fit-transform method by passing the feature set to this method. The method
returns the specified number of components (here the number of components
is 2) in the lower-dimensional space. Plot the results and distribution of data
points with respect to the components.

1 import pandas as pd
2 import numpy as np
3 from sklearn.datasets import load_wine
4 df, classes = load_wine(return_X_y=True, as_frame=True)
5

6 import matplotlib.pyplot as plt
7 from scipy.stats import norm
8 import itertools
9

10 # Standardization
11 scaler = preprocessing.StandardScaler()
12 X = scaler.fit_transform(df)
13 print(df.head(5))
14

https://archive.ics.uci.edu/ml/datasets/wine
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15

16 def plotGaussian(points, idx):
17 # points[idx] is the datapoint itself, which is 0.
18 axis = np.sort(points)
19 std = np.std(points) # In the t-SNE implementation, this would also be

controlled by PERPLEXITY
20 plt.plot(axis, norm.pdf(axis, points[idx] , std), color=’tab:grey’) # 0

refers to the center, which is the data point itself
21 plt.scatter(points[idx], 0, c=’tab:orange’)
22 plt.scatter(points[points != 0], np.zeros(len(points)-1), c=’tab:blue’,

alpha=.4)
23 plt.show()
24

25 def computeDistance(X):
26 N = X.shape[0]
27 D = np.zeros((N, N)) # D[i, i] is set to be 0 in t-SNE
28 for i, j in itertools.combinations(range(N), 2): # pairwise that like the

upper triangular matrix but skip diagonals
29 dist = np.linalg.norm(X[i, :] - X[j, :])**2
30 D[i, j] = dist
31 D[j, i] = dist
32 return D
33

34 dist_matrix = computeDistance(X)
35 #dist_matrix = computeDistance(np.asarray(df))
36 idx = 0 # You can play with any other instances
37 plotGaussian(dist_matrix[idx, :], idx)
38

39 from sklearn import preprocessing
40 from sklearn.manifold import TSNE
41

42 scaler = preprocessing.StandardScaler()
43 tsne = TSNE(n_components=2)
44 X = scaler.fit_transform(df)
45

46 X_tsne = tsne.fit_transform(X) # Get the projected points
47

48 colors = [’tab:blue’, ’tab:orange’, ’tab:green’]
49 plt.figure(figsize=(7,7))
50 for c in classes.unique():
51 plt.scatter(X_tsne[(classes == c), 0], X_tsne[(classes == c), 1], c=

colors[c], alpha=0.5, label=f’Class {c}’)
52 plt.legend()
53 plt.xticks([], [])
54 plt.yticks([], [])
55 plt.show()
56

4.4.3 Pearson Correlation Coefficient

Similar to T-SNE discussed previously, Pearson correlation coefficient (PCC) is
another feature selection technique to reduce high dimensionality in the data. For
efficient data processing, one needs to preserve maximum information represented
by the features; yet, eliminating redundant or less relevant features is important to
minimize computational complexity. Correlation is utilized to study the relationship
strength between two features. The formula for Pearson correlation coefficient
(PCC) is shown in Eq. (4.11). In simple terms, PCC is the covariance of X and
Y divided by the square root of standard deviation of X and Y . The PCC ranges



202 4 Unsupervised Learning

from −1 to +1; A negative PCC means the variables’ magnitudes follow an inverse
trend, while a positive PCC value indicates a proportional trend. For example, when
X and Y increase (irrespective of their scale), it indicates a positive PCC, while a
negative PCC would mean Y decreases as X increases or vice versa. In regard to a
2D graph, if a straight line can pass through all data points, the PCC is 1. As the data
points fall out of the straight line, the PCC is reduced to 0. Thus, the PCC helps to
understand the relationship between two features. The user can decide to choose the
correlation threshold while selecting features. Referring to the code example below,
if the threshold is 0.80, it returns all the features that are correlated to each other by
a PCC factor of greater than or equal 0.80. Any one of such correlated features can
then be discarded to reduce dimensionality.

pij = 
(xi − x̄)(yi − ȳ)√

(xi − x̄)2
(yi − ȳ)2

. (4.11)

1 # Importing libraries
2 # We use the boston dataset here as an example
3 from sklearn.datasets import load_boston
4 import pandas as pd
5 import matplotlib.pyplot as plt
6

7

8 #Loading the dataset
9 data = load_boston()

10 df = pd.DataFrame(data.data, columns = data.feature_names)
11 df["MEDV"] = data.target
12

13 #print the feature titles
14 data.feature_names
15

16 #consider only the feature matrix
17 X = df.drop("MEDV",axis=1) #Feature Matrix
18 y = df["MEDV"]
19 df.head()
20 X.head()
21

22

23 # separate dataset into train and test
24 from sklearn.model_selection import train_test_split
25 X_train, X_test, y_train, y_test = train_test_split(
26 X,
27 y,
28 test_size=0.3,
29 random_state=0)
30

31 X_train.shape, X_test.shape
32

33 #print the correlation matrix; this will print the correlation between each
feature to other features

34 X_train.corr()
35

36 # For feature selection, the correlation is observed and then features are
selected

37 # Correlation is only applied to train data. Features that are dropped in
train dataset are also dropped from the test data

38 # it will remove the first feature that is correlated with any other feature
39

40 def correlation(dataset, threshold):
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41 col_corr = set() # Set of all the names of correlated columns
42 corr_matrix = dataset.corr()
43 for i in range(len(corr_matrix.columns)):
44 for j in range(i):
45 if abs(corr_matrix.iloc[i, j]) > threshold: # we are interested

in absolute coeff value
46 colname = corr_matrix.columns[i] # getting the name of

column
47 col_corr.add(colname)
48 return col_corr
49

50

51 #calculate the correlation of features and select based on the threshold
52

53 corr_features = correlation(X_train, 0.8)
54 len(set(corr_features))
55 print(corr_features)
56

57 # drop highly correlated features from the data
58 X_train.drop(corr_features,axis=1)
59 X_test.drop(corr_features,axis=1)

4.4.4 Independent Component Analysis

Independent Component Analysis (ICA) is a statistical and computational technique
for revealing hidden factors that underlie sets of random variables, measurements,
or signals. ICA defines a generative model for the observed multivariate data, which
is typically given as a large database of samples. In the model, the data variables
are assumed to be linear mixtures of some unknown latent variables, and the mixing
system is also unknown.

The latent variables are assumed non-Gaussian and mutually independent,
and they are called the independent components of the observed data. These
independent components, also called sources or factors, can be found by ICA. ICA
is superficially related to Principal Component Analysis and factor analysis. ICA is
a much more powerful technique, however, capable of finding the underlying factors
or sources when these classic methods fail completely.

ICA has been applied to problems in fields as diverse as speech processing,
brain imaging (e.g., fMRI and optical imaging), electrical brain signals (e.g., EEG
signals), telecommunications, and stock market prediction. However, because the
Independent Component Analysis is an evolving method that is being actively
researched around the world, the limits of what ICA may be good for have yet
to be fully explored.

ICA is based on the simple, generic, and physically realistic assumption that
if different signals are from different physical processes (e.g., different people
speaking), then those signals are statistically independent. ICA takes advantage
of the fact that the implication of this assumption can be reversed, leading to a
new assumption that is logically unwarranted but that works in practice, namely: if
statistically independent signals can be extracted from signal mixtures, then these
extracted signals must be from different physical processes (e.g., different people
speaking).
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Accordingly, ICA separates signal mixtures into statistically independent signals.
If the assumption of statistical independence is valid, then each of the signals
extracted by independent component analysis will have been generated by a
different physical process and will therefore be the desired signal.

Having identified the prominent factors, it would then be possible to estimate the
extent to which each individual neuron depended on each factor, so that neurons
could be classified as coding for luminance or edge orientation. In every case, it is
these factors or source signals that are of primary interest, but they are buried within
a large set of measured signals or signal mixtures. ICA can be used to extract the
source signals underlying a set of measured signal mixtures.

In every case, it is these factors or source signals that are of primary interest, but
they are buried within a large set of measured signals or signal mixtures. ICA can
be used to extract the source signals underlying a set of measured signal mixtures.

FastICA is a way of separating signals that have multivariate data into their addi-
tive subcomponents using statistical methods to separate a single voice signal from
a mixture of sounds like other voices and background noise. The FastICA algorithm
is a highly efficient computational method for performing ICA estimation. It uses a
fixed-point iteration scheme that is 10–100 times faster than conventional gradient
descent methods for ICA in the independent experiments. Another advantage of the
FastICA algorithm is that it can also be used for projection pursuit, thus providing
a general-purpose data analysis method that can be used both in an exploratory
manner and for the estimation of independent components (or sources).

Compared to the existing ICA methods, the FastICA algorithm has several
desirable properties. The FastICA has most of the benefits of neural algorithms:
it is parallel, distributed, computationally simple, and requires very little memory
space. Independent components can be estimated one by one, which is roughly
equivalent to the pursuance of projection. This is useful in exploratory data analysis
and reduces the method’s computational load in circumstances where it is only
necessary to estimate some of the independent components. This algorithm finds
directly independent components of (practically) any non-Gaussian distribution by
using non-linearity. The performance of the method can be optimized by selecting
the appropriate non-linearity.

Example 4.11 (Independent Component Analysis )
Problem: Apply PCA and ICA on the randomly generated data and compare
the results.
Solution: To compare the PCA and ICA, first let us generate some sample
data. Let us generate three signals sinusoidal signal, square signal, and a
sawtooth signal. Then some noise is added followed by standardizing the
data. Mix the matrices and general observations. Finally, compute ICA and
PCA. Plot the results to compare the ICA and PCA on the randomly generated
signals (Fig. 4.22).
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Fig. 4.22 Estimating source signals from noisy data

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from scipy import signal
4

5 from sklearn.decomposition import FastICA, PCA
6

7 ##########################################################################
8

9 # Generate sample data
10 np.random.seed(0)
11 n_samples = 2000
12 time = np.linspace(0, 8, n_samples)
13

14 s1 = np.sin(2 * time) # Signal 1 : sinusoidal signal
15 s2 = np.sign(np.sin(3 * time)) # Signal 2 : square signal
16 s3 = signal.sawtooth(2 * np.pi * time) # Signal 3: saw tooth signal
17

18 S = np.c_[s1, s2, s3]
19 S += 0.2 * np.random.normal(size=S.shape) # Add noise
20

21 S /= S.std(axis=0) # Standardize data
22 # Mix data
23 A = np.array([[1, 1, 1], [0.5, 2, 1.0], [1.5, 1.0, 2.0]]) # Mixing matrix
24 X = np.dot(S, A.T) # Generate observations
25

26 # Compute ICA
27 ica = FastICA(n_components=3)
28 S_ = ica.fit_transform(X) # Reconstruct signals
29 A_ = ica.mixing_ # Get estimated mixing matrix
30

31 # We can ‘prove‘ that the ICA model applies by reverting the unmixing.
32 assert np.allclose(X, np.dot(S_, A_.T) + ica.mean_)
33

34 # For comparison, compute PCA
35 pca = PCA(n_components=3)
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36 H = pca.fit_transform(X) # Reconstruct signals based on orthogonal
components

37

38 ##########################################################################
39

40 # Plot results
41

42 plt.figure()
43

44 models = [X, S, S_, H]
45 names = [’Observations (mixed signal)’,
46 ’True Sources’,
47 ’ICA recovered signals’,
48 ’PCA recovered signals’]
49 colors = [’red’, ’steelblue’, ’orange’]
50

51 for ii, (model, name) in enumerate(zip(models, names), 1):
52 plt.subplot(4, 1, ii)
53 plt.title(name)
54 for sig, color in zip(model.T, colors):
55 plt.plot(sig, color=color)
56

57 plt.tight_layout()
58 plt.show()

4.4.5 Non-negative Matrix Factorization (NMF)

NMF (Non-negative Matrix Factorization) has a wide range of uses, from topic
modeling to signal processing. NMF is a matrix factorization method where we
constrain the matrices to be non-negative. In order to understand NMF, we should
clarify the underlying intuition between matrix factorization.

Suppose we factorize a matrix X into two matrices W and H so that X ≈ W
× H. There is no guarantee that we can recover the original matrix, so we will
approximate it as best as we can. Now, suppose that X is composed of m rows x_1,
x_2, . . . x_m , W is composed of k rows w_1, w_2, . . . w_k, and H is composed of m
rows h_1, h_2, . . . h_m. Each row in X can be considered a data point. For instance,
in the case of decomposing images, each row in X is a single image, and each
column represents some feature. Consider the i-th row in X, x_i can be written as

Basically, we can interpret x_i to be a weighted sum of some components (or
bases if you are more familiar with linear algebra), where each row in H is a
component, and each row in W contains the weights of each component (Fig. 4.23).

Note that in this explanation, we treat each row of the input matrix X to be a
single data point. In other explanations, each column might be considered a data
point, in which case each column in W becomes a component, and each column in
H becomes a set of weights.

In practice, we introduce various conditions on the components, so that they
can be interpreted in a meaningful manner. In the case of NMF, we constrict
the underlying components and weights to be non-negative. Essentially, NMF
decomposes each data point into an overlay of certain components.



4.4 Feature Selection Techniques 207

h1

h2

...
hk

x =xi wikwi2wi1 ...= wij� x� hi

components

wi : weights

Fig. 4.23 Visualizing non-negative matrix factorization

The reason why NMF has become so popular is because of its ability to
automatically extract sparse and easily interpretable factors. Suppose we take a
gray-level image of a face containing p pixels and squash the data into a single
vector such that the ith entry represents the value of the ith pixel. Let the rows
of X ∈ R

p×n represent the p pixels, and the n columns each represent one image.
NMF will produce two matrices W and H. The columns of W can be interpreted as
images (the basis images), and H tells us how to sum up the basis images in order to
reconstruct an approximation to a given face. In the case of facial images, the basis
images are features such as eyes, noses, moustaches, and lips, while the columns of
H indicate which feature is present in which image.

NMF can be applied for recommender systems, for collaborative filtering for
topic modeling, and for dimensionality reduction. In the code below, we will check
out how NMF can be used for dimensional reduction. We apply NMF on eurovision
dataset. In Python, it can work with a sparse matrix where the only restriction is
that the values should be non-negative. The logic for dimensionality reduction is
to take our m × n data and to decompose it into two matrices of m × features and
features × n, respectively. The features will be the reduced dimensions, and the code
to implement NMF for dimensionality reduction is presented below.

Example 4.12 (Non-negative Matrix Factorization )
Problem: Use the NMF technique to prepare the food recommendations for
people shown in Fig. 4.24.
Solution: To process with this, put clients as columns and products/ratings as
rows of an array (let us call it V). As values, you should put adequate statistics
like the number of purchases or ratings. Then perform segmentation to obtain
W and H segment-defining arrays. Finally, by multiplying W and H, we obtain
an initial V matrix approximation.
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Fig. 4.24 Reconstructed
value for Example 4.12

1

2 import pandas as pd
3 import numpy as np
4 from sklearn.decomposition import NMF
5

6 V = np.array([[0,1,0,1,2,2],
7 [2,3,1,1,2,2],
8 [1,1,1,0,1,1],
9 [0,2,3,4,1,1],

10 [0,0,0,0,1,0]])
11

12 V = pd.DataFrame(V, columns=[’John’, ’Alice’, ’Mary’, ’Greg’, ’Peter’, ’
Jennifer’])

13 V.index = [’Vegetables’, ’Fruits’, ’Sweets’, ’Bread’, ’Coffee’]
14

15 nmf = NMF(3)
16 nmf.fit(V)
17

18 H = pd.DataFrame(np.round(nmf.components_,2), columns=V.columns)
19 H.index = [’Fruits pickers’, ’Bread eaters’, ’Veggies’]
20

21 W = pd.DataFrame(np.round(nmf.transform(V),2), columns=H.index)
22 W.index = V.index
23

24 reconstructed = pd.DataFrame(np.round(np.dot(W,H),2), columns=V.columns)
25 reconstructed.index = V.index
26 # Print the extracted values
27 print(reconstructed)
28 print(H)
29 print(W)
30 print(V)

The reconstructed matrix serves as a basis for the recommendation. The process
of assigning values for previously unknown values (zeros in this case) is called
collaborative filtering. One can find attraction weight toward certain products in
columns of the matrix. By sorting the values in descending order, one can determine
which products should be proposed to the customer to match their preferences. For
example, Mary should be offered products in the following order Bread, Fruits, and
Sweets. Recommendation order for Alice: Fruits, Bread, Sweets, Vegetables, and
Coffee.

In H matrix, the higher the weight value, the more the person belongs to the
specific segment. Some people like John can be assigned in 100% to one cluster, and
some people like Peter belong to all the segments with some weights (Fig. 4.25).

The W matrix can be called a segment-defining array. By observing the values
(weights—note that they do not sum up to 1) in each column. The higher the
weight, the more “determined” the column (segment) is by the variable in the row
in Fig. 4.26.
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Fig. 4.25 H value for
Example 4.12

Fig. 4.26 W value for
Example 4.12

Fig. 4.27 V value for
Example 4.12

For example, one segment is named “Bread eaters,” because it is almost entirely
driven by bread consumption. “Fruit pikers” are driven by two product categories—
Fruits and Sweets. The third one is a mixed segment with the leading Vegetable
category (Fig. 4.27).

4.5 Multi-Dimensional Scaling

With the proliferation of data-driven technologies, the world is using more data
than we ever did previously. This has led to the massive amounts of data. This
massive data is usually high-dimensional. But, with the proliferation of such high-
dimensional data, the need for its interpretation and analysis also arose. Various
dimensionality reduction techniques for accurate data representation and analysis
are introduced to address this challenge, with one such technique being the multi-
dimensional scaling or MDS. Dimensionality scaling techniques are useful in
extracting features or properties of data for simpler analysis. In other words,
dimensionality reduction is the process of scaling down the number of variables
by extracting a set of principal variables.

The classical-MDS technique is explained here. MDS is also known as Principal
Coordinate Analysis (PCoA). MDS is a complex technique similar to Principal
Component Analysis (PCA); hence, MDS is discussed here with a real-world
example for better understanding. Table 4.1 shows the distance between different
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Fig. 4.28 MDS output
showing multi-dimensional
data plotted on a 2D plane for
visualization

cities [74] in the USA as a matrix. As seen from the Table, the data is high-
dimensional. To represent and analyze such data, MDS can be employed. The
columns are represented by X, while the rows are represented by Y . The MDS
calculates the distance between the points on X1 and X2. The entire column is
considered, meaning all the points on the Y-axis. The distance method could be
Euclidean, Manhattan, log-fold change, hamming distance, etc. MDS calculates
distances between each column with all other columns, basically, a combination of
all the possible mix of any two columns. These values are then plotted on a 2D plot
for analysis and representation as shown in Fig. 4.28. In conclusion, an n-dimension
variable space is reduced to a 2D space (typically) representation. The next example
demonstrates on how MDS can be employed to visualize a high-dimensionality data
on a 2D plot.

MDS algorithm also has its own advantages and disadvantages:

• With MDS, the user can assess how closely related different data points are.
• MDS makes plotting of large multi-dimensional features to low dimensions,

better for visualization and assessment.
• The downside is that MDS does not deal with real numbers, as it is based on the

relative relationships among dimensions.
• It is difficult to evaluate the depth of the relation between features.

Example 4.13 (Multi-Dimensional Scaling)
Problem: Use the MDS algorithm on the Iris dataset and generate output
plots.
Solution: The Iris dataset is available in the sklearn package under datasets.
We import all the necessary libraries and functions we need for MDS. After
loading the dataset, the min-max scaling is done to normalize the data. The
imported MDS is used as a model to fit the data. The MDS algorithm is then
employed to scale the data to two dimensions, which is easier to plot. Different
colors are used for ease of visibility. The MDS implementation code is shown
in listing below. The generated 2D plot is shown in Fig. 4.29.
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Fig. 4.29 MDS output for the Iris dataset

1 import numpy as np
2 from sklearn.datasets import load_iris
3 import matplotlib.pyplot as plt
4 from sklearn.manifold import MDS
5 from sklearn.preprocessing import MinMaxScaler
6

7 # Loading the dataset
8 data = load_iris()
9 X = data.data

10

11 #Min-max scaling
12 scaler = MinMaxScaler()
13 X_scaled = scaler.fit_transform(X)
14

15 mds = MDS(2,random_state=0)
16 X_2d = mds.fit_transform(X_scaled)
17

18 #Plotting the scaled dataset
19 colors = [’red’,’green’,’blue’]
20 plt.rcParams[’figure.figsize’] = [7, 7]
21 plt.rc(’font’, size=14)
22 for i in np.unique(data.target):
23 subset = X_2d[data.target == i]
24

25 x = [row[0] for row in subset]
26 y = [row[1] for row in subset]
27 plt.scatter(x,y,c=colors[i],label=data.target_names[i])
28 plt.legend()
29 plt.show()
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4.6 Google Page Ranking Algorithm

It is very important for a search engine to display the websites that are most relevant
to what we search. There must be some factor that must decide the ranking or listing
of these relevant websites. PageRank (PR) is very important and one of the factors
which a search engine like Google takes into account when it decides which results
to show at the top of its search engine listings—where they can be easily seen.
(In fact, PageRank is a Google trade mark—but other search engines use similar
techniques.) Google search ranks web pages in their search engine using PageRank
algorithm. The algorithm is named after Larry Page, who is one of the founders
of Google. Importance of website pages is measured using PageRank algorithm.
PageRank determines a rough estimate of how important a website is by counting
the number and quality of links to a page.

The output of PageRank algorithm is a probability distribution used to represent
the likelihood that a person randomly clicking on links will arrive at any particular
page. PageRank can be calculated for groups or collections of documents of any
size. It is assumed in several research papers that the distribution is evenly divided
among all documents in the collection at the beginning of the computational process.
The PageRank computations require several passes, called “iterations,” through
the collection to adjust approximate PageRank values to more closely reflect the
theoretical true value.

Example 4.14 (Page Rank)
Problem: Implement Page Rank using random walk method.
Solution: To implement Page Rank using the random walk method, one has
to first select a random graph from python library and then initialize all
the nodes to a rank value “0.” Then randomly pick a source node, create
a list to store neighbors of the source node, and pick a node from the list
randomly and increment its rank. Remember to check if the node is a sink
node, i.e., node having no outgoing edges. If yes, pick a node from a set of
nodes randomly and increment its rank. Otherwise, select a node from the list
obtained randomly and increment its rank. This process is repeated until the
resulting vector, with rank for every single page, converges.

1

2 import networkx as nx
3 import random
4 import operator
5

6 g = nx.gnp_random_graph(10, 0.5, directed = True)
7

8 # nx.draw(g, with_labels = True)
9

10 # plt.show()
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11

12 # pick source node randomly
13

14 x = random.choice([i for i in range(g.number_of_nodes())])
15

16 # initialize weight/count of each node as 0
17

18 dict_count = {}
19

20 for i in range(g.number_of_nodes()):
21 dict_count[i]= 0
22 dict_count[x]= dict_count[x]+1
23

24 # Look at neighbors of x
25

26 for i in range(100):
27 # create list to store neighbors
28 list_n = list(g.neighbors(x))
29 if (len(list_n)==0):
30 x = random.choice([i for i in range(g.number_of_nodes())])
31 dict_count[x]= dict_count[x]+1
32

33 else:
34 x = random.choice(list_n)
35 dict_count[x]= dict_count[x] +1
36

37

38 # verify page rank values
39

40 p = nx.pagerank(g)
41

42 #sort values
43

44 sort_p = sorted(p.items(), key = operator.itemgetter(1))
45 sort_rw = sorted(dict_count.items(), key = operator.itemgetter(1))
46

47 print(sort_p)
48 print(sort_rw)

1 # Output
2 >> [(3, 0.060489254825410406), (9, 0.06859674242363363), (4,

0.08950883219300496), (5, 0.09677783028897), (6, 0.10328132399446883),
(8, 0.10449415902756215), (2, 0.10568727592939682), (1,
0.11425507072221733), (0, 0.12470785722731952), (7, 0.13220165336801626)
]

3 >> [(3, 4), (1, 6), (9, 8), (2, 9), (5, 9), (6, 10), (4, 13), (8, 13), (0,
14), (7, 15)]

Thus, we can conclude that after some iterations page rank obtained from the
random walk method discussed in the above example matches with the values
obtained from built-in functions in python.

4.7 Putting It All Together

Unsupervised learning is a type of machine learning approach that is used when the
data is not labeled. Thus, data processing for classification or other purposes can
be complicated, as learning algorithms must leverage the underlying link in order
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to classify (say). As a result, the computational complexity is comparable to that of
some supervised learning techniques.

Clustering is the least difficult of the unsupervised learning strategies mentioned
in this chapter. However, complexity can increase in direct proportion to the distribu-
tion of the underlying data and the number of classes (clusters). Unsupervised neural
networks are effective for unsupervised learning of large datasets with complicated
relationships between variables that are difficult to represent using simple rules.
The feature selection strategies can aid in the creation of a more effective clustering
algorithm.

4.8 Exercise Problems

Problem 4.1 The Online Retail Dataset1 contains transactions for an online retail
business. The objective of this assignment is to find the best set of customers which
the company should target. Perform the following tasks on the dataset:

1. Preprocess the dataset to address any NaN (not a number) cells.
2. Perform EDA analysis on the dataset to visualize the dataset.
3. Plot multiple graphs based on your intuition that suit the dataset.
4. Use K-Means clustering on the dataset to create clusters with similar character-

istics.
5. Use hierarchical clustering (HC) to cluster the dataset and generate a dendrogram

to determine the optimum number of clusters in the dataset. Plot Elbow graph as
well.

Problem 4.2 Perform K-Means clustering on the Mall Customer dataset2 with a
cluster size of 1 through 10. Find the optimum number of clusters using the Elbow
method, and perform K-Means on different cluster sizes. Support your answers with
an Elbow method plot and results for all the cluster sizes.

Problem 4.3 Perform K-Means clustering for segmentation using the Annual
Income and Spending Score features. Use the Mall Customer dataset. Determine
the optimum number of clusters, plot the results, and comment on the performance
of the K-Means classifier.

Problem 4.4 Perform K-Means clustering for segmentation using the Age, Annual
Income, and Spending Score features. Use the Mall Customer dataset. Determine
the optimum number of clusters, plot the results, and comment on the performance
of the K-Means classifier. Note: The final plot will be in 3-Dimensions.

1 https://www.kaggle.com/hellbuoy/online-retail-customer-clustering.
2 https://www.kaggle.com/vjchoudhary7/customer-segmentation-tutorial-in-python.

https://www.kaggle.com/hellbuoy/online-retail-customer-clustering
https://www.kaggle.com/vjchoudhary7/customer-segmentation-tutorial-in-python
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Problem 4.5 Consider any suitable dataset of your choice. The dataset must have
more than 8 features. Visualize the dataset with the MDS algorithm into 2, 4, and 6
dimensions. Use the new, reduced dataset and perform K-Means clustering.

Problem 4.6 Perform K-Means clustering and GMM-based clustering on the
ClusterGMM dataset.3 Compare the results and provide a reason for the differences
in the results. Comment on which method, K-Means or GMM, is suitable for the
given data.

Problem 4.7 Consider a dataset with at least 16 dimensions (features). Use Prin-
cipal Component Analysis (PCA) algorithm to reduce the dimensionality of the
dataset. Evaluate the performance of a neural network (NN) with original dimen-
sions and with reduced dimensions. Comment on your results.

Problem 4.8 Compare different dimensionality reduction techniques. Comment on
specific advantages of each.

Problem 4.9 During PCA on a high-dimensional dataset, it produces a number of
PCs or Principal Components. Are the new features the same as the original ones?
If not, what other dimensionality techniques can you employ to keep the original
features in the dataset as is?

Problem 4.10 Import a Wine recognition dataset from the scikit-learn library and
perform dimensionality reduction using Self-Organizing Maps (SOM). Report the
features pre- and post-performing dimensionality reduction.

Problem 4.11 Understand the functioning of Deep Belief Networks (DBNs) and
apply it to classify the breast cancer dataset available in scikit-learn.

Problem 4.12 Perform dimensionality reduction using PCA (Principal Component
Analysis) and ICA (Independent Component Analysis) on the wild face recognition
dataset from scikit-learn.

Problem 4.13 Understand the functioning of each module of GAN (generator,
discriminator) and develop a generative adversarial network with deep convolutional
networks for evaluating the difference between real and fake fashion MNIST images
(please use fashion MNIST dataset that is built in python library).

Problem 4.14 Use any built-in graph from networkx library and calculate the page
rank using the random walk method. Compare the values of page rank with built-in
page rank values.

Problem 4.15 Compute the moments of the randomly generated data. The data
must be a normal distribution of random data. Center it around zero, with a 0.7
standard deviation and 15,000 data points.

3 https://cdn.analyticsvidhya.com/wp-content/uploads/2019/10/Clustering_gmm.csv.

https://cdn.analyticsvidhya.com/wp-content/uploads/2019/10/Clustering_gmm.csv


Chapter 5
Reinforcement Learning

5.1 Introduction

Reinforcement learning is a kind of machine learning technique that mimics one of
the most common learning styles in natural life, which is to learn to achieve a goal
by trial-and-error interaction with a dynamic/uncertain environment [75, 76]. The
interactions between the learning agent and the environment are generally modeled
using a finite state space S (corresponding to environment inputs), a set of available
actions A (corresponding to control/optimization knobs used by the agent), and a
reward function R : S × A → R (used to decide which action to take for a given
state). The ultimate goal of reinforcement learning is to figure out a policy π(s) = a,
which chooses action a ∈ A in each state s ∈ S (i.e., a mapping between the states
and the actions), to optimize a reward function (i.e., to maximize the cumulative
rewards over a potentially infinite time span).

Decision epochs are a sequence of points in time {t0, t1, t2, . . . , tk, . . .} at which
an action is chosen and a state transition may appear. At time tk , when the system
just transitioned to state sk ∈ S, the agent selects an action ak ∈ A. This action will
lead to an instant reward rate r(sk,ak) (t) in regard to state–action pair (sk, ak). In the
next decision epoch (i.e., at time tk+1), the system switches to state sk+1.

An important issue in reinforcement learning is exploration vs. exploitation. A
reinforcement learning agent must exploit the best action known so far in order to
gain rewards while exploring all possible actions such that it can find a potentially
better choice. The risk is thus always choosing the action with the temporary highest
reward, as this can lead to reaching a local maximum and getting stuck in a sub-
optimal solution.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Rafatirad et al., Machine Learning for Computer Scientists and Data Analysts,
https://doi.org/10.1007/978-3-030-96756-7_5
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5.2 Q-Learning

Q-learning is one of the most popular algorithms used to perform reinforcement
learning [75, 76]. In Q-learning, a Q-value is associated with every state–action pair
(s, a), denoted as Q(s, a). The value of Q(s, a) approximates the expected long-
term cumulative reward of taking action a starting from state s [77]. In this way, the
agent decides which action should be taken in the current state in order to achieve
the maximum long-term rewards based on this value function Q(s, a). Namely, at
decision epoch tk , when the system has just transitioned to state sk ∈ S, the action ak
with the highest Q-value will be chosen. Furthermore, given that it is a model-free
learning algorithm, it is not necessary for the Q-learning agent to have any prior
system information, such as the transition probability from one state to another.
Therefore, it is a highly adaptive and flexible algorithm.

The fundamental aspect of the Q-learning algorithm is a value iteration update of
the Q-value function. Particularly, the Q-value for each state–action pair is initially
chosen by the designer. However, these values are updated every time an action
is issued and a reward is received. That is, at decision epoch tk+1, the Q-value
Q(sk, ak) is updated according to the received reward as shown in the following
expression:

Q(sk, ak)← Q(sk, ak)︸ ︷︷ ︸
old value

+

βk(sk, ak)︸ ︷︷ ︸
learning rate

·

⎡

⎢
⎢
⎣

expected discounted reward
︷ ︸︸ ︷
rk+1︸︷︷︸
reward

+ γ
︸︷︷︸

discount factor

· max
a∈A

Q(sk+1, a)

︸ ︷︷ ︸
max future value

−
old value
︷ ︸︸ ︷
Q(sk, ak)

⎤

⎥
⎥
⎦ ,

(5.1)

where rk+1 is the reward measured at time tk+1 for having taken action ak at time
tk , value γ ∈ (0, 1) is the discount factor, and βk(sk, ak) ∈ (0, 1) is the learning
rate at time tk for state–action pair (sk, ak) (which may or may not be equal for all
pairs and which may be constant or variable in time). The next time state s is visited,
the action with the maximum Q-value will be chosen, i.e., π(s) = maxa∈AQ(s, a),
and given that the Q-value was updated, it might be a different action from the one
taking the last time state s was visited. In order to choose the action, an ε-greedy
policy can be employed. In this case, the ε-greedy policy chooses the action with a
probability of 1 − ε that leads to a high Q-value and chooses a random action with
ε probability.

As an example, a state diagram depicting the change of states by the basic Q-
learning algorithm is shown in Fig. 5.1. We consider four states and five actions.
When the system is in state s1 (s2) and action a1 (a2) is selected, then the system
changes to state s2 (s1), whereas when action a3 is chosen, then the state changes to
s3 (s4) and remains in the same state when action a5 is chosen. Similarly, other state
transitions also happen. One needs to note that the state transition entirely depends
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Fig. 5.1 State transition
based on basic Q-learning

on the action chosen. This is a mere illustration of Q-learning. The number of states,
actions, transitions, and rewards highly depends on the problem settings.

Example 5.1 (Q-Learning)
Problem: Create a policy for reinforcement learning based on discussed
greedy policy.
Solution: In order to create an ε-greedy policy, we first create a module based
on the aforementioned policy update, presented in (5.1). Furthermore, a Q-
learning module can be defined with an iterative loop to keep the policy
updated based on the ε-greedy policy. The code snippet showcasing this
procedure is shown below:

1 def createEpsilonGreedyPolicy(Q, epsilon, num_actions):
2 """
3 Creates an epsilon-greedy policy-based
4 on a given Q-function and epsilon.
5

6 Returns a function that takes the state
7 as an input and returns the probabilities
8 for each action in the form of a numpy array
9 of length of the action space(set of possible actions).

10 """
11 def policyFunction(state):
12

13 Action_probabilities = np.ones(num_actions,
14 dtype = float) * epsilon / num_actions
15

16 best_action = np.argmax(Q[state])
17 Action_probabilities[best_action] += (1.0 - epsilon)
18 return Action_probabilities
19

20 return policyFunction
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1 def qLearning(env, num_episodes, discount_factor = 1.0,
2 alpha = 0.6, epsilon = 0.1):
3 """
4 Q-Learning algorithm: Off-policy TD control.
5 Finds the optimal greedy policy while improving
6 following an epsilon-greedy policy"""
7

8 # Action value function
9 # A nested dictionary that maps

10 # state -> (action -> action-value).
11 Q = defaultdict(lambda: np.zeros(env.action_space.n))
12

13 # Keeps track of useful statistics
14 stats = plotting.EpisodeStats(
15 episode_lengths = np.zeros(num_episodes),
16 episode_rewards = np.zeros(num_episodes))
17

18 # Create an epsilon greedy policy function
19 # appropriately for environment action space
20 policy = createEpsilonGreedyPolicy(Q, epsilon, env.action_space.n)
21

22 # For every episode
23 for ith_episode in range(num_episodes):
24

25 # Reset the environment and pick the first action
26 state = env.reset()
27

28 for t in itertools.count():
29

30 # get probabilities of all actions from current state
31 action_probabilities = policy(state)
32

33 # choose action according to
34 # the probability distribution
35 action = np.random.choice(np.arange(
36 len(action_probabilities)),
37 p = action_probabilities)
38

39 # take action and get reward, transit to next state
40 next_state, reward, done, _ = env.step(action)
41

42 # Update statistics
43 stats.episode_rewards[ith_episode] += reward
44 stats.episode_lengths[ith_episode] = t
45

46 # TD Update
47 best_next_action = np.argmax(Q[next_state])
48 td_target = reward + discount_factor * Q[next_state][best_next_action]
49 td_delta = td_target - Q[state][action]
50 Q[state][action] += alpha * td_delta
51

52 # done is True if episode terminated
53 if done:
54 break
55

56 state = next_state
57

58 return Q, stats
59

60 Q, stats = qLearning(env, 1000)

The above code snippet shows the process of Q-learning with ε-greedy approach.
First, the greedy policy is created, followed by Q-learning model, as described in
Eq. (5.1).
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5.2.1 Accelerated Q-learning by Environment Exploration

The traditional Q-learning algorithm [78] converges to the optimal after unlimited
iterations that may be too slow for convergence [79]. To overcome this convergence
issue, we propose the use of reinforcement Q-learning for adaptive tuning of output-
voltage swing to achieve low power and faster convergence. Here, we will first
present the modeling of a Markov decision process (MDP) and then introduce a
reinforcement Q-learning algorithm for the adaptive tuning.

Accelerated Q-learning [80] can be utilized to find the optimum with a faster con-
vergence based on the predicted next state and the according transition probability
with an initialized random action at first few states. Accelerated Q-learning has two
transition rules. Random actions make the system explore environment faster and
more easily find optimal states. Optimal states are not found only based on Q-value
but also by the random selection.

Similar to the Q-learning algorithm, the set of states and actions is known, but the
reward for each action is unknown. The reward function is calculated. To achieve
faster convergence, the transition probability is utilized to select the action instead
of directly selecting the next state.

To find the optimal MDP, reinforcement Q-learning algorithm can be utilized to
evaluate the pair of state and action as the Q-value. In addition to the Q-learning
algorithm discussed in the previous section, we utilize the reinforcement Q-learning
to find the optimal for the modeled MDP.

The first phase is initialization to form a look-up-table with states and corre-
sponding actions. In addition, the transition probability P for all the states is set
as 1 and the reward is set to a maximum value L. This process of initialization is
presented as Init () of Algorithm 1.

Prediction of the next state (say voltage swing level) is performed using the auto-
regression technique as discussed in the earlier chapters to obtain the corresponding
action. In the action selection phase, given by Selection(), the Q-value for the state
and action pair is found iteratively, where the Q-value is defined as the weighted
sum of the reward and its past values by

Q′(si, ak) = (1 − α) ∗Q(si, ak)+ α ∗ delta (5.2a)

delta = R(si, ak, si+1)+ γ ∗ min
a∈A(Q(si+1, ak)). (5.2b)

Q′(si, ak) shows the updated Q-value after taking the action ak to the next state
si+1.

In each iteration, the action is selected either based on the transition probability
or based on the maximum Q-value (or policy). If the transition probability is larger
than the threshold, a random action is selected; otherwise, the policy action with
the minimum Q-value is selected. The random action will happen at the first few
rounds to explore the design space. As the learning process continues, the policy
action with the calculated Q-value will dominate and become more accurate to use.
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Algorithm 1 Reinforcement Q-learning algorithm

Input: Communication power Pw, BER feedback

Output: Output-voltage

function Init()

1 → P(si , ak, si+1)

Reward R(si , ak, si+1) = L
vpredict → Vsi

Selection()

end function
function Selection()

for k = 1 : n
Vsi , BERi → si ∈ S
Q′(si , ak)← (1 − α) ∗Q(si , ak)+
α ∗ (R(si , ak, si+1)+ γ ∗ min(Q(si+1, ak))

If P(si , ak, si+1) > rand(0, 1)

ak ← rand(A)

else
ak ← min(Q(si+1, ak))

end if
Update()

end for
end function
function Update()

Reward: R(si , ak, si+1) = b1ΔVs(Pi)+ b2ΔVs(BERi)

Update Policy (si , ai ), based on new Q

∀ si ∈ S {

ak ← rand(A)

Q′(si , ak) = Q(si, ak)
P (si , ak, si+1) = 1 − 1

log(Nsi+2)

}

end function

As such, a higher probability exists that the action ak with the minimum Q-value.
The policy action with the maximum Q-value (5.2) can be described as below:

ak ← min(Q(si+1, ak)). (5.3)

Lastly, the phase of Update() is activated at the end of each iteration of
Selection() function. The reward is defined as the weighted value of parameters
say bit error rate (BER) and power consumption (Pw) and updated. At the end
of Update, each state will be randomly visited and Q-value (5.2) will be updated
accordingly. The transition probability P(si, ak, si+1) is also updated as Nsi
(the number of visits to state si) will increase after each iteration. Note that with
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Fig. 5.2 State transition
based on reinforcement
Q-learning

the prediction of states si as in function Init () and Update() and the transition
probability, the convergence to the optimal solution is accelerated [81, 82]. This is
done at the end of each round with the random action ak to visit the state si .

Example 5.2 (Accelerated Q-Learning)
Problem: Create an accelerated Q-learning based on the discussion and
Eqs. (5.2a) and (5.2b).
Solution: One example with 4-state is shown in Fig. 5.2. For state s1,
action a1 can change its state to state s2 with probability P(s1, a1, s2),
and for state s2, action a2 can change its state to state s1 with probability
P(s2, a2, s1). Whereas action a5 causes no change in state, whose probability
is given as P(s1, a5, s2). The state transition probability P is given by a
decaying function. The probability under the decaying function is given by
P = 1/(log(Nsi + 2) with Nsi denoting the number of visits to state si . The
probability-based action will ensure the visit to all states at starting period.
This will calculate Q-value to every available state accordingly. After this,
Q-value-based action will dominate and the optimal action with the largest
Q-value will be selected.

5.3 TD(λ)-Learning

In some of the real-time problems, the system may not have a predefined policy or
knowledge regarding the state transitions. In such cases, the system has to learn the
policy as well as make the decision in parallel. The TD(λ)-learning methods can be
applied to learn the policy and perform the decision-making.

For every state sk visited at epoch tk , the TD(λ) algorithm chooses an action
either with a maximum Q-value, i.e., maxa∈AQ(sk, a) for different possible actions
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a, or by using the semi-greedy policies given in [83]. The estimated Q-value is
updated in the next epoch based on the action chosen ak and the next state sk+1.
The Q-value update is similar to that of traditional Q-learning algorithm, but with
different estimated Q-value and error terms, particularly,

∀(s, a) ∈ S × A : Q(s, a)← Q(s, a)+ β · εk(s, a)·
[

1 − e−γ τk
γ

r(sk, ak)+ e−γ τk max
a′∈A

Q(sk+1, a
′)−Q(sk, ak)

]

,

where the amount of time that system remains in state sk is given by τk = tk+1 − tk ,
β ∈ (0, 1) is the learning rate, 1−e−γ τk

γ
r(sk, ak) is the sample discounted reward

received in τk time units, and Q(sk+1, a
′) is the estimated value of the state–action

pair (sk+1, a
′) with sk+1 being the next state. The term εk(s, a) represents the

eligibility for each state-action pair, updated as

εk(s, a) = λ · e−γ τk−1 · εk−1(s, a)+ δ((s, a), (sk, ak)),

where δ((s, a), (sk, ak)) is the delta-Kronecker function.

5.4 SARSA Learning

SARSA learning algorithm is on-policy learning and an extension of the TD-
learning algorithm. In contrast to the traditional Q-learning, in SARSA learning,
the maximum reward for the future state is not necessarily used in the Q-update
Eq. (5.1). Instead, a new action using the same policy as original action could be
chosen leading to a different award. The name SARSA is derived from the quadruple
Q(s, a, r, s′, a′), i.e., the current state and the action taken with a given reward r in
the next state, with s′ and a′ being the next state and action, respectively. In the case
of SARSA learning, the Q is chosen as follows:

Q(s, a)← Q(s, a)+ α[r + γ max
α
Q(s′, a′) = Q(s, a)]. (5.4)

This process is repeated iteratively until convergence. Also, the ε-greedy algorithm
can be deployed for convergence.

Traditional Q-learning and SARSA learning techniques have some similarities
and differences. For instance, both the techniques follow ε-greedy algorithm for
exploration and perform the Q-value update based on the rewards with state
transition(s). The way the Q-update happens in Q-learning and SARSA learning
are different as noted from their respective equations. Furthermore, the SARSA
algorithm is on-policy learning as the new action a′ is based on the same policy
used to determine action a, i.e., the one that leads to state s′.
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Example 5.3 (SARSA Learning)
Problem: Create a reinforcement learning based on the discussed SARSA
learning policy.
Solution: The SARSA learning technique primarily deviates from traditional
Q-learning primarily in terms of the update and the action selection policies.
The code snippet that depicts this variation is shown below. One can integrate
this with the Q-learning example discussed in the earlier part of this chapter
for full implementation.

1 #Function to choose the next action
2 def choose_action(state):
3 action=0
4 if np.random.uniform(0, 1) < epsilon:
5 action = env.action_space.sample()
6 else:
7 action = np.argmax(Q[state, :])
8 return action
9

10 #Function to learn the Q-value
11 def update(state, state2, reward, action, action2):
12 predict = Q[state, action]
13 target = reward + gamma * Q[state2, action2]
14 Q[state, action] = Q[state, action] + alpha * (target - predict)

The above code snippet shows the function that defines the Q-update in the
SARSA algorithm. The update function is different compared to the traditional Q-
learning algorithm. The initialization and other components can be similar to the
traditional Q-learning technique, though not exactly the same.

5.5 Deep Q-Learning

As observed from the previous sections, Q-learning algorithms are effective and can
solve a wide range of complex problems. Thus, they are adopted in products like
Deepmind’s AlphaGo, gaming applications and drone navigation, and similar use
cases. However, the complexity of the reinforcement or Q-learning algorithms are
extremely large. To address this challenge, deep Q-learning is introduced.

As seen in previous chapters that the neural networks function efficiently for
estimation, prediction, and forecasting applications. Thus, in deep Q-learning,
neural networks are used as function approximators for target optimization, mapping
of action-state pairs with maximizing rewards. Deep Q-learning is adopted in
Deepmind’s AlphaGo.

In deep Q-learning, the neural network can be initialized randomly or stochasti-
cally, and depending on the obtained feedback from the Q-learning algorithm, the
neural network coefficients or model parameters will be updated in an interactive
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manner. Similar to traditional neural networks, the networks used in deep Q-learning
will also utilize the coefficients to approximate the functions that map the inputs to
the outputs. The model learning happens in a gradient descent manner.

In addition to traditional or deep neural networks, CNNs can as well be used for
deep Q-learning. In this case, the CNN can be used to detect the state of the system,
i.e., say based on the image captured from a gaming window, the CNN captures the
state information instead of traditional classification, and this can be processed by a
neural network for further action–state mapping that maximizes the reward.

5.6 Policy Optimization

5.6.1 Stochastic Policy Gradient

Consider optimizing J (π), the value of policy π under some initial state distribution
μ. Consider a class of parametric stochastic policies {πθ : θ ∈ �}, such that πθ (a|s)
is differentiable with respect to θ . Thus, the problem of interest is

max
θ∈� J(πθ ).

If we can compute (the stochastic estimate of) ∇θJ (πθ ), we can optimize objective
J (πθ ) with gradient-based methods (e.g., SGD, natural gradient descent).

5.6.2 REINFORCE

Let τ = (s0, a0, r0, s1, a1, r1, . . .) denote the state–action–reward trajectory. The
probability distribution over trajectories under policy π can be expressed as

Pπ(τ) = μ(s0)π(a0|s0)R(r0|s0, a0)P (s1|s0, a0)π(a1|s1) . . . ,

where μ is the initial state distribution and (P,R) are the transition and reward
functions of the MDP. Note this expression is obtained by first decomposing the
joint distribution into conditional distributions (the chain rule of probability) and
then using the conditional independence of Markov transition and Markov policy.
The discounted total reward of trajectory τ is

R(τ) :=
H−1∑

t=0

γ t rt ,

where horizon H can be finite or infinite.
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Per-trajectory REINFORCE For per-trajectory REINFORCE, we start by
decomposing the objective into trajectories, i.e., J (π) = ∑

τ [R(τ)P π(τ)]. Then,
the gradient can be computed as (dropping the θ in the subscript of ∇θ )

∇J (πθ ) = ∇
∑

τ

[
R(τ)P πθ (τ )

]

=
∑

τ

[
R(τ)∇Pπθ (τ )]

=
∑

τ

[
R(τ)P πθ (τ )∇ logPπθ (τ )

]

= Eτ∼Pπ (τ)
[
R(τ)∇ logPπθ (τ )

]
(likelihood ratio trick)

= Eτ∼Pπ (τ)
[
R(τ)∇ log(μ(s0)πθ (a0|s0)R(r0|s0, a0)P (s1|s0, a0)πθ (a1|s1) . . .)

]

= Eτ∼Pπ (τ)
[

R(τ)

H−1∑

t=0

∇ logπθ (at |st )
]

.

This means that one can compute stochastic gradient of ∇J (πθ ) by (1) generating a
trajectory under πθ and (2) computing R(τ)

∑H−1
t=0 ∇ logπθ (at |st ).

Per-step REINFORCE We can obtain a lower variance version of REINFORCE
by decomposing the total discounted rewards into steps

∇J (πθ ) = ∇Eτ∼Pπθ (τ )
[
H−1∑

t=0

γ t rt

]

=
H−1∑

t=0

γ t∇Eτ∼Pπθ (τ ) [rt ] ,

where

∇Eτ∼Pπθ (τ ) [rt ] = ∇Eτ0:t∼Pπθ (τ0:t ) [rt ] (τ0:t is τ truncated by t)

= Eτ0:t∼Pπθ (τ0:t )

[

rt

t∑

t ′=0

∇ logπθ (at ′ |st ′)
]

(likelihood ratio trick)

= Eτ∼Pπθ (τ )
[

rt

t∑

t ′=0

∇ logπθ (at ′ |st ′)
]

(back to untruncated τ ).

Plugging this into the previous step, we have

∇J (πθ ) =
H−1∑

t=0

γ t∇Eτ∼Pπθ (τ ) [rt ]
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=
H−1∑

t=0

γ tEτ∼Pπθ (τ )

[

rt

t∑

t ′=0

∇ logπθ (at ′ |st ′)
]

= Eτ∼Pπθ (τ )
[
H−1∑

t=0

γ t rt

t∑

t ′=0

∇ logπθ (at ′ |st ′)
]

= Eτ∼Pπθ (τ )
[
H−1∑

t=0

γ t

(
H−1∑

t ′=t
γ t

′−t rt ′
)

∇ logπθ(at |st )
]

.

This gives us another unbiased estimator of ∇J (πθ ): (1) generate a trajectory
under πθ , (2) pick a random timestep t with probability ∝ γ t , and (3) compute(∑H−1

t ′=t γ t
′−t rt ′

)
∇ logπθ (at |st ). This per-step estimator has lower variance than

the per-trajectory estimator.

Action Value Expression

The estimator obtained by per-step REINFORCE suggests the following policy
gradient expression:

∇J (πθ ) = Eτ∼Pπθ (τ )
[
H−1∑

t=0

γ tQπθ (st , at )∇ logπθ(at |st )
]

because
(∑H−1

t ′=t γ t
′−t rt ′

)
∇ logπθ (at |st ) is an unbiased estimator ofQπθ (st , at )∇

logπθ (at |st ). Note that this expression is equivalent to

∇J (πθ ) = 1

1 − γ Es∼dπθ Ea∼πθ (·|s)
[
Qπθ (s, a)∇ logπθ (a|s)

]
,

where dπ is the normalized state occupancy with initial distribution μ:

1

1 − γ d
π(s) =

H−1∑

t=0

γ t Pr(st = s|s0 ∼ μ,π),

which makes Eτ∼Pπ (τ)
[∑H−1

t=0 γ
tf (st , at )

]
= 1

1−γ Es∼dπEa∼π(·|s) [f (s, a)] for

any f . We now prove this action value expression of policy gradient, assuming the
horizon is infinite, H = ∞, and dropping subscript θ in πθ . The proof starts with
the fact that V π(s) = ∑

a π(a|s)Qπ(s, a). Differentiate both sides:

∇V π(s) = ∇
∑

a

π(a|s)Qπ(s, a)
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=
∑

a

∇π(a|s) ·Qπ(s, a)+ π(a|s) · ∇Qπ(s, a)

=
∑

a

∇π(a|s) ·Qπ(s, a)+ π(a|s) · ∇ (
r(s, a)+ γEs′∼P(·|s,a)[V π(s′)]

)

=
∑

a

π(a|s)∇ logπ(a|s) ·Qπ(s, a)+ π(a|s)γEs′∼P(·|s,a)[∇V π(s′)]

= Ea∼π(·|s)
[
Qπ(s, a)∇ logπ(a|s)+ γEs′∼P(·|s,a)[∇V π(s′)]

]
.

Note that ∇V π appears on both sides, and now we apply this recursion. We let
dπt (s) = Pr(st = s|s0 ∼ μ,π) be the state distribution at time t under policy π with
initial state distribution μ. Note dπ0 = μ and thus J (π) = Es∼dπ0 [V π(s)]. Now, by
applying the recursion, we have

∇J (π) = ∇Es∼dπ0 [V π(s)] = Es∼dπ0 [∇V π(s)]
= Es∼dπ0

[
Ea∼π(·|s)

[
Qπ(s, a)∇ logπ(a|s)+ γEs′∼P(·|s,a)[∇V π(s′)]

]]

= Es∼dπ0 ,a∼π(·|s)[Qπ(s, a)∇ logπ(a|s)] + γEs∼dπ1 [∇V π(s)]
= Es∼dπ0 ,a∼π(·|s)[Qπ(s, a)∇ logπ(a|s)]

+ γEs∼dπ1 ,a∼π(·|s)[Qπ(s, a)∇ logπ(a|s)] + γ 2Es∼dπ2 [∇V π(s)]

= . . . =
∞∑

t=0

γ tEs∼dπt ,a∼π(·|s)[Qπ(s, a)∇ logπ(a|s)]

= 1

1 − γ Es∼dπEa∼π(·|s)
[
Qπ(s, a)∇ logπ(a|s)] .

This concludes the proof.

Variance Reduction by Baseline A useful fact is that, for any fixed s, we have

Ea∼π(·|s)[∇ logπ(a|s)] =
∑

a

∇π(a|s) = ∇
∑

a

π(a|s) = ∇1 = 0.

Therefore, adding any b : S → R to the policy gradient estimator will not affect its
unbiasedness:

∇J (π) = 1

1 − γ Es∼dπEa∼π(·|s)
[∇ logπ(a|s)(Qπ(s, a)− b(s))] .

Adding a function b : S → R, often called the baseline, does not introduce bias
but does affect the variance. A popular choice is b(s) = V π(s), which can reduce
the variance, withQπ(s, a)− b(s) = Qπ(s, a)− V π(s) = Aπ(s, a) becoming the
advantage function.
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Other Expressions

There are many other (unbiased) expressions and estimators for the policy gradient.
For example, TD residual r(s, a) + V π(s) − γV π(s′) can replace the advantage
function.

5.7 Gradient-Based Policy Optimization

The previous section explained how we can obtain an unbiased estimator of
∇J (πtheta) from a sampled trajectory under πtheta. With such a gradient esti-
mator, we can use gradient-based methods to optimize objective J (πtheta). Below
we give such an algorithm using SGD, with the gradient estimated from per-
step REINFORCE with a learned baseline. Methods more sophisticated than SGD
include TRUST region methods, natural gradient, etc.

• Input: differentiable policy πθ (a|s), differentiable baseline function bw(s).
• Initialize: θ(a|s), w, step sizes αθ , αw

• Loop forever:
Generate a trajectory on policy πθ (s0, a0, r0, s1, a1, r1, . . . , sH )

Loop for each step t = 0, 1, . . . , H − 1:
G← ∑H−1

k=t γ k−tRk
A← G− bw(st )
w ← w + αwA∇wbw(s)
θ ← θ + αθγ tA∇θ logπθ (at |st ).

5.8 Putting It All Together

Reinforcement learning is a human learning inspired technique that learns through
experience and does not require large amounts of labeled data. Reinforcement
learning technique is an iterative learning process that requires exploration to
better understand the environment and the impact of the considered actions. Unlike
supervised learning, reinforcement learning can better adapt to the varying operating
conditions.

Reinforcement learning is widely used in applications such as games, navigation,
and other similar applications. For simpler applications with a smaller number of
actions, traditional reinforcement learning can be sufficient. However, as the number
of states and actions increases, the convergence can be a concern. For such scenarios,
techniques such as SARSA and TD(λ) can be efficient. In addition, the techniques
such as reinforce can be utilized for well-defined data and the corresponding state
and action pairs.



5.9 Exercise Problems 231

5.9 Exercise Problems

Problem 5.1 Build a simple reinforcement learning based problem using Q-
function containing:

Rules: The agent (yellow box) has to reach one of the goals to end the game
(green or red cell). Rewards: Each step gives a negative reward of −0.04. The red
cell gives a negative reward of −1. The green one gives a positive reward of +1.
States: Each cell is a state the agent can be. Actions: There are only 4 actions. Up,
Down, Right, and Left.

Problem 5.2 The task is simply to reach point G by starting from point S in the
map. However, there is a cliff we should avoid so that a −100 reward incurs if a
transition into the cliff is made. We will use two approaches to solve the problem as
it can be seen from the picture.

Problem 5.3 Make use of Policy Iteration and Value Iteration algorithms to solve
a simple MDP problem. The environment is a simple MDP problem formulated as
States—Happy, Sad; Actions—Studying, Drinking; and Rewards—ranges between
−10 and 40 depending on the transition.

Problem 5.4 Implement an explicit policy for the mountain car environment
without using any learning algorithm. Explain in detail your reasoning behind your
policy and run several test episodes to measure its performance.

Problem 5.5 Given a maze as a cube, try to use a simple reinforcement learning
algorithm to solve the problem.

Problem 5.6 In this game, the user can choose how many rounds the AI will be
trained on and then access its performance after training. With this tool, we can
examine if the algorithm implemented (Q-learning) performs worse or better with
more training.

Problem 5.7 Build a simple implementation and comparison of three ε-greedy
bandits with a single state.

Problem 5.8 Consider the per-trajectory REINFORCE expression for policy gra-
dient with a constant baseline:

∇J (πθ ) = Eτ∼Pπθ (τ )
[∇ logπθ (τ)(R(τ)− b)

]
,

where ∇ logπθ (τ) := ∑H−1
t=0 ∇ logπθ(at |st ) and b ∈ R is the constant baseline. For

simplicity, let us consider the 1D case where θ ∈ R. We now look at the variance
of the gradient estimator ĝ := ∇ logπθ (τ)(R(τ)− b). What is the optimal baseline
that minimizes the variance of ĝ?
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Problem 5.9 Suppose for any state–action pair (s, a), we have a feature mapping
φs,a ∈ R

d . The log-linear policy parameterization is of the form:

πθ (a|s) = exp(θ · φs,a)∑
a′ exp(θ · φs,a′)

with θ ∈ R
d . Compute ∇ logπθ (a|s) for the log-linear policy parameterization.
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Chapter 6
Online Learning

6.1 Introduction

Offline or batch learning is a traditional machine learning paradigm in which a
model is learned from the complete dataset at once via batches. When dealing with
new training data, such a learning style incurs high retraining costs. Data expands
and evolves quickly in the era of big data, making classic batch learning methods
difficult to scale for real-world applications.

Online learning is a sub-field of machine learning that deals with data entering
in a sequential sequence, as opposed to batch machine learning methods. At each
step, the online learning model seeks to learn and update the best predictor for the
new data. Online learning approaches address the drawbacks of offline learning in
handling streaming data by successfully handling streaming data. If we want to
create a real-time stock price prediction model, we should use an online model that
updates the model in real time rather than an offline model that requires all of the
data to be retrained when new stock features are added.

We introduce online learning approaches in both supervised and unsupervised
environments in this chapter. In particular, supervised online learning requires that
the ground truth labels are readily available online. Online classification is one of
the most popular problems in supervised online learning, and it seeks to predict
the categories for a new data instance based on historical training data and fresh
streaming data observations. For example, in a spam email detection system, we
can use the online classification approach to categorize each email as “spam” or
“benign.” Unsupervised online learning, on the other hand, presupposes that the new
data is unlabeled. Online clustering, for example, is a technique of grouping data
instances into groups in which data instances in the same group are more similar
than data instances in other groups.

Finally, to help readers comprehend the function of online learning in the actual
world, we provide several instances of online learning applications.
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6.2 Online Supervised Learning

In this section, we introduce the fundamental approaches and principles for online
learning methodologies toward supervised learning tasks [84, 85]. Here, we discuss
linear online learning methods, which are widely used in real-world applications.
Concretely, consider an input domain X and an output domain Y for a learning
task; we aim to learn a hypothesis f : X → Y where the target model f is a
linear function. For example, consider a typical linear binary classification task;
our goal is to learn a linear classifier f : X → {+1,−1} as follows: f (xt ;w) =
sgn(w · xt ), where X is typically a d-dimensional vector space R

d , w ∈ X is a
weight vector specified for the classifier to be learned, and sgn(z) is an indicator
function that outputs +1 when z > 0 and -1 otherwise. We review two major types
of online learning algorithms: first-/second-order online learning and online learning
with regularization.

6.2.1 First-/Second-Order Online Learning

In the following, we discuss two important algorithms for first-order linear online
learning and one for second-order online learning. The first-order linear online
learning exploits the first-order information of the model during the learning
process. In the contrast, second-order online learning algorithms exploit both first-
order and second-order information in order to accelerate optimization convergence.
Despite the better learning performance, second-order online learning algorithms
often fall short in higher computational complexity.

Passive Aggressive Online Learning (PA)

Passive aggressive algorithm is a popular family of first-order online learning
algorithms which generally follows the principle of margin-based learning [86].
Specifically, given an instance xt at round t , PA formulates the updating optimiza-
tion as follows:

wt+1 = arg min
w∈Rd

1

2
‖w − wt‖2 s.t.�t (w) = 0, (6.1)

where �t (w) = max(0, 1 − ytw · xt ) is the hinge loss. The above resulting update
is passive whenever the hinge loss is zero, i.e., wt+1 = wt when � = 0. In contrast,
when the loss is not zero, the approach will force wt+1 aggressively to satisfy
the constraint regardless of any step size. Intuitively, PA algorithm aims to keep
the updated classifier wt+1 stay close to the previous classifier and ensure every
incoming instance to be classified correctly by the updated classifier. The regular
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PA algorithm assumes training data is always separable, which may not be true for
noisy training data in real-world applications. To tackle these problems, two variants
of PA algorithm relax the assumption as the following:

PA-I : wt+1 = arg min
w∈Rd

1

2
‖w − wt‖2 + Cξ

subject to �t (w) ≤ ξ and ξ ≥ 0

PA-II : wt+1 = arg min
w∈Rd

1

2
‖w − wt‖2 + Cξ2

subject to �t (w) ≤ ξ,

(6.2)

where C is a positive parameter to balance the trade-off between first regularization
term and second slack variable term. By solving the three optimization tasks, we
can derive the closed-form updating rules of three PA algorithms:

wt+1 = wt + τtytxt , τt =

⎧
⎪⎨

⎪⎩

�t/‖xt‖2 (PA)
min{C, �t/‖xt‖2} (PA-I)

�t

‖xt‖2+ 1
2C

(PA-II).
(6.3)

In the following example, we demonstrate the sample code of passive aggressive
regressor.

1 from sklearn.linear_model import PassiveAggressiveRegressor
2 from sklearn.datasets import make_regression
3

4 X, Y = make_regression(n_features=4, random_state=0)
5 regr = PassiveAggressiveRegressor(random_state=0)
6 regr.fit(X, Y)

Example 6.1 (Iris Classification with Passive Aggressive Algorithm)
Problem: Perform classification with passive aggressive algorithm on Iris
dataset.
Solution: In order to perform the passive aggressive algorithm-based predic-
tion on Iris dataset, one needs to first create a passive aggressive classifier
using the PassiveAggressiveClassifier() and train the model
with the loaded Iris dataset. The code snippet for Iris dataset classification
with passive aggressive algorithm is shown below:

1 # Importing modules
2 from sklearn.datasets import load_iris
3 from sklearn.linear_model import PassiveAggressiveClassifier
4 from sklearn.metrics import classification_report, accuracy_score
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5 from sklearn.model_selection import train_test_split
6

7 # Loading
8 dataset = load_iris()
9 X, y = dataset.data, dataset.target

10

11 # Splitting
12 X_train, X_test, y_train, y_test = train_test_split(X, y)
13

14 # Creating model
15 model = PassiveAggressiveClassifier()
16

17 # Fitting
18 model.fit(X_train, y_train)
19

20 # Prediction
21 test_pred = model.predict(X_test)
22

23 # Evaluation
24 print("Accuracy : {accuracy_score(y_test, test_pred)}")

Online Gradient Descent (OGD)

Many online learning problems can be formulated as an online convex optimization
task, which can be solved by applying the OGD algorithm. Consider the online
binary classification as an example, where we use the hinge loss function, i.e.,
�t (w) = max(0, 1 − ytw · xt ). By applying the OGD algorithm, we can derive
the updating rule as follows:

wt+1 = wt + ηtytxt , (6.4)

where ηt is the learning rate (or step size) parameter. The OGD algorithm is outlined
in Algorithm 2, where any generic convex loss function can be used.

∏
S is the

projection function to constrain the updated model to lie in the feasible domain.

Algorithm 2 Online gradient descent
Input: w1, convex set S, step size ηt
1: for t = 1, 2, . . . , T do
2: Receive xt ∈ R

d , predict ŷt using wt
3: Suffer loss �t (wt )
4: Update wt+1 = ∏

S(wt − ηt��t (wt ))
5: end for

Both OGD and PA algorithms share similar updating rules but differ in that OGD
method usually employs some predefined learning rate scheme while PA algorithm
chooses the optimal learning rate τt at each round (but subject to a predefined cost
parameter C). Recently, different OGD variants have been proposed to improve
either theoretical bounds or practical issues, such as adaptive OGD [87] and mini-
batch OGD [88], among others.
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Example 6.2 (House Price Prediction with OGD)
Problem: Predict the Boston house prices with OGD.
Solution: We will need to load the dataset first by load_boston() from
sklearn.datasets and then perform SGDRegressor() to the training
set. The code snippet for OGD is shown below:

1 from sklearn.datasets import load_boston
2 from sklearn.model_selection import train_test_split
3 from sklearn.linear_model import SGDRegressor
4 from sklearn.preprocessing import StandardScaler
5

6 boston = load_boston()
7 X_train, X_test, Y_train, Y_test = train_test_split(boston.data, boston.

target, test_size=0.2, random_state=42)
8 regr = SGDRegressor(loss=’huber’, penalty=’l2’, alpha=0.0001, fit_intercept=

False, n_iter=5, shuffle=True, verbose=1, epsilon=0.1, random_state=42,
learning_rate=’invscaling’, eta0=0.01, power_t=0.5)

9

10 sc_boston = StandardScaler()
11 X_train = sc_boston.fit_transform(X_train)
12 X_test = sc_boston.transform(X_test)
13

14 regr.fit(X_train, Y_train)

Second-Order Perceptron (SOP)

Second-order Perceptron algorithm [89] aims to exploit certain geometrical prop-
erties of the data which are ignored by the first-order algorithms. Indeed, SOP can
be viewed as an online variant of the whitened Perceptron algorithm. Assuming
that the instances x1, . . . , xT are preliminarily available, we can get the correlation
matrixM = ∑T

t=1 xtx
T
t . The whitened Perceptron algorithm is simply the standard

Perceptron run on the transformed sequence (M−1/2x1, y1), . . . , (M
−1/2xT , yT ).

By reducing the correlation matrix of the transformed instances, the whitened
Perceptron algorithm can achieve significantly better mistake bound. In online
setting, the correlation matrix M can be approximated by the previously seen
instances. SOP is outlined in Algorithm 3.

6.2.2 Online Learning with Regularization

Traditional online learning methods learn a classifier w ∈ R
d where the magnitude

of each element |wj | weights the importance of each feature, which are often non-
zero. When dealing with high-dimensional data, traditional online learning methods
suffer from expensive computational time and space costs. This drawback is often
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Algorithm 3 Second-order perceptron
Input: w1 = 0, X0 = [], v0 = 0, k = 1
1: for t = 1, 2, . . . , T do
2: Given an incoming instance xt , set St = [Xk−1, xt ]
3: predict ŷt = ft (xt ) = sign(wt · xt ), where wt = (aIn + StSTt )−1vk−1
4: Receive the true class label yt ∈ {+1,−1};
5: if ŷt 
= yt then
6: vk = vk−1 + ytxt , Xk = St ,k = k + 1
7: end if
8: end for

addressed using regularization by performing sparse online learning, which aims to
exploit the sparsity property with real-world high-dimensional data. Specifically, a
batch sparse learning problem can be formalized as

P(w) = 1

n

n∑

i=1

�t (w)+ φs(w), (6.5)

where φs is a sparsity-inducing regularizer. For example, when choosing φs =
λ‖w‖0, it is equivalent to imposing a hard constraint on the number of non-zero
elements in w. Instead of choosing �0-norm which is hard to be optimized, a
more commonly used regularizer is �1-norm, i.e., φs = λ‖w‖1, which can induce
sparsity of the weight vector but does not explicitly constrain the number of non-
zero elements. The following reviews some popular sparse online learning methods.

Truncated Gradient Descent

A straightforward idea to sparse online learning is to modify Online Gradient
Descent and round small coefficients of the weight vector to 0 after every K
iterations:

wt+1 = T0(wt − η��t (wt ), θ), (6.6)

where the function T0(v, θ) performs an element-wise rounding on the input vector:
if the j -th element vj is smaller than the threshold θ , set vj = 0. Despite its
simplicity, this method struggles to provide satisfactory performance because the
aggressive rounding strategy may ignore many useful weights which may be very
small due to the low frequency of appearance. Motivated by addressing the above
limitation, the Truncated Gradient Descent (TGD) method [90] explores a less
aggressive version of the truncation function:

wt+1 = T1(wt − η��t (wt ), ηgi, θ) (6.7)
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where T1(v
j , α, θ) =

⎧
⎨

⎩

max(0, vj − α) if vj ∈ [0, θ ]
min(0, vj + α) if vj ∈ [−θ, 0]
vj otherwise,

(6.8)

where gi > 0 is a parameter that controls the level of aggressiveness of the trun-
cation. By exploiting sparsity, TGD achieves efficient time and space complexity
that is linear with respect to the number of non-zero features and independent of the
dimensionality d. In addition, it is proven to enjoy a regret bound of O(

√
T ) for

convex loss functions when setting η = O(1/√T ).

Forward-Looking Subgradients (FOBOS)

Consider the objective function in the t-th iteration of a sparse online learning task
as �t (w)+ r(w), FOBOS [91] assumes ft is a convex loss function (differentiable),
and r is a sparsity-inducing regularizer (non-differentiable). FOBOS updates the
classifier in the following two steps:

(1) Perform Online Gradient Descent:

w
t+ 1

2
= wt − ηt��t (wt ). (6.9)

(2) Project the solution in (i) such that the projection stays close to the interim
vector w

t+ 1
2

and (ii) has a low complexity due to r:

wt+1 = arg min
w

{1

2
‖w − w 1

2
‖2 + η

t+ 1
2
r(w)}. (6.10)

When choosing �1-norm as the regularizer, the above optimization can be
solved with the closed-form solution for each coordinate:

w
j

t+1 = sgn(wj
t+ 1

2
)[|wj

t+ 1
2
| − η

t+ 1
2
]+. (6.11)

The FOBOS algorithm with �1-norm regularizer can be viewed as a special case
of TGD, where the truncation threshold θ = ∞ and the truncation frequency
K = 1. When η

t+ 1
2

= ηt+1 and ηt = O(1/
√
t), this algorithm also achieves

O(
√
T ) regret bound.

Regularized Dual Averaging (RDA)

Motivated by the theory of dual averaging techniques [92], the RDA algorithm [93]
updates the classifier by
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wt+1 = arg min
w

{ḡtw +�(w)+ βt

t
h(w)}, (6.12)

where �(w) is the original sparsity-inducing regularizer, i.e., �(w) = λ‖w‖1,

h(w) = 1
2‖w‖2 is an auxiliary strongly convex function, and ḡt is the averaged

gradients of all previous iterations, i.e., ḡ = 1
t

∑t
τ=1 ��τ (wτ ). Setting the step size

βt = γ√
t , one can derive the closed-form solution:

w
j

t+1 =
{

0 if |ḡjt | < λ
−

√
t
λ
(ḡ
j
t − λsgn(ḡjt )) otherwise.

(6.13)

To further pinpoint the differences between RDA and FOBOS, we rewrite
FOBOS in the same notation as RDA:

wt+1 = arg min
w

{gt T w +�(w)+ 1

2αt
‖w − wt‖2

2}. (6.14)

Specifically, RDA differs from FOBOS in several aspects. First, RDA uses the
averaged gradient instead of the current gradient. Second, h(w) is a global proximal
function instead of its local Bregman divergence. Third, the coefficient for h(w) is
βt/t = γ /

√
t which is 1/αt = O(

√
t) in FOBOS. Fourth, the truncation of RDA

is a constant λ, while the truncation in FOBOS η
t+ 1

2
decreases with a factor

√
t .

Clearly, RDA uses a more aggressive truncation threshold and thus usually generates
significantly more sparse solutions. RDA also ensures the O(

√
T ) regret bound.

Follow-the-Regularized-Leader-Proximal (FTRL-Proximal)

As we mentioned before, the aim of the online convex optimization task is to
optimize the regret. Traditional approaches (termed as Follow the Leader (FTL))
can be unstable, leading to high regret (e.g., linear regret) in the worst case [94].
This motivates the need to stabilize the approaches through regularization. Here
we discuss Follow-the-Regularized-Leader-Proximal (FTRL-Proximal), which is
widely used in industry programs. The FTRL-Proximal algorithm can be seen as a
hybrid of FOBOS and RDA algorithms and significantly outperforms both on a large
real-world dataset [95]. The idea is to solve the following optimization problem in
each iteration:

wt+1 = arg min
w

{ḡtw +�(w)+ 1

2αt
‖w − wt‖2

2}. (6.15)

As indicated by Eq. 6.15, when the non-smooth term � is omitted, FTRL-Proximal
algorithm is in fact identical to FOBOS. On the other hand, its update is essentially
the same as that of dual averaging, except that additional strong convexity is
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centered at the current feasible point. The FTRL-Proximal algorithm is outlined
in Algorithm 4.

Algorithm 4 Per-coordinate FTRL-proximal with L1 and L2 regularization for
logistic regression
Input: parameters α, β, λ1, λ2, ∀i ∈ {1, . . . , d}, initialize zi = 0 and ni = 0
1: for t = 1 to T do
2: Receive feature vector xt and let I = {i|xi 
= 0}
3: For i ∈ I compute
4:

wt,i =
{

0 if |zi | ≤ λ1

−( β+√
ni

α
+ λ2)

−1(zi − sgn(zi)λ1) otherwise.

5: Predict pt = σ(xt · w) using the wt,i computed above
6: Observe label yt ∈ {0, 1}
7: for all i ∈ I do
8: gi = (pt − yt )xi # gradient of loss w.r.t wi

9: σi = 1
α
(

√
ni + g2

i − √
ni) # equals 1

ηt,i
− 1
ηt−1,i

10: zi ← zi + gi − σiwt,i
11: ni ← ni + g2

i

12: end for
13: end for

6.3 Online Unsupervised Learning

In this section, we briefly introduce the online learning methods worked in the
literature of unsupervised learning, where models are learned from unlabeled data
streams. Due to the vast number of unsupervised learning methods in online
settings that have been explored, it is almost impossible to give a comprehensive
introduction in all the related areas. Instead, we will focus on the most important
tasks, online clustering, and give a brief introduction to other unsupervised online
learning methods such as dimension reduction, online density estimation, and online
anomaly detection.

6.3.1 Online Clustering

Clustering is an unsupervised learning process that groups a set of data instances
in a way that instances in the same group (called a cluster) are more similar than
those in other groups. For batch learning settings, clustering methods group all the
data instances entirely. In contrast, online clustering handles the streaming data that
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arrive continuously. In the following, we introduce the online learning approaches
for clustering on streaming data especially for the partition-based and density-based
clustering approaches.

Partition-Based Online Clustering

Traditional partition-based clustering methods such as K-Means [96] split the data
instances into partitions (called clusters) based on some distance measures such as
Euclidean distance. The number of clusters is usually predefined as prior knowledge.
The most representative clustering method, the K-Means algorithm, identifies k
centroids by minimizing the sum of square errors between each instance to their
corresponding centroids. The online algorithms based on K-Means [96] clustering
usually try to break the stream of instances into chunks whose size is decided by
the memory budget. After that, the batch-based clustering algorithm can be directly
applied to each chunk. The STREAM [97] algorithm utilizes the idea and achieves
a constant factor approximation in a single pass.

To understand the idea of STREAM algorithm, we first introduce the Small-
Space algorithm that shows clustering can be conducted in small spaces. Basically,
Small-Space is a divide-and-conquer algorithm that divides the data into small
pieces and clusters each data piece. Given a data stream D with multiple chunks
D = {D1,D2, . . . , Dn} where n is the number of chunks. The steps of the Small-
Space method are summarized in Algorithm 5.

Algorithm 5 Small-space algorithm
Input: Data stream D, cluster number k
1: Divide data stream D into n disjoint pieces D1, . . . , Dn
2: for i = 1 to n do
3: Find O(k) centers in Di
4: Assign each point in Di to its closest center
5: end for
6: Let D′ be the O(nk) centers obtained from each data partition Di
7: Cluster D′ to find k centers.

The issue with the Small-Space algorithm is the number of subsets n is limited
since it has to store all the intermediate medians in memory. Therefore, if M is the
size of memory, then we need to fit weighted nk centers into the memory and make
sure nk < M . However, such a chunk number n may not always exist.

The STREAM algorithm solves the problem of storing intermediate medians by
the following steps:

1. For the first m data instances, use a bi-criterion algorithm [97] to reduce them to
O(k) instances.

2. Repeat the above step until m2/(2k) of the original data instances are seen. At
this point we have m intermediate medians.
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3. Cluster these m first-level medians into 2k second-level medians.
4. Maintain at most m level-i medians, and, on seeing m, generate 2k level-(i + 1)

medians, with the weight of a new median as the sum of the weights of the
intermediate medians assigned to it.

5. When all the original data points are observed, we cluster all the intermediate
medians into k final medians.

The STREAM algorithm can solve the k-Median problem on a data stream in
a single pass with a constant factor approximation using a small space. Besides
the STREAM algorithm, there are also some sampling methods [98] designed for
the extremely large data streams. For example, StreamKM++ algorithm [99] use
an adaptive non-uniform sampling approach to obtain small coresets from the data
stream, which can significantly improve the efficiency.

Similar to the idea of STREAM algorithm, let’s introduce another popular
partition-based online clustering method, called Mini-Batch K-Means, which is
an online version of K-Means algorithm. Mini-Batch K-Means uses mini-batches
to reduce the amount of computation required to optimize the same objective of
original K-Means algorithm and produces results that are generally the same as the
K-Means.

Example 6.3 (Mini-Batch K-Means)
Problem: Make a synthetic dataset and perform Mini-Batch K-Means.
Solution: In two-dimensional space, initialize the three center points as (0,
0), (−1,−1), and (−1,−1). (−1, 1). Afterward, create 10 thousand dots all
around the three focal locations. Finally, run small batch K-Means on the data.
Readers may also experiment with non-batch K-Means to see how well they
do in terms of efficiency.

1 import numpy as np
2 from sklearn.cluster import MiniBatchKMeans
3 from sklearn.datasets.samples_generator import make_blobs
4

5 np.random.seed(0)
6 centers = [[0, 0], [-1, -1], [-1, 1]]
7 X, labels_true = make_blobs(n_samples=10000, centers=centers, cluster_std

=0.7)
8

9 mbk = MiniBatchKMeans(init=’k-means++’, n_clusters=3, batch_size=45, n_init
=10, max_no_improvement=10, verbose=0)

10 mbk.fit(X)

Furthermore, the results of K-Means and Mini-Batch K-Means are shown in
Fig. 6.1. The results show that the difference between the both methods is quite
small in practice.
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Fig. 6.1 Comparison between K-means and mini-batch K-means

Density-Based Online Clustering

Density-based clustering algorithms are usually designed to handle the two limita-
tions of partition-based approaches: (1) infeasible to handle arbitrary cluster shapes
but spherical clusters and (2) require prior knowledge to determine the number
of clusters. The density-based approaches such as DBSCAN [100] cluster dense
regions separated by sparse regions, in which a cluster can be arbitrary shapes
without any prior knowledge of the cluster numbers. However, the traditional
density-based clustering methods still suffer from several challenges including
dynamic cluster evolution and memory limitation. The online density-based clus-
tering methods are designed to handle these challenges, which can be categorized
into micro-clustering and grid-based clustering.

The micro-clustering algorithms [101, 102] summarize data instances in an
online manner and cluster the instances based on the summaries. Grid-based
algorithm divides the data space into grids, where each new data instance is assigned
into one grid. Then clustering method is performed based on the density of the grids
and independent of the number of data instances. Figure 6.2 shows an example of
grid online clustering. The data points in the grids are categorized into three clusters
based on their positions in the grids.

6.3.2 Other Unsupervised Tasks

In addition to online clustering tasks, we will briefly introduce the other three
unsupervised online learning tasks in this section: Online Dimension Reduction,
Online Density Estimation, and Online Anomaly Detection.
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Fig. 6.2 Example of grid-based online clustering

Online Dimension Reduction

Dimension reduction techniques can be used to transform high-dimensional data
into a low-dimensional space when feature dimensions are extremely large. The
transformed low-dimensional representation is necessary to retain some meaningful
properties of the original data but improves learning efficiency and makes it
applicable to real-world applications. Formally, consider a data instance x ∈ R

d ;
the goal of dimension reduction is to learn a new low-dimensional representation
x′ ∈ R

l , where the reduced dimension l is much less than its original dimension
d. The studies in this area can be mainly categorized into two groups: subspace
learning and manifold learning.

Subspace learning aims to find an optimal linear mapping of input data from
high-dimensional space to low-dimensional space. Popular linear subspace methods
include Principal Component Analysis (PCA) [103] and Independent Component
Analysis (ICA) [104]. The manifold learning method assumes that data lie on
an embedded non-linear manifold in the high-dimensional space. These methods
aim to find a low-dimensional representation in the preservation of some manifold
properties. For example, the multi-dimensional scaling (MDS) [105] and IsoMap
[106] preserve global properties, while Locally Linear Embedding (LLE) [107]
focuses on preserving local properties.

For the online dimension reduction tasks, most of the efforts have been focused
on addressing how to extend the existing methods to streaming data settings. For
example, incremental PCA [108] is used as replacement of PCA when the dataset
decomposed is too large to fit in memory. Usually, incremental PCA builds a low-
rank approximation for the input data using memory which is independent on the
number of input data instances. Last, the similar online learning extensions are
applied in the other dimension reduction tasks such as Independent Component
Analysis [109], IsoMap [110], and Locally Linear Embedding [111].
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Online Density Estimation

Online density estimation aims to estimate an underlying unobserved probability
density function based on observed data streams. Kernel density estimation (KDE)
[112], as one of the most extensively explored topics in density estimation, is a
nonparametric way to estimate the probability density function of a target random
variable. Specifically, given a sequence of instances D = {x1, . . . , xN }, where each
instance xi ∈ R

d , KDE tries to estimate the density at a point x as follows:

f (x) = 1

N

N∑

i=1

κ(x, xi) = 1

Nh

N∑

i=1

κ

(
x − xi
h

)

, (6.16)

where the kernel κ(x, xi) is a radially symmetric unimodal function and h is a
smoothing parameter. The same as the online learning with kernel, the KDE problem
also suffers from the curse of kernelization issue, in which the estimation of the
density at any point x requires to compute the kernel function with respect to all the
data instances in the data stream.

The attempts to overcome this issue can be grouped into merging and sampling
approaches. Merging approaches [113, 114] rely on a prespecified budget on the
usages of instances or kernels stored in memory, which guarantees newly arriving
samples can be stored in memory as kernel unless the budget is exceeded. One
of the approaches [115] performs clustering using self-organizing maps and then
performs kernel merging with the clustering results. Sampling approaches [116]
randomly select points to be kept in memory and attempt to maintain a certain level
of accuracy. The proposed online density estimation methods can be applied in many
real-world applications such as real-time visual tracking [117].

Online Anomaly Detection

Anomaly detection is a task to detect abnormal behavior in the data. Although the
notion of “anomaly” varies from domains, the anomaly detection is well studied due
to its wide applications such as intrusion detection and fraud detection. Distance-
based outlier detection algorithms are widely applied because they detect outliers
without any underlying data distribution assumption. The online anomaly detection
methods usually assume the normal behavior is changing through time. The model is
required to update the normal behavior profile with the data records that are probably
normal (e.g., have low anomaly score).

A widely used online anomaly detection method is the incremental local outlier
factor (ILOF) algorithm [118], which detects outliers in the streaming data. The
approach achieves equivalent detection performance as the iterated static LOF
algorithm when every time a new point is inserted into the dataset. Also, the ILOF
algorithm shows the number of updates each insertion/deletion is independent of the
current number of data instances in the dataset to ensure the time complexity of the
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incremental LOF algorithm is comparable to the static LOF algorithm. However,
the ILOF algorithm requires the whole dataset to detect outliers in a data stream
and cannot handle new types of outlier. To solve the issues, new approaches such
as density summarizing ILOF (DILOF) algorithms [119] were proposed to detect
outliers by summarizing the old data with a skipping scheme of outlier sequence.

Example 6.4 (Local Outlier Factor)
Problem: Perform LOF on four data points: −1.2, 0.3, 100.2, and 0.4.
Solution: Obviously, 100.2 is the outlier, as it is far greater than the rest of
the data. In the LOF algorithm, the number of neighbors is fixed at two. Then
you may go ahead and perform LOF to find the outlier.

1 import numpy as np
2 from sklearn.neighbors import LocalOutlierFactor
3 X = [[-1.2], [0.3], [100.2], [0.4]]
4 clf = LocalOutlierFactor(n_neighbors=2)
5 clf.fit_predict(X)
6 # array([ 1, 1, -1, 1])

6.4 Application and Resources

Since much data naturally arrives in a streaming fashion, online learning is a critical
technique to reduce retraining costs and ensure the model can be updated in a timely
fashion. In this section, we briefly introduce several online learning framework
applications. At the end of this subsection, we introduce several popular open source
toolboxes.

6.4.1 Time Series Prediction

Time series data records any real-value observations over time. It widely exists
in research domains such as meteorology, finance, and astronomy. Time series
prediction is a fundamental task in time series-related applications. The task aims at
training a prediction model based on historical data. The trained model can be used
to predict future observations. Since time series data typically arrives in sequential
order, online learning plays an important role to ensure a prediction model can be
updated efficiently.

AutoRegressive Moving Average (ARMA) model is a fundamental time series
prediction model for short-term prediction. The model can be described via the
following equation:
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x̄t+1 =
p∑

k=1

αkxt−k+1 +
q∑

k=1

βkεt−k+1, (6.17)

where historical observations are denoted as x1, x2, . . . , xt . εt−k+1 ∼ N (0, 1) is a
noise observation generated from N (0, 1) at time step t−k+1. x̄t+1 is the prediction
value generated via model. Given all historic data, the model can be trained via root
mean square error (RMSE).

Since time series data often contains a large number of observations recorded
over a large time span, retraining the model via all observations when a new
observation arrived is not practical. Anava et al. introduce an Online Gradient
Descend framework based ARMA model [120] to efficiently update the prediction
model.

AutoRegressive Integrated Moving Average (ARIMA) is another popular time
series prediction. ARIMA model is much more powerful than the ARMA model
and has been applied to predict the nonstationary time series. Different from the
ARMA model, ARIMA assumes the difference between two consecutive data
follows equation 1.17 (the difference operator can apply more than once). Similar
to the online ARMA model, an Online Gradient Descend framework based ARIMA
framework is introduced by Liu et al. [121]. The authors use the online version
ARIMA model to predict multiple real-world time series such as Dow Jones
Industrial Average Index [121].

6.4.2 Information Retrieval

Information retrieval (IR) is an important task in information system research.
Typically, an IR task aims at finding relevant items given a user query in a large
volume of data. There are many real-world applications related to IR. For example,
large-scale ad click-through rate (CTR) prediction is a popular application in the
IR research field. The task aims at predicting whether an ad on the website will be
clicked. Since CTR is an important metric for evaluating ad performance, predicting
CTR accurately can greatly help the industry correctly understand users’ demand.
Ad click-through rate prediction tasks can significantly benefit from online learning
as the CTR prediction applications often are time-sensitive.

McMahan et al. [122] described a CTR prediction system used at Google. The
system uses FTRL-Proximal online learning approach described in Sect. 1.2.2.4 for
the task. To conquer the challenge faced in this real-world application, the authors
further conduct a series of engineering-based improvements. First, the authors use
a rolling set of counting Bloom filters to adaptively change the set of features. The
authors found that the Bloom filter-based approach outperforms traditional feature
engineering solutions (e.g., remove fewer information features). In addition, the bit
size of the variable can greatly affect the speed performance. Thus all values in the
system are stored in q2.13 fixed-point format. In this format, two bits are used to
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encode the left of the binary decimal point and thirteen bits are used to encode the
value on the right of the binary decimal. To convert a float format w into q2.13
fixed-point format, the system first converts w into the desired accuracy level via

w′ = 2−13(213w + R), (6.18)

where R is a random variable generated from uniform distribution between interval
[0, 1]. And then the newly generated value w′ is stored in q2.13 format. This new
encoding format saves 75% RAM cost compared with classical 64-bit floating-point
values without changing model performance. There are many additional engineering
solutions mentioned in the work. The readers interested in this topic may refer to
the article for detail [122].

6.4.3 Online Portfolio Selection

Online Portfolio Selection (OLPS) [123] is an essential problem in financial and
business management. Intuitively, OLPS asks a solution model to make a series of
decisions to maximize a utility function. For example, given N stock prices over a
time span, the OLPS problem asks a model to adaptively select a stock from these
N stocks in each time step to maximize the profit.

OLPS is known as a special type of online learning problem. Das et al. [124]
show that Online Gradient Descend can be used to solve this problem. Readers
interested in this topic may refer to the article for detail.

6.4.4 Other Applications: Combined with Deep Learning

Since online learning can easily be combined with the offline models, online
learning can also integrate with deep learning models. Therefore, online learning
can be applied to a wide range of applications that deep learning models are heavily
used. These applications include:

• Object Detection [125]
• Natural Language Dependency Parsing [126]
• Image Retrieval [127]
• Graph Representation Learning [128]

The readers interested in these applications may refer to the articles for detail.



252 6 Online Learning

6.4.5 Resources

Some popular open source toolboxes of online learning include:

• Vowpal Wabbit1: Vowpal Wabbit is a machine learning toolbox sponsored
by Microsoft Research. The toolbox is specially optimized for fast training
and testing. The toolbox contains various types of machine learning models
programmed under online, active, and interactive learning frameworks. Online
learning algorithms such as Truncated Gradient Descend and Sparse Gradient
Descend can be found in the toolbox.

• SOL, ODL, KOL, and LIBOL2: Hoi and Sahoo from Singapore Management
University developed a set of online learning libraries. LIBOL consists of the
most popular online learning algorithms. SOL focuses on implementing scalable
online learning. ODL and KOL contain online learning frameworks specially
designed for deep learning and kernel learning, respectively.

• Application-Driven Toolbox: Some applications such as OLPS have a specially
designed open source toolbox. For example, OLPS toolbox3 provided by the
research group from SMU University contains a set of models designed for
solving OLPS problems.

We next use an example to show how to use Vowpal Wabbit to solve a linear
regression problem. The other two source codes are written on Matlab and are well
documented. The reader can refer to their GitHub page to learn more about the tools.

We first show how to use Vowpal Wabbit in the Python environment through
their Python drivers. A different operating system has different options to install the
package. The reader can follow the installation instruction on their website4 to get
to know the installation process.

Example 6.5 (Using Vowpal Wabbit)
Problem: Suppose the following stock price time series is observed:

p = 0.21, 0.17, 0.23, 0.18, 0.53, 0.3; (6.19)

build a linear regression model with p = 3 via Vowpal Wabbit.
Solution: The following is an example of Python code that makes use of
Vowpal Wabbit. Lines 1–2 of the sample code include the fundamental code

(continued)

1 https://vowpalwabbit.org/.
2 https://github.com/LIBOL.
3 https://github.com/OLPS/OLPS.
4 https://vowpalwabbit.org/start.html.

https://vowpalwabbit.org/
https://github.com/LIBOL
https://github.com/OLPS/OLPS
https://vowpalwabbit.org/start.html
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Example 6.5 (continued)
for initializing a Vowpal Wabbit model. Using Eq. (6.19), lines 4–8 generated
training data based on the equation referenced above. Finally, lines 10–11 are
a basic implementation of Vowpal Wabbit, which is used to train the machine
learning model. Lines 13–15 can be used to anticipate a future data point,
which is useful for forecasting.

1 from vowpalwabbit import pyvw
2 model = pyvw.vw()
3

4 train_examples = [
5 ".18 | t0:.23 t1:.17 t2:.21",
6 "0.53 | t0:.18 t1:.23 t2:.17",
7 "0.3 | t0:.53 t1:.18 t2:.23",
8 ]
9

10 for example in train_examples:
11 model.learn(example)
12

13 observation = "| t0:0.3 t1:.53 t2:.18"
14 prediction = model.predict(observation)
15 print(prediction)

In addition, Vowpal Wabbit is well known for its original C++ command-line
software. After generating a dataset based on VW format (the format used in lines
4–8 in the previous code), the users can run the following command line for training
the model:

1 vw [training_dataset_name] -cache_file cache_train -f [model_name]

To predict the newly observed data, the users can use the following command:

1 vw -t [testing_dataset_name] --cache_file cache_test -i [model_name] -p [
output_file]

6.5 Putting It All Together

In the era of big data, massive amounts of data are collected in a real-time fashion.
Online learning becomes a popular machine learning tool in real-world applications
since it provides an efficient way to process massive data and fulfill the real-time
feedback demands. In this chapter, we discussed two types of online learning models
including supervised and unsupervised approaches. The summary of the methods is
shown in Table 6.1, in which the supervised methods are categorized by the three
properties: first- or second-order gradient and data sparsity.

For supervised methods, we discuss a family of first-/second-order linear online
learning algorithms and sparse online learning with regularization algorithms.
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Table 6.1 Characteristics of Online Algorithms

Supervised

Algorithm First-order gradient Second-order gradient Data sparsity Unsupervised

PA
√

OGD
√

TGD
√

FOBOS
√

RDA
√ √

FTRL-proximal
√ √

STREAM
√

Mini-batch K-means
√

First-/second-order linear online learning algorithms are efficient in the task with
non-sparse/low-dimensional data. For example, online binary classification (e.g.,
spam email filtering) only involves two categories (“spam” vs “benign” emails).
Compared with the first-order linear online learning algorithms, the second-order
online learning algorithms accelerate the optimization convergence with higher
computational complexity. Online learning with regularization methods aims to
exploit the sparsity property with real-world high-dimensional data. For example,
online learning with regularization methods is naturally applied in financial portfolio
management where an online learner aims to find a good (e.g., profitable and low
risk) strategy for making a sequence of decisions for portfolio selection.

For unsupervised online learning tasks, we introduce four categories of machine
learning methods to handle unlabeled data streams: online clustering, online
dimension reduction, online density estimation, and online anomaly detection.
Each type of method solves one of the problems without label supervision. Online
clustering methods partition the streaming data into different groups, in which the
data within one group share more close properties than data samples in different
groups. For instance, the online clustering method can be applied in face clustering
in long and real-world videos, in which the faces are grouped in their scale,
pose, illumination, and expressions. The online clustering methods can help to
handle the video streams when the complete video data may not be available at
the same time or the data distribution itself may exhibit significant variation over
time. Online dimension reduction methods aim to transform data streams from a
high-dimensional space to a low-dimensional one without sacrificing the important
properties of the original data. Since the high-dimensional space can usually cause
the computational and curse of dimensionality issues, online dimension reduction
methods are always used in on-demand services to provide a real-time response
for huge data. For example, the recommendation system in e-commerce websites
can use the online dimension reduction method to reduce the feature dimension for
more efficient recommendations. Online density estimation approaches are usually
applied in the informal investigation of the streaming data property. Online density
estimation helps to yield the valuable indication of data features such as skewness
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or multimodality. Online anomaly detection is a useful tool to identify rare items,
events, or observations that have a significant difference from the majority of data.
The anomalous items usually translate to some problems. For example, the unusual
bank transactions are always triggered by bank fraud; the unexpected bursts in
network flow are caused by the network intrusion behaviors.

6.6 Exercise Problems

Problem 6.1 Which of the following statements about online learning are True?
Check all that apply.

(a) One of the disadvantages of online learning is that it requires a large amount of
computer memory/disk space to store all the training examples we have seen.

(b) One of the advantages of online learning is that if the function we are modeling
changes over time (such as if we are modeling the probability of users clicking
on different URLs, and the user tastes/preferences are changing over time), the
online learning algorithm will automatically adapt to these changes.

(c) One of the advantages of online learning is that there is no need to pick a
learning rate α.

(d) When using online learning, in each step, we get a new example (x, y), perform
one step of (essentially stochastic gradient descent) learning on that example,
and then discard that example and move on to the next.

Problem 6.2 Which of the following statements about online learning are False?
Check all that apply.

(a) Online learning algorithms are most appropriate when we have a fixed training
set of size m that we want to train on.

(b) When using online learning, you must save every new training example you get,
as you will need to reuse past examples to retrain the model even after you get
new training examples in the future.

(c) Online learning algorithms are usually best suited to problems where we have a
continuous/non-stop stream of data that we want to learn from.

Problem 6.3 Use the Perceptron algorithm to classify the Digits dataset.

Problem 6.4 What is the major difference between PA and Perceptron algorithms?

Problem 6.5 Suppose you use mini-batch gradient descent on a training set of size
m, and you use a mini-batch size of b. Under what situation does the algorithm
become the same as batch gradient descent?

Problem 6.6 Suppose you are facing a supervised learning problem and have a
very large dataset. How can you tell if using all of the data is likely to perform much
better than using a small subset of the data?
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Problem 6.7 Compare the different classification performance between Passive
Aggressive I and Passive Aggressive II on the Digits dataset.

Problem 6.8 What is the issue of Small-Space algorithm in online clustering?

Problem 6.9 Use the incremental PCA to reduce the data dimension of Iris dataset
to 2 and plot the results.

Problem 6.10 Suppose x = 1.32148, suppose we stored it in q2.13 format, and
R = 0.6, what is the encoded value? Compute the difference between x and the
q2.13 format value and briefly discuss the benefit of using q2.13 format.

Problem 6.11 In what situations are online learning methods used?

Problem 6.12 What is the curse of kernelization issue of KDE?

Problem 6.13 What is the main difference between traditional anomaly detection
method and online anomaly detection?

Problem 6.14 Suppose we have an ARMA model that can be written as follows:

xt = 0.8xt−1 + 0.2xt−2 + 0.5εt−1 + 0.2εt−2,

where ε ∼ N (0, 1). What is the distribution of the output xt , given input xt−1 = 1
and xt−2 = 2?

Problem 6.15 Consider a spam email detection task in which the following data
are observed:

Type Email length Title length Received time

Spam 10 3 20

Spam 15 8 21

Normal 20 5 11

Normal 15 8 12

Normal 30 8 20

Write a Python program that uses the VowpalWabbit package to identify the spam
email. What are the outputs of your program for the following records?

Email length Title length Received time

3 3 22

30 12 11



Chapter 7
Recommender Learning

7.1 Introduction

Extensive studies have made significant progress on recommendation techniques
in the past decade. In general, two main classes of techniques are content-based
approaches and collaborative filtering [129]. For instance, when recommending a
restaurant to a user, these two approaches make recommendations based on the
following intuitions, respectively:

• Content-based approaches: Does the menu of the restaurant satisfy the user’s
taste?

• Collaborative filtering: How did the other users with the same taste rate the
restaurant?

This chapter will start with a rating prediction problem and introduce the concept
of content-based approach and collaborative filtering, which are the fundamental
techniques for all recent recommendation methods. After that, several popular
models in industrial recommender systems, including the factorization machine
and deep learning models, are introduced. Last, this chapter summarizes different
recommendation applications.

7.2 The Recommendation Problem

Rating Matrix
A typical recommendation scene is product recommendation. In e-commerce
platforms such as Amazon, the users often leave ratings of 1–5 stars on items
purchased. The rating data is often represented as a rating matrix, where each
column represents an item and each row represents a user. Each entry in the matrix
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Table 7.1 An example rating
matrix

p1 p2 p3 p4 p5 p6

u1 ? 5 ? 4 ? 3

u2 ? 2 4 2 4 ?

u3 3 ? 4 ? ? 2

u4 ? 4 1 ? 1 ?

denotes a user’s rating on an item. Table 7.1 shows an example rating matrix with
four users (u1, . . . , u4) and six items (p1, . . . , p6).

The question marks in the matrix denote “unknown” ratings. Note that in
practice, most of the ratings should be unknown because each user could explore
and purchase only a few items but not all of them. In other words, the rating matrix
is often sparse.

Content Information
In many recommendation applications, each item may have some features in
addition to the ratings. For instance, a book may have attributes such as authors and
types. These features are regarded as content information. The content information
enables a recommender system to quantify the user’s preference on different item
attributes. For example, if a user often browses and purchases fiction books, a simple
guess on a user’s preference is fiction.

The Recommendation Problem
For each target user, the task of recommendation is to explore the rating matrix and
the content information of items, discover the user’s preferences, and suggest a list
of N items that best satisfy the user’s preferences but have not yet been rated by the
user.

7.3 Content-Based Approach

As mentioned at the beginning of this chapter, the intuition behind content-based
approaches is to find out items that best match the preferences of the target user.
Remind that content information of items can be used to quantify user preferences.
As such, we can reconsider the recommendation problem as a profile matching
problem. Because each user can be profiled using the attributes of items purchased
by the user (e.g., fiction books), the user profiles well align with the item profiles.
Then, we can recommend items with the most similar profiles to the target user.

Profiling Items
Profiling an item with its attributes such as categories is straightforward. Suppose
there are P possible item attributes. The profile of an item is a vector where
each entry in the vector denotes the value of an attribute. Table 7.2 lists the
binary attributes (a1, . . . , a5) of the six items in Table 7.1, where ticks denote the



7.3 Content-Based Approach 259

Table 7.2 Attributes of
items in Table 7.1

a1 a2 a3 a4 a5

p1 � �
p2 � �
p3 � �
p4 � �
p5 � �
p6 � �

corresponding item has the attributes. For instance, the profile of item p1 will be a
vector of length five, i.e., p1 = (0, 1, 0, 0, 1).

There are some other recommendation scenarios where item attributes may be
very limited or may not even be available. For instance, in news article recommender
systems, only the text of an article is available. Given the text content of an item, the
item profile should reflect the semantic meaning of the text. Since the text content
may contain various words that are not important for measuring the semantic such
as stop words, we should find representative words from the text content to profile
the items. Term Frequency Inverse Term Frequency (TF-IDF [130]) is a commonly
used technique to quantify the importance of a word in a document. The TF-IDF of
a word w in a document d ∈ D is defined as

TF-IDF(w, d) = TF(w, d)
︸ ︷︷ ︸

frequency of word w in d

· log
|D|

|{d ∈ D : w ∈ d}|
︸ ︷︷ ︸

inverse document frequency of word w

. (7.1)

The denominator in the inverse document frequency is the number of documents
that contain the word w. The intuition behind TF-IDF score is that a word should
be representative of a document if it is used frequently in the current document but
merely appears in other documents.

Using TF-IDF, we can select a set of words with the highest TF-IDF scores as
representative words to construct the item profiles. The profile vector of an item has
each component corresponding to a word in a predefined vocabulary. If a word is a
representative word of the item, its corresponding component in the profile vector
takes the value of 1, otherwise 0.

Note that, no matter what content information is used, each item can be converted
to a real-value vector p ∈ R

P , where P denotes the number of features (attributes
or words).

Profiling Users
User preferences can be observed from the user’s historical ratings on items. If a
user often gives high ratings to items that contain some attribute a, the user’s profile
should contain that attribute a. In other words, the user profile should aggregate the
profiles of the items that have been rated by the user. Intuitively, items with a higher
rating should be considered as more important to the user’s profile in the aggregation
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process. Thus, a typical aggregation method is a weighted sum—summing vectors
from all rated items weighted by the rating. Let the ru,v be the rating of a user u to
item v, Ru be historical ratings of user u, and qv be the profile vector of item v. The
profile of user u can be computed as

qu =
∑
v∈{v′|ru,v′ ∈Ru} ru,v · pv
∑
v∈{v′|ru,v′ ∈Ru} ru,v

. (7.2)

Example 7.1 (Profiling Users)
Problem: Profile user u1 in Table 7.1.
Solution: q1 = 5

12 · p2 + 4
12 · p4 + 3

12 · p6. Since p2 = p4 = (0, 1, 1, 0, 0) and
p6 = (1, 0, 0, 0, 1), q1 = ( 1

4 ,
3
4 ,

3
4 , 0,

1
4 ).

Matching User and Item Profiles
Once the user and item profiles are obtained, the recommendation problem can be
solved by calculating the profile similarity between each item and the target user. A
common choice of similarity metric is cosine similarity, which calculates the profile
similarity as the cosine of the angle between the two profile vectors:

sim(u, v) = qu · pv
||qu|| · ||pv|| . (7.3)

The profile similarity is used for ranking the items not rated by the target user.
The recommender system will then pick the top-N items with the highest profile
similarity to the user.

Content-based approaches work well for new items or unpopular items. Even
when the items are rarely or not rated by any user, the item profiles can be
constructed from item descriptions and attributes. However, this type of approach
often recommends similar items to users without diversity. It may not work for users
with diverse interests.

7.4 Collaborative Filtering

In content-based approaches, we directly match the item content to the user prefer-
ences. Now, we will explore completely different manners for the recommendation.
Consider a real-life recommendation scenario—restaurant recommendations. If you
visit a restaurant for the first time with your friends who have visited the place
several times, you would consider what your friends ordered before. Collaborative
Filtering (CF) is based on the above idea, which generates a list of recommended
items for a user by aggregating the ratings from other users who share similar tastes.
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CF techniques are often divided into two rough groups [131]: (1) memory-based
CF and (2) model-based CF. In this section, we will introduce the memory-based
approach, followed by the latent factor model, one of the typical model-based
approaches.

7.4.1 Memory-Based Collaborative Filtering

If the recommender system remembers what items have been rated by each user, the
idea collaborative filtering can be achieved by two steps: (1) find users with similar
tastes and (2) aggregate the ratings from similar users.

User Similarity

To simplify the problem, assume we only have the rating matrix in Table 7.1. The
historical ratings often imply user preferences. As such, a straightforward way to
measure the similarity between two users is to calculate the similarity between their
historical ratings on items. Formally, each user can be represented by a rating vector
where each component corresponds to an item with a value equal to the rating. For
instance, u1 in Table 7.1 is represented by the rating vector (0, 5, 0, 4, 0, 3).

Given the rating vectors of two users, the user similarity can be naturally com-
puted using cosine similarity. However, unknown ratings are treated as “negative”
ratings and the rating bias of different users is not considered. A critical user with an
average rating of 2 stars gave a 3-star rating to an item may be a positive rating, while
a user with an average rating of 4 stars gave a 3-star rating to an item may indicate
a negative rating. To address the above limitations of cosine similarity, Resnick et
al. [132] proposed to use the Pearson correlation coefficient. The idea is to measure
the offset of a rating to the user’s average rating and only consider items commonly
rated by the two users. Let Sik be the set of items that are commonly rated by users
i and k, and r̄i and r̄k denote the average rating of users i and k, respectively. The
Pearson correlation coefficient computes the user similarity as follows:

simpearson(i, k) =
∑
j∈Sik (ri,j − r̄i )(rk,j − r̄k)

√∑
j∈Sik (ri,j − r̄i )2

√∑
j∈Sik (rk,j − r̄k)2

. (7.4)

Example 7.2 (User Similarity)
Problem: Based on Table 7.1, calculate the average ratings, the Pearson
correlation coefficients between u4 and u1, u3?

(continued)



262 7 Recommender Learning

Example 7.2 (continued)
Solution: The average ratings of users u1, u3, and u4 are r̄1 = 4, r̄3 = 3,
and r̄4 = 2, respectively. The Pearson correlation coefficients between u4 and
u1, u3 are computed as

simpearson(u1, u4) = (5 − 4)(4 − 2)
√
(5 − 4)2

√
(4 − 2)2

= 1,

simpearson(u3, u4) = (4 − 3)(1 − 2)
√
(4 − 3)2

√
(1 − 2)2

= −1.

Obviously, the Pearson correlation coefficient ranges from −1 to 1, and it
enables negative impacts on the similarity—if two users rated reversely on the
same items, they should have a negative similarity. For instance, u4 placed a
low rating on p3, while u3 rated p3 highly. The Pearson correlation coefficient
between u3 and u4 is −1.

The negative similarity enables the recommender systems to consider the reverse
behaviors of users. If u3 rated on an item negatively, u4 may rate it positively. In
the extreme case that two users behave totally differently, they can be considered as
reversely similar.

Rating Aggregation

To predict the rating of a user i to an item j , we shall find the set of top-k similar
users Ui,j , who have rated on item j . Given a target user i and a similarity measure
(either cosine similarity or Pearson correlation coefficient), the set of similar users
Ui,j can be obtained by two steps: (1) ranking all users who have rated item j by
the absolute value of similarity to user i and (2) picking the top-k users as Ui,j .

The next stage of collaborative filtering is to aggregate the ratings from similar
users. One simple way is to use weighted average:

r̂i,j =
∑
k∈Ui,j sim(i, k)rk,j∑
k∈Ui,j |sim(i, k)| . (7.5)

The weighted average approach has two main drawbacks. First, it cannot
recommend items to users who have an empty set of similar users. Second, the bias
of users and the bias of ratings on items are not explored. Inspired by the fact that
both users and items may have a bias on the ratings, the weighted average approach
can be extended by incorporating the rating bias.
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In general, rating bias can be decomposed into three factors:

• Global bias bglobal is the average rating of all historical ratings in the rating
matrix regardless of individual user or item.

• User offset buseri measures the offset between the average rating of the particular
user i and the global bias, i.e., r̄i − bglobal .

• Item offset bitemj measures the offset between the average rating of the particular

item j and the global bias, i.e., r̄j − bglobal .
The rating bias of a user i on an item j is the sum of the above three factors:

bi,j = bglobal+buseri +bitemj . The intuition of rating bias is to provide a baseline on
the rating based on the historical average. Then, the ratings from similar users can
be used to refine the baseline for accurate rating prediction. The extended weighted
average approach predicts the rating of user i on item j as

r̂i,j = bi,j +
∑
k∈Ui,j sim(i, k)(rk,j − bk,j )
∑
k∈Ui,j |sim(i, k)| . (7.6)

Example 7.3 (Rating Aggregation)
Problem: Consider predicting the rating of u4 on p6 in Table 7.1.
Solution: Only u1 and u3 have rated the item p6. So, we only need to compute
the similarities between u4 and u1, u3.

From Example 7.2, we have known sim(u1, u4) = 1 and sim(u3, u4) =
−1. Suppose we pick u1 and u3 as similar users, i.e., U4,6 = {u1, u3}. We
calculate the three types of bias:

bglobal = 3, buser1 = 1, buser3 = 0, buser4 = −1, bitem6 = −0.5

and the bias rating of each user on the item

b1,6 = 3 + 1 − 0.5 = 3.5

b3,6 = 3 + 0 − 0.5 = 2.5

b4,6 = 3 − 1 − 0.5 = 1.5.

Then, the prediction is

r̂4,6 = 1.5 + (3 − 3.5) ∗ 1 + (2 − 2.5) ∗ (−1)

|1| + | − 1| = 1.5.
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From the above example, we can observe that user u3 contributes a positive
offset (2 − 2.5) ∗ (−1) = 0.5, because u4 always rates reversely to u3 and u3
rated negatively on item p6. Without using rating bias, u3 will contribute a negative
rating (e.g., −1×2). Another observation is that, even if the set of similar users U4,6
is empty, the bias rating b4,6 can be used for prediction.

The method we discuss so far is called memory-based collaborative filtering,
because it requires storing the whole rating matrix in memory and looking up the
corresponding rows of similar users for rating aggregation. Although memory-based
collaborative filtering is simple and works well with a large rating matrix without
any content information, the computation of user similarities requires overlaps on
the historical ratings, which could be difficult on a highly sparse rating matrix. In
practice, the rating matrix is very sparse, where many of the users may not have
commonly rated items.

7.4.2 Latent Factor Model

In memory-based collaborative filtering, a user is modeled by the rating vector,
which has a length equal to the number of items. Obviously, the rating vector is
of high dimension, and it is sparse. If we know the types of items such as digital
devices, games, and groceries, we can group the items by their types to reduce
the dimensionality. In practice, the type of items may not be available. The latent
factor model is a method to learn low-dimensional vector representations for users
and items from the rating matrix. Each component in the low-dimensional vector
denotes a latent factor, which can be regarded as the type of items.

The idea of the latent factor model comes from matrix factorization [133]. The
objective of matrix factorization is to approximate theM ×N rating matrix R with
the multiplication of two matrices Q ∈ R

M×d and P ∈ R
N×d , i.e., R ≈ QPT . Each

row of the matrix Q corresponds to the d-dimensional vector representation of a
user, while each row of the matrix P denotes the d-dimensional vector representation
of an item.

One typical method for matrix factorization is singular value decomposition
(SVD), which decomposes the rating matrix into the multiplication of three matrices
U, �, and V:

⎡

⎢
⎣

r11 . . . r1N
...
. . .

...

rM1 . . . rMN

⎤

⎥
⎦

︸ ︷︷ ︸
R∈RM×N

≈
⎡

⎢
⎣

u11 . . . u1d
...
. . .

...

uM1 . . . uMd

⎤

⎥
⎦

︸ ︷︷ ︸
U∈RM×d

⎡

⎢
⎣

λ11
. . .

λdd

⎤

⎥
⎦

︸ ︷︷ ︸
�∈Rd×d

⎡

⎢
⎣

v11 . . . v1N
...
. . .

...

vd1 . . . vdN

⎤

⎥
⎦

︸ ︷︷ ︸
VT ∈Rd×N

. (7.7)

From the three matrices, we can get the user and item representations by setting
Q = U and PT = �VT . Note that both U and V are orthogonal matrices. To
estimate the values of the above three matrices, we shall minimize the sum square
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errors on all entries of the rating matrix R:

min
U,�,V

∑

i∈[1,M],j∈[1,N ]
(ri,j − [U�V]i,j )2. (7.8)

Matrix Factorization as Collaborative Filtering

It is not difficult to show that SVD preserves collaborative information from similar
users. Note that the dot product of the rating matrix and its transpose RRT ∈ R

M×M
is the unnormalized cosine similarity matrix for users:

RRT =
⎡

⎢
⎣

∑
j r1j r1j . . .

∑
j r1j rMj

...
. . .

...
∑
j rMj r1j . . .

∑
j rMj rMj

⎤

⎥
⎦ .

Leveraging the orthogonal property of V, the similarity matrix RRT can be
decomposed as

RRT ≈ U�VTV�UT = U�2UT .

The above equation gives an eigenvalue decomposition of RRT , where each
column of U is an eigenvector of the matrix. In other words, the columns of U define
a coordinate system that preserves the unnormalized cosine similarity between
users, with each axis of the coordinate system as a latent factor.

From Matrix Factorization to Latent Factor Model

Matrix factorization techniques such as SVD optimize the sum of square errors on
all entries, including unknown ratings with zero values. The objective of matrix
factorization is to approximate the original matrix. In an extreme case of perfect
decomposition with zero-sum square errors, all unknown ratings will be predicted
as zeros. This counters the objective of recommender systems, which tries to make
predictions for unknown ratings. Therefore, we should make the optimization only
on existing ratings, which gives us the latent factor model:

min
Q,P

∑

ri,j 
=0

(ri,j − qi · pj )2, (7.9)

where qi denotes the i-th row of Q and pj denotes the j -th row of P.
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Incorporating Rating Bias

Similar to memory-based collaborative filtering, it turns out to be more robust for the
latent factor model to incorporate rating bias. We can think of the dot product qi ·pj
as an approximation to the offset to the baseline rating bi,j = bglobal+buseri +bitemj

and optimize the following instead:

min
�

∑

ri,j 
=0

(ri,j − bi,j − qi · pj )2, (7.10)

where � = (Q,P, bglobal, buser , bitem). Note that the rating bias bglobal , buser , and
bitem can be learned directly from data.

Regularization

Learning the latent factor model by optimizing Eq. (7.10) may cause overfitting.
Regularization is a technique that reduces the risk of overfitting. In particular, we
can add L2 regularization on each parameters to the objective function:

min
�

∑

ri,j 
=0

(ri,j − bi,j − qi · pj )2 + λ1

∑

i∈[1,M]
||qi ||2 + λ2

∑

j∈[1,N ]
||pi ||2

+ λ3

∑

i∈[1,M]
||buseri ||2 + λ4

∑

j∈[1,N ]
||bitemj ||2 + λ5||bglobal ||2,

(7.11)

where λ1:5 are tunning parameters that control the importance of each regularization
term. The optimization problem in Eq. (7.11) can be solved by Stochastic Gradient
Descent (SGD).

7.5 Factorization Machine

In this section, we will briefly introduce the factorization machine (FM)
approach [134], which is another powerful and flexible framework for recommender
systems. The FM model has two main advantages.

• It is able to handle extremely sparse interaction data.
• It can be computed in linear time and scaled to large datasets.

In previous sections, we have presented two types of collaborative filtering
methods, which have been widely used in real recommender systems. Given
user historical rating matrix, conventional recommendation methods directly learn
the personalized rating scores. Typically, memory-based collaborative filtering
approaches attempt to calculate the user similarity (user-based CF) or item similarity
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Fig. 7.1 An example of a factorization machine

(item-based CF), while latent factor methods directly decompose the user–item
interactions into the product of two lower-dimensional vectors. Different from them,
the FM approach represents user–item interactions as real-valued feature vectors,
just like the data format commonly used in standard classification or regression
models. After that, these constructed features are used as the input feature vector x
to predict the target output y.

Let us consider a toy example illustrated in Fig. 7.1. There are three users
{u1, u2, u3} and four items {i1, i2, i3, i4}. The historical data contains the interac-
tions between users and items. For instance, user u1 has two rating records: user u1
rates item i1 with a score of 3 and rates item i3 with a score of 5.

In addition, auxiliary features can provide supplementary information for learn-
ing rating scores. In this example, we consider three types of auxiliary features. The
first one is user profile information, e.g., user gender information represented by g1
and g2. The second type is related to item feature, such as item attribute, indicated
by c1 and c2, respectively. The last type provides side information of interactions,
such as rating days in a week, which reflects the temporal information of each rating
action. For instance, {u1, i1, 2} means that user u1 rates item i1 on day 2.

Given the rating matrix and auxiliary features, we can construct feature vectors
as the input of FM model. Totally, there are three types of features: users, items,
and auxiliary features. First, there are |U | = 3 binary indicator variables (marked as
blue) that indicate the active user of a rating action. The following |I | = 4 variables
represent active items of rating actions. The last |A| = 5 variables embody auxiliary
features of user gender, item category, and rating day.

The recommendation task is modeled as a regression task, i.e., estimating the
score ŷ given the input feature vector x. One intuitive idea is to predict the rating
score by a linear model.

ŷ = b +
n∑

i=1

wi · xi +
n∑

i=1

n∑

j=i+1

wij · (xixj ). (7.12)
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Here, n = |U |+|I |+|A| is the size of the input feature x by summing up all user,
item, and auxiliary features. The score function consists of three components.

• b is the global bias.
• wi is the weight of the i-th variable. These parameters reflect linear (order-1)

interactions among input variables.
• wij is the strength of a variable pair (variable i and variable j ). These parameters

indicate the pairwise (order-2) feature interactions.

However, the number of pairwise parameters wij would be very large. Given
the n-dimensional input features, the number of wij approximates to O(n2).
Furthermore, since the input feature vectors are extremely sparse, there is usually
not enough data to effectively estimate interactions between variables separately.

To address this issue, the FM model factorizes the order-2 feature interaction
weights as dot products of low-dimensional vectors.

ŷ = b +
n∑

i=1

wi · xi +
n∑

i=1

n∑

j=i+1

〈Vi, Vj 〉 · (xixj ). (7.13)

Here, wij is replaced by the dot product of two vectors Vi and Vj , where V ∈ R
n×k .

k is the size of the factorization vector and typically k � n. Hence, the number
of parameters would be reduced from O(n2) to O(n · k). In practice, the FM only
needs to train the non-zero elements when feature i and feature j occur at the same
time. Therefore, the computation can be efficient in sparse settings.

7.6 Deep Learning Models

In recent years, deep learning techniques have been widely used in many applica-
tions, such as computer vision and natural language processing. It is natural to make
full of the power of deep learning for recommender systems. Evidently, a variety of
deep learning recommendation models have been developed [135] in both academia
and industry.

Compared with the conventional recommendation approaches, deep learning
models are able to effectively learn the non-linear relationships between users and
items. They can capture complex relations from the massive user historical behavior
data. Furthermore, deep learning models are able to integrate heterogeneous types
of features, such as visual, textual, and contextual information, into recommending
systems. Generally, deep learning models can achieve state-of-the-art recommenda-
tion results.

As an ongoing study, various deep learning recommendation methods are
developed each year. In this section, we introduce one representative model, i.e.,
Neural Collaborative Filtering (NCF) [136].



7.6 Deep Learning Models 269

Fig. 7.2 Illustration of neural collaborative filtering (NCF) framework

Remember that latent factor recommendation models, such as matrix factoriza-
tion, exploit inner products of user latent features and item latent features to capture
the interactions between users and items. Different from latent factor models, NCF
proposes a neural network architecture to extract the complex interactions between
users and items. Specifically, it utilizes a multi-layer Perceptron to learn the user–
item interaction function, rather than directly using the inner product of latent
factors. In fact, the NCF framework is able to generalize the matrix factorization
model to a non-linear setting, which makes the NCF more expressive.

Figure 7.2 [136] shows the NCF framework. The input layer consists of the
feature vector of user u and feature vector of item i. Note that the input feature
vectors can be extended to include various sources of information, such as user
profiles and item attributes. To keep it simple, the input layer only considers the
identities of users and items, which is a common setting in standard collaborative
filtering models. NCF exploits the identity of user u and item i, converting them
to binary one-hot encoding vectors. Next, the sparse one-hot representation is
projected to a dense representation by an embedding layer. The obtained user
embedding (item) can be viewed as the user (item) latent vector in the latent factor
model.

The user latent vector and item latent vector are then fed into a multi-layer neural
architecture, which is termed as neural collaborative filtering (NCF) layers, to map
the latent vectors to predicted scores. After the last NCF layer, the output layer
predicts a score ŷu,i , which is used to train with the target score yu,i .

The NCF score function can be modeled as

ŷu,i = f (UT xu, V T xi |U,V,�f ), (7.14)

where xu and xi indicate input user features and item features, and U and V indicate
user embedding matrix and item embedding matrix, respectively. �f denotes the
model parameters of the score function f , which is defined by a multi-layer neural
network. The score function f is formulated as
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f (UT xu, V
T xi |U,V,�f ) = φout (φX(...φ2(φ1(U

T xu, V
T xi))...)), (7.15)

where φx denotes the projection function of the x-th NCF layer. φout is the mapping
function of output layer, which estimates the final score.

Due to the limited space, we only cover one representative model, i.e., neural
collaborative filtering. If the readers are interested in this domain, we recommend
another two interesting models: wide and deep learning for recommender sys-
tems [137] and deep factorization machines [138].

Despite having been proven successful, deep learning recommender systems
suffer from several drawbacks and limitations.

• Data requirement. Generally, deep learning methods require a large scale of
data. However, in some practical scenarios, there may not have sufficient data to
well train the deep neural networks.

• Interpretability and explanation. Deep learning techniques are well known
as black-box. Hence, it is challenging to provide explanations or reasons for
recommender systems.

• Extensive computational cost. There is no free lunch in data science. Deep
learning can obtain satisfactory performance but need more sophisticated archi-
tectures and more trainable parameters.

Both deep learning and recommender systems are ongoing hot research topics
in both academia and the industry community. It is worthy to keep an eye on the
development of this direction.

7.7 Application and Resources

Recommendation techniques have been widely adopted in many applications. This
section will introduce several typical scenarios including e-commerce platforms,
news and articles, location-based services, and movie reviews.

7.7.1 Applications

E-commerce System Modern e-commerce platforms such as Amazon contain mil-
lions of products. Recommendation techniques are important tools for remedying
the information overload in such platforms. The recommendation tasks in an e-
commerce system can roughly be grouped into two types: (1) rating prediction and
(2) click-through-rate (CTR) prediction.

On explicit rating data such as product reviews, the rating prediction problem is
often studied. Product reviews often contain both a rating from 1–5 stars and a piece
of text description of the user’s opinions on different aspects of the product. Topic
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models [139–142] and attention networks [143–145] have been used to extract the
aspects of products and to learn how a user likes different aspects. The extracted
aspects and user interests will be used for accurate recommendations.

On implicit data, CTR prediction is performed. CTR implies how likely a user is
interested in a product and clicks on the product. In order to improve the CTR, it is
important to capture the diverse user interests from historical data. Guo et al. [138]
introduce the DeepFM model which extends the Wide and Deep model [137]
with factorization machine. As the prevalence of attention networks, deep interest
networks [146, 147] are proposed to learn the importance of different historical
transactions and model the diversity of user interests.

Article Recommendation In the early development of article recommendation
models, both content-based approaches and collaborative filtering have been
used [148–150]. Apart from separately applying the two techniques, some studies
have proposed hybrid approaches that incorporate the content information in
collaborative filtering [151–155]. Among them, a typical model is collective
topic regression [152], which extracts topics from scientific articles and infers
the latent factors of articles from the topics. As such, it solves the item cold-start
problem in the sense that new articles can be mapped to the latent space given
the topics extracted from its content. Recently, deep learning techniques such as
autoencoders [156] and attention networks [157, 158] have been used to better
extract the content information from the articles.

Location-Based Service Recent years have witnessed the rapid growth of location-
based social networks (LBSNs), such as Foursquare and Facebook places. In
LBSNs, the users share their locations by checking in at Points-of-Interest (POIs).
With the increasing availability of check-in data, POI recommendation (e.g., [159–
162]) has attracted extensive research interest, helping users to better explore their
surroundings and find interesting locations based on their individual preferences.

Different from conventional recommendation tasks, POI recommendations need
to incorporate geographical influence, i.e., the users tend to visit nearby POIs
rather than far away locations. The main challenge of POI recommendation is
to effectively model the personalized geographical preference from the sparse
check-in data. To solve this task, various latent representation models have been
proposed by exploiting factorized Markov chain [163], metric embedding [164,
165], or word2vec-based techniques [166]. Recently, several deep learning location
recommendation models have been proposed, such as spatial-temporal recurrent
neural networks (ST-RNNs) [167] and spatial-temporal LSTM model [168] that
combines local temporal and spatial contexts into deep neural networks for POI
recommendation.

Movie Recommendation In 2006, Netflix company released 100 million movie
ratings for the Netflix prize (a grand prize of 1 million US dollars) [169]. The
data and prize boosted extensive research interest for recommender systems. As
one of the most popular applications for recommender systems, a large variety
of methods have been developed for a movie recommendation, including the



272 7 Recommender Learning

standard content-based filter and collaborative filter techniques. In addition to rating
information, content features are commonly used to enhance the performance of
movie recommendations, especially for the cold-start recommendations for newly
released movies. For example, visual features (e.g., posters and still frames) [170]
as well as audio features (e.g., conversations and background music) [171] have
been incorporated into recommender systems. Recently, a social-aware movie
recommendation system [172] has been developed to consider heterogeneous
information, including textual description, poster images, user ratings, and social
relationships.

7.7.2 Resources

Open Source Implementations:

• Surprise:1 A Python scikit for recommender systems that includes both memory-
based and model-based CF models

• LibFM:2 Factorization machine library in C++
• pyFM:3 Factorization machine library in Python
• NCF:4 Python implementation of neural collaborative filtering

7.8 Putting It All Together

Recently, we are facing the situation that there is an enormous amount of irrelevant
information on the Internet, which is commonly known as information overload.
Recommender systems can well alleviate information overload by suggesting highly
relevant information based on personal interests. A large variety of recommendation
applications exist in our daily life, such as recommending products, news, locations,
and movies. Recommender systems play a pivotal role in various large-scale online
service providers, e.g., YouTube and Amazon. From the perspective of users,
recommender systems enhance user experience and create user engagement. From
the perspective of business owners, they can generate more revenue.

Recommender systems have been extensively studied in the past decade. In
general, existing techniques can be roughly categorized into two groups: content-
based approaches and collaborative filtering. The content-based methods generate
recommendations by matching item content features to user preferences. The

1 https://github.com/NicolasHug/Surprise.
2 https://github.com/srendle/libfm.
3 https://github.com/coreylynch/pyFM.
4 https://github.com/hexiangnan/neural_collaborative_filtering.

https://github.com/NicolasHug/Surprise
https://github.com/srendle/libfm
https://github.com/coreylynch/pyFM
https://github.com/hexiangnan/neural_collaborative_filtering
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collaborative filtering (CF) methods produce recommendations by utilizing the
interactions between users and items. The user–item interaction can be explicit
feedback or implicit feedback, depending on if explicit user preferences are
expressed or not. Next, the recommendation methods introduced in this chapter will
be briefly summarized and discussed.

The content-based technique can be regarded as a profile matching problem,
which mainly includes three steps: (1) profiling items, which builds a feature vector
for each item based on its attributes (e.g., category) or content information (e.g.,
TF-IDF of text content), (2) profiling users, which aggregates the profiles of the
items that have been rated by the users, (3) matching item and user profiles, which
directly calculates the similarity between the target user and each item. Content-
based approaches are suitable for new items when item profiles can be obtained
from descriptions and attributes. It can perform well even if no sufficient interaction
data are available. However, it suffers from several disadvantages. It may not work
for users with diverse or dynamic interests since it often suggests similar items to a
user. Another issue would arise when new users lack a defined profile unless they are
explicitly asked for information. In addition, it fails to detect the interdependency
among different users or complex behaviors of the users. Therefore, its performance
on real-world Recommender systems is not as good as other techniques, such as
collaborative filtering.

As the most popular recommendation technique, collaborative filtering (CF)
exploits the collaborative power of interactions provided by multiple users to make
recommendations. CF approaches are generally divided into memory-based CF
and model-based CF. User-based CF and item-based CF are two representative
memory-based CF methods. In this chapter, we mainly present the user-based CF,
which contains two steps: find the users with similar interests and then aggregate
the ratings from similar users. A typical model-based CF method is the latent
factor model, which learns low-dimensional vector representations for users and
items given historical interactions. The latent factor model can be implemented by
matrix factorization, such as the Singular Value Decomposition (SVD). Although
CF approaches have been widely used, it suffers from several limitations. The first
problem is cold-start since CF needs enough user–item interactions for the system
to work. The second problem is that it is hard for CF approaches to incorporate
heterogeneous information since user behaviors are very complex and can be
influenced by many factors.

Factorization machine (FM) is another powerful framework for recommender
systems. By considering the recommendation task as a regression task, it first
represents user–item interactions as real-valued feature vectors, and then these
constructed feature vectors are used as the input feature vectors to predict the target
outputs. It is able to consider both order-1 and order-2 feature interactions. The
FM model is also a flexible framework. For instance, the latent factor model can
be viewed as a special case of FM. FM mainly has two benefits: handling sparse
interaction data and scaling to large datasets.

Recently, deep learning (DL) methods have been developed for recommendation
tasks, which have achieved state-of-the-art recommendation results. Compared with
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conventional techniques, these DL methods can effectively capture the non-linear
relationships between users and items. Moreover, they can integrate multiple types
of features, such as visual and textual features. One representative deep learning
model is neural collaborative filtering (NCF), which combines collaborative filtering
with deep learning techniques. Despite having been proven successful, DL methods
suffer from several drawbacks: requiring a large scale of data, the difficulty of
interpretability, and heavy computational cost.

If you are running an online business platform, you may be interested in exploit-
ing Recommender systems to enhance user experiences and increase earnings.
If only a small set of user–item interactions is available, but each user/item is
associated with some descriptions or attributes, the basic content-based recommen-
dation method could be a good starting point. When there are sufficient user–item
interaction records, more powerful recommendation frameworks (CF, FM, and deep
learning methods) can be considered. Specifically, when only user–item interaction
(e.g., rating matrix) is available, CF would be an appealing choice. When the data
is extremely sparse and auxiliary features exist, FM may be utilized. Deep learning-
based recommender systems can be exploited to achieve excellent performance if
there are multiple types of features or complex user behaviors. However, data learn-
ing methods require a large scale of data and expensive computational resources.
Usually, the larger amount of data, the better the recommendation performance.
Overall, data is the most important asset in recommender systems. We should
properly select the most suitable recommendation framework based on the types
and amounts of data.

7.9 Exercise Problems

Problem 7.1 Given the following product attribute features: p1 = [1, 0, 1, 0], p2 =
[0, 1, 1, 0], and p3 = [0, 0, 1, 1]. In addition, several rating scores are observed:
(u1, p1, 5), (u1, p2, 3), and (u1, p3, 4). Please calculate the profile feature of user
u1.

Problem 7.2 Following the above question, given a new product p4 = [1, 1, 0, 1],
please compute the matching score of user u1 and p4.

Problem 7.3 Given the following transactions in the form of (user, item, rating)
tuples in a recommender system:
(u1, p1, 1.5), (u1, p3, 4), (u1, p5, 0.5), (u2, p2, 4), (u2, p4, 2), (u3, p1, 4.5),

(u3, p4, 2.5), (u3, p5, 5), (u4, p2, 2), (u4, p3, 3.5), (u4, p4, 4), (u4, p5, 2.5).
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Let the set of users be {u1, u2, u3, u4} and the set of items be {p1, p2, p3, p4, p5}.

(1) Construct the rating matrix based on the above transactions.
(2) Apply the memory-based collaborative filtering with the Pearson correlation

coefficient for user u2 without considering bias. Give the top-1 recommended
item to u2 and the corresponding predicted rating.

(3) Give the predicted rating of user u2 to item p5 using the collaborative filtering
that incorporates the bias mentioned in Sect. 7.4.

Problem 7.4 Given latent vectors of matrix factorization: qu = [1.3, 0.9, 0.7] for
user u and pi = [0.6, 0.9, 1.2] for item i. The ground truth rating score is 5. Based
on Eq. (7.9), calculate the loss for the predicted rating score.

Problem 7.5 Given latent vectors of matrix factorization: qu = [1.1, 0.8, 0.5, 1.1]
for user u and pi = [0.5, 0.6, 0.9, 0.8] for item i. Consider the bias terms: global
bias bglobal = 0.1, user bias buser = −0.3, and item bias bitem = 0.5. The ground
truth rating score is 4. Based on Eq. (7.10), calculate the loss for the predicted rating
score.

Problem 7.6 Implement the latent factor model in Eq. (7.11).

Problem 7.7 Prove that matrix factorization (MF) can be a special case of factor-
ization machine (FM) model.

Problem 7.8 Prove that matrix factorization (MF) can be a special case of neural
collaborative filtering (NCF) framework.

Problem 7.9 Prove that the overall time complexity of Factorization Machine is
O(kn). (k is the number of dimensionality of the factorization model, and n is the
size of input features.)

Problem 7.10 What is the difference between Linear Regression (LR) and Factor-
ization Machine (FM)?

Problem 7.11 Given three users {u1, u2, u3}, four items {i1, i2, i3, i4}, and three
interaction records {(u1, i2, 5), (u2, i1, 4), (u3, i3, 1)}, please construct the corre-
sponding input features of FM model for these given interaction records.

Problem 7.12 Following the above problem, please calculate the total number of
parameters to be learnt in FM model. (The dimension of latent factorization model
is given as k = 2.)

Problem 7.13 Following the above 2 questions, assume that the learned parameters
are global bias b = 0.5, weights of user variables wu1 = 0.1, wu2 = −0.2,
wu3 = 0.5, weights of item variables wi1 = 0.3, wi2 = 1.2, wi3 = 0.8, wi4 = 1.4,
factorized latent vectors Vu1 = [1.0, 0.5], Vu2 = [0.7, 0.4], Vu3 = [1.1, 0.7],
Vi1 = [0.5, 0.3], Vi2 = [0.3, 1.2], and Vi3 = [0.9, 0.3]. Calculate the predicted
scores for interactions (u1, i2) and (u2, i1).
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Problem 7.14 Given four users {u1, u2, u3, u4}, three items {i1, i2, i3}, and
five implicit interaction records (e.g., click or visit, no explicit rating scores)
{(u1, i2), (u1, i3), (u2, i1), (u4, i2)}, please construct the corresponding input
features and target scores of FM model for this implicit feedback recommendation
task.

Problem 7.15 Based on the introduced Neural Collaborative Filtering (NCF),
design an approach to explicitly fuse NCF and matrix factorization (MF). (Hint:
concatenate results of NCF and the inner product of MF latent factors.)



Chapter 8
Graph Learning

8.1 Introduction

Effective data processing necessitates an understanding of graph geometry. The
non-Euclidean graph domain is used in a wide range of applications, such as
transportation networks, power distribution networks, brain neural networks, and
gene data on biological regulation networks.

A graph neural network is a sort of deep learning extension that is used to
find patterns in the topology of a graph. Using topology and attribution data, we
are currently characterizing node-level representation. The first several GNNs are
built using a spectral graph theory notion borrowed from spectral analysis. With
approximation theory, processing costs can be reduced further, making the algorithm
useful for a wide range of applications. To make model generation even easier
and more rapid, GNN switches to using spatial data. Mathematics shows that even
though they appear to be opposites at first glance, the spectral and spatial domains
have a lot in common. This makes it easier to compare different GNN approaches
because the majority of them can be analyzed within a single framework.

8.2 Basics of Math

This section introduces fundamental concepts in mathematics, such as matrices and
their manipulation, spectral decomposition, and approximation theory, all of which
are essential to graph neural networks.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Rafatirad et al., Machine Learning for Computer Scientists and Data Analysts,
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8.2.1 Matrix Manipulation

Let A, B, C ∈ R
N×N ; then they have basic properties including:

(AB)−1 = B−1A−1

(ABC . . .)−1 = . . .C−1B−1A−1

(
Aᵀ)−1 =

(
A−1

)ᵀ

(A + B)ᵀ = Aᵀ + Bᵀ

(AB)ᵀ = BᵀAᵀ

(ABC . . .)ᵀ = . . .CᵀBᵀAᵀ.

(8.1)

See more matrix properties in the matrix handbook [173].

8.2.2 Eigendecomposition on Matrix

A (non-zero) vector v in R
N is an eigenvector of A if it satisfies the linear equation:

Av = λv. (8.2)

Let A be decomposed by N linearly independent eigenvectors Ui (where i =
1, . . . , n); A can be factorized as

A = UΛU−1, (8.3)

where U is the N × N matrix whose ith column is the eigenvector Ui of A, and Λ
is the diagonal matrix whose diagonal elements are eigenvalues:

Λ =

⎡

⎢
⎢
⎢
⎣

λ1

λ2
. . .

λn

⎤

⎥
⎥
⎥
⎦
. (8.4)

The eigenvectors are usually assumed to be normalized, but they need not be. In
linear algebra, an orthogonal matrix is a square matrix whose columns and rows are
orthogonal unit vectors, namely orthonormal vectors.

UᵀU = UUᵀ = I, (8.5)
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where Uᵀ is the transpose of U, and I is the identity matrix. This leads to the
equivalent characterization: a matrix U is orthogonal if its transpose is equal to its
inverse:

Uᵀ = U−1, (8.6)

where U−1 is the inverse of U. The eigendecomposition allows for much easier
computation of power series of matrices. If f (x) is given by

f (x) = a0 + a1x + a2x
2 + · · · , (8.7)

then we have

f (A) = Uf (�)Uᵀ. (8.8)

Similarly, we can have

A2 = (
U�Uᵀ) (U�Uᵀ) = U�

(
UᵀU

)
�Uᵀ = U�2Uᵀ

An = U�nUᵀ

exp A = U exp(�)Uᵀ.

(8.9)

If a matrix A can be eigendecomposed, then A is nonsingular, and its inverse is
given by

A−1 = U�−1Uᵀ. (8.10)

Example 8.1 (Eigendecomposition)

Problem: Given a matrixM =
⎡

⎣
1 2 3
4 5 6
7 8 9

⎤

⎦, calculate its Eigendecomposition.

Solution:M = UΛU−1. We have

Λ =
⎡

⎣
16.1 0 0

0 −1.1 0
0 0 0

⎤

⎦ ,U =
⎡

⎣
−0.23197069 −0.78583024 0.40824829
−0.52532209 −0.08675134 −0.81649658
−0.8186735 0.61232756 0.40824829

⎤

⎦ .

1 # eigendecomposition
2 from numpy import array
3 from numpy.linalg import eig
4 # define matrix
5 A = array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
6 print(A)
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7

8 # calculate eigendecomposition
9 values, vectors = eig(A)

10 print(values)
11 print(vectors)
12

13 > [[1 2 3]
14 [4 5 6]
15 [7 8 9]]
16

17 > [ 1.61168440e+01 -1.11684397e+00 -9.75918483e-16]
18

19 > [[-0.23197069 -0.78583024 0.40824829]
20 [-0.52532209 -0.08675134 -0.81649658]
21 [-0.8186735 0.61232756 0.40824829]]

8.2.3 Approximation Theory

Approximation theory focuses on approximating a function closely using simpler
functions such as a polynomial of high degrees. One can calculate the optimal
polynomials by expanding the given function in terms of Chebyshev polynomials.
The types of Chebyshev polynomials are defined as

T0(x) = 1
T1(x) = x
T2(x) = 2xT1(x)− T0(x) = 2x2 − 1
T3(x) = 2xT2(x)− T1(x) = 4x3 − 3x
T4(x) = 2xT3(x)− T2(x) = 8x4 − 8x2 + 1
· · ·
Tn+1(x) = 2xTn(x)− Tn−1(x) n ≥ 1.

(8.11)

A Chebyshev expansion for a function is

f (x) ∼
∞∑

i=0

ciTi(x) = 1

2
c0T0(x)+ c1T1(x)+ c2T2(x)+ · · · , (8.12)

where

ci = 2

π

∫ 1

−1

(
1 − x2

)− 1
2
f (x)Ti(x)dx. (8.13)

In mathematics, the rational approximation is more powerful and accurate than
polynomial, taking more computational overhead though. As the best approximation
of a function by a rational function, the Padé approximant [174] of order [m/n] is
the rational function
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R(x) =
∑m
j=0 ajx

j

1 +∑n
k=1 bkx

k
= a0 + a1x + a2x

2 + · · · + amxm
1 + b1x + b2x2 + · · · + bnxn , (8.14)

where m ≤ 0 and n ≤ 1. The parameters of a rational function can be obtained
by Wynn’s epsilon algorithm and sequence transformations. Both polynomial and
rational approximations can be solved by the Remez algorithm [175]. See [176–178]
for a complete theory of approximation techniques.

Example 8.2 (Polynomial Approximation)
Problem: Calculate a polynomial approximation with order 1 for f (x) = ex .
Solution: f (x) = ex can be approximated by a polynomial:

f (x) ≈ g(x) =
∞∑

n=0

xn

n! ≈ 1 + x + x2

2! + x3

3! + x4

4! + · · · , x ∈ [0, 1].

Take x = 1 as example:

f (1) = e1 ≈ 2.718

g(1) = 1 + (1)+ 1

2
(1)2 + 1

6
(1)3 + 1

24
(1)4 + 1

120
(1)5 = 163

60
≈ 2.717.

1 import math
2

3 x = 1
4 f_to_1 = math.exp(x)
5 print(f_to_1)
6

7 g_to_1 = x**0/math.factorial(0) + x**1/math.factorial(1) + x**2/math.
factorial(2) + x**3/math.factorial(3) + x**4/math.factorial(4) + x**5/
math.factorial(5)

8 print(g_to_1)
9

10 > 2.718281828459045
11 > 2.7166666666666663

8.2.4 Graph Representations and Graph Signal

A graph is defined as G = (V,E,A), where V is a set of n nodes and E represents
edges. An entry vi ∈ V denotes a node, and ei,j = {vi, vj } ∈ E indicates an
edge between nodes i and j . The adjacency matrix A ∈ R

N×N is defined by if
Ai,j = 1, there is a link between nodes i and j , and else 0. A multiple dimensional
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graph signal (or node features) X ∈ R
N×F is a matrix with each entry Xi ∈ R

F

representing the feature vector on node i. One-dimensional graph signal is denoted
with x ∈ R

N×1, and xi ∈ R with F = 1. Another popular graph matrix is the graph
Laplacian that is defined as L = D − A ∈ R

N×N , where D is the degree matrix.
Due to its generalization ability [179, 180], the symmetric normalized Laplacian is

often used, which is defined as L̃ = D− 1
2 L D− 1

2 . Another option is random walk
normalization: L̃ = D−1 L. Note that normalization could also be applied to the
adjacency matrix. Their relationship can be derived as L̃ = I −Ã. L satisfies the
following properties:

• L is symmetric and positive semi-definite.
• The smallest eigenvalue is 0 with the corresponding eigenvector of the constant

one vector 1 := [1, 1, 1, ...1].
• L has n non-negative and real-valued eigenvalues.

The graph Laplacian can be treated as a difference operator:

L xi =
∑

j∈Ni
ai,j (xi − xj ), (8.15)

where Ni is the set of neighbors of the node i. The following also satisfies

xᵀ L x = 1

2

n∑

i,j=1

aij
(
xi − xj

)2
, (8.16)

which denotes the degree of smoothness of signal x over L. There are three types of
normalized graph Laplacian operations denoted as L̃i , i = 1, 2, 3, defined as

L̃1 := D− 1
2 L D− 1

2 = I −D− 1
2 A D− 1

2

L̃2 := D–1 L = I − D–1 A
L̃3 := L D–1 = I − A D–1 .

(8.17)

The first type is also called symmetric normalized Laplacian. The second one
is called row-normalized Laplacian or random walk normalized Laplacian. The
third one is called column-normalized Laplacian. Similarly, normalized Laplacian
satisfies the following properties:

• L̃i∈{1,2,3} are symmetric and positive semi-definite.

• 0 is an eigenvalue of L̃1 with eigenvector D− 1
2 1. 0 is an eigenvalue of L̃2, and

the corresponding eigenvector is constant one vector.
• L̃i∈{1,2,3} have N non-negative real-valued eigenvalues.



8.2 Basics of Math 283

8.2.5 Spectral Graph Theory

In mathematics, spectral graph theory is the study of the relationship between the
properties of a graph and the eigenspace of the graph matrices such as its adjacency
matrix and Laplacian matrix.

Given a graph Laplacian with eigendecomposition L = UΛUᵀ and graph signal
x, the graph Fourier transform of x is defined as

x̂ = Uᵀx, (8.18)

which transforms signal x into a new one x̂ in the spectral domain, or expands x in
terms of eigenvectors. Accordingly, the inverse graph Fourier transform is defined
as

x = Ux̂, (8.19)

which transforms the spectral signal x̂ back into the vertex domain.
For two continuous signals x1, x2 ∈ R

N , the convolution is defined as

(x1 ∗ x2)(i) �
∫ ∞

−∞
x1(τ )x2(i − τ)dτ. (8.20)

Discrete signals are defined as

(x1 ∗ x2)[i] =
∞∑

k=−∞
x1[k]x2[i − k] =

∞∑

k=−∞
x1[i − k]x2[k]. (8.21)

Another definition of convolution is by convolution theorem in spectral domain:

x1 ∗ x2 = F−1{F{x1} · F{x2}}, (8.22)

where F denotes Fourier transform, and F−1 denotes inverse Fourier transform.
The convolution theorem can be expressed in two formats:

• The Fourier transform of a convolution is the product of the Fourier transforms.

F{x1 ∗ x2} = {F{x1} · F{x2}}. (8.23)

• The Fourier transform of a product is the convolution of the Fourier transforms.

F{x1 · x2} = {F{x1} ∗ F{x2}}. (8.24)
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Convolution satisfies the following properties:

• α(x1 ∗ x2) = (αx1) ∗ x2 = x1 ∗ (αx2).
• Commutativity: x1 ∗ x2 = x2 ∗ x1.
• Distributivity: x1 ∗ (x2 + x3) = x1 ∗ x2 + x1 ∗ x3.
• Associativity: (x1 ∗ x2) ∗ x3 = x1 ∗ (x2 ∗ x3).

Accordingly, graph convolution is defined as

x ∗ g = U g(Λ)Uᵀx = U g(Λ)F{x} = F−1{g(Λ)F(x)}, (8.25)

where g is a function of eigenvalues Λ of L, and it is in the spectral domain.
This spectral domain is constructed by graph topology via its basis U, which is
the eigenvectors of graph Laplacian L. Therefore, we have

g(L)X = U g(Λ)Uᵀ X, or g(L) = U g(Λ)Uᵀ,

where X ∈ R
N×F , and g is polynomial or rational function.

Example 8.3 (Graph Convolution)
Problem: Given a graph that contains four nodes, v1, v2, v3, v4 and three links
(v1, v2), (v1, v3), (v1, v4), verify g(L) = U g(Λ)Uᵀ.
Solution: The adjacency and Laplacian matrices are

A =

⎡

⎢
⎢
⎣

0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

⎤

⎥
⎥
⎦ ,L =

⎡

⎢
⎢
⎣

3 −1 −1 −1
−1 1 0 0
−1 0 1 0
−1 0 0 1

⎤

⎥
⎥
⎦ ,

and it is easy to obtain the eigenvalues matrix of Laplacian:

diag(Λ) =

⎡

⎢
⎢
⎣

4 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦ .

In the coding, we will show that:

g(L) = U g(Λ)Uᵀ,

which shows that learning a function on eigenvalues is equivalent to learning
the same function on the Laplacian matrix.
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1 import numpy as np
2 from numpy.linalg import eig
3

4 # g = x^2 + 1
5

6 adj = np.array([
7 [0,1,1,1],
8 [1,0,0,0],
9 [1,0,0,0],

10 [1,0,0,0]
11 ])
12

13 # calculate degree matrix
14 degrees = np.sum(adj, axis=0)
15 degree_matrix = np.diag(degrees)
16

17 # calculate Laplacian matrix
18 Laplacian_matrix = np.matrix(degree_matrix - adj)
19 values, vectors = eig(Laplacian_matrix)
20

21 g_L = Laplacian_matrix ** 2 + np.eye(4)
22 print(g_L)
23

24 # @ denotes matrix multiplication
25 U_g_Ut = vectors @ np.diag(values ** 2 + 1) @ vectors.T
26 print(U_g_Ut)
27

28

29 >[[13. -4. -4. -4.]
30 [-4. 3. 1. 1.]
31 [-4. 1. 3. 1.]
32 [-4. 1. 1. 3.]]
33

34 >[[13. -4. -4. -4.]
35 [-4. 3. 1. 1.]
36 [-4. 1. 3. 1.]
37 [-4. 1. 1. 3.]]

8.3 Graph Neural Network Models

GNNs are fundamental techniques for graph representation learning, which tries to
learn node-level representations by combining non-Euclidean graph topological and
Euclidean node features. Graph convolution, the most common type of GNN, is a
learning method for generating node-level embeddings:

G,X → Z, (8.26)

where Z denotes the fused feature of nodes, G is the graph representation (e.g.,
adjacency or Laplacian matrix), f indicates graph convolution, and X ∈ R

N×F is
an F-dimensional graph signal.

Take graph convolutional networks (GCNs) [181] as a representative GNN, and
node i has three neighbors, nodes j , k, and l. GCNs perform neighbor aggregation
on node i with mean function:
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Z(i) = Xi + Xj + Xk + Xl
4

,

which means the updated representation of i equals to the average of itself and its
neighbors. Writing in a general case, GCN executes mean neighbor aggregation on
node i that hasM neighbors:

Z(i) = Xi +
M

︷ ︸︸ ︷
Xj + Xk + Xl + · · ·

1 + (1 + 1 + 1 + · · · )
︸ ︷︷ ︸

M

. (8.27)

Rewriting Eq. (8.27) in matrix form, we have

Z = Ã X, (8.28)

where Ã = D–1(A + I) is normalized adjacency matrix, and Dii = ∑
j Ãij . Ã

conducts normalization as in the denominator of Eq. (8.27).

Example 8.4 (Mean Graph Aggregation and Matrix Implementation)
Problem: Given a graph that contains four nodes, v1, v2, v3, v4 and, v1, has
three neighbors (v1, v2), (v1, v3), (v1, v4), calculate mean aggregation by one-
by-one entry and matrix form.
Solution: Therefore, we have its adjacency matrix, and features of all nodes
are initialized as X:

A =

⎡

⎢
⎢
⎢
⎣

0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

⎤

⎥
⎥
⎥
⎦
,D =

⎡

⎢
⎢
⎢
⎣

3 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎥
⎦
,A + I =

⎡

⎢
⎢
⎢
⎣

1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1

⎤

⎥
⎥
⎥
⎦
, D̂ =

⎡

⎢
⎢
⎢
⎣

4 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

⎤

⎥
⎥
⎥
⎦
,X =

⎡

⎢
⎢
⎢
⎣

2
4
6
8.

⎤

⎥
⎥
⎥
⎦

Take note that D̂ is distinct from the formal degree matrix D that
does not include self-counting elements. Following Eq. (8.27), the updated
representation of node v1 is

Z(v1) = 2 + 4 + 6 + 8

1 + 1 + 1 + 1
= 5.

Similarly, we can calculate the others one by one. The remaining three nodes
have only one neighbor (i.e., v1), so we have

(continued)
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Example 8.4 (continued)

Z(v2) = 4 + 2

1 + 1
= 3,Z(v3) = 6 + 2

1 + 1
= 4,Z(v4) = 8 + 2

1 + 1
= 5.

Alternatively, the same result can be obtained by Eq. (8.28):

Z = D–1(A + I)X =

⎡

⎢
⎢
⎣

4 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

⎤

⎥
⎥
⎦

−1 ⎡

⎢
⎢
⎣

1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

2
4
6
8

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

5
3
4
5

⎤

⎥
⎥
⎦ .

Therefore, matrix implementation gets the same result as one-by-one calcula-
tion.

1 import numpy as np
2 from numpy.linalg import inv
3

4

5 adj = np.array([
6 [0,1,1,1],
7 [1,0,0,0],
8 [1,0,0,0],
9 [1,0,0,0]

10 ])
11 X = np.array([
12 [2],
13 [4],
14 [6],
15 [8]
16 ])
17

18 adj_with_self_loop = adj + np.eye(4)
19

20 degrees = np.sum(adj_with_self_loop, axis=0)
21 degree_matrix = np.diag(degrees)
22 degree_matrix_inv = inv(degree_matrix)
23 print(degree_matrix)
24

25 Z = degree_matrix_inv @ adj_with_self_loop @ X
26

27 print(Z)
28

29

30 >[[4. 0. 0. 0.]
31 [0. 2. 0. 0.]
32 [0. 0. 2. 0.]
33 [0. 0. 0. 2.]]
34

35 >[[5.]
36 [3.]
37 [4.]
38 [5.]]
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In the remaining of this section, we will show different aggregation functions
except mean in the example above.

8.3.1 Spatial-Based Graph Convolution Networks

Spatial-based methods characterize the behaviors of models in the spatial or vertex
domain, and most of them focus on neighbors aggregation.

Definition 8.1 (Spatial Method) By integrating graph connectivity G and node
features X, the updated node representations (Z) are defined as

Z = f (G)X, (8.29)

where G is often implemented with A or L in the existing works. Therefore, spatial
methods focus on finding a node aggregation function f (·) that learns how to
aggregate node features to obtain an updated node embedding Z.

According to the type of node aggregation function, GCNNs can be classified
into three categories: linear, polynomial, and rational:

• When the function f is linear, GCNNs update representations with the aggre-
gation of first-order neighbors (i.e., direct neighbors). Examples include GCN
[181] and GraphSAGE [182] and GIN [183].

• When the function f is polynomial, GCNNs involve higher order of neighbors
with customized weights [128, 184–189].

• When the function f is rational, GCNNs add reverse propagation, which means
that the propagation could teleport back to itself with a certain probability [190,
191].

Linear Aggregation Function

A number of works [128, 182, 183, 192, 193] can be treated as learning the
aggregation scheme among first-order neighbors (i.e., direct neighbors). This aspect
focuses on adjusting the weights for each node and its neighbors to reveal the
patterns regarding the supervision signal. Formally, the updated node embeddings
Z(v) can be written as

Z(vi) = �(vi) h(vi)+
∑

uj∈N (vi )
�(uj ) h(uj ), (8.30)

where uj denotes a neighbor of node vi , and h(·) is the representation of a node. �
and � denote the weight functions. The first item on the right-hand side denotes the
representation of node vi , while the second represents the update from its neighbors.
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Applying random walk normalization (i.e., dividing neighbors by the degree of the
current node), Eq. (8.30) can be written as

Z(vi) = �(vi) h(vi)+
∑

uj∈N (vi )
�(uj )

h(uj )

di
, (8.31)

or symmetric normalization:

Z(vi) = �(vi) h(vi)+
∑

uj∈N (vi )
�(uj )

h(uj )
√
didj

, (8.32)

where di represents the degree of node vi . Normalization is deemed to have better
generalization capacity [194]. In a simplified configuration, the weights for the
neighbors (�) are the same. Therefore, they can be rewritten in a matrix form as
follows:

Z = φX +ψ D–1 A X = (φ I +ψ D–1−1
A)X (8.33)

or

Z = φX +ψD− 1
2 A D− 1

2 X = (φ I +ψD− 1
2 A D− 1

2 )X, (8.34)

where φ and ψ are the weights. Equations (8.33) and (8.34) can be generalized as
the same form:

Z = (φ I +ψÃ)X, (8.35)

where Ã denotes the normalized A, which could be implemented by random walk
or symmetric normalization. The new representation of the current node is updated
as the sum of the previous representations of itself and its neighbors, and it may
adjust the weights of the neighbors. Several state-of-the-art methods are selected to
illustrate this schema:

Graph Convolutional Network (GCN)

Graph convolutional network (GCN) [181] adds a self-loop to nodes and applies
a renormalization trick that changes degree matrix from Dii = ∑

j Aij to D̂ii =∑
j (A + I)ij . Specifically, GCN can be written as

Z = D̂
− 1

2 ÂD̂
− 1

2 X = D̂
− 1

2 (I + A)D̂
− 1

2 X = (I +Ã)X, (8.36)
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where Â = A + I, and Ã is the normalized adjacency matrix with self-loop.
Therefore, Eq. (8.36) is equivalent to Eq. (8.35) when setting φ = 1 and ψ = 1
with the renormalization trick, and GCN takes the sum of each node and average of
its neighbors as new node embeddings.

GraphSAGE

GraphSAGE [182] applies an aggregation among its immediate neighbors; then we
have

Z = D− 1
2 (I + A)D− 1

2 X = (I +Ã)X, (8.37)

which is equivalent to Eq. (8.35) with φ = 1 andψ = 1. Note that the key difference
between GCN and GraphSAGE is the normalization: the former is symmetric
normalization and the latter is random walk normalization.

Example 8.5 (Graph Representation with GCN and GraphSAGE)
Problem: Given a graph that contains four nodes, v1, v2, v3, v4 and, v1, has
three neighbors (v1, v2), (v1, v3), (v1, v4), calculate one iteration of Z with
GCN and GraphSAGE.
Solution: Therefore, we have its adjacency matrix, and features of all nodes
are initialized as X:

A =

⎡

⎢
⎢
⎢
⎣

0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

⎤

⎥
⎥
⎥
⎦
,D =

⎡

⎢
⎢
⎢
⎣

3 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎥
⎦
,A + I =

⎡

⎢
⎢
⎢
⎣

1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1

⎤

⎥
⎥
⎥
⎦
, D̂ =

⎡

⎢
⎢
⎢
⎣

4 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

⎤

⎥
⎥
⎥
⎦
,X =

⎡

⎢
⎢
⎢
⎣

2
4
6
8.

⎤

⎥
⎥
⎥
⎦

For GCN, the adjacency matrix is normalized by renormalized degree
matrix that is

Z = D̃− 1
2 (A + I)D̃− 1

2 X =

⎡

⎢
⎢
⎣

6.86396103
2.70710678
3.70710678
4.70710678

⎤

⎥
⎥
⎦ .

For GraphSAGE:

(continued)
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Example 8.5 (continued)

Z = D− 1
2 (A + I)D− 1

2 X =

⎡

⎢
⎢
⎣

11.05897151
5.15470054
7.15470054
9.15470054

⎤

⎥
⎥
⎦ .

As we can see, renormalization increases the weight of current nodes,
resulting in increased values for current nodes.

1 import numpy as np
2 from scipy.linalg import fractional_matrix_power
3 import scipy
4

5 adj = np.array([
6 [0, 1, 1, 1],
7 [1, 0, 0, 0],
8 [1, 0, 0, 0],
9 [1, 0, 0, 0]

10 ])
11 X = np.array([
12 [2],
13 [4],
14 [6],
15 [8]
16 ])
17

18 adj_with_self_loop = adj + np.eye(4)
19

20 # GCN
21 degrees = np.sum(adj_with_self_loop, axis=0)
22 degree_matrix = np.diag(degrees)
23

24 degree_matrix_half_inv = scipy.linalg.fractional_matrix_power(degree_matrix,
-0.5)

25 Z_GCN = degree_matrix_half_inv @ adj_with_self_loop @ degree_matrix_half_inv
@ X

26

27 # GraphSAGE
28 degrees = np.sum(adj, axis=0)
29 degree_matrix = np.diag(degrees)
30

31 degree_matrix_half_inv = scipy.linalg.fractional_matrix_power(degree_matrix,
-0.5)

32 Z_SAGE = degree_matrix_half_inv @ adj_with_self_loop @ degree_matrix_half_inv
@ X

33

34 print(Z_GCN, Z_SAGE)
35

36 >> [[6.86396103]
37 [2.70710678]
38 [3.70710678]
39 [4.70710678]]
40

41 >> [[11.05897151]
42 [ 5.15470054]
43 [ 7.15470054]
44 [ 9.15470054]]
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Graph Isomorphism Network (GIN)

Graph isomorphism network (GIN) [183] is inspired by Weisfeiler–Lehman (WL)
test [195]. GIN develops conditions to maximize the power of GNN, proposing
a simple architecture, graph isomorphism network (GIN). With strong theoretical
support, GIN updates node representations as

Z = (1 + ε) · h(v)+
∑

uj∈N (vi )
h( uj ) = [(1 + ε) I + A] X, (8.38)

which is equivalent to Eq. (8.35) with φ = 1 + ε and ψ = 1. Note that GIN does
not perform normalization on graph adjacency.

Polynomial Aggregation Function

To collect richer local structure, several studies [185, 186, 189, 196, 197] involve
higher orders of neighbors, since immediate first-order neighbors are not always
sufficient for representing the node. On the other hand, large order usually averages
much more node representations, causing an over-smoothing issue and losing its
focus on the local neighborhood [198]. This motivates many models to tune the
aggregation scheme on different orders of neighbors. Therefore, proper constraint
and flexibility of orders are critical for node representation. High order of neighbors
has been proved to characterize challenging signals such as Gabor-like filters [199].
Formally, this type of works can be written as

Z =
⎛

⎝φ I +
k∑

j=1

ψj Aj

⎞

⎠X = P(A)X, (8.39)

where P(·) is a polynomial function. Several existing works are analyzed below,
showing that they are variants of Eq. (8.39):

ChebNet

ChebNet [196] applies truncated Chebyshev polynomial for estimating the filtering
function; then we have

K−1∑

k=0

θkTk(L̃)X = [θ̃0 I +θ̃1(I −Ã)+ θ̃2(I −Ã)2 + · · · ] X = P(Ã)X . (8.40)
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Node2Vec

Node2Vec [186] defines a second-order random walk to control the balance between
breath first search and depth first search. As analyzed before,

Z =
⎛

⎜
⎝

1

p
·

source
︷︸︸︷

I +
BFS
︷︸︸︷

Ã + 1

q

DFS
︷ ︸︸ ︷
(Ã2 − Ã)

⎞

⎟
⎠X, (8.41)

which can be transformed and reorganized into

Z =
[

1

p
I +

(

1 − 1

q

)

Ã + 1

q
Ã2
]

X = P(Ã)X, (8.42)

where transition probability Ã = D–1 A is a random walk normalized adjacency
matrix.

Simple Graph Convolution (SGC)

Simple Graph Convolution (SGC) [189] removes non-linear function between
neighboring graph convolution layers and combines graph propagation in one single
layer:

Z = ÃK X, (8.43)

where Ã is the renormalized adjacency matrix, i.e., Ã = D̃− 1
2 A D̃− 1

2 , and D̃− 1
2 is

the degree matrix with self-loop (same as in GCN). Therefore, it can be rewritten as

Z = (0 · i + 0 · Ã + 0 · Ã2 + · · · + 1 · ÃK)X = P(Ã)X . (8.44)

Rational Propagation Function

Most spatial-based GCNNs merely consider label propagation from the node to
its neighbors, namely gathering information from its neighbors. However, they
usually ignore propagation in the reverse direction. Reverse propagation means that
labels or attributes can be propagated back to themselves with some probability, or
restart propagating with a certain probability. This reverse behavior can avoid the
over-smoothing issues [190]. Note that polynomial propagation can also alleviate
the over-smoothing issue by manually adjusting the order number, while rational
propagation automatically fits the proper order number. Several works explicitly
or implicitly implement reverse propagation by applying a rational function on the
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adjacency matrix [190, 191, 200–204]. Since general label propagation is imple-
mented by multiplying graph Laplacian, reverse propagation could be implemented
by multiplying inverse graph Laplacian as

Z = P(Ã)Q(Ã)−1 X = P(Ã)

Q(Ã)
X, (8.45)

where P and Q are two different polynomial functions, and the bias of Q is often set
to 1.

Autoregressive

Autoregression is a type of label propagation (LP) and is written as

Z = (I +αL̃)−1 X = I

I +α(I −Ã)
X = I

(1 + α) I −αÃ
X, (8.46)

which is equivalent to the form of Eq. (8.45), i.e., P = I and Q = (1 + α) I −αÃ.

Personalized PageRank (PPNP)

Personalized PageRanking (PPNP) [190] is inspired by page rank algorithm. Then
we have

Z = α
(

I −(1 − α)Ã
)−1

X = α

I −(1 − α)Ã X, (8.47)

where Ã = D–1 A is the random walk normalized adjacency matrix with self-loop.
Equation (8.47) is with a rational function whose numerator is a constant.

Example 8.6 (Graph Representation with PPNP)
Problem: Given a graph that contains four nodes, v1, v2, v3, v4 and, v1, has
three neighbors (v1, v2), (v1, v3), (v1, v4), calculate one iteration of Z with
PPNP.
Solution: Therefore, we have its adjacency matrix, and features of all nodes
are initialized as X:

A =

⎡

⎢
⎢
⎢
⎣

0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

⎤

⎥
⎥
⎥
⎦
,D =

⎡

⎢
⎢
⎢
⎣

3 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎥
⎦
,A + I =

⎡

⎢
⎢
⎢
⎣

1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1

⎤

⎥
⎥
⎥
⎦
, D̂ =

⎡

⎢
⎢
⎢
⎣

4 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

⎤

⎥
⎥
⎥
⎦
,X =

⎡

⎢
⎢
⎢
⎣

2
4
6
8.

⎤

⎥
⎥
⎥
⎦

(continued)
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Example 8.6 (continued)
Setting α = 0.1, 0.5, and 0.9, we have

Z = α
(

I −(1 − α)Ã
)−1

X =

⎡

⎢
⎢
⎣

5.9753023
3.50485815
3.70485815
3.90485815

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

4.79743495
5.38490018
3.38490018
4.38490018

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

2.7629368
3.75951823
5.55951823
7.35951823

⎤

⎥
⎥
⎦ .

For big α, the propagation is much reduced, resulting in very close to the
original values. X

1 import numpy as np
2 from numpy.linalg import inv
3 from scipy.linalg import fractional_matrix_power
4

5 adj = np.array([
6 [0, 1, 1, 1],
7 [1, 0, 0, 0],
8 [1, 0, 0, 0],
9 [1, 0, 0, 0]

10 ])
11 X = np.array([
12 [2],
13 [4],
14 [6],
15 [8]
16 ])
17

18 alpha = [0.1, 0.5, 0.9]
19 degrees = np.sum(adj, axis=0)
20 degree_matrix = np.diag(degrees)
21 degree_matrix_half_inv = fractional_matrix_power(degree_matrix, -0.5)
22 adj_norm = degree_matrix_half_inv @ adj @ degree_matrix_half_inv
23

24 for a in alpha:
25 Z = a * inv(np.identity(4) - (1 - a) * adj_norm) @ X
26 print(Z)
27

28 >> [[5.9753023 ]
29 [3.50485815]
30 [3.70485815]
31 [3.90485815]]
32

33 >> [[4.79743495]
34 [3.38490018]
35 [4.38490018]
36 [5.38490018]]
37

38 >> [[2.7629368 ]
39 [3.75951823]
40 [5.55951823]
41 [7.35951823]]
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ARMA Filter [191]

Utilize ARMA filter for approximating any desired filter response function that can
be written in the spatial domain as

Z = b

I −aÃ
X . (8.48)

Note that ARMA filter is an unnormalized version of PPNP. When a + b = 1,
ARMA becomes PPNP.

8.3.2 Spectral-Based Graph Convolution Networks

Spectral methods are based on graph Fourier transform [205–207], and they
characterize GCNNs in terms of eigenvalue function. The graph Laplacian L can
be diagonalized by the Fourier basis Uᵀ (i.e., graph Fourier transform) [205, 206]:
L̃ = UΛUᵀ, where Λ is the diagonal matrix whose diagonal elements are the
corresponding eigenvalues (i.e., Λii = λi), and U is also called eigenvectors. The
graph Fourier transform of a signal X is defined as X̂ = Uᵀ X ∈ R

N×N and its
inverse as X = UX̂.

Definition 8.2 (Spectral Method) A graph convolution operation is defined in the
Fourier domain such that

f1 ∗ f2 = U
[(

Uᵀf1
)� (

Uᵀf2
)]
,

where � is the element-wise product, and f1/f2 are two signals defined on nodes.
It follows that a node signal f2 = X is filtered by spectral signal f̂1 = Uᵀf1 = g as

Z = g(L̃)X = U
[
g(Λ)� (

Uᵀ X
)] = U g(Λ)Uᵀ X, (8.49)

where g is known as frequency response function. Therefore, the objective of
spectral methods is to learn a function g(·).

According to the function type of g, GCNNs can be classified into three
categories: linear, polynomial, and rational:

• When the filter function g is linear, most GCNNs employ negative slope for
g, which makes it low-pass filtering and assigns larger value for smaller eigen-
values. Since smaller eigenvalues correspond to low-frequency components, this
category implements a smoothing process among neighbors. Examples include
GCN [181] and GraphSAGE [182] and GIN [183].

• When the filter function g is polynomial, it has higher accuracy with reasonable
computational cost since the polynomial function is the most popular approxi-
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mation [205, 208]. Many GNNs fall into this category with the predefined order
numbers [128, 184–189].

• When the filter function g is rational, it achieves the highest accuracy with
significant computational overhead. Compared with polynomial, the rational
function has exponentially less error in approximating signal discontinuities
[208]. Relatively few GNNs [190, 191, 200] belong to this category due to its
efficiency, and it is affordable when applying an iterative algorithm [190, 191].

Linear Filter Function

There exist numerous works that can be boiled down to adjusting weights of
frequency components in the spectral domain. The goal of the filter function is
to adjust eigenvalues (i.e., the weights of eigenvectors) to fit the target output.
Many of them are deemed low-pass filters [201], meaning that only low-frequency
components are emphasized, namely, the first few eigenvalues are enlarged, and the
others are reduced. There exist a large number of works that can be understood as
adjusting weights of frequency component during aggregation. All the examples in
Sect. 8.3.1 will be rewritten in this section:

Graph Convolutional Network (GCN)

Z = D− 1
2 (A + I)D− 1

2 X = D− 1
2 (D − L + I)D− 1

2 X = (I − L + I)X = U(2 −Λ)Uᵀ X .

Therefore, the frequency response function is g(Λ) = 2 − Λ, which is a low-pass
filter, i.e., a smaller eigenvalue will be adjusted to a large value, in which a small
eigenvalue corresponds to a low-frequency component.

GraphSAGE

Z = D− 1
2 (I + A)D− 1

2 X = (I +Ã)X = (2 I −L̃)X = U(2 −Λ)Uᵀ X, (8.50)

so the frequency response function is g(Λ) = 2 − Λ. Note that GraphSAGE’s
normalization is different from GCN, since GCN has renormalization trick.

Graph Isomorphism Network (GIN)

Z = D− 1
2 [(1+ ε) I + A]D− 1

2 X = D− 1
2 [(2+ ε) I −L̃]D− 1

2 X = U(2+ ε−Λ)Uᵀ X .

GIN can be seen as a generalization of GCN and GraphSAGE without normalized
adjacency matrix A. The frequency response function is g(Λ) = 2 + ε −Λ.
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Table 8.1 Frequency
response functions are
grouped by an approximation
theory

GNN model Frequency response function

Linear GCN 1 −Λ
GraphSAGE 2 −Λ
GIN 1 + ε +Λ

Polynomial ChebNet θ̃0 · 1 + θ̃1Λ+θ̃2Λ
2 + · · ·

Node2Vec 1
p

+ (1 − 1
q
)Λ+ 1

q
Λ2

SGC
∑n
i

(
K

i

)

Λi

Rational AR 1
1+α(1−Λ)

PPNP α
α+(1−α)Λ

ARMA b
1−a+a Λ

The above-mentioned methods apply linear low-pass filtering, and the only dif-
ference among them is that the bias is different (i.e., 2 for GCN, 2 for GraphSAGE,
and 2 + ε for GIN). All the examples are rewritten in the spectral domain, and they
are listed in Table 8.1.

Polynomial Filter Function

Considering higher order of frequency, filter function g can approximate any
smooth filter function, as it is equivalent to applying the polynomial approximation.
Therefore, introducing higher order of frequencies boosts the representation power
of filter function in simulating spectral signals. Formally, this type of work can be
written as

Z =
⎛

⎝
l∑

i=0

k∑

j=0

θjλ
j
i ui uᵀi

⎞

⎠X = U Pθ (Λ)U
ᵀ X, (8.51)

where g(·) = Pθ (·) is a polynomial function.
In theory, the polynomial approximation becomes more accurate as the order

increases [176–178, 208, 209]. Note that linear approximation can be treated as a
polynomial approximation with an order of 1. We study polynomial approximation
on sign(x) function, showing the difference among all the examples listed. As
shown in Fig. 8.1, the linear function cannot well approximate sign(x), since it
is difficult for any straight line to fit a jump signal. When applying the polynomial
approximation, the situation becomes much better. If the order of the polynomial
function increases, the variance will significantly be reduced. In sum, the higher
order of polynomial approximation is more accurate and yet incurs higher com-
putational complexity. Therefore, Node2Vec with an order of 2 has relatively low
approximation power than the others (i.e., ChebNet, DeepWalk, Diffusion CNN,
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Fig. 8.1 Approximation for
sign(x): linear and
polynomial approximation

Simple Graph Convolution), since the order of the latter is predefined and could be
as large as possible.

Rational Filter Function

Although polynomial approximation is widely used and empirically effective, it
only works when applying to a smooth signal in the spectral domain. However, there
is no guarantee that any real-world signal is smooth. Therefore, the rational approx-
imation is introduced to improve the accuracy of non-smooth signal modeling. The
rational kernel-based method can be written as

Z =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

l∑

i

k∑

j=0

θjλ
j
i

n∑

m=1

φmλ
m
i + 1

ui uᵀi

⎞

⎟
⎟
⎟
⎟
⎟
⎠

X = U
Pθ (Λ)

Qφ(Λ)
Uᵀ X, (8.52)

where g(·) = Pθ (·)
Qφ(·) is the rational function, and P,Q are independent polynomial

functions. Spectral methods process graph as a signal in the frequency domain.
Existing works include generalized rational filter [200] as shown in Eq. (8.52).

Time Complexity and Expressive Power

Linear filter function has a time complexity of O(N2F) due to the matrix mul-
tiplication of A X. Accordingly, polynomial and rational methods are analyzed in
Table 8.2, where K is the order number. To compare their expressive powers, the
convergence rate on challenging jump signal is employed as a benchmark [200] (the
simple signal cannot distinguish them). As shown in Table 8.2, rational filters con-
verge exponentially faster than linear filters, and polynomial filters converge linearly
faster than linear filters. Therefore, there is a trade-off between expressive power
and computational efficiency. Linear filters have the best efficiency but only capture
the linear relationship. Rational filters consume the most considerable overhead but
could tackle more challenging signals. Generally, linear or polynomial filters with
small order numbers should be first considered, since the time complexity of rational
filters is dramatically high.
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Table 8.2 Comparison of
time complexity and
expressive power

Linear Polynomial Rational

Time O(N2F) O(NK+1F) O(NK+1F +N3)

Expressivity O(1) O(1/K) O(exp−√
K)

8.3.3 Other Graph Neural Networks

Sequential GNN
Combining LSTM [66] and GRU [210], GNN [211–213] improves the robustness of
information propagation across the graph topology. As a type of graph, tree structure
can be model with graph LSTM [212, 214]. GNN employs reinforcement learning
to obtain sequential modeling [215, 216].

Generative Graph Model
By integrating generative models such as generative adversarial net and variational
autoencoder, GNN is used to generate new topology given a number of observed
structures [217–221]. A comprehensive review about graph generative models has
summarized all state-of-the-art works [222].

8.4 Application and Resources

Graph neural networks have been applied in various domains, as listed in several
comprehensive surveys on GNNs [223–228]. In this section, we categorize them
into several groups:

Physics Graph is a powerful tool to model the physics of objects. DeepMind
[229] provides a toolkit, the graph network, to generalize approaches that operate
on graphs, including manipulating structured knowledge and producing structured
behaviors. Sanchez-Gonzalez et al. [230] simulate complex physics including fluids,
rigid solids, and deformable materials with graph neural networks. Ju et al. [231]
reconstruct particles in high-energy physics detectors with graph neural networks.
Seo et al. [232] propose physics-aware difference graph networks (PA-DGN),
utilizing neighboring information to learn finite differences inspired by physics
equations. Alet et al. [233] exploit graph neural networks to characterize spatial
processes when no prior graphical structure exists.

Chemistry The chemical structure is a natural graph data, and a graph neural
network is an appropriate tool to represent this complex connectivity. Duvenaud
et al. [234] and Kearnes et al. [235] represent the molecular structure and [236, 237]
model protein interfaces. Do et al. [238] and Dai et al. [239] predict the chemical
reaction and retrosynthesis.

Computer Vision A point cloud is a group of 3D points scanned by LiDAR, and it
can be modeled by graph neural networks [240–242]. Question-specific interactions
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can be model as graph connectivity in visual question answering [243, 244]. Object
and/or human interaction could be modeled by their connection [245, 246, 246–
248].

Natural Language Processing Relations among documents and words could be
modeled as a graph to infer their properties [249]. A syntactic dependency tree
can characterize the syntactic relations inside documents [250, 251]. Modeling
semantic structure, GNN enriches the relationship among words and improves the
generalization of machine translation [252, 253]. As a typical structural problem,
the recommendation system can also model with GNN [254–256].

Traffic Network Predicting traffic flow is a fundamental problem in transportation
intelligence. This problem can be modeled as a spatiotemporal graph and integrate
the sequential model with GNN to solve the problem [257–260].

Knowledge Graph Schlichtkrull et al. [261], Shang et al. [262], and Nathani et al.
[263] model the relationship among entities. Wang et al. [264] and Xu et al. [265]
utilize multiple languages to conduct knowledge graph alignment. Balazevic et al.
[266] allow multiple relations in one link.

Major benchmarks include citation network: Cora [267], Citeseer [267], PubMed
[267], DBLP [267]; Social Networks: Reddit [182], BlogCatalog [268]; Biology/-
Chemistry [269–274]; MNIST [275, 276]. Two popular implementations of GNNs
are PyTorch Geometric (PyG) [277], which is a geometric deep learning extension
library for PyTorch, and Deep Graph Library (DGL) [278], which builds models on
PyTorch, TensorFlow, or MXNet. Most commonly used libraries for operations on
graph include Networkx1 and PyGSP.2

8.5 Put It All Together

In total, we summarize the advantages and disadvantages of each combination as
illustrated in Fig. 8.2. The category selection is based on the data complexity and
the efficiency required, as there is a trade-off between computational efficiency and
generalization capability.

This subsection illustrates the hierarchical relationship between the spatial and
spectral domains. Three categories of spatial-based approaches exist, each with its
own specialization and generalization relationship:

LINEAR AGGREGATION � POLYNOMIAL AGGREGATION � RATIONAL AGGREGATION,

1 https://networkx.github.io.
2 https://github.com/epfl-lts2/pygsp.

https://networkx.github.io
https://github.com/epfl-lts2/pygsp
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Generalization Power

Computational Efficiency

Linear Approximation

Linear Aggregation

Polynomial Approximation Rational Approximation

Polynomial Aggregation Rational AggregationSpatial

Spectral

Fig. 8.2 Comparison of different categories of GNNs

where it is a generalization from left to right and specialization from right to
left. More precisely, linear aggregation refers to all strategies for learning a linear
function among first-order neighbors. Polynomial aggregation includes higher-order
neighbors, and the order number is defined by the polynomials. Furthermore, ratio-
nal aggregation makes use of self-aggregation. Due to the fact that the inclusion of
higher-order neighbors transforms linear aggregation into polynomial aggregation,
and polynomial aggregation into rational aggregation when self-aggregation is
included. The methodologies that fall under the broad heading of spectral analysis
can be classified into three basic categories:

LINEAR APPROXIMATION � POLYNOMIAL APPROXIMATION � RATIONAL APPROXIMATION,

which, similarly, includes left-to-right generalization and right-to-left specialization.

8.6 Exercise Problems

Problem 8.1 Calculate the inverse, transpose, and trace of the matrix

A =
⎡

⎣
1 2 4
5 6 4
4 3 3

⎤

⎦ .

Problem 8.2 Given

A =
⎡

⎣
1 2 4
5 6 4
4 3 3

⎤

⎦ , and B =
⎡

⎣
5 2 2
6 9 4
1 3 8

⎤

⎦ .

Calculate A+ B, AB, (AB)−1, B−1A−1.

Problem 8.3 Write down the degree matrix D, adjacency matrix A, and Laplacian
matrix L of the graph in Fig. 8.3.
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Fig. 8.3 Graph structure

Problem 8.4 Given the graph in Fig. 8.3, calculate three different normalized

Laplacian matrices: D− 1
2 L D− 1

2 ,D–1 L,L D–1.

Problem 8.5 Given the adjacency matrix A of the graph in Fig. 8.3, calculate A2,
Aᵀ, T r(L), T r(Lᵀ) and compare A2 and Aᵀ2, T r(L), and T r(Lᵀ).

Problem 8.6 Given the graph in Fig. 8.3 and its unnormalized Laplacian matrix Ł,
perform eigendecomposition on L = UΛUᵀ and show the eigenvalues.

Problem 8.7 Given the graph in Fig. 8.3 and its normalized Laplacian matrix

L̃ = D− 1
2 L D− 1

2 , perform eigendecomposition on L = UΛUᵀ and show the
eigenvalues.

Problem 8.8 Given the graph in Fig. 8.3 and its normalized Laplacian matrix L̃ =
D–1 L, perform eigendecomposition on L = UΛUᵀ and show the eigenvalues.

Problem 8.9 Given the graph in Fig. 8.3 and its normalized adjacency matrix

Ã = D− 1
2 A D− 1

2 , perform eigendecomposition on L = UΛUᵀ and show the
eigenvalues.

Problem 8.10 Write a program to calculate unnormalized graph Laplacian and
normalized graph Laplacian of the graph in Fig. 8.3 and compare their eigende-
composition.

Problem 8.11 (1) Calculate the eigenvalue of the Laplacian matrix for the graph
in Fig. 8.4 and find the median of its eigenvalues. (2) Randomly create another
bipartite graph and calculate its median eigenvalues. (3) Compare those two median
eigenvalues.

Problem 8.12 Assign X1 and X2 to the graph Fig. 8.4, respectively:

X1 = [
1 2 3 2 3 3 5 6 1 3

]ᵀ
, X2 = [

1 2 3 2 3 100 101 99 98 97
]ᵀ
.

In X1, the values of nodes are close, which can be called a smooth graph signal. In
X2, neighbors of every node are very different from themselves, which is a typical
non-smooth graph signal. Calculate the energy of two graph signals with Eq. (8.16).

Problem 8.13 Create graphs that contain two, three, four disconnected subgraphs,
respectively. Calculate the multiplicities of their zero eigenvalues.

Problem 8.14 (1) Implement a program to calculate the polynomial and rational
approximation with order of 6 for sign(x), abs(x), and x2 where x ∈ [0, 1]. (2)
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Fig. 8.4 Bipartite graph 1

2

4

5

3

7

8

9

10

6

Implement a neural network to approximate sign(x), abs(x), and x2 where x ∈
[0, 1].
Problem 8.15 Implement ChebNet (orders of 3, 5, and 10) [196] and GCN [181]
and compare their efficiency in Cora and Citeseer dataset [267, 279].

Problem 8.16 Label propagation (LP) [201, 280–282] is the most popular method
for semi-supervised learning on graphs. Plot the filtering function of LP and tune
its parameters. Plot the filtering function of graph convolutional network [181] and
compare it with LP.



Chapter 9
Adversarial Machine Learning

9.1 Introduction

Machine learning (ML), especially the deep neural networks (DNNs) and the
convolutional neural networks (CNNs) have transformed the processing capabilities
of the present-day computing systems. These techniques are widely deployed in
different domains ranging from computer vision to hardware security. For instance,
autonomous driving is envisaged due to the advancements in the field of ML and
computer vision [283–285]. Similarly, ML has made its impact on malware and
side-channel attack detection toward securing the computing systems [286–290].
Despite the benefits offered by the advancements in the ML, it has also been
exploited for the vulnerabilities in the existing ML techniques.

Though the ML techniques are shown to be robust to the noise, the exposed
vulnerabilities have shown that the outcome of the ML can be manipulated
by adding crafted perturbations to the input data [291–294], often referred as
Adversarial samples. These adversarial samples are constructed by perturbing the
inputs in one or multiple cycles iteratively under certain constraints in order to
amplify the classification error rate.

A simple adversarial sample generated from the MNIST digit dataset [295] for
digit “9” is shown in Fig. 9.1. Figure 9.1a is the normal sample that is classified
as 9 by the DNN classifier, presented in Sect. 9.3. The images in Fig. 9.1b, c are
generated by the fast gradient sign method (FGSM) and Carlini Wagner (CW) attack
techniques, respectively. One can observe from Fig. 9.1a, b, and c that the normal
and adversarial samples look similar for human observation. It needs to be noted that
the noise in Fig. 9.1b and c can be increased or reduced by tuning the parameters
of the attack. With the change in attack parameters, the classifier output and its
confidence will be modified. More details on generating the adversarial attacks are
presented in Sect. 9.2.1, and the details regarding the classifier architecture and the
dataset are presented in Sect. 9.3.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Rafatirad et al., Machine Learning for Computer Scientists and Data Analysts,
https://doi.org/10.1007/978-3-030-96756-7_9
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Fig. 9.1 (a) A normal MNIST Digit image classified correctly classified as Digit “9”; (b) FGSM
generated adversarial sample image in (a) classified as Digit “4”; (c) CW generated adversarial
sample image in (a) classified as Digit “4”; (d) Normal MNIST Fashion image classified as shoe;
(e) FGSM generated image of (e) classified as sneakers

Though the term adversarial samples in the context of ML is introduced in the
recent few years, similar concepts date back to 2004 [296] in the context of spam
filtering. The work in [297] has shown that the linear classifiers can be fooled by
crafted modifications in the content of spam emails to classify them as normal
emails. Similar work on biometric recognition fooling is proposed in [298]. The
adversarial attacks can be broadly classified into two categories: (a) poisoning
attacks and (b) evasion attacks. Poisoning attacks are attacks on the ML classifier
during the training phase [299–303], and the evasive attacks are targeted for the
inference stage of ML techniques. As the poisoning attacks focus on attacking the
classifiers during the training phase it is more suitable for online environments.
Thus, this work focuses on the evasive attacks, as many of the existing ML works are
primarily offline learning-based and are constrained by resources and the processing
time requirements.

In this work, we first provide an overview of evasive attacks on the ML classifiers.
Further, we present different existing defense techniques for adversarial attacks. As
FGSM is one of the fastest evasive attacks, an in-depth discussion regarding the
FGSM adversarial attack is provided. In this work, we look at initially introduced
defense against adversarial samples. Adversarial training is one of the defense
techniques introduced for adversarial attacks. Adversarial training [304] is similar
to a brute force solution, where one generates an ample number of adversaries and
trains the classifier to alleviate the impact of adversarial attacks. Though, adversarial
training is shown to be confined to be efficient for one or few attacks, it is not always
the case. Further, in this work, we show how to efficiently utilize the adversarial
training in order to enhance the robustness of the ML classifier even against the
recent and powerful adversarial attacks such as CW. Contrarily, we also provide the
information regarding under which circumstances this robust adversarial training
fails. We show that adversarial training with FGSM can show high robustness to
even CW attacks, under certain conditions by having a classification accuracy of
up to 97% against adversarial attacks. Having said this, it fails when the number
of binary steps as well as the number of iterations is increased, in a nutshell if the
attacker has more computational capability.
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9.2 Adversarial Attacks and Defenses

Adversarial samples are the samples that are generated by introducing crafted
perturbations into the normal input data generated by introducing optimum yet
worst-case perturbations in order to make the adversarial data look similar to
the normal input data, but still the ML model mispredicts the class with a high
probability. These adversarial samples can be considered as an optical illusion for
the ML classifiers. In this section, we present different techniques widely used
for generating the adversarial samples and review some of the popular defense
techniques deployed.

9.2.1 Adversarial Attacks

The adversarial sample is introduced as an optimization problem, mathematically
defined as follows:

argmin
ε

f (x + ε) = t s.t.

{
(x + ε) ∈ D,
f (x + ε) 
= f (x). (9.1)

In this optimization problem, f is a classifier that maps image pixel vectors x
to a discrete k-label set t , i.e., f : R

m → {1...k}. The goal of this optimization
formula is to find the minimum perturbation ε, such that by applying it to the
original data sample x, the under-attack machine learning model f misclassifies
the perturbed sample x + ε as the target class t , f (x + ε) = t . The obtained
perturbed sample x + ε also needs to remain in the acceptable input domain, i.e.,
D ∈ [0, 1]m. In Szegedy et al. [291], this problem was solved using the LBFGS
algorithm, which is a second-order gradient method for solving an optimization
problem. Although their offered solution is effective, it is a time-extensive process to
achieve the adversarial perturbation. We present an overview of different adversarial
attacks that are effective against the ML classifiers here.

Fast Gradient Sign Method (FGSM)

The most common adversarial attack technique is to perturb the image with gradient
of the loss with respect to the image or input, gradually increasing the magnitude of
the perturbation until the image is misclassified.

The Fast Gradient Sign method (FGSM) [292] is one of the first known adversar-
ial attacks. The complexity to generate an FGSM attack is lower compared to other
adversarial attacks, even against deep learning models. Some of the advantages of
this technique are its low complexity and fast implementation.
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Consider an ML classifier model with θ as the parameter, x being the input to the
model, and y is the output for a given input x, and L(θ, x, y) be the cost function
used to train the neural networks. Then the perturbation with FGSM is computed
as the sign of the model’s cost function gradient. The adversarial perturbation
generated with FGSM [292] is mathematically given as

xadv = x + εsign(∇xL(θ, x, y)), (9.2)

where ε is a scaling constant ranging between 0.0–1.0 is set to be very small such
that the variation in x (δx) is undetectable. One can observe that in FGSM the input
x is perturbed along each dimension in the direction of gradient by a perturbation
magnitude of ε. Considering a small ε leads to well-disguised adversarial samples.
Also, a large ε is likely to introduce large perturbations.

Example 9.1 (FGSM Attack)
Problem: What is the effect of changing ε of FGSM attack on the accuracy
of the under-attack model, on the code snippet 9.2.1?
Solution: By changing the parameter eps in the code snippet 9.2.1, we can
investigate the effect of changing the ε of FGSM attack. We selected 7
different εs in the range of [0.0,0.30]. The image on the left shows that by
increasing ε the accuracy drops dramatically. The images on the right show
some samples of MNIST dataset which FGSM attack has applied on them
with different parameters ε. On top of each image, there is two number in
the format “n -> m” that mean the actual image has the label n and after the
FGSM attack, the model classifies that sample as a class with label m.

The code snippet for the targeted and non-targeted FGSM attack has been shown
at the Listing below. At lines 11 to 15 of this piece of code, the input image is
prepared in order that the gradients of the model are reflected in the input image.
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After this part, based on the goal of the attack, i.e., targeted or not-targeted, in lines
17 to 28, the obtained gradient is applied to the input image.

1

2 def attack(model, criterion, img, label, eps, targeted=False):
3 ’’’
4 model: the model under attack
5 criterion: the optimization function
6 img: the input image to the model
7 label: the label corresponding to img
8 eps: intensity of the applied perturbations
9 targeted: type of FGSM attack

10 ’’’
11 adv = img.detach()
12 adv.requires_grad = True
13

14 iterations = 1
15 step = eps
16

17 for j in range(iterations):
18 out_dev = model(adv.clone())
19 loss = criterion(out_adv, label)
20 loss.backward()
21

22 noise = adv.grad
23 if targeted == False:
24 adv.data = adv.data + step * noise.sign()
25 else:
26 adv.data = adv.data - step * noise.sign()
27 adv.data.clamp_(0.0, 1.0)
28 adv.grad.data.zero_()
29

30 return adv.detach()

Note that, unlike the LBFGS, FGSM is very fast and effective. The downside of
FGSM is that it perturbs all the input pixels (features) for obtaining the adversarial
example. But, it has been shown that a subset of input pixels can be found that
has a similar effect and at the same time lead to a more imperceptible adversarial
perturbation.

Basic Iterative Method (BIM)

As seen previously, FGSM adds perturbation in each of the dimensions; however, no
optimization on perturbations is performed. Kurakin proposed an iterative version
of FGSM, called as Basic iterative method (BIM) in [305]. BIM is an extension
of FGSM technique, where instead of applying the adversarial perturbation once
with ε, the perturbation is applied multiple times iteratively with small ε. This
produces a recursive noise on the input and optimized application of noise, given
mathematically as follows:

xadv0 = x
xadvN+1 = Clipx,ε(xadvN + εsign(∇xL(θ, xadvN , y)).

(9.3)
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In the above expression, Clipx,ε represents the clipping of the adversarial input
magnitudes such that they are within the neighborhood of the original sample x.
This technique allows more freedom for the attack compared to the FSGM method,
as the perturbation can be controlled and the distance of the adversarial sample from
the classification boundary can be carefully fine-tuned. The simulations in [305]
have shown that BIM can cause higher misclassifications compared to the FGSM
attack on the Imagenet samples.

Example 9.2 (BIM Attack)
Problem: What is the effect of changing ε of BIM attack on the accuracy of
the under-attack model, on the code snippet 9.2.1?
Solution: By changing the parameter eps in the code snippet 9.2.1, we
can investigate the effect of changing the ε of BIM attack. We selected 7
different εs in the range of [0.0,0.30]. The adversarial perturbation remains
imperceptible to the human eyes but causes the neural network to misclassify
the input image.

The code snippet for the targeted and non-targeted BIM attack has been shown
at Listing 9.2.1. At lines 11–15 of this piece of code, the input image is prepared
in order that the gradients of the model are reflected in the input image. After this
part, based on the goal of the attack, i.e., targeted or not-targeted, in lines 17–28, the
obtained gradient is applied to the input image.

1

2 def attack(model, criterion, img, label, eps, targeted=False):
3 ’’’
4 model: the model under attack
5 criterion: the optimization function
6 img: the input image to the model
7 label: the label corresponding to img
8 eps: intensity of the applied perturbations
9 targeted: type of BIM attack

10 ’’’
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11 adv = img.detach()
12 adv.requires_grad = True
13

14 iterations = 256
15 step = eps / iterations
16

17 for j in range(iterations):
18 out_dev = model(adv.clone())
19 loss = criterion(out_adv, label)
20 loss.backward()
21

22 noise = adv.grad
23 if (targeted == False):
24 adv.data = adv.data + step * noise.sign()
25 else:
26 adv.data = adv.data - step * noise.sign()
27 adv.data.clamp_(0.0, 1.0)
28 adv.grad.data.zero_()
29

30 return adv.detach()

Momentum Iterative Method (MIM)

The momentum method is an accelerated gradient descent technique that accu-
mulates the velocity vector in the direction of the gradient of the loss function
across multiple iterations. In this technique, the previous gradients are stored, which
aids in navigating through narrow valleys of the model, and alleviate problems of
getting stuck at local minima or maxima. This momentum method also shows its
effectiveness in stochastic gradient descent (SGD) to stabilize the updates. This
MIM principle is deployed in [306] to generate adversarial samples. MIM has shown
a better transferability and shown to be effective compared to FGSM attack.

In the Momentum Iterative Method (MIM) [307], the momentum is also consid-
ered when calculating the adversary perturbation and is mathematically expressed
as

g0 = 0, gn = μgn−1 + ∇xJ (θ, xn−1, y)

||∇xJ (θ, xn−1, y)||1
x′
n = x′

n−1 + εsign(gn)
(9.4)

in which μ is the momentum, and ||∇xJ (θ, xn−1, y)||1 is the L1 norm of the
gradient, and gn is the momentum gradient. Similar to BIM, the Momentum Iterative
Method changes all the input pixels based on the sign of the gradient at each
iteration. However, at MIM, the momentum term prevents the abrupt change of the
gradient sign, and consequently, an adversarial perturbation can be obtained using
fewer iterations compared to the BIM.



312 9 Adversarial Machine Learning

Example 9.3 (MIM Attack)
Problem: What is the effect of changing ε of MIM attack on the accuracy of
the under-attack model, on the code snippet 9.2.1?
Solution: By changing the parameter eps in the code snippet 9.2.1, we
can investigate the effect of changing the ε of BIM attack. We selected 7
different εs in the range of [0.0,0.30]. By increasing the intensity of attack
the performance of attack drops dramatically. The adversarial perturbation
remains imperceptible to the human eyes but causes the neural network to
misclassify the input image.

The code snippet for the targeted and non-targeted MIM attack has been shown
below. At lines 12–17 of this piece of code, the input image is prepared in order that
the gradients of the model are reflected in the input image. After this part, based
on the goal of the attack, i.e., targeted or not-targeted, in lines 19–35, the obtained
gradient is applied to the input image.

1

2 def attack(model, criterion, img, label, eps, u, targeted=False):
3 ’’’
4 model: the model under attack
5 criterion: the optimization function
6 img: the input image to the model
7 label: the label corresponding to img
8 eps: intensity of the applied perturbations
9 u: momentum parameter

10 targeted: type of MIM attack
11 ’’’
12 adv = img.detach()
13 adv.requires_grad = True
14

15 iterations = 256
16 step = eps / iterations
17 noise = 0
18

19 for j in range(iterations):
20 out_dev = model(adv.clone())
21 loss = criterion(out_adv, label)
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22 loss.backward()
23

24 adv_mean= torch.mean(torch.abs(adv.grad), dim=1)
25 adv_mean= torch.mean(torch.abs(adv_mean), dim=2)
26 adv_mean= torch.mean(torch.abs(adv_mean), dim=3)
27 adv.grad = adv.grad / adv_mean
28 noise = u * noise + adv.grad
29

30 if (targeted == False):
31 adv.data = adv.data + step * noise.sign()
32 else:
33 adv.data = adv.data - step * noise.sign()
34 adv.data.clamp_(0.0, 1.0)
35 adv.grad.data.zero_()
36

37 return adv.detach()

Projected Gradient Descent Attack

Projected Gradient Descent (PGD) [308] is one of the strongest first-order iterative
attacks, which is similar to BIM, but with the difference that it forces the obtained
adversarial example to stay within a γ -neighborhood of input sample x at each
iteration. The objective function of PGD is defined as

x′
0 = x, x′

n = x′
n−1 + εsign(∇xJ (θ, xn−1, y))

x′
n = clip(x′

n, x
′
n − γ, x′

n + γ ). (9.5)

Example 9.4 (PGD Attack)
Problem: What is the effect of changing ε of PGD attack on the accuracy of
the under-attack model, on the code snippet 9.2.1?
Solution: By changing the parameter eps in the code snippet 9.2.1, we
can investigate the effect of changing the ε of BIM attack. We selected 7
different εs in the range of [0.0,0.30]. By increasing the intensity of attack
the performance of attack drops dramatically. The adversarial perturbation
remains imperceptible to the human eyes but causes the neural network to
misclassify the input image.

(continued)
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Example 9.4 (continued)

The code snippet for the targeted and non-targeted PGD attack has been shown
in the following listing. At lines 11–15 of this piece of code, the input image is
prepared in order that the gradients of the model are reflected in the input image.
After this part, based on the goal of the attack, i.e., targeted or not-targeted, in lines
17–36, the obtained gradient is applied to the input image.

1

2 def attack(model, criterion, img, label, eps, targeted=False):
3 ’’’
4 model: the model under attack
5 criterion: the optimization function
6 img: the input image to the model
7 label: the label corresponding to img
8 eps: vicinity diameter
9 targeted: type of PGD attack

10 ’’’
11 adv = img.detach()
12 adv.requires_grad = True
13

14 iterations = 256
15 step = 0.01
16

17 for j in range(iterations):
18 out_dev = model(adv.clone())
19 loss = criterion(out_adv, label)
20 loss.backward()
21

22 noise = adv.grad
23

24 if (targeted == False):
25 adv.data = adv.data + step * noise.sign()
26 else:
27 adv.data = adv.data - step * noise.sign()
28

29 adv.data = torch.where(adv.data > img.data + eps,
30 img.data + eps,
31 adv.data)
32 adv.data = torch.where(adv.data < img.data - eps,
33 img.data - eps,
34 adv.data)
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35 adv.data.clamp_(0.0, 1.0)
36 adv.grad.data.zero_()
37

38 return adv.detach()

Jacobian-Based Saliency Map Attack (JSMA)

In contrast to application of noise in each of the directions, Papernot in [309]
proposed a simple iterative method where the forward derivative of DNN is
exploited for adding the perturbations. Consider a neural network F with input x,
and the output of class j , denoted by Fj (x). The main principle of this work is: In
order to achieve a target class t , the probability for Ft(X) must be increased, on
the other hand the probabilities of Fj (X) for all the other classes j 
= t have to be
decreased, until t = arg maxjFj (X) is achieved. This is a targeted attack; however,
it can be used as an untargeted attack as well. This is accomplished by exploiting
the saliency map, as defined below

S(X, t)[i] =
⎧
⎨

⎩

0, if ∂Ft (X)
∂Xi

< 0 or
∑
j 
=t

∂Fj (X)

∂Xi
> 0(

∂Ft (X)
∂Xi

)
|∑j 
=t

∂Fj (X)

∂Xi
|, otherwise.

(9.6)

For an input feature i starting with the normal input x, we determine the pair
of features {i, j} that maximizes S(X, t)[i] + S(X, t)[j ] and perturb each of the
features by a constant offset ε. This process is repeated iteratively until the target
misclassification is achieved.

DeepFool Attack

DeepFool (DF) is an untargeted adversarial attack optimized for L2 norm, intro-
duced in [310]. DF is efficient and produces adversarial samples that are more
similar to the original inputs as compared to the discussed adversarial samples
generated by FGSM and BIM attacks. The principle of the Deepfool attack is to
assume neural networks as completely linear with a hyper-plane separating each
class from another. Based on this assumption, an optimal solution to this simplified
problem is derived to construct adversarial samples. As the neural networks are non-
linear in reality, the same process is repeated considering the non-linearity into the
model. This process is repeated multiple times for creating the adversaries. This
process is terminated when an adversarial sample is found, i.e., misclassification
happens. Considering the brevity and focus of the current work, we limit the details
in this draft. However, the interested readers can refer to the work in [310] for exact
formulation of DF.
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Carlini and Wagner Attack (CW)

One of the most recent adversarial attacks is introduced by Carlini and Wagner in
[311], popularly called as Carlini and Wagner (CW) attack. The CW attack is shown
to outperform adversarial defense techniques such as defensive distillation. It is an
iterative attack that finds adversarial samples against multiple defenses as compared
to other attacks. At a high level, this attack is iterative using Adam optimizer and
a specially chosen loss function to find adversarial examples with lower distortions
than the other attack. This comes at the cost of speed as this attack is much slower
than the other attacks. It encompasses a range of attacks based on the norms, all
cast through the same optimization framework, thus resulting in 3 powerful attacks,
that are designed employing L0, L2, and L∞ norms. For the L2 attack, which is
considered in this work, the perturbation in the input, i.e., δ is defined in terms
of an auxiliary variable ω. The objective of the CW attack with L2 norm can be
mathematically defined as

δ∗i = 1

2
(tanh(ωi + 1))− xi. (9.7)

Then, the δ∗i that is an unrestricted perturbation is optimized over ω as follows:

min
ω

||1

2
(tanh(ω)+ 1)− x||22 + cf

(1

2
tanh(ω)+ 1

)
. (9.8)

Similarly, if the L2 is considered, the optimization becomes

min
δ

||δ||2 + c · f (x + δ) (9.9)

S.T .x + δ ∈ [0, 1]n, (9.10)

where f (objective function) is defined as

f (x′) = max(max{Z(x′) : i 
= t} − Z(x′)− k). (9.11)

Here, Z(x′) is the pre-softmax output for class i, t is the target class, and k is the
parameter that controls the confidence with which the misclassification occurs. The
parameter k encourages the solver to find an adversarial instance x′ that will be
classified as class t with high confidence. The three variants of this attack were
shown to be quite effective in comparison to other attacks on a network trained with
defensive distillation [311].
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One-Pixel Attack

Unlike the previous attacks where the gradient of the underlying model was
needed, in the one-pixel attack [312] they used an evolutionary algorithm so called
differential evolution (DE) in order to search in the input domain of the under-
attack model for finding one pixel that can turn the input image into an adversarial
example. The attack is carried out as follows:

First, generate several adversarial samples by modifying a random pixel and run
the images through the neural network. Next, combine the previous pixels’ positions
and colors together, generate several more adversarial samples from them, and run
the new images through the neural network. If there were pixels that lowered the
confidence of the network from the last step, replace them with the current best-
known solutions. Repeat these steps for a few iterations, then on the last step return
the adversarial image that reduced the network’s confidence the most. If successful,
the confidence would be reduced so much that a new (incorrect) category now has
the highest classification confidence.

Universal Perturbation

Till now, all the previously described adversarial attacks find an adversarial pertur-
bation that is tailored for a specific input sample. Meaning, adversarial perturbation
on the input sample x1 may not be also an adversarial perturbation for the input
sample x2. So, for each input sample xi , the adversarial attack needs to be run from
scratch. However, in 2017, Dezfooli et al. in [313] debuted an attack for building
an universal adversarial perturbation. In the proposed solution, the optimization
process synthesizes a perturbation that is universal, meaning it could be added
to any image of any class and significantly increase the chances of the model’s
misclassification.

9.2.2 Adversarial Defenses

Several works have investigated defense mechanisms against adversarial attacks.
One of the preliminary works on adversarial defenses is proposed in [292], termed
as adversarial training proposed to enhance the robustness of the model based on
the training. In [314, 315], autoencoders are employed to remove the adversarial
perturbations and reconstruct a perturbation with less input. In [309] distillation is
used to hide the gradients of the network from the attacker. Other approaches such
as [316–318] are introduced to defend adversarial samples. Here, we review the
existing defenses against adversarial examples.
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Fig. 9.2 Adversarial training
in a nutshell

Adversarial Training

Adversarial training is one of the preliminary solutions for making the ML classi-
fiers robust against the adversarial examples, proposed in [304]. The preliminary
idea is to train the ML classifier with the adversarial examples so that the ML
classifier can have adversarial information [291, 292, 310] and adapt its model based
on the learned adversarial data. One of the major drawbacks of this technique is to
determine what kind of attack is going to happen and train the classifier based on
those attacks and determine the criticality of the adversarial component.

This idea of adversarial training is shown in Fig. 9.2, in which a targeted model is
being hardened through an iterative procedure. At each iteration, the target model is
being trained based on the training dataset, and then different attacks are applied to
the model and the extracted adversarial examples are added to the training dataset.
This procedure continues till reaching an acceptable level of robustness.

The process of adversarial training using two attacks FGSM and PGD has shown
in the code snippet below. In adversarial training, the size of each batch expands to
an extent that is defined by the number of helper attacks. For example, in this code
snippet, that two attacks FGSM and PGD have been utilized, for each batch we
have added the corresponding adversarial samples to the fetched batch using FGSM
and PGD. Subsequently, the model proceeds with the training procedure using the
dataset that has a combination of clean data, adversarial samples using FGSM, and
adversarial samples using PGD.

1

2 def adv_training(model, loader, optimizer, criterion, device):
3 ’’’
4 model: the model under attack
5 loader: training/test dataset
6 optimizer: the algorithm for updating the trainable params
7 criterion: the used loss function
8 device: CPU or GPU
9 ’’’

10 for (x, y) in loader:
11 x = x.to(device)
12 y = y.to(device)
13

14 FGSM_adv = FGSM_attack(model, criterion, x, y, eps=0.1)
15 x = torch.cat((x, FGSM_adv), 0)
16 y = torch.cat((y, y))
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17

18 PGD_adv = PGD_attack(model, criterion, x, y, eps=0.1)
19 x = torch.cat((x, PGD_adv), 0)
20 y = torch.cat((y, y))
21

22 optimizer.zero_grad()
23 fy = model(x)
24 loss = criterion(fy, y)
25 loss.backward()
26 optimizer.step()

Although this method is simple and effective, it has two drawbacks: (1) It can
only make the model robust against the assistant attacks (see Fig. 9.2); (2) it also
increases the training time significantly.

Defensive Distillation

In [309], distilling was originally proposed to train a smaller student model from
a larger teacher model with the objective that the smaller network predicts the
probability similar to that of the bigger network. The distillation technique takes
advantage of the fact that a probability vector contains more information than
class labels, hence, it is a more effective means for training a smaller network.
For defensive distillation, the second network is the same size as the first network
[309]. An abstract view of this method is shown in Fig. 9.3, in which the main idea
is to hide the gradients between the pre-softmax and softmax layers to make the
attacker’s job more difficult. However, it was illustrated in [311], that this defense
can be broken by using the pre-softmax layer outputs in the attack algorithm and/or
choosing a different loss function.

In [319], intelligent JPEG compression is suggested for feature distillation. JPEG
is a form of lossy compression based on the fact that human eyes are more sensitive
to low-frequency components than high-frequency ones. Liu et al. [319] uses JPEG
compression in a way that removes the noise and also adversarial perturbation.
Comdefend [320] suggests a reconstruction module based on two neural networks.

Fig. 9.3 Defensive distillation in a nutshell
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The first neural network compresses the image, and the second one reconstructs the
image. However, the image compression does not solve the robustness issue of the
neural network.

Random Ensemble

In [318] an approach is presented to switch between random modules during
inference to protect the neural network against adversarial attacks. Hierarchical
Random Switching divides the base model to several random blocks of parallel
channels. The architectures of all blocks are similar, but they have been trained
to have different weights. In the test time, the network randomly switches between
blocks to make the network more robust to adversarial attacks [318].

Gradient Regularization

Input gradient regularization was first introduced in [321] to improve the gener-
alization of training in neural networks by a double backpropagation method. The
work in [309] mentions the double backpropagation as a defense and [316] evaluates
the effectiveness of this idea to train a more robust neural network. This approach
intends to make sure that if there is a small change in the input, the change in
Kullback–Leibler (KL) divergence between the predictions and the labels also will
be small. However, this approach is sub-optimal because of the blindness of the
gradient regulation.

MagNet

MagNet is proposed in [315], where a two-level strategy with detector and reformer
is proposed. In the detector phase(s), the system learns to differentiate between
normal and adversarial examples by approximating the manifold of the normal
examples. This is performed with the aid of autoencoders. Further, in the reformer,
the adversarial samples are moved close the manifold of normal samples with small
perturbations. Further using the diversity metric, the MagNet can differentiate the
normal and adversarial samples. MagNet is evaluated against different adversarial
attacks presented previously and has shown to be robust in [315].

Detecting Adversaries

Another idea of defense proposed in the existing works is to detect adversarial
examples with the aid of statistical features [322] or separate classification networks
[323]. In [323], for each adversarial technique, a DNN classifier is built to classify
whether the input is a normal sample or an adversary. The detector was directly
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Fig. 9.4 Autoencoders for defense

Table 9.1 Comparison of defense methods

Defense Disadvantage

Adversarial training [292, 307, 308, 310] Prone to unseen adversarial examples

Defensive distillation [309] Beaten by attacks that use the pre-softmax layer

Random ensemble [318] Computational complexity

Gradient regularization [316] Sub-optimal due to blindness of gradient regulation

Image compression [319, 320] Does not solve the robustness issue of the classifier

Adversarial detection [317, 325] Not effective for large size inputs

Autoencoders [314, 315] Computational overhead

trained on both normal and adversarial examples. The detector showed good
performance when the training and testing attack examples were generated from the
same process and the perturbation is large enough. However, it does not generalize
well across different attack parameters and attack generation processes.

Autoencoders

Authors in [314] analyze the use of normal and denoising autoencoders as a defense
method against adversarial samples. Autoencoders are neural networks that code the
input and then try to reconstruct the original image as their output. Meng and Chen
[315], as illustrated in Fig. 9.4, use a two-level module and uses autoencoders to
detect and reform adversarial images before feeding them to the target classifier.
However, this method may change the clean images and also add a computational
overhead to the whole defense-classifier module. To improve the method introduced
in [315, 324] presents an efficient autoencoder with a new loss function, which was
learned to preserve the local neighborhood structure on the data manifold.

In essence, the existence of adversarial examples is due to the lack of adequate
generality of the underlying model. Among all of the mentioned defenses, the
adversarial training increases the generality of the model, while other existing
defenses consider adversarial examples as abnormal data samples that can be
detected or removed. Thus, these defenses either are not effective for all of the
attack scenarios, like white box or black box, or are not effective for all the attack
types such as FGSM and PGD. Despite being effective, adversarial training requires
large training dataset and is confined to trained attacks. In contrast, the proposed
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technique, Gravity, addresses these issues by increasing the generality of the model.
This idea is to move the classes to be far apart, i.e., decreasing the overlap between
the latent spaces of the model. In this manner, not only the accuracy of the model can
be improved, but also the model learns a simplified decision boundary that in turn
enhances the generalization capacity. And at the same time, unlike the adversarial
training, Gravity does not need a large dataset of all available adversarial examples
in order to increase the generality of the model. A comparison of all the adversarial
defenses is outlined in Table 9.1.

9.3 Experimental Results

The impact of adversarial training on different attacks is analyzed here. We
evaluated the accuracy on the MNIST Digit [295] and MNIST Fashion [326]
datasets. The adversarial attacks are generated using Cleverhans library [327]. The
source code to reproduce the experiments presented in this work can be found on
github at the URL found at bottom of this page.1

9.3.1 Network Architecture

We used the ML classifier, i.e., DNN architecture similar to the [328] for classifying
the MNIST Digits dataset. The MNIST dataset comprises 60,000 examples for
training and 10,000 examples for testing. On a normal classifier, we achieve an
accuracy of 98.15% on MNIST Digits dataset and 89.36% on MNIST fashion
dataset with the employed classifier architecture, which are close to the state-of-
the-art results. More details on network architecture and configuration are presented
in Tables 9.2 and 9.3, respectively. For generating the adversarial attacks, we
have employed the L2 norms, and the most non-trivial parameters influencing the
accuracy are reported in Table 9.4.

9.3.2 Performance with Adversarial Attacks

Table 9.4 reports the performance of the employed neural network on MNIST Digits
dataset.

Normal Classification Accuracy In the absence of adversarial samples, the classi-
fier achieves an accuracy of 98.15%, loss of 0.088, precision of 0.98, and recall of

1 https://github.com/saimanojpd/ICCAD-18_Adversarial_Training.git.

https://github.com/saimanojpd/ICCAD-18_Adversarial_Training.git
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Table 9.2 Architectural
details of employed ML
classifier (DNN)

Parameter MNIST Digits MNIST Fashion

Input 28×28 28×28

# hidden layers 2 3

Input layer 784 neurons 784 neurons

Hidden layer 1 (ReLu) 512 neurons 512 neurons

Dropout 0.2 0.2

Hidden layer 2 (ReLu) 512 neurons 512 neurons

Dropout 0.2 0.2

Hidden layer 3 (ReLu) 512 neurons

Dropout 0.2

Output layer (Softmax) 10 neurons

Table 9.3 Training
parameters of the employed
classifiers

Parameter MNIST Digits MNIST Fashion

Optimization method ADAM ADAM

Batch size 128 128

Epochs 20 20

Learning rate 0.001 0.001

Loss Cross-entropy Cross-entropy

Table 9.4 Accuracy of the
classifier after and before
adversarial attacks

Attack Parameter No attack With attack

FGSM ε = 0.3 98.15% 6.59%

ε = 0.5 98.15% 3.09%

BIM ε = 0.3 98.15% 1.41%

ε = 0.5 98.15% 1.33%

MIM ε = 0.3 98.15% 1.46%

ε = 0.6 98.15% 1.29%

JSMA θ = 0.1, γ = 1 98.15% 3.60%

θ = 1, γ = 1 98.15% 2.26%

DF MIa = 10 98.15% 1.36%

MIa = 100 98.15% 1.29%

CW BSb = 10, MIa = 300 98.15% 4.32%

BSb = 5, MIa = 1000 98.15% 1.41%
a
Maximum iterations

b
Binary step

0.98. Similarly, for MNIST Fashion, the classifier achieves an accuracy of 89.36%,
loss of 0.3144, precision of 0.89, and recall of 0.89.

Effect of Adversaries The adversarial samples generated from the discussed adver-
sarial attacks are shown in Fig. 9.5. As one can observe the adversarial samples
generated with FGSM, MIM, and BIM look alike and the adversarial samples from
JSMA, DF, and CW look more? alike. It needs to be noted that the digit “4” is
classified as “9” in all the cases. The noise in each of them can be altered, which
leads to differences in the confidence of output.
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Fig. 9.5 One of the normal MNIST Digit image is represented in (a), followed by generated
adversarial images generated from (b) FGSM; (c) BIM; (d) MIM; (e) JSMA; (f) DF; and (g)
CW attacks

Table 9.4 shows the accuracy of the classifier in the presence of difference
attacks. The number of adversarial samples is 10,000 in each case, and one can
observe that in the presence of adversaries the classification accuracy falls to as low
as 1.3%. With the increase in ε, the accuracy decreases in the case of FGSM, MIM,
and BIM. With the number of iterations, the accuracy decreases for DF and CW
attacks. The step size for each attack iteration εiter is set to 0.06 in the simulations.
For the FGSM, with the increase in the θ , γ the attack can hamper the classification
accuracy of a neural network classifier.

9.3.3 Effective Adversarial Training

As seen from Fig. 9.1 and Sect. 9.2.1, the FGSM samples are generated by perturb-
ing almost all the pixels in the original input. As such, the other attacks can be
seen as selective tweaking of the FGSM. Thus, the adversarial training with FGSM
can enhance the robustness of the classifier. However, the perturbations based on
correlations and optimization might not be fully captured in FGSM samples, as
there is no specific optimization involved. Here, we analyze the effect of adversarial
training when the classifier is trained with the samples generated by different
attacks. We consider six different attacks presented in Sect. 9.2.1 for adversarial
training.
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Table 9.5 Accuracy (%) for MNIST digit classification under different adversarial attacks on
different adversarial trained networks

BIM MIM FGSM

ε = 0.3 ε = 0.5 ε = 0.9 ε = 0.3 ε = 0.5 ε = 0.9 ε = 0.3 ε = 0.5 ε = 0.9

Adv. training with

FGSM 96.38 89.63 48.69 97.35 94.84 60.13

CW 62.85 44.34 34.12 63.61 45.29 30.80 51.80 32.60 26.59

JSMA 9.86 1.28 0.59 8.06 1.62 0.64 23.83 13.50 10.18

DF 53.40 31.68 25.68 54.25 32.13 22.92 41.04 24.95 18.94

MIM 99.86 97.22 71.52 87.60 61.69 40.31

BIM 99.17 91.99 76.00 84.45 53.46 34.33

DF JSMA (θ, γ ) CW (BS, MI)

MI = 50 MI = 100 MI = 10 (1, 1) (0.9, 0.9) (1, 0.1) (5, 1000) (9, 200) (10, 300)

FGSM 97.33 90.66 90.66 81.47 86.15 92.25 97.65 88.34 86.75

CW 99.70 44.74 44.74 72.36 80.83 92.27

JSMA 92.40 6.22 6.22 93.20 88.70 85.40

DF 73.43 82.29 89.40 99.75 92.15 90.12

MIM 98.07 44.33 44.33 78.55 85.91 92.68 98.28 88.39 85.32

BIM 97.58 47.65 47.65 78.67 83.98 91.16 97.86 87.79 84.36

Performance Evaluation and Comparison

Table 9.5 presents the performance (accuracy) of the employed classifier (DNN)
when trained with adversarial samples generated from different attacks and tested
with all the six attacks for the MNIST Digits dataset. For instance, the row with
FGSM indicates that the classifier is trained with adversarial samples generated by
FGSM attack. The classifier is provided with adversarial samples generated with the
attacks mentioned in the top row of Table 9.5. As the training and testing with same
kind of attacks have shown accuracies of nearly 99%, we have not reported them in
the Table to avoid confusion and wrong analysis. The following observations can be
made from the reported results in Table 9.5:

• FGSM, MIM, and BIM based adversarial training achieves good classification
accuracy even when tested with attacks such as CW and DF.

• However, the FGSM based adversarial training outperforms MIM and BIM. For
instance, with DF attack, only FGSM based adversarial training achieves higher
accuracy compared to MIM and BIM.

• The classifier trained with CW/JSMA/DF performs better compared to normal
classifier when attacked with any of the CW/JSM/DF attacks. However, the
samples generated by the FGSM, MIM, and BIM still keeps the misclassification
rate high.

Based on these observations and Fig. 9.5, one can notice that the FGSM, MIM,
and BIM have similar characteristics. Also, FGSM based adversarial training
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outperforms the others and can aid in achieving robustness (to some extent) even
against the most advanced (unseen) attacks such as CW and DF. On the other hand,
CW, JSMA, and DF have shown similar performances and trends. As such, when
trained with one of them, it can aid to achieve robustness against the other two,
compared to no defense classifiers.

In addition to MNIST Digits, we have also tested with MNIST Fashion dataset.
The deployed DNN achieves an accuracy of 88%, whereas state-of-the-art network
[329] achieves an accuracy of 96%, at max. However, the major intention of the
work is not on performance improvement, rather on adversarial analysis. We have
performed adversarial training on the MNIST Fashion dataset as well. It has shown
to follow similar trend as what is observed with MNIST Digits test case.

A glance at the results is presented below:

• With the FGSM based adversarial training, the adversarial training achieves
accuracies of 80%, 84%, and 81% when the number of iterations of DF is kept
50, 100, and 10 respectively. Similar trends are obtained when tested with CW
and JSMA.

• On the other hand, when the adversarial training is performed with DF and tested
with FGSM, the accuracies are 29%, 17%, and 11% with ε of 0.3, 0.5, and 0.9,
respectively. Similar trends are obtained when tested with BIM and MIM.

In this work, we performed the adversarial training and testing on the same
kind of network, as the adversaries are generated for the same or similar network
architecture as the testing network architecture. From the above analysis, it needs
to be noted that the FGSM based adversarial training enhances the robustness even
against unseen attacks such as CW and DF.

9.4 Putting It All Together

Adversarial machine learning is an emerging topic with numerous and defenses
evolving over time-varying in terms of their impact, and complexity. Among the
techniques discussed in this chapter, FGSM is a low complex adversarial attack
compared to other techniques, but, requires large perturbation to achieve the
adversarial capability. On the other hand, CW attack is considered to be one of
the sophisticated adversarial attack with smaller perturbations.

In terms of defenses, adversarial training, though involves retraining of the ML,
is capable of defending against adversarial attacks to some extent. Though the
adversarial training, especially FGSM retrained classifier has shown robustness
to the adversarial attacks, it has some of the shortcoming in addition to what is
exposed in literature. Table 9.6 reports the classification accuracies for MNIST
Digits dataset showing the pitfalls of adversarial training based approach. Though,
FGSM retrained classifier is robust to adversarial attacks caused by MIM and
BIM based adversarial samples, it fails when the ε, that is if the perturbation is
increased rapidly, i.e., the magnitude of perturbations increase drastically. This can
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Table 9.6 Accuracies of
adversarial training

BIM MIM

ε = 0.6, ε = 0.9 ε = 0.7, ε = 0.7

εiter = 0.6 εiter = 0.6 εiter = 0.5 εiter = 0.7

FGSM 0.7345 0.4869 0.6013 0.7352

DF 0.3044 0.2568 0.2292 0.2564

JSMA 0.0063 0.0059 0.0064 0.0066

CW 0.3971 0.3412 0.308 0.3385

also be observed from Table 9.5. Similarly, the classifier trained with DF/JSM/CW
fails fatally when the number of iterations is increased with additional processing
capabilities. However, under certain scenarios such as maximum perturbations and
if attacker has more computational power, the FGSM based retraining still has to be
enhanced. As such the main pitfall of the adversarial training is its ineffectiveness to
the large perturbations and increased iteration based (optimized) advanced attacks.

9.5 Exercise Problems

Problem 9.1 Are the adversarial examples unique?

Problem 9.2 Is it possible to entirely harden a model against adversarial examples?

Problem 9.3 How can the intensity of adversarial attack be regulated at each one
of the attacks FGSM, BIM, MIM, C&W, PGD, and DeepFool?

Problem 9.4 For each one of the attacks FGSM, BIM, MIM, C&W, PGD, and
DeepFool two versions targeted and untargeted can be implemented. For a fixed
amount of perturbation, which one of these versions needs less amount of perturba-
tion?

Problem 9.5 What are the differences between FGSM and BIM from the magni-
tude of the used ε?

Problem 9.6 Explain how the used momentum in MIM prevents the abrupt change
in the obtained perturbation?

Problem 9.7 Explain the role of parameters C and k in the C&W attack.

Problem 9.8 What is the role of the parameter temperature (showed with T in
Fig. 9.3) in Defensive Distillation method?

Problem 9.9 Can we use autoencoder structure for generating adversarial exam-
ples? (hint: autoencoders cannot construct the input images perfectly and always
there are some degree of reconstruction error in the output of the autoencoders)
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Problem 9.10 There are plenty of frameworks written in Pytorch that have imple-
mented different adversarial attacks. From such frameworks FoolBox [330] and
AdverTorch [331] are the most popular ones. Having said that,

• Investigate the available functions for FGSM, BIM, MIM, and PGD in these
two frameworks. Apply each one of these attacks on MNIST and CIFAR10
dataset. Compare the fooling rate of each one of the attacks between these two
frameworks.

• In some cases, the implementations of frameworks are slightly different from
each other. In the first part, the fooling rate of each attack has been compared
between different frameworks. In this part, the quality of resulted adversarial
examples needed to be compared. Different metrics are available for measuring
the quality of an image, from such PSNR and SSIM are the most popular ones.
Repeat part one for comparing PSNR and SSIM of the resulted adversarial image.

Problem 9.11 In the mentioned attacks like FGSM, MIM, BIM, PGD, the scalar
parameter ε is used as a knob for adjusting the severity of adversarial perturbation,
i.e., the more the ε is the more severe perturbation obtains. How can we implement
multi-dimensional ε instead of a scalar? (hint: second-order adversarial attacks)

Problem 9.12 Perform the adversarial training of a 5-layer DNN using FGSM,
MIM, BIM, and CW attack data for MNIST dataset and evaluate the impact on
the samples generated through the JSMA. (Note: Parameters of the attacks can be
same as in Table 9.4)
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Machine Learning in the Field



Chapter 10
SensorNet: An Educational Neural
Network Framework for Low-Power
Multimodal Data Classification

10.1 Introduction

Time-series data is a generalized form of data that is gathered in different kinds
of domains from healthcare where one can track a patient’s vital signs (heart rate,
blood pressure), to fitness and wellness, where one can monitor a person’s activity,
to engines in cars and power plants using sensors. Modeling and classifying time
series thus has a wide range of applications. All these datasets are represented by
a time series that is univariate or multivariate depending on the number of sensor
modalities being measured. Multivariate (multimodal) signals are generated by dif-
ferent sensors, usually with different sampling frequencies such as accelerometers,
magnetometers, gyroscopes, and heart rate monitors.

Traditionally, time-series classification problems have been solved with
approaches such as Dynamic Time Warping (DTW) and k-nearest neighbor (k-
NN). These methods or a combination of them provide a benchmark for current
time-series classification research. Different signal processing techniques such as
feature extraction and classification are employed to process the data generated by
each sensor modality that: (1) can lead to a long design time, (2) requires expert
knowledge in designing the features, (3) requires new algorithm development and
implementation if new sensors are employed, which is tedious, (4) needs extensive
signal preprocessing, and (5) is unscalable for different real-time applications.

Deep convolutional neural networks (DCNN) have become extremely popular
over the last few years after their success during the Imagenet challenge. Supervised
CNNs are used to perform a large number of tasks such as object detection, image
segmentation and are combined with recurrent neural networks (RNN) to generate
captions for images as well as to recognize speech. Inspired by these developments,
deep networks are applied to classify time-series data, perform event detection, and
engineer features from the input data. However, these solutions encounter various
challenges such as low detection accuracy, high latency, large and power-hungry
architectures when deployed at Internet of Things (IoT) and wearable devices.
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Fig. 10.1 High-level diagram of the proposed SensorNet

In this chapter, SensorNet shown in Fig. 10.1 is proposed, which is a scalable
deep convolutional neural network (DCNN) designed to classify multimodal time-
series signals in embedded, resource-bounded settings that have strict power and
area budgets. SensorNet: (1) is scalable as it can process different types of time-
series data with a variety of input channels and sampling rates, (2) does not need to
employ separate signal processing techniques for processing the data generated by
each sensor modality, (3) does not require expert knowledge for extracting features
for each sensor data, (4) achieves very high detection accuracy for different case
studies, and (5) has a very efficient architecture that makes it suitable to be deployed
at low-power and resource-bounded embedded devices.

10.2 SensorNet Architecture

10.2.1 Deep Neural Networks Overview

Most deep neural networks consist of various layers including Convolutional, Fully
connected, Pooling, and Batch normalization layers, etc. Also, there are activation
functions such as Sigmoid, Tanh, and ReLU, which can be considered separate
layers. Among the neural network layers, fully connected and convolutional layers
are often the most highly utilized and contain the majority of the complexity in the
form of computation and memory requirements. A brief explanation about the most
commonly used layers, including their mathematical formulation and complexity
requirements in terms of computation and memory, is provided in the following
section.

Convolutional Layers

Convolutional layers are the core building block of a convolutional neural network.
The layers consist of learnable filters banks (sets), which have a small receptive field
that extends through the full depth of the input. During the forward pass, each filter
is convolved across the width and height of the input, computing the dot product



10.2 SensorNet Architecture 333

Fig. 10.2 (a) An example of convolving a 3 × 3 image by a 2 × 2 filter, (b) A hardware schematic
that demonstrates one single convolution operation

between the entries of the filter and the input and producing a feature map of that
filter. Feature maps for all filters along the depth dimension of the input data form
the full output of the convolution layer. Figure 10.2 shows convolution operation
for a 3 × 3 image by a 2 × 2 filter followed by an activation function. A hardware
schematic that demonstrates one single operation is also depicted. The convolutional
layers use a non-linear activation function that will be discussed later.

For a 1-D input XM,Cin of length M and with input channels Cin, a 1-D
convolutional layer with stride S, filter length F , weight WCout ,Cin,F , feature maps
Cout , an output signal YN,Cout with length N = 1 + �(M − F)/S�, and output
channels Cout , the output of a single element of a feature channel is computed by

Yi,j =
Cin∑

c=1

⎛

⎝
F∑

f=1

(
Xf+iS,cWj,c,f

)
⎞

⎠ f or i = 0..N − 1, j = 1..Cout . (10.1)

The total amount of memory requirements by the layer corresponds to the
number of weights for all of the filters, which is CoutCinF . The total computation
required for the layer is 2FCinCoutN .

Pooling Layers

Pooling layers are usually used immediately after convolutional layers and perform
dimensionality reduction. These layers are also referred to as downsampling layers.
What the pooling layers do is simplify the information in the output from the
convolutional layer. There are different pooling layers such as max-pooling and
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Fig. 10.3 Max-pooling and
average-pooling examples
with a 2 × 2 window and
stride = 2
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average-pooling. Max-pooling reduces the size of the image and and also helps
the network learn abstract features in the signal by maximizing the value across
the pooling window. The pooling layers are usually applied independently to each
input channel. Given a 1-D input XM,Cin of length M and with Cin input channels,
a 1-D pooling layer with stride S and pooling length P will produce an output
signal YN,Cin with length N = 1 + �(M − P)/S�. This layer does not require any
memory and significantly less computation compared to convolution layers because
it is applied independently to each input channel (Fig. 10.3).

Fully Connected Layers

The fully connected layer is a traditional Multi-Layer Perceptron (MLP) that
connects every neuron in the previous layer to every neuron on the next layer
(Fig. 10.4). Their activations can thus be computed with a matrix multiplication
followed by a bias offset.

The main issue with fully connected layers is that the layer requires a significant
amount of memory and computation complexity. Given a 1-D input XM of length
M , a fully connected layer with N neurons, weight WN,M , and a 1-D output YN
with length N , the output for a single neuron is computed by

Yj =
M∑

m=1

(
XmWj,m

)
f or j = 1...N. (10.2)

The total amount of memory required for the layer corresponds to the total
number of weights, NM , and the total computation is approximately 2MN .
Therefore, the memory and computation contribute equally in terms of complexity.
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Fig. 10.4 Fully connected
layer

Usually, after several convolutional and max-pooling layers, the high-level
reasoning in the neural network is performed through fully connected layers. Also,
a fully connected layer with softmax activation function is used in the output layer
for the final classification.

Activation Functions

In biologically inspired neural networks, the activation function is usually an
abstraction representing the rate of action potential firing of the cell. Activation
functions play an important role in the Artificial Neural Network to learn and make
sense of non-linear complex functional mappings between the inputs and response
variables and the ability to satisfy the profound universal approximation theorem.
Figure 10.5 shows some common activation functions used in the neural networks
including Rectified Linear Unit (ReLU), hyperbolic tangent (Tanh), and Sigmoid.
Convolutional and fully connected layers use non-linear activation functions.
Recently, the most common activation functions are ReLUs that have been shown
to provide better performance compared to others. A ReLU is represented with the
following function:

f (x) =
{
x x > 0

0 x ≤ 0.

In the ReLUs, the activation is linear when the output is positive and hence
does not suffer from a vanishing gradient problem. Also, ReLUs are very efficient
for hardware implementation because they require few logics and operations to
perform.
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Fig. 10.5 Some common activation functions used in neural networks

10.2.2 Signal Preprocessing

Consider a given time series that consists of M modalities/variables with the same
or different sampling frequency. Prior to training, each variable is independently
normalized using the l2 norm. To generate an image from the normalized variables,
a sliding window of sizeW and step size S is passed through all variables, creating
a set of images of shape 1 ×W ×M (single channel image). The label associated
with this image depends on the dataset. The datasets used to test the network in
this chapter contain a label for every time step. Since a single label is assigned to
each image, the label of the current time step is taken as the label of the image
(and the label that needs to be predicted subsequently while testing). A given image
generated at time step It has the prior states of each variable from (t −W + 1)...t .
Thus, the network can look back W prior states of each variable and, given the
current state of each variable, predicts the label.

10.2.3 Neural Network Architecture

Figure 10.6 shows SensorNet architecture. It consists of 5 convolutional layers, 1
fully connected, and a softmax layer that is equivalent in size to the number of class
labels (depending on the case study). In the preprocessing stage, SensorNet takes
the input time-series data and fuses them into images. Then, the images are passed
into the convolutional layers, and some features that are shared across multiple
modalities are generated using a set of local filters. Then, these features are fed
into the fully connected and the softmax layers. SensorNet architecture including a
number of layers, a number of filters, and filter shapes for each layer is chosen based
on an extensive hyperparameter optimization process that will be discussed in detail
in Sect. 10.4.
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Fig. 10.6 The proposed SensorNet architecture that consists of convolutional, fully connected
(dense), and softmax layers

The first, second, third, fourth, and fifth convolutional layers contain 32, 16, 16,
8, and 8 filter sets, respectively. The convolution filters have a height of eitherM or
1 because it is assumed that there are no spatial correlations between the variables.
Also, the ordering of variables prior to generating images does not affect the ability
of the network to perform classification. A filter of heightM or 1 remains unaffected
by the ordering of the variables. Therefore, the filter size for the first convolutional
layer isM × 5, whereM is the number of input modalities. For other layers, a filter
shape of 1 × 5 is chosen.

Max-pooling is applied thrice, once after the second convolutional layer, then
after the fourth convolutional layer, and the last one after the fifth convolutional
layer. A max-norm regularization of 1 is used to constrain the final activation output.
The pooling size for all max-pooling layers is 1×2. Once the convolution operations
have been performed, the image is flattened into a single vector so that a fully
connected layer can be added.

Two fully connected layers are employed in SensorNet, in which the first one
has a size of 64 nodes and the second one has a size equivalent to the number
of class labels with softmax activation. All the layers of the network have their
weights initialized from a normal distribution. A learning rate of 0.0001 is used to
train the network. Rectified Linear Unit (ReLU) is used as activation function for
all the layers. The network is trained using backpropagation and optimized using
RMSprop. Categorical cross-entropy is used as the loss function. Following is the
loss function:

L(yp, ya) = −1

N
∗
N∑

i=1

[yia log yip − (1 − yia) log(1 − yip)], (10.3)

where yp is the predicted label and ya is the expected label.
As shown in Algorithm 5, there are three main functions defined:

• Reshape: This function reshapes a given tensor into another form. We transform
a 2D matrix into a 3D tensor with the first axis as 1 representing a single channel.

• Forwardpass: It is a single complete processing of the input image to predict the
label (for the given dataset).
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Algorithm 5 Train SensorNet to predict labels (actions)
Input: The Network N as defined in Fig. 10.6. An input datasetD of size k (d1..dk) sampled from
various sensors with each point havingM attributes.
Output:Predict the class label li for a datapoint di
# Consider the training batch size to be b, the learning rate LR and reshape() changes the shape
of the tensor.
# W is the size of the sliding window.
# epochs is the number of epochs for which the model is trained.
# For categorical crossentropy refer to Eq.10.3
# xtrain is a list of images and ytrain has the expected labels.

for i ← W to D do # After reshape the tensor is of shape (1, W, M)
xitrain = reshape(di−W+1..di )
yitrain = li
# Train the model.

for e ← 1 to epochs do
for j ← 1 to �D

b
� do batch = xtrain[j ∗ b : (j + 1) ∗ b]

ypred = forwardpass(N, batch)
loss = L(ypred , ytrain[j ∗ b : (j + 1) ∗ b])
g = backwardpass(loss)
gradientupdate(g) return N

• Backwardpass: It computes the gradient of weights with respect to the loss
function (required to perform gradient descent).

• GradientUpdate: This function updates the weights using the gradient and
learning rate that is defined.

10.3 SensorNet Evaluation using Three Case Studies

SensorNet is evaluated using three real-world case studies including Physical
Activity Monitoring [332], stand-alone dual-mode Tongue Drive System (sdTDS)
[333], and Stress Detection [334] and in-depth analysis, and experimental results
are provided.

The information for all the case studies is shown in Table 10.1. As it can be seen
from the table, the sampling rates of the sensors for each case study are different
in the range of 1–100 Hz. Also, the sensors are placed in a variety of spots on
human body including Chest, Arm, Ankle, Head, and Hand Fingers. The number
of channels for each case study refers to the number of input time-series signals that
are received simultaneously by SensorNet. Physical Activity Monitoring, sdTDS,
and Stress Detection case studies can be considered to generate large, medium, and
small-size datasets.



10.3 SensorNet Evaluation using Three Case Studies 339

Table 10.1 Information for three different case studies including physical activity monitoring,
sdTDS, and stress detection

# of activity Sampling
Application labels Sensors position rate (Hz) # of subjects # of channels

Physical
activity

12 Chest and arm and
ankle

100 and 9 8 40

sdTDS 12 Headset 50 2 24

Stress
detection

4 Wrist and finger 8 and 1 20 7

For all the case studies, SensorNet is trained using Keras with the TensorFlow
as backend on an NVIDIA 1070 GPU with 1664 cores, 1050 MHz clock speed,
and 8 GB RAM. Models are trained in a fully supervised way, backpropagating the
gradients from the softmax layer through to the convolutional layers.

10.3.1 Case Study 1: Physical Activity Monitoring

Dataset

Physical Activity Monitoring dataset (PAMAP2) [332] records 12 physical activities
performed by 9 subjects. The physical activities are, for instance: “standing,”
“walking,” “lying,” and “sitting.” Three IMUs (inertial measurement units) and
one heart rate monitor are placed on chest, arm, and ankle to record the data. The
sampling frequency of the IMU sensors is 100 Hz, and the heart rate monitor sensor
has a sampling frequency of 9 Hz. In total, the dataset includes 52 channels of data,
but 40 channels are valid according to [332]. Also, out of 9 subjects, the data of 8
subjects are used, as subject 9 has a very small number of samples.

Experiment Setup and Results

SensorNet utilizes 5 convolutional layers, followed by 2 fully connected layers. The
First convolutional layer has 32 filter sets, and each filter size is 40 × 5. Other
convolutional layers have 16, 16, 8, and 8 filter sets with a size of 1 × 5. For
this experiment, 80%, 10%, and 10% of the entire data for each subject are chosen
randomly as the training, validation, and testing set, respectively. To determine the
number of required epochs for the training, we train SensorNet for 150 epochs and
plot validation and training loss and accuracy results. As is shown in Fig. 10.7, after
100 epochs, the validation loss and accuracy are stable and satisfactory. Therefore,
for all the experiments for this dataset, we train SensorNet with 100 epochs.
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Fig. 10.7 Error and accuracy
of the training and validation
sets for Physical Activity
Monitoring case study over
150 epochs. The vertical
dashed line indicates the
determined epoch

Fig. 10.8 Comparison of
SensorNet classification
accuracy for Physical
Activity Monitoring case
study. The results are for
different subjects with a
sliding window of size 64
samples and step size (SZ) of
1-16-32-64

After training SensorNet, we evaluate the trained model to determine the
detection accuracy. Figure 10.8 shows the classification accuracy of SensorNet for
the Physical Activity Monitoring case study for different subjects with a sliding
window of size 64 samples and step size of 1-16-32-64. As can be seen from the
figure, all subjects with step size 1 achieve a high detection accuracy. However, as
the step size increases from 1 to 64, the detection accuracy decreases. The average
accuracy of all subjects with step sizes of 1, 16, 32, and 64 are 98%, 94%, 93%, and
86%, respectively.
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10.3.2 Case Study 2: Stand-Alone Dual-Mode Tongue Drive
System (sdTDS)

sdTDS Overview and Experimental Setup

In [333], a stand-alone Tongue Drive System (sTDS) was proposed and developed,
which is a wireless wearable headset, and individuals with severe disabilities can
use it to potentially control their environments such as computer, smartphone, and
wheelchair using their voluntary tongue movements. In this chapter, in order to
expand the functionality of sTDS, a stand-alone dual-mode Tongue Drive System
(sdTDS) is introduced by adding head movements detection. Figure 10.9 shows
sdTDS prototype that includes a local processor, four magnetic and acceleration
sensors, a BLE transceiver, a battery, and a magnetic tracer that is glued to the
user’s tongue. Two magnetic and acceleration sensors are placed on each side of the
headset, and the processor is placed in a box at backside of the headset. The box is
also used for placing a battery, and its weight is around 0.14 lb. The box is designed
using 3D printing technology. In order to generate user-defined commands, the user
should move his/her tongue to 7 specific teeth or move his/her head to 5 different
directions. The raw data generated by 4 magnetometers and accelerometers are
transferred into an FPGA processor where the entire signal processing including
feature extraction and classification is performed by SensorNet and 12 different
user-defined commands can be generated.

Experiment Results

Several different datasets are captured using sdTDS for training and testing pur-
poses. sdTDS generates 24 channels of time-series data that corresponds to tongue
and head movements. As it was mentioned in Sect. 10.2.1, SensorNet utilizes 5

Fig. 10.9 sdTDS prototype placed on a headset that includes a FPGA, four acceleration and
magnetic sensors, a Bluetooth low-energy transceiver, a battery, and a magnetic tracer that is glued
to the user’s tongue
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convolutional layers, followed by 2 fully connected layers. For the sdTDS, the
first convolutional layer has 32 filter banks, and each filter size is 24 × 5. Other
convolutional layers have 16, 16, 8, and 8 filter banks with a size of 1 × 5.
For this experiment, 80%, 10%, and 10% of the entire data for each trivial are
chosen randomly as the training, validation, and testing sets, respectively. We train
SensorNet for 100 epochs.

After training SensorNet using sdTDS dataset, we evaluate the trained model
to determine the detection accuracy. Based on previous experiments, we train and
test the sdTDS with a sliding window of size 64 samples and a step size of 1,
as the step size of 1 gives better detection accuracy consistently. For sdTDS case
study, SensorNet detection accuracy for tongue and head movements detection is
approximately 96.2%.

10.3.3 Case Study 3: Stress Detection

Dataset

This database contains non-EEG physiological signals used to infer the neurological
status including physical stress, cognitive stress, emotional stress, and relaxation of
20 subjects. The dataset was collected using non-invasive wrist-worn biosensors.
A wrist-worn Affectiva collects electrodermal activity (EDA), temperature, and
acceleration (3D); and a Nonin 3150 wireless wristOx2 collects heart rate (HR)
and arterial oxygen level (SpO2) data [334]. Therefore, in total, the dataset includes
7 channels of data. The sampling frequency of wrist-worn Affectiva is 8 Hz, and
wristOx2 has a sampling frequency of 1 Hz.

Experiment Setup and Results

As it was discussed in Sect. 10.2.1, SensorNet utilizes 5 convolutional layers,
followed by 2 fully connected layers. The first convolutional layer has 32 filter
sets, and each filter size is 7 × 5. Other convolutional layers have 16, 16, 8, and
8 filter sets with a size of 1 × 5. Similar to Physical Activity Monitoring case
study, for this experiment, 80%, 10%, and 10% of the entire data for each subject
are chosen randomly as the training, validation, and testing set, respectively. To
determine the number of required epochs for the training, we train SensorNet for
150 epochs and plot validation and training loss and accuracy results. After 100
epochs, the validation loss and accuracy are stable and satisfactory. Therefore, for all
the experiments for this dataset, we train SensorNet with 100 epochs. Figure 10.10
shows the classification accuracy of SensorNet for Stress Detection case study for
20 different subjects. As is shown in the figure, most of the subjects have a high
detection accuracy of more than 90%. The average accuracy of all 20 subjects is
approximately 94%.
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Fig. 10.10 Comparison of
SensorNet classification
accuracy for Stress Detection
case study. The results are for
different subjects with a
sliding window of size 64
samples and a step size (SZ)
of 1-16-32-64

Df

Df
M

Convolution

Dp

Dp
N

Dk

Dk
M

Dk

Dk
M

N 
Filters 

Fig. 10.11 Traditional convolution layer with input shape of Df ×Df ×M and output shape of
Dp ×Dp ×N

10.4 SensorNet Optimization and Complexity Reduction

In the traditional convolution layer, if the input is of size Df ×Df ×M and N is
the number of filters applied to this input of size Dk ×Dk ×M , then the output of
this layer without zero-padding applied is of sizeDp×Dp×M . If the stride for the
convolution is S, then Dp is determined by the following equation:

Dp = Df −Dk
S

+ 1. (10.4)

In this layer, the filter convolves over the input by performing element-wise
multiplication and summing all the values. A very important note is that the depth
of the filter is always the same as the depth of the input given to this layer. The
computational cost for traditional convolution layer isM×D2

k×D2
p×N (Fig. 10.11).

The specified equations in Table 10.2 provide the number of parameters and
computations for one forward pass in terms of traditional convolution and fully con-
nected layers. For convolutional layers, the number of parameters and computations
is dependent upon the stride, which is determined by Eq. 10.4. The input to the fully
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Table 10.2 Parameter and
operations calculation for
convolution and fully
connected layers. Here, Df ,
Dk , Dp ,M , and N represent
input height/width, filter
height/width, output
height/width, the number of
input channels, and the
number of filters, respectively

Layers Convolution Fully connected

Input height Df Df

Input width Df 1

# input channels M 1

# filters N N

Filter height Dk

Filter width Dk

Output height Dp N

Output width Dp 1

# parameters (M ×D2
k ×N)+N (Df ×N)+N

# computations M ×D2
k ×D2

p ×N Df ×N

connected layer is flattened. Hence, it becomes a one-dimensional vector where the
computations depend on the number of filters or neurons.

In this section, the impact of changing the following parameters or configurations
on SensorNet performance is specifically explored: (1) the number of convolutional
layers, (2) the number of filters, (3) filter shapes, (4) input zero-padding, and (5)
activation functions.

10.4.1 The Number of Convolutional Layers

In this experiment, six SensorNet configurations with an increasing number of
convolutional layers for the three different case studies were compared. These
6 configurations are depicted in Fig. 10.12. The comparison has been made in
terms of detection accuracy, the number of convolutional operations, the number of
parameters (model weights), and memory requirements. Figure 10.13a, b, c and d
depict the impact of increasing the number of convolutional layers on the number
of model parameters and memory requirements. As is shown in the figures, by
increasing the number of convolutional layers, the number of model parameters
and memory requirements decrease, which is desired. The reason that three max-
pooling layers after the convolutional layers are used comes from the intuition that
by adding more convolutional layers the size of the time-series images shrinks
and the fully connected layer needs to process a less number of data and thus
requires less memory. Figure 10.13e shows the impact of increasing the number
of convolutional layers on detection accuracy. As seen from the figure, if the
neural network is too shallow, high-level features cannot be learned. Therefore, the
detection accuracy is low. However, the results show that, by increasing the number
of convolutional layers, detection accuracy increases but up to 5 convolutional
layers. After that, for Activity Monitoring and sdTDS case studies, the accuracy
improves slightly but for the Stress Detection reduces because the useful features
may be filtered out during the convolutional and max-pooling processes. Also,



10.4 SensorNet Optimization and Complexity Reduction 345

In
pu

t

C
O

N
F 

1 Conv
Mx5
32

Max
Pool
1x2

In
pu

t Conv
Mx5
32

Conv
1x5
16

Max
Pool
1x2

In
pu

t Conv
Mx5
32

Conv
1x5
16

Max
Pool
1x2

In
pu

t Conv
Mx5
32

Conv
1x5
16

Conv
1x5
8

Max
Pool
1x2

Conv
1x5
16

Max
Pool
1x2

Conv
1x5
16

Max
Pool
1x2

C
O

N
F

 2
C

O
N

F
 3

C
O

N
F

 4

La
be

l

Dense
64

Softmax
L

La
be

l

Dense
64

Softmax
L

La
be

l

Dense
64

Softmax
L

La
be

l

Dense
64

Softmax
L

In
pu

t

Conv
Mx5
32

Conv
1x5
16

Conv
1x5
8

Max
Pool
1x2

Conv
1x5
16

Max
Pool
1x2C

O
N

F
 5

La
be

l

Dense
64

Softmax
L

Conv
1x5
8

Max
Pool
1x2

In
pu

t

Conv
Mx5
32

Conv
1x5
16

Conv
1x5
8

Max
Pool
1x2

Conv
1x5
16

Max
Pool
1x2C

O
N

F
 6

La
be

l

Dense
64

Softmax
L

Conv
1x5
8

Conv
1x5
8

Max
Pool
1x2

P
KxK

Max-Pooling
Pooling size 

Conv
FxF
FM

Convolutional
Filter size 
Feature maps 

Dense
N

Dense
Neurons K

ey

softmax
L

softmax
Labels 

Fig. 10.12 Comparison of six different SensorNet configurations. M and L are the number of input
data channels and labels for different case studies, respectively

by adding additional convolutional layers, the number of operations to finish a
classification task increases slightly, which is shown in Fig. 10.13f. These analysis
results show that SensorNet with 5 convolutional layers is the best candidate with
regard to detection accuracy, the number of convolutional operations, and memory
requirements.

10.4.2 The Number of Filters

The number of filters (weights) is another important hyperparameter for implement-
ing SensorNet on low-power and resource-limited embedded devices because the
number of model weights affects the memory requirements and also the number
of required computations to finish a classification task. The number of required
computations has a direct effect on energy consumption. In this experiment, the
number of convolutional layers was fixed (5 layers), and the number of filters for
each layer is increased as shown in Fig. 10.14. The goal of this experiment is to
find the impact of the number of filters on the detection accuracy, the number of
convolutional operations, the number of parameters (model weights), and memory
requirements for Physical Activity Monitoring, sdTDS, and Stress Detection case
studies. Therefore, SensorNet is trained and tested using four different configura-
tions with a different number of filter sizes. Figure 10.15 shows a comparison of
the number of required parameters (model weights) for different trained models.
Model weights include the parameters for convolution, fully connected, and softmax
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Fig. 10.13 Impact of increasing the number of convolutional layers on memory requirements,
detection accuracy, and the number of operations of SensorNet, for three different applications

layers. As is shown in the figure, as the number of filters for each layer is increased,
the detection accuracy improves. However, the number of operations, memory
requirements, and the number of model parameters increase, which is not desired
for hardware implementation in a resource-limited embedded platform.

Based on the results, SensorNet with different filter sets achieves similar detec-
tion accuracies, but Set 4 needs a lower number of parameters and requires smaller
memory compared to other filter sets and therefore is chosen to be implemented on
hardware.
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Fig. 10.14 SensorNet configurations with four different filter sets. The number of filters for
convolutional layers is doubled for each filter set. M and L are the number of data channels and
labels for different case studies, respectively
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Fig. 10.15 Comparison of four different SensorNet configurations in terms of detection accuracy,
memory requirements, and the number of operations. By adding additional model weights to each
layer, the computation and memory grow dramatically with only modest improvement in detection
accuracy

10.4.3 Filter Shapes

Another important parameter for implementing SensorNet on low-power embedded
platforms is the filter shape. As it was explained in Sect. 10.2.1, the idea is to
generate some shared features across different input modalities. Therefore, the filters
with size M × 5, where M is the number of input modalities, are chosen, for the
first convolutional layer. For other convolutional layers, the filters are 1 × 5. By
employing this size of the filter without zero-padding, the outputs of the first layer
are 1-D vectors, and the following layers will also be 1-D vectors. This improves
the memory requirements on an embedded platform drastically because the feature
maps are 1-D signals that compared to an image are much smaller. Also, a smaller
number of model weights are needed as the dense layer takes 1-D vectors rather
than images. Furthermore, it reduces the number of operations, which directly
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Fig. 10.16 Comparison of
SensorNet detection accuracy
for four different filter shapes
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affects energy consumption of the framework when is implemented on an embedded
platform.

In this experiment, the filter shapes are changed for the first convolutional layer
to M × 5, 5 × 5, 3 × 3, and 1 × 5 for Physical Activity Monitoring, sdTDS, and
Stress Detection case studies. Based on the results, filter size ofM × 5 gives better
detection accuracy compared to 5 × 5, 3 × 3, and 1 × 5 filter sizes, as is shown in
Fig. 10.16. Also, another interesting finding is that, for the dataset with more number
of input channels, choosing M × 5 filter size gives better accuracy compared to
smaller datasets because the small-size filters can cover most of the input channels
in the smaller dataset but not in the dataset with many input channels.

10.4.4 Zero-Padding

In this experiment, the impact of input data zero-padding in the first convolutional
layer on detection accuracy is explored, for Physical Activity Monitoring, dTDS,
and Stress Detection case studies. Input zero-padding makes the output of the
convolutional layer to be similar or the same as the input to the layer. Based on
the results shown in Fig. 10.17, zero-padding the input data helps with accuracy,
although it increases the number of parameters and memory requirements. As it
can be seen from the figure, by applying the zero-padding, the detection Accuracy
increases by 4.6%, 3.4%, and 3.8% for Physical Activity Monitoring, sdTDS, and
Stress Detection case studies, respectively. However, the total memory requirements
and the number of operations are increased 9×, 40×, on average, which will affect
the power consumption negatively as well. Therefore, SensorNet without zero-
padding was implemented on the hardware.
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Fig. 10.17 Impact of zero-padding on SensorNet detection accuracy, memory requirements, and
the number of computations, for Physical Activity Monitoring, sdTDS, and Stress Detection case
studies

Fig. 10.18 Impact of
different activation functions
including Sigmoid, Tanh, and
ReLU in the fully connected
layer on SensorNet accuracy
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10.4.5 Activation Functions

In Sect. 10.2.1, it was mentioned that Rectified Linear Unit (ReLU) activation
functions are efficient because it requires few operations to perform. Therefore,
it reduces the hardware complexity on a hardware embedded setting. In all the
convolutional layers used in this chapter, ReLU is employed as the activation func-
tion. Typically, Sigmoid is used as the activation function for the fully connected
layer. However, Sigmoid introduces hardware complexity to the design that is not
desired. Thus, in this section, SensorNet detection accuracy by employing different
activation functions in the fully connected layer is explored. In this experiment,
the SensorNet for stand-alone dual-mode Tongue Drive System case study using
ReLU as the activation function for all the convolutional layers and using three
activation functions including Sigmoid, Tanh, and ReLU for the fully connected
layer was trained. The performance results in terms of training accuracy during 100
epochs are shown in Fig. 10.18. As it can be seen from the figure, SensorNet using
any of Sigmoid, Tanh, and ReLU activation functions achieves similar accuracies
eventually and using different activations functions does not affect what SensorNet
can learn. Therefore, ReLU is chosen as the activation function for all the layers
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Fig. 10.19 Block diagram of SensorNet hardware architecture that includes convolution, max-
pooling, and fully connected blocks and also a top-level state machine that controls all the blocks.
PE refers to convolution processing engine (PE)

because it has less hardware complexity compared to other activation functions and
achieves comparable training and testing accuracy.

10.5 SensorNet Hardware Architecture Design

Implementing hardware architecture for SensorNet faces several challenges such as
computational model implementation, efficient parallelism, and managing memory
transfers. Following are the objective for the hardware architecture design: con-
sumes minimal power, meets the latency requirement of an application, occupies
a small area, needs to be fully reconfigurable, and requires low memory. Also,
the design constraints require SensorNet hardware architecture to be reconfigurable
because different applications have different requirements. Parameters such as filter
shapes, the number of filters in the convolutional layers, sizes of the fully connected,
and softmax layers are configurable.

Figure 10.19 depicts SensorNet hardware architecture with implementation
details. This architecture is designed based on Algorithm 5 (Page 240) was depicted
and explained in Sect. 10.2.1. The main components of SensorNet on hardware
consist of the following:
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(a) Convolutional Performs convolutional layer operations. Also, this block
includes ReLU activation logic.

(b) Max-pooling Performs max-pooling operations.
(c) Fully connected Performs fully connected layer operations. The fully con-

nected block includes ReLU and softmax activation functions. ReLU will be used
as the activation for the first fully connected layer, and softmax will be used for
the last fully connected layer and will perform the classification task.

Figure 10.19a shows the convolution block. As is shown, the convolution block
contains one multiplier, one adder/subtractor, one cache for saving filters, input
feature maps and output feature maps, multiplexers, a few registers, and a state
machine block. When the convolution operations are done for all the input feature
maps, the output feature maps will be saved into the main feature map memory. The
input data coming from the sensors are 16-bit two’s complement. After performing
the convolution, the data will pass to ReLU activation function. The output of
ReLU is truncated to 16 bits and saved in feature map memory. Offline training is
performed to obtain model weights using Keras. The model weights are converted
into fixed-point format and are represented by 16 bits. The floating-point arithmetic
is complex and requires more area. Therefore, the use of fixed-point arithmetic will
avoid complex multipliers. Figure 10.19b shows the max-pool block that contains
some registers and a comparator. The input to the max-pool is feature maps data,
which is formed by a convolution block. After max-pooling operations finish, the
results will be saved into the main feature map memory. Figure 10.19c shows the
fully connected blocks. As is shown, the architecture consists of a serial dot product
engine, a dynamic sorting logic for the softmax activation function, ReLU logic, and
a state machine for controlling all sub-blocks. Depending on the layer, either ReLU
or softmax can be used. After finishing computations for the fully connected layers,
the results will be saved into the main feature memory.

10.5.1 Exploiting Efficient Parallelism

Scalability is one of the key features of the proposed SensorNet on hardware. There-
fore, SensorNet hardware architecture was designed to be configured to perform
convolution operations in parallel if it is needed, especially for fast applications. In
deep convolutional neural networks, convolutional layers dominate the computation
complexity and consequently affect the latency and throughput. Therefore, for the
applications with many input modalities or the applications that need to issue a
command very fast, efficient forms of parallelism that exist within convolutional
layers must be exploited. There are three main forms of parallelism methods that
can be employed in convolutional layers. The basic process for the three tiling
methods is shown in Fig. 10.20. The first method, referred to as input channel tiling,
convolves multiple input feature channels concurrently for a given feature map. The
second method, output channel tiling, performs convolution across multiple output
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Fig. 10.20 Comparison of different parallel tiling techniques for convolutional layers. Output
channel tiling has the least communication contention and inter-core dependency. (a) Input channel
tiling. (b) Output channel tiling. (c) Image patch tiling

channels for a given input channel simultaneously. The third method, referred to as
image patch tiling, breaks a given input feature channel into patches and performs
convolution on the patches concurrently. Usually, output channel tiling provides
the best form of parallelism when taking into account I/O memory bandwidth
and computational load using the computation to communication (CTC) ratio.
Therefore, output channel tiling due to minimal dependency among the parallel
cores and minimal communication contention is primarily used in SensorNet.

10.5.2 Hardware Performance Parameters

In practice, hardware performance is evaluated using several metrics, and the use
of specific metrics varies based on the application. However, the following are the
basic performance parameters that are taken into account for portraying the efficacy
of the hardware and to create a point of comparison among similar designs.

Latency In fundamental terms, latency relates to the delay in time due to the cause
and effect of some materialistic change in the system. From a hardware perspective,
latency is the time taken for a process to generate outputs from a given set of inputs.
It is calculated in units of time, i.e., hours, minutes, seconds, microseconds, etc.

Throughput Throughput is directly related to latency. In a practical sense, it is the
number of outputs generated per unit of time. For example, if a process is able to
execute 10 frames in a second, the throughput for that process will be 10 frames per
second. Additionally, it is the inverse of latency.

FPGA Performance The performance metric changes depending on the applica-
tion. However, for an FPGA, it is usually denoted as the number of operations
performed for a given frequency. Furthermore, there are two variants of this
performance, i.e., actual performance and peak performance. Actual performance
relates to the number of computations executed for the process latency, and the unit
is defined as giga operations per second (GOP/S), where the form of the equation is
the following:

Actualperf ormance = T otalNumberofComputation/Latency.
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Peak performance, on the other hand, depicts the maximum capability of the
hardware. For a hardware operating with n processing engines with the M number
of multiply-accumulate (MAC) units and a frequency of f, the peak performance is
given by

Peakperf ormance = 2 ∗ n ∗M ∗ f .

Energy Efficiency The performance of hardware is not always the standard metric
to compare among similar architectures. In this case, energy efficiency provides
additional insights regarding the performance of the hardware, where the power
consumed by the device is also taken into consideration. Energy efficiency for an
FPGA is given by

Energy Efficiency = Actual Performance / Total Power.

The unit is GOP/S/W where the total power is calculated in watts.

10.6 Resources

The CNN architecture explored in this chapter has been constructed based on several
tools and libraries. In this section, some of the tools have been categorized:

Numpy Library Numpy arrays are standard representations of numerical data in
relation to the Python language. Arrays of such structure ensure efficiency and
timing economy in terms of large computations. van der Walt et al. [335] introduce
the NumPy array and illustrate how to coordinate this with other libraries.

Pandas Library Pandas is a Python library designed to work with structured
datasets allowing ease of manipulation and computation of the data. The work
in [336] provides detailed design and features of Pandas that serve as a strong
complement to the existing Python stack.

TensorFlow TensorFlow is a machine learning module utilized in a variety of
environments depending on the application in focus. This maps the dataflow graph
neurons across many machines in a cluster including CPU, GPU, and TPU (Tensor
Processing Units). The flexible architecture of TensorFlow makes it suitable to be
deployed in training and inference tasks of deep neural networks. TensorFlow as a
large-scale machine learning tool was introduced and delineated in [337].

Keras API Keras is a deep learning API (Application Programming Interface)
written in Python. Keras allows the swift compilation of deep learning layers and
complements the machine learning platform of TensorFlow. The combination of
Keras API and TensorFlow ensures efficient low-level tensor operations, scaling
computation to many devices, and precise computing of the model gradients.
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Scikit-Learn Library This library provides modular representations of machine
learning algorithms for supervised and unsupervised learning. Along with packages
designated to efficiently implement deep learning models, Scikit-learn also allows
functions and building blocks designed for data structure manipulation. Pedregosa
et al. [338] give a walkthrough regarding the features, packages, and documentation
of the library to enhance ease of use, performance, and consistency.

Jupyter Notebook Jupyter notebook is an open-source software designed for inter-
active data science computing mainly across the Python programming language. It
started from the 2014 IPyhton project detailed in [339]. This was developed in the
open on GitHub and is a free-to-use platform for algorithmic processes.

10.7 Exercise Problems

Problem 10.1 Consider an input sequence of the following form:

A = [1, 0, 1, 0, 2, 0].

The input sequence A goes through a 1D max-pooling layer where the stride is of
size 2. If valid padding is applied, what will be the shape of the output sequence
after max-pooling?

Problem 10.2 Consider an input sequence of the following form:

A = [1, 2, 3, 4; 5, 6, 7, 8; 9, 10, 11, 12].

The input sequence A goes through a 2D max-pooling layer where the stride is of
size [2, 2]. If valid padding is applied, what will be the shape of the output sequence
after max-pooling?

Problem 10.3 Consider an input sequence of the following form:

A = [1, 0, 1; 0, 2, 0; 1, 0, 1].

The input sequence A goes through a 2D convolution layer containing a filter B of
the form:

B = [1, 0; 2, 2].

What will be the output sequence after convolution?

Problem 10.4 Consider the same input sequence and filter in Problem 10.1. The
input sequence A goes through a 2D max-pooling layer having a stride B of the
form:
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B = [2, 2].

What will be the output sequence after max-pooling?

Problem 10.5 Consider an input sequence of the following form:

A = [1, 5, 7, 13, 10].

This input vector is connected to a fully connected layer with 2 filters. The filter
weight values are the following:

A = [9, 1, 0, 0.1, 1; 3, 0.5, 0.6, 0.3, 1].

What will be the output sequence after the fully connected operation?

Problem 10.6 Suppose a program is training a deep neural network architecture
in a CPU at a frequency of 1.5GHz. One pass over the whole training set takes 2
minutes in general. If there is no other dependency on the execution of the program,
then approximately how long it will take for the program to complete 100 iterations
over the training set?

Problem 10.7 An input vector contains 12 elements. You are asked to create
overlapping window frames from this vector where each frame will contain 3
elements. The overlap corresponds to a step size of 1. How many frames will be
generated?

Problem 10.8 For the same vector in Problem 10.7, non-overlapping window
frames are created where each frame contains 2 elements. How many frames are
generated by this process?

Problem 10.9 A raw sensor data sequence contains 1000 entries in total, which is
collected via a device that operates at a frequency of 100Hz. You need to create non-
overlapping window frames from this sequence where size of the frame is denoted
by the sampling frequency. How many frames will be created?

Problem 10.10 Consider a deep neural network architecture that consists of one
2D convolution layer, one 2D max-pooling layer, and a fully connected layer,
respectively. The input resolution is of shape 10 × 10. The numbers of filters for
convolution and fully connected layers are 3 and 20, respectively. The convolution
layer is implemented without zero-padding and with a stride of 1. If the convolution
filter and the max-pooling layer have a window of shape [2, 2], what is the total
number of parameters for the whole architecture?

Problem 10.11 Use the same deep neural network framework from Problem 10.10
and calculate the number of computations for the network?

Problem 10.12 A convolution layer processes an array of shape [10, 10, 1] and
produces an output of shape [5, 5, 3]. If the shape of the convolution filter is [2, 2],
what is the stride and the number of filters for the convolution?
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Problem 10.13 Consider a hardware that has a frequency of 10 MHz. It executes
a program in 10 seconds that has 109 computations. If the hardware has only one
processing engine consisting of one MAC unit, what is the actual performance of
the hardware?

Problem 10.14 For the same hardware as in Problem 10.13, consider that now it
has 2 processing engines. If there is no dependency between the processing engines
and no additional latency due to the inclusion of another processing engine, what
will be the new latency?

Problem 10.15 For the same hardware as in Problem 10.13, the static power for
the device is 90 mW, and the dynamic power consumption for the process is 150
mW. What will be the energy efficiency for the design?

Problem 10.16 Loading the Dataset
Download the dataset (PAMAP2) for the physical activity case study from this link
https://archive.ics.uci.edu/ml/datasets/PAMAP2+Physical+Activity+Monitoring.

Read in the dataset as .numpy files or in pandas dataframe and report the
following:

(1) The number of samples for each subject.
(2) Perform normalization of the data for each subject.

Problem 10.17 Creating the Window Frames
One of the fundamental steps of preparing the time-series dataset for inference is to
create windows from the stream of data as described in Sect. 10.2.2. Build a function
that employs striding to create window images from the datasets while taking into
account of the sampling frequency of the sensors.

Problem 10.18 Generating One-Hot Encoded Labels
In deep neural networks involving activity classification, the loss function used
is most often categorical cross-entropy. In order to use this loss function, the
labels themselves must be categorized. One-hot encoding is one such way to create
categorical labels. Build a function that can take in any stream of labeled data and
generate one-hot vectors from it.

Problem 10.19 Obtaining Customized Training, Validation, and Test Sets
Usually, the input data fed to the model is segmented into training, validation, and
test sets for convenience of functionality. Create a function that can read in the whole
data stream and create segments of 70% training, 10% validation, and 20% test sets.

Problem 10.20 Building the Model
The SensorNet architecture is illustrated in Fig. 10.6. Using the Keras libraries,
perform the following:

(1) Build the SensorNet model with the number of filters and parameters defined as
in Sect. 10.2.3.

(2) Summarize the model architecture in terms of parameters.
(3) Find out the total number of computations for the architecture generated in (1).

https://archive.ics.uci.edu/ml/datasets/PAMAP2+Physical+Activity+Monitoring
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Problem 10.21 Compiling the Model
Use the model built in Problem 10.5 and change the activation functions to
tanh. Now, compile the model with 32 batch size, “Adam” optimizer, “categori-
cal_crossentropy” loss, and “accuracy” as the metric for 150 epochs.

Problem 10.22 Consider an input sequence of the following form:

A = [1, 0, 1, 0, 2, 0].

The input sequence A goes through a 1D convolution layer containing a filter B of
the form:

B = [0, 1].

What will be the output sequence after convolution?

Problem 10.23 Suppose you are given raw data coming from a sensor with a
sampling frequency of 100Hz. You are required to make window frames that are
5 seconds long, how many samples will the frames contain?

Problem 10.24 Consider a neural network containing a 2D convolution layer
followed by a fully connected layer. If the input is of shape 16 × 16, where the
convolution layer has 5 filters of shape 3× 3 and the dense layer consists of 10
filters, count the total number of parameters? (Hint: Use Table 10.2.)

Problem 10.25 Let us consider a hardware that has a frequency of 10 MHz. It
executes a program in 10 seconds that has 109 computations. If the hardware
has only one processing engine consisting of one MAC unit, what is the peak
performance of the hardware?



Chapter 11
Transfer Learning in Mobile Health

11.1 Introduction

The rapid integration of wearable sensor technologies, along with advanced compu-
tational algorithms, has created a unique opportunity for ubiquitous and objective
monitoring applications that impact virtually every aspect of modern life. A popular
area with great potential to improve people’s quality of life is mobile health
applications on a daily basis, such as remote health monitoring [340, 341], long-
term fitness tracking [342, 343], and fall detection [344]. A core task to support
these applications is activity recognition with the use of machine learning techniques
[345]. However, the scalability of sensor-based activity recognition systems for
everyday living scenarios is challenging, mainly due to the following reasons:

• Cross-user variations. Machine learning models trained with sensor data col-
lected in a lab setting do not necessarily represent the movement patterns of an
unknown user. As you will see in this chapter, the performance of an activity
recognition algorithm drops up to 63.7% when the system is adopted by a new
user.

• Spatial uncertainty. Spatial uncertainty refers to “hardware-induced uncertainty”
and/or “software-induced uncertainty” across two sensing platforms. The former
includes any cross-platform changes due to variations in hardware, and the
latter includes differences in software configurations of the devices. Experiments
presented in this chapter show a 60.3% accuracy decline when an activity
recognition model trained on one smartwatch is used to detect activities observed
using another smartwatch of a different model.

• Dependency on labeled training data. Traditional machine learning algorithms
rely on large amounts of labeled training data to obtain reliable models. However,
manually annotating sensor data is an expensive process, and it has been
identified as a major barrier to personalized motion analysis [346]. Therefore,
it is infeasible to label sensor data in every new setting.
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The popularization of personal mobile devices has brought in new challenges
with respect to generalizability of activity recognition algorithms, mainly because
of the spatial uncertainty among various consumer platforms [347]. Consider a
practical scenario, where the user replaces or upgrades an old mobile device (e.g.,
smartphone) with a new one of the same or different model. The user intends
to maintain the usability of a motion analysis application installed on the old
device, which has a well-trained and accurate activity recognition model for motion
analysis. However, the user prefers not to provide additional manual annotations for
model re-training on the new device.

It is well-known that the performance of an activity recognition model running on
a new device is adversely impacted due to spatial uncertainties, such as sensor biases
in low-quality modules, varying sampling frequencies, and the instability of the
sampling rate [347]. In particular, the performance decline in F1-score is 34.4% on
average for an activity recognition model, when the training dataset was resembled
data samples gathered by one smartphone, whereas the test dataset was constructed
using another smartphone of a different model (e.g., Samsung Galaxy S3 versus
LG Nexus). Figure 11.1 shows an example where the acceleration signals of one
subject’s walking behavior gathered by two smartphones exhibit different patterns.
Such divergence in sensor readouts propagates through the data processing pipeline
and leads to a significant accuracy decline in the performance of the machine
learning models.

This chapter aims to use transfer learning as a new means for the autonomous
development of machine learning models in new settings without collecting any

Fig. 11.1 Sensor readings collected from the same subject using two smartphones of different
models
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labeled data for re-training. To this end, the chapter focuses on introducing an
asynchronous knowledge transfer framework, referred to as TransFall, to overcome
the challenges caused by individual variations and spatial uncertainties for activity
recognition, meanwhile, reducing the dependency on the labeled training data. The
framework design follows a waterfall-like structure that starts with a two-tier data
transformation layer based on marginal distribution matching approaches, followed
by a label estimation layer using the kernel method encoded in a weighted least-
mean-squares fitting, and ends with a model generation layer using the obtained
label set from the previous steps of the transfer learning framework.

11.2 Transfer Learning

The goal in transfer learning is to extend the knowledge from a known domain (e.g.,
old sensor device, previous user), often referred to as source, to an unknown domain
(e.g., new sensor device, new user), referred to as target.

Teacher/learner architecture is a widely used technique when there is no direct
access to the training data in the target domain. Instead, a machine learning model
trained on the source domain operates simultaneously with the target learner for
label inference [348]. Several variations of the teacher/learner architecture have
been developed to perform activity recognition using transfer learning [349]. One
study [350] introduced a system-supervised learning approach to send activity
labels from the teacher sensor to the learner sensor so that the learner could develop
a new model with its own measurements combined with the activity labels received
from the source domain. One limitation of such a teacher/learner based approach
is the requirement of simultaneous data collection between the teacher and the
learner. Furthermore, the activity recognition accuracy of the learner is bounded
by the performance of the teacher [348].

Another well-adopted strategy in transfer learning for activity recognition is
cluster mapping. In this method, an unsupervised clustering algorithm is first
applied to the target data, followed by inferring the corresponding labels of target
clusters using the source data through certain similarity measures. Authors in [351]
introduced a framework named transELMAR, which utilized a one-step k-means
clustering algorithm in conjunction with the extreme learning machine model for
cross-mobile activity recognition. This approach attempted to mitigate the adverse
impact of different sampling frequencies between the source and the target sensor
devices. Another study [352] proposed a cross-subject transfer learning algorithm.
It first detected communities on the target dataset using cosine similarity and
a threshold learned from the source dataset and then inferred label information
through a bipartite mapping between the clusters on the target and the classes on
the source. Finally, an adaptive label fusion method was performed on the obtained
labels, as well as a separate label set generated by classifiers trained with the source
dataset, to create a labeled dataset for the target.
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Instead of mapping detection from a label/cluster perspective, another popular
approach for label inference across different domains is to reduce the overall dis-
crepancy between the source and the target datasets. Authors in [353] introduced an
adaptive approach called importance-weighted least-squares probabilistic classifier
(IWLSPC), to overcome the divergence in data distributions across different subjects
for activity recognition. IWLSPC combines a least-squares probabilistic model
with a sample re-weighting approach, to handle the changes in data distribution
between the source and the target datasets. The experimental results demonstrated
that IWLSPC achieved the lowest mean mis-classification rate compared to other
semi-supervised learning methods.

TransFall employs a similar structure to that of IWLSPC, which utilizes a
sample re-weighting technique to transfer the knowledge of activity labels from the
source domain to the target domain. However, TransFall performs a two-tier data
transformation on both datasets to empirically match the distributions of the two
datasets for more accurate label estimation.

Example 11.1 (Transfer Learning)
Problem: Consider you intend to use a public dataset that contains 10
participants’ biosignal data and activity labels to perform activity recognition
on yourself while you are collecting biosignal data using wearable device that
is different from the one the public dataset used. Is this scenario regarded as
transfer learning? If yes, point out source domain and target domain.
Solution: Yes this is a transfer learning problem. Transfer learning aims to
extend the knowledge from a known domain to an unknown domain. In this
scenario, the known domain (source domain) is the public dataset that is
labeled and the unknown domain (target domain) is the newly collected data
without label.

11.3 Problem Statement

Let us refer to the transfer learning problem addressed in this chapter as Asyn-
chronous Transfer Learning (ATL). This section first gives a formal definition of
the ATL problem. You will see that this problem can be broken down into two
subproblems. This section will also present formulations for these sub-problems.
The section concludes by proposing a cascaded transfer learning approach to solve
these optimization problems.

The sensing platform used to gather a labeled dataset is referred to as the “source”
(S), and the other platform used to collect unlabeled data samples is referred to as
the “target” (T ). In the case of the device replacement or upgrade, data collection on
the two devices usually does not occur simultaneously. Therefore, the assumption
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of synchronous data collection between the source device and the target device,
which is commonly used in teacher/learner based architectures, cannot hold under
this scenario.

11.3.1 Problem Definition

A data sample x ∈ Rd is a d-dimensional feature vector extracted from sensor
signals, where the ith column variable xi corresponds to the feature fi ∈ F . Each
data sample x ∈ X is presumed to be drawn from a marginal probability distribution
P(x).

In addition to the data samples, the activity recognition task also involves a label
space Y associated with L unique activities. The conditional probability distribution
P(y|x) refers to the likelihood of assigning a label y ∈ {a1, . . . , aL} to the observed
data sample x. A general assumption adopted in many relevant studies is that the
conditional probability distribution P(y|x) remains unchanged for the two datasets,
although the marginal distribution of the source dataset differs from that of the target
dataset.

The goal of this problem is to perform accurate activity recognition on the target
platform, by transforming the knowledge of a labeled dataset gathered by the source
platform, without additional ground truth labels for model retraining.

Asynchronous Transfer Learning (ATL) Let Xs be a set of Ns data samples
collected on the source platform S , where xs ∈ Xs is a d-dimensional variable
drawn from the marginal distribution Ps(x); the corresponding label set Ys is
associated to L unique user activities. Furthermore, let Xt be another set of Nt
data samples collected asynchronously on the target platform T , where Nt is not
necessarily equal to Ns , and xt ∈ Xt is drawn from the marginal distribution
Pt (x). The same set of activities are observed in Xt . The objective of this problem
is to develop an activity recognition model M : X �→ Y , capable of accurately
estimating the corresponding labels for the data samples collected on T .

11.3.2 Problem Formulation

We can tackle the ATL problem described above through two subproblems including
data transformation and label estimation. Here we define each subproblem and
formulate them as optimization problems.

With changes on the sensing platform, there is presumed to be a distribution shift
in the covariates x between the source datasetXs and the target datasetXt , resulting
in Ps(x) 
= Pt (x). Therefore, the first task to solve the ATL problem is to address
the covariate shift through a data transformation process.
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Data Transformation Let x ∈ Rd be a d-dimensional variable, and the ith column
variable xi corresponds to the feature fi ∈ F . The source dataset Xs is drawn from
a marginal distribution Ps(x), x ∈ Xs , whereas the target dataset Xt is drawn from
a marginal distribution Pt(x), x ∈ Xt and Ps(x) 
= Pt (x). The objective of data
transformation is to find a mapping function φ : P �→ P that transforms Pt (x) to
P̃t (x) such that P̃t (x) � Ps(x).

To minimize the discrepancy between Ps(x) and Pt(x) through a mapping
function φ, the problem described above can be formulated as follows:

Minimize
φ

∫

x

|Ps(x)− φ(Pt (x))|dx . (11.1)

After data transformation, the second task in solving the aforementioned ATL
problem is to estimate the corresponding labels for the target dataset, Xt . This is
an important task for constructing an accurate model on T , because it provides the
ground truth information necessary for classification purposes.

Label Estimation Let Xt be a dataset consisting of Nt data samples collected on
T . The dataset Xt contains observations associated with L unique activities. A set
of labels {a1, . . . , aL} ∈ Y are used to represent each activity exclusively. The
objective of this problem is to find a classification model f : X �→ Y , which can
assign a label ŷi ∈ {a1, . . . , aL} for the data sample xi ∈ Xt with minimal mistakes.

To minimize the overall classification error between the true label yi and the
estimated result ŷi for all xi ∈ Xt , this problem can be formulated as follows:

Minimize
f

Nt∑

i=1

|yi − f (xi)| . (11.2)

11.4 TransFall Framework Design

Figure 11.2 shows a waterfall-like structure that addresses the problem of asyn-
chronous transfer learning by integrating the two subproblems discussed previously.
Throughout this chapter we refer to this proposed approach as TransFall.

TransFall is composed of four computational modules. The first module performs
data transformation on column variables along the vertical direction. The second
module further transforms the marginal distribution of the covariates along the
horizontal direction. These two modules form a two-tier data transformation layer
to solve data transformation problem.

The transformed dataset and the obtained weight parameters are passed into the
third module for label estimation, by encoding the kernel methods into a weighted
least-mean-squares fitting problem to reliably estimate labels as required by label
estimation problem. Finally, with the estimated label set Ŷt for Xt , TransFall can
accomplish the goal discussed in ATL Problem by training a classification model



11.4 TransFall Framework Design 365

Fig. 11.2 TransFall: a sequential transfer learning design for activity recognition

in a supervised manner to conduct activity recognition on future sensor data in the
target platform.

The two-tier data transformation approach in TransFall performs marginal
distribution matching through two modules, namely vertical transformation and
horizontal transformation. The output of data transformation is fed into the label
estimation module, which utilizes a weighted least-mean-squares fitting and kernel
methods to label the target data with respect to the source data. Generating a
model using labeled training data is a straightforward machine learning task that
is eliminated for brevity.

11.4.1 Vertical Transformation

The vertical transformation module aims to match the marginal distributions of
individual column variables between Xs and Xt . This goal is accomplished using a
naive Bayes approximation approach and a linear transformation.

Due to the nature of multidimensionality in the data sample x ∈ Rd , the
marginal distribution P(x) can be determined by a joint probability distribution
P(x1, . . . , xd). The raw signals collected with a sensing platform are converted
into vector objects in the feature extraction phase. This process can be viewed as
applying a projection of the input signals onto a designated feature space F [354].
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Each feature fi ∈ F is computed independently, and hence, we can use naive Bayes
approximation to factorize the joint probability distribution (Eq. (11.3)), where the
ith column variable in data sample x corresponds to feature fi :

P(x) = P(x1, . . . , xd) =
d∏

i=1

P(xi). (11.3)

Therefore, the optimization problem presented in (11.1) can be rephrased as
the summation of d subordinate optimization problems for d column variables,
as shown below, where φi ∈ Φ is a mapping function that converts the original
probability distribution of a one-dimensional variable into a different distribution:

Minimize
Φ

d∑

i=1

∫

xi

|Ps(xi)− φi(Pt (xi))|dxi. (11.4)

In practice, however, the true distribution of a random variable is unattainable,
and hence the normal distribution is commonly adopted to approximate the marginal
distribution of sensor data in activity recognition applications. As a result, each
column variable xi is assumed to be drawn from a normal distribution with mean
μi and variance σ 2

i , denoted as xi ∼ N (μi, σ 2
i ). These two parameters can be

empirically computed as follows:

μi := 1

N

N∑

j=1

xij (11.5)

σ 2
i := 1

N

N∑

j=1

(xij − μi)2. (11.6)

To minimize the difference of the empirical means and variances between column
variables in Xs and Xt , we perform a linear transformation on each dimension i ∈
[1, d] in Xt with respect to Xs , as shown in Algorithm 6.

The output of the vertical transformation module is the transformed target dataset
X̃t , where x̃ti ∼ N (μsi , σ si

2) for each i ∈ [1, d]. It is worth mentioning that
this module can be potentially used in conjunction with standard machine learning
algorithms to provide an additional layer of data transformation by replacing the
original target dataset, Xt , with the transformed dataset, X̃t .
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Algorithm 6 Vertical transformation
Input: Xs ∈ Rd×Ns and Xt ∈ Rd×Nt
Output: X̃t
Initialize a d × d matrixW
Initialize a d × 1 vector b

for dimension i ∈ [1, d] do
Compute μsi and σ si of Xsi
Compute μti and σ ti of Xti
Solve bi and wi for (bi + wixti ) ∼ N (μsi , σ si 2)

Wii = wi
bi = bi

end
X̃t = bI +WXt

Example 11.2 (Vertical Transformation)
Problem: Consider the ith column in Xs and Xt :

xsi = {−2, 4, 2, 1, 0}
xti = {−7, 4, 0,−4, 2}

Obtain wi and bi .
Solution: To find wi and bi , we have

μsi = 1,σ si = 2

μti = −1,σ ti = 4

wi and bi are calculated as follows:

xti − μti
σ ti

= xsi − μsi
σ si

xti + 1

4
= xsi − 1

2
1

2
xti + 3

2
= xsi ∼ N(μsi , σ si )

wi = 1

2
, bi = 3

2
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11.4.2 Horizontal Transformation

The horizontal transformation module aims to further reduce the discrepancies in
multivariate variables (e.g., row vectors) between Xs and X̃t using an importance
sampling technique.

A number of studies [355, 356] have utilized the importance sampling method
in the context of covariate shift. This technique aims to solve the covariate shift
problem by finding a weight factor β for Xs . The approach assigns a higher weight
to those source data samples that are more representative of the target dataset. To
this end, Eq. (11.1) in data transformation problem can be revised as follows:

Minimize
β

∫

x

|β(x)Ps(x)− Pt (x)|dx . (11.7)

However, as discussed previously, the real probability distributions Ps(x) and
Pt (x) are unknown in practice. To address this limitation, we can use a kernel-
based algorithm such as empirical Kernel Mean Matching (eKMM) [354] to find the
optimal weight factor β with the use of Reproducing Kernel Hilbert Space (RKHS)
technique.

Let Φ : X �→ F be a function that maps a vector variable X into a feature space
F . The output of the eKMM algorithm is the optimal weight factor β, which can
minimize the distance between the empirical means of Xs and X̃t on the feature
space F , as shown in the following equations:

Minimize
β

∥
∥
∥
∥
∥
∥

1

Ns

Ns∑

i=1

βiΦ(x
s
i )−

1

Nt

Nt∑

j=1

Φ(xtj )

∥
∥
∥
∥
∥
∥

2

Subject to βi ≥ 0, i ∈ [1, Nt ]
∣
∣
∣
∣
∣

1

Nt

Nt∑

i=1

βi − 1

∣
∣
∣
∣
∣
≤ ε.

(11.8)

The first constraint in (11.8) refers to the non-negative property of probability
and the second constraint guarantees that the re-weighted distribution β(x)Ps(x) is
close to a valid probability distribution that can sum to 1 [354].

In this chapter, we use RKHS technique to solve the optimization problem
in (11.8) based on an important property described below [357].

Proposition 11.1 Given a positive definite kernel k over a vector space X , we can
find a Hilbert space H and a mapping function Φ : X �→ H, such that

k(xi, xj ) = 〈Φ(xi),Φ(xj )〉H,

where xi, xj ∈ X .
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Therefore, with the use of a kernel function that is positive definite on Euclidean
space Rd , the optimization problem in (11.8) can be solved without explicitly
defining the mapping function Φ. For this purpose, we use Gaussian kernel as
follows:

k(xi, xj ) = exp −‖xi − xj‖2

2σ 2
.

Therefore, the objective function in (11.8) can be rephrased as shown in (11.9):

Minimize
β

1

2
β�Kβ − κᵀβ, (11.9)

where the kernel matrix K and the kernel expansion κ are given by:

Kij := k(xsi , xsj )

κi := Ns

Nt

Nt∑

j=1

k(xsi , x
t
j ).

(11.10)

As a result, the optimal β can be determined by solving (11.9) with the
constraints listed in (11.8) using quadratic programming. Similar to the vertical
transformation module, the horizontal transformation module also has the potential
to be coupled with existing machine learning algorithms that support the sample
re-weighting.

Example 11.3 (Horizontal Transformation)
Problem: Consider Xi and Xj :

xi = {−2, 1, 4, 0.2, 0}
xj = {−1, 0, 2, 0.5, 1}

Given σ = 0.3, determine k(xi, xj ).
Solution: In order to obtain k(xi, xj ), one can use Gaussian kernel function
as below:

k
(
xi, xj

) = e− ‖xi−xj ‖2

2σ2

= e− 2.662

2×0.32 = 8.5 × 10−18
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11.4.3 Label Estimation

Given the transformed target dataset X̃t and the weight factor β, which approximates
the distribution of X̃t using the source dataset Xs , the label estimation module
intends to estimate the label set Ŷt for X̃t in preparation for training an activity
recognition model for the target platform using {Xt, Ŷt }, as described in label
estimation problem.

We note that the ordering of the data samples in Xt and X̃t are identical because
the vertical transformation module only works on the column variables of Xt rather
than the rows. Therefore, the label set Ŷt estimated for X̃t can be directly used to
label the original target dataset Xt .

The optimal solution f for (11.2) should minimize the overall estimation errors
between f (xi) and yi for all xi ∈ X̃t . However, the true label yi ∈ Yt is unknown
for the target dataset. To leverage the label information of the source dataset, we
rewrite the equation in (11.2) using Xs , by encoding the weight factor β in the
objective function as follows:

Minimize
f

Ns∑

i=1

|yi − β(xi)f (xi)|,

where xi ∈ Xs .
We rewrite this optimization problem using a weighted least-mean-squares

(LMS) fitting technique with a 2-norm regularization term as shown below. The
LMS technique is a popular approach for parameter estimation in linear models
[354, 358].

Minimize
f

Ns∑

i=1

βi(y
s
i − f (xsi ))2 + λ‖f ‖2. (11.11)

However, the optimal function f in (11.11) is not necessarily a linear model.
Therefore, we convert (11.11) into a new form using a linear model, based on the
representer theorem described below [359].

Proposition 11.2 Given a kernel k and the corresponding RKHS H, for a function
L : Rn �→ R and a non-decreasing function Ω : R �→ R, if the optimization
problem can be expressed as:

Minimize
f∈H

L(f (x1), . . . , f (xn))+Ω(‖f ‖2
H),

then the optimal solution can be expressed as:
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f ∗ =
n∑

i=1

αik(xi, ·),

Furthermore, if Ω is strictly increasing, all solutions have this form.

Utilizing this theorem, Eq. (11.11) can be rewritten as follows:

Minimize
α

Ns∑

i=1

βi

⎛

⎝ysi −
Ns∑

j=1

αjk(x
s
j , x

s
i )

⎞

⎠

2

+ λ
∥
∥
∥
∥
∥
∥

Ns∑

j=1

αjk(x
s
j , ·)

∥
∥
∥
∥
∥
∥

2

,

which can be written (after extension) as shown in (11.12):

Minimize
α

(Ys −Kα)�β(Ys −Kα)+ λα�Kα, (11.12)

whereK represents the kernel matrix defined in (11.10), and β is aNs×Ns diagonal
matrix of β. If K and β are full rank matrices, the optimal solution for α can be
directly derived using the following equation [354]:

α = (λβ−1 +K)−1Ys. (11.13)

Because the label set in activity recognition often contains multiple activity
classes, we use a one-to-all approach for label estimation, by first solving L optimal
linear models αm for all activity labels, and then combining L corresponding
estimations of the data sample xti ∈ X̃t , to make the final prediction.

ŷti = argmax
m

Ns∑

j=1

αmj k(x
s
j , x

t
i ). (11.14)

After obtaining the label set Ŷt , the last step to solve the ATL problem described
earlier is to train an activity recognition model on the target platform. Given the
training set {Xt, Ŷt }, a variety of classification algorithms can be used to accomplish
this task in a supervised manner, and hence the last module, model generation, is not
the focus of our framework design.

Example 11.4 (Label Estimation)
Problem: Consider two row vectors in source domain x1 and x2:

x1 = {0.2, 0, 1}

(continued)
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Example 11.4 (continued)
x2 = {0.3,−1, 0.8}
y = {1, 2}
β = {0.5, 1}

Given λ = 0.001, σ = 0.3, determine α.
Solution: According to (11.14), α is obtained as follows:

α =
(
λβ̄−1 +K

)−1
Ys

=
(

0.001 ×
[

0.5 0
0 1

]−1

+
[
k(x1, x1) k(x1, x2)

k(x2, x1) k(x2, x2)

])−1 [
1
2

]

=
([

0.002 0
0 0.001

]

+
[

0 0.003
0.003 0

])−1 [
1
2

]

=
[

714
−143

]

(11.15)

11.5 Validation Approach

We conducted experiments on three publicly available datasets [347, 360], as shown
in Table 11.1. We designed two tasks, label estimation and activity recognition, to
evaluate the performance of TransFall in three scenarios including cross-platform,
cross-subject, and hybrid. The cross-platform scenario was further separated into
four sub-scenarios, regard to different settings of the source and the target for
knowledge transfer.

In this chapter, we will use the notations shown in Table 11.1 to refer to various
datasets, transfer learning scenarios, and comparison approaches. Before presenting
the actual results, let us present experimental settings, and details of the comparison
approach and algorithms against which the performance of TransFall is compared.

11.5.1 Overview of the Datasets

Three publicly available datasets obtained using a variety of mobile devices are used
to assess the performance of TransFall on various data sources. For clarification, this
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Table 11.1 Notations and abbreviations used in experimental analyses

Notation Description

Dataset Phone Dataset gathered by 8 smartphones from 9 subjects

Watch Dataset gathered by 4 smartwatches from 5 subjects

HART Dataset gathered by one smartphone from 30 subjects

Cross-platform scenario P2P-S Same-model phone-to-phone

P2P-D Different-model phone-to-phone

W2W-S Same-model watch-to-watch

W2W-D Different-model watch-to-watch

Comparison group NN Using nearest neighbor algorithm following the naive
approach

DT Using decision tree algorithm following the naive
approach

LR Using logistic regression algorithm following the naive
approach

SVM Using support vector machine algorithm following the
naive approach

Upper Machine learning model trained with ground truth data

IWLSPC Comparison framework introduced in [353]

chapter uses the term “individual data” to refer to the data samples gathered by a
mobile device with a subject.

The first dataset Phone [347] was obtained using a variety of smartphones with
different models. Sensor data was collected from 9 subjects for 6 daily activities
(i.e., biking, sitting, standing, walking, climbing upstairs, and climbing downstairs).
This dataset was provided in the form of raw signals, and we extracted 8 widely
used statistical features from the 3D acceleration signals using a sliding window of
2 seconds. For each subject and each smartphone device, the number of data samples
ranged from 944 samples to 2283 samples, with an average of 1526 samples.

The second dataset Watch [347] was obtained using 4 smartwatches with 2
different device models in the same experiment as the previous one. During the data
collection, each participant was asked to wear 4 smartwatches on both arms and
perform 6 daily activities as above-mentioned. The same process was performed
on sensor signals as for the first dataset, to extract 8 features on the time domain,
including the mean, standard deviation, root-mean-squares, maximum, minimum,
and pairwise correlation among the three uni-axial signals.

The third dataset HART [360] contained sensor data regarding 6 daily activities
(i.e., standing, sitting, lying, walking, climbing upstairs, and climbing downstairs)
collected from 30 subjects. This dataset contained feature representations of signals.
We first performed a correlation-based feature selection combined with the best-
first-search strategy to reduce the dimensionality of the original feature space.
The integrated feature selection functions in the WEKA (Waikato Environment
for Knowledge Analysis) platform [361] were used to accomplish this task, which
resulted in 27 most salient features out of 561 original features. The total number of
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data samples was 10,411. For each subject, the number of data samples ranged from
284 to 413, with an average of 347.

The individual data sizes vary across different devices, in particular for the Phone
dataset. This is due to the instability of sensing platforms in practical use, which
results in some devices having more missing samples than others.

11.5.2 Cross-Domain Transfer Learning Scenarios

Two individual datasets were first selected as “source” and “target.” At the beginning
of one trial, no more than 50% of the data were randomly selected from the source
and the target, where the data from the source had true labels, and the objective of
the label estimation task was to estimate the corresponding labels for the data from
the target. In the activity recognition task, the data selected from the target, together
with the obtained labels from the first task, were fed into a machine learning model
as the training set, to perform activity recognition on the remaining data from the
target.

Three scenarios of source-and-target pairs were tested in the experiments
discussed in this chapter. These scenarios are discussed next.

For cross-platform transfer learning, the Phone and Watch datasets were used,
because they are gathered by multiple devices with different models. Four sub-
scenarios were designed with respect to different settings of the source and the target
for knowledge transfer. These sub-scenarios are described below:

1. Same-Model Phone-to-Phone. This scenario contained 34 individual data files
collected from 9 participants. In each trial, the source data and the target data
were gathered by two smartphones with the same device model.

2. Different-Model Phone-to-Phone. This scenario contained 35 individual data
files collected with 9 participants. In each trial, the source data and the target
data were gathered by two smartphones with different device models.

3. Same-Model Watch-to-Watch. This scenario contained 10 individual data files
collected from 5 participants. In each trial, the source data and the target data
were gathered by two smartwatches with the same device model.

4. Different-Model Watch-to-Watch. This scenario contained 10 individual data files
collected with 5 participants. In each trial, the source data and the target data were
gathered by two smartwatches with different device models.

For cross-subject transfer learning, the source data and the target data were
collected from different subjects but using the same device. All three datasets were
used in this scenario, and the evaluation results were averaged over all the devices
for each dataset.

The hybrid transfer learning scenario was the combination of the previous two
scenarios, where both the device and the subject of the source data differ from that
of the target data. For this purpose, Phone and Watch datasets were used in this
scenario because they represented both cross-platform and cross-subject cases.
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Example 11.5 (Cross-Domain Transfer Learning Scenarios)
Problem: Determine which sub-scenarios does Example 11.1 belong.
Solution: Scenario in Example 1.1 is a hybrid scenario since it contains cross-
platform (i.e., source domain and target domain from different subjects) and
cross-subject scenarios (i.e., source domain and target domain use different
device model).

11.5.3 Comparison Approach and Performance Metrics

We compared the performance of TransFall against other approaches including four
popular machine learning algorithms and another transfer learning algorithm. These
algorithms are briefly described as follows:

• Naive: naive approach trained an existing machine learning algorithm using the
source data and then directly applied the model to the target data to estimate
the corresponding labels. Four standard machine learning algorithms, including
nearest neighbor (NN), decision tree (DT), logistic regression (LR), and linear
support vector machine (SVM), were tested following this approach to provide
baseline measures for comparison.

• Upper: the upper bound performance of label estimation was naturally 100%
because it involves gathering ground truth labels in “target.” The upper bound
of activity recognition, however, was estimated by training a machine learning
model with the true labels of the training dataset.

• TransFall: the proposed framework consists of a two-tier data transformation
(vertical and horizontal) layer and a label estimation layer.

• IWLSPC: a cross-subject learning framework for activity recognition [353],
referred to as importance-weighted least-squares probabilistic classifier (IWL-
SPC).

Two separate metrics were adopted for performance evaluation of the two tasks.
A description of those metrics is as follows:

• Labeling accuracy: this refers to the correct labeling rate of all the data samples
been labeled in the first task.

• Classification accuracy: the classification accuracy on a test set was computed
to evaluate the performance of the trained model for activity recognition.
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11.5.4 Choice of Classification Model

This section discusses the empirical choice of a machine learning model for the
activity recognition task. The objective of this task is to investigate the effectiveness
of transfer learning on the performance of the downstream machine learning models.
Four popular machine learning algorithms were examined for their performance in
activity recognition. Those algorithms included nearest neighbor (NN), decision tree
(DT), logistic regression (LR), and linear support vector machine (SVM).

In each trial, no more than 50% of the data samples in one data file were randomly
selected as the training set, and the remaining data were used as the test set to
estimate the classification accuracy of each model. Ten rounds of such trial were
performed on each individual data file. Overall, logistic regression achieved the
best performance, with an average accuracy of 92% on the three datasets. For this
reason, logistic regression was used as the machine learning classifier in the activity
recognition task presented in this chapter.

11.6 Results

11.6.1 Cross-Platform Transfer Learning Results

This scenario refers to the case when source data and target data are gathered by
different devices asynchronously. We further divide this scenario into four sub-cases
as shown in Table 11.1.

Figure 11.3 shows the results of label estimation using different approaches
in two cross-platform transfer learning cases including P2P-S and P2P-D. In
this figure, the red central mark on each box indicates the mean value of the
labeling accuracy, the bottom and top edges indicate the 25th and 75th percentiles,
respectively, and the outliers are denoted using plus symbols.

The labeling accuracy is higher in P2P-S case than that of the P2P-D case. This
result is consistent with general expectation because the source device and the target
device are of different models for the P2P-D case, which results in a higher level of
diversity between the two domains due to differences such as sampling frequency
and platform configuration.

Comparing to the other five approaches shown in Fig. 11.3, TransFall achieves
the highest labeling accuracy on average, with a correct labeling rate of 0.88 and
0.79 in the two phone-to-phone transfer learning cases. The increase in the labeling
accuracy of TransFall compared to other approaches is more than 2.7% in the P2P-S
case and more than 6.3% in the P2P-D case.

For activity recognition, a logistic regression model was empirically chosen
to carry out activity recognition after label information transfer. Intuitively we
expect the classification accuracy to be consistent with the labeling accuracy
because the quality of the training dataset is determined by the precision of



11.6 Results 377

Fig. 11.3 Results of label estimation in phone-to-phone transfer learning scenario

labeling the target data in the previous task. By perming this analysis, we can see
that TransFall still achieves better performance in activity recognition than other
approaches. Its classification accuracy is 88.4% and 76.6% in the two phone-to-
phone transfer learning scenarios. Moreover, the performance improvement of the
machine learning model trained by TransFall is more than 7.7% compared to the
machine learning models trained by other approaches on the smartphone data.

11.6.2 Cross-Subject Transfer Learning Results

In this scenario, source data and target data are collected from two subjects using
the same type of mobile device.

Figure 11.4 shows the results of label estimation on datasets “Phone” and
“Watch” separately. TransFall achieves a labeling accuracy that is 6.9% better than
the other approach on the “Phone” dataset and approximately 9.5% better than the
other algorithms on the “Watch” dataset.

After the label estimation is done, we have a training dataset that can be used
for model creation. Given label sets obtained using different approaches, we can
examine the performance of activity recognition model trained. The empirical upper
bound of classification accuracy is 92.1% on Phone dataset and 88% on Watch
dataset. TransFall still has the best performance in activity recognition compared
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Fig. 11.4 Results of label estimation in cross-subject scenario on datasets “Phone” and “Watch”

to other approaches. TransFall achieves an accuracy that is 7.4% higher than other
techniques on Phone dataset and 20.2% higher than other techniques on Watch
dataset.

11.6.3 Hybrid Transfer Learning Results

The hybrid scenario combines a cross-platform scenario and a cross-subject sce-
nario. As a result, the discrepancies between source data and target data are more
significant than that of the previous two scenarios.

Figure 11.5 shows the results of label estimation on Phone dataset and Watch
dataset. Overall, the performance of all the approaches has an obvious decline in
the hybrid scenario compared to the previous two scenarios. This result is mainly
caused by increased uncertainty in the target dataset with respect to the source
dataset. Nevertheless, TransFall achieves the best performance comparing to other
approaches in this scenario, with an accuracy increase of 41.9% on average on
Phone dataset, and 26.4% on average on Watch dataset.

11.6.4 Transformation Module Analysis

One can further investigate the potential of using the individual transformation
module of TransFall in conjunction with standard machine learning algorithms,
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Fig. 11.5 Results of label estimation in hybrid scenario on “Phone” and “Watch” datasets

to reduce the differences in data distributions between the source and the target.
The results of label estimation in three scenarios are shown in Fig. 11.6, where the
blue bars refer to the results of applying the approaches mentioned in Table 11.1,
the circle marks indicate the results of performing vertical transformation (VT)
module on target data before using a machine learning algorithm to estimate the
corresponding labels, and the square marks refer to the results of performing
horizontal transformation (HT) module on source data to obtain the weight factor
that can be used in the process of IWLSPC.

In general, utilizing VT module as an additional layer for data transformation can
steadily improve the labeling accuracy of an existing machine learning algorithm
in the cross-platform scenario, in which Phone dataset is used for validation. The
performance improvement is 9.5–20.7%, with an average of 17.4% over the five
algorithms. In the cross-subject scenario where HART dataset is used for validation,
although adding VT module reduces the labeling accuracy of DT, it still achieves
an accuracy increase of 3.8–11% for the other four algorithms. These results
demonstrate the potential of combining VT module in TransFall with existing
machine learning algorithms to diminish the discrepancy between the source data
and target data in the presence of covariate shift.

Unlike VT module that performs a linear transformation on target data inde-
pendently to machine learning models, HT module determines a weight factor for
source data that cannot directly work in conjunction with any existing machine
learning algorithms. In this experiment, we combine HT module with the proba-
bilistic least-squares fitting model used in IWLSPC, to investigate the potential of
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Fig. 11.6 Results of label estimation using individual data transformation module in conjunction
with existing machine learning algorithms in cross-subject and cross-platform learning scenarios

utilizing HT module with other weighted label estimation algorithm. However, the
results shown in Fig. 11.6 do not support this hypothesis.

11.6.5 Parameter Examination

Different values were examined for the two parameters, σ and λ, for the label
estimation task in the three scenarios. Parameter σ is used in Gaussian kernel
to scale the input, and λ is used in the least-mean-squares fitting to weigh the
regularizer term. In this test, when the value of σ changes (left plot in Fig. 11.7), λ
is set to 0.001; when the value of λ changes (right plot in Fig. 11.7), σ is set to 0.3.

When the value of σ increases from 0.01 to 0.3, the performance of TransFall
improves by 9.3% in cross-platform scenario, 2.2% in cross-subject scenario, and
26.7% in hybrid scenarios. However, the changes in labeling accuracy tend to be
different among the three scenarios along with the continuous increase of σ value,
as the accuracy gradually increases in the cross-platform scenario but drops in the
other two scenarios.

In the right plot in Fig. 11.7, the performance of TransFall is relatively stable
in cross-platform and cross-subject scenarios, when λ is less than 0.72; but the
accuracy drops by 3% and 8.6%, respectively, when λ increases to 10. In hybrid
scenario, the performance of TransFall fluctuates slightly along with the changes
of λ, with a standard deviation of 0.009 in the labeling accuracy. To validate the
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Fig. 11.7 Results of label estimation in three scenarios with different parameter values in
TransFall

performance of TransFall in other experiments discussed in this section, σ is set to
0.3 and λ is set to 0.004.

11.7 Exercise Problems

Problem 11.1 What are scalability challenges of machine learning algorithm
design in mobile health systems?

Problem 11.2 Explain spatial uncertainty and provide two examples of such
uncertainties.

Problem 11.3 What is the goal of a transfer learning algorithm? Explain the terms
source and target in the context of transfer learning.

Problem 11.4 What is a teacher/learner approach to transfer learning?

Problem 11.5 Discuss similarities and differences between TransFall IWLSPC.

Problem 11.6 What is importance sampling and how is it used in the design of
TransFall?

Problem 11.7 What is the goal of label estimation in TransFall? Can we do transfer
learning without this label estimation module?

Problem 11.8 Prove that the overall complexity of TransFall is cubic in the size of
the source dataset.

Problem 11.9 In this chapter, we used classical machine learning algorithms such
as nearest neighbor, decision tree, logistic regression, and support vector machine
classifiers for activity recognition. What are the advantages and disadvantages
of using deep neural networks instead of these classical algorithms for activity
recognition and transfer learning?
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Problem 11.10 We performed phone-to-phone transfer learning in this chapter.
Use a similar strategy to obtain results for watch-to-watch transfer learning. The
two new scenarios that you will be focusing on are denoted as W2W-S and W2W-D
in Table 11.1. Plot and discuss your results.

Problem 11.11 Using the labeled training data that you obtain in Problem 11.10,
train a machine learning model using logistic regression, similar to what we did in
this chapter. Plot your results and compare the performance of TransFall against
the competing algorithms. Also, discuss the difference between the performance
of TransFall for phone-to-phone transfer learning versus that of watch-to-watch
transfer learning.

Problem 11.12 We showed the results of cross-subject transfer learning on two
datasets, “Phone” and “Watch” in this chapter. In this problem, we want to perform
transfer learning for label estimation on HART dataset. Plot and discuss your results.

Problem 11.13 Using the labeled training data that you obtain in Problem 11.12,
train a machine learning model for activity recognition on HART dataset. Plot your
results and compare the performance of TransFall against the competing algorithms
on the HART dataset. Also, discuss the difference between the performance of
TransFall on “Phone” and “Watch” datasets compared to HART.

Problem 11.14 We discussed the labeling accuracy of various approaches for
hybrid transfer learning in this chapter. Continue the analysis presented in that sec-
tion to calculate activity recognition accuracy of all the five competing algorithms
on the two datasets under consideration, namely “Phone” and “Watch” datasets. Plot
and discuss your results.

Problem 11.15 We performed analysis using the vertical transformation module
of TransFall in conjunction with standard machine learning algorithms for cross-
subject and cross-platform scenarios in this chapter. Design an experiment for
hybrid scenario and obtain the performance results. Plot and discuss your results.



Chapter 12
Applied Machine Learning for Computer
Architecture Security

12.1 Introduction

The security of a computer system can be compromised at the computer architecture
level through various types of attacks such as by executing malicious applications
to infect the system or deploying microarchitectural Side-Channel Attacks (SCAs)
to infer confidential information [286, 290, 362–364]. The rapid development of
information technology has made malware and microarchitectural SCAs serious
threats to the security of modern computer systems.

The recent proliferation of computing devices in mobile and Internet-of-Things
(IoT) domains further exacerbate these threats calling for effective security coun-
termeasure solutions. There exist some important factors influencing the security
vulnerability of embedded systems and IoTs including the limited energy and
resources available, the low computational capacity, and a significant number of
computing nodes in the network. These devices are connected over the Internet
network, which drastically increases the necessity of providing advanced security
mechanisms to protect the integrity and confidentiality of the authenticated users’
information.

12.1.1 Malware

Malware, a broad term for any type of malicious software, is a piece of code
designed by cyber attackers to infect the computing systems without user consent.
Though varied in classes and functionalities, malware primarily serves harmful
purposes such as providing a remote control for an attacker to use an infected
machine, stealing sensitive information, unauthorized data access, destroying files,
running intrusive programs on devices to perform Denial of Service (DoS) attack,
and disrupting essential services to perform financial fraud.
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Malicious software infections have plagued companies, organizations, and indi-
vidual users for many years, and are significantly growing stealthier and increasing
in numbers. Given the different malicious purposes and characteristics, malware
can be classified into various categories. One could refer to a group of malware
that shares many important characteristics as belonging to a single malware family.
Below, we present brief descriptions of common types of malicious software attacks
that are widely analyzed in prior malware research in computer security.

Virus It is a program that infects the executable software and, when run, causes the
malicious pattern to spread and malfunction other executables. Virus typically refers
to a malicious program that has the ability to replicate itself and attaches itself to a
legitimate program or document while relying on the host program to get activated
and affects the functionality of the systems when get executed. Viruses may further
perform other malicious activities including creating a Backdoor malware for later
malicious activities.

Trojan In computing, a Trojan, a.k.a Trojan Horse, is a program that appears
harmless and legitimate while performing malicious operations in the background to
damage and infect the computer systems such as downloading and installing other
malware on the target system, modifying the user’s system settings, or manipulating
the host files without the user authorization. Unlike Viruses, a Trojan horse is
not able to replicate itself, nor can it propagate without an end user’s assistance.
Hence, cyber attackers deploy social engineering techniques to persuade the end-
users to execute the Trojan programs, which can occur through clicking on the email
attachment or downloading the free program. Afterward, the malware is transferred
to the user’s computing device and the malicious code can run and carry out any
malicious activities designed by the cyber attackers.

Rootkit A Rootkit is a malicious program that has the ability to hide its presence
from the user system while enabling continued privileged access to the host system.
Rootkits can prevent a malicious process from being visible in the system’s list of
processes, or keep its files from being read. They allow this concealment and remain
undetected by modifying the host’s operating system. Rootkit techniques are applied
by various malicious software, at both user-mode and kernel mode. At user-mode,
Rootkits take actions by instrumenting Application Programming Interface (API)
calls, whereas at kernel-level, Rootkits interfere with operating system organizations
as a device driver or a kernel module to hide the information about the victim’s
computer system.

Backdoor A Backdoor exploits method of bypassing normal authentication pro-
cedures in computing systems by avoiding the traditional security mechanisms.
Backdoors can install themselves as part of an exploit to take advantage of the
system’s weaknesses or vulnerabilities. Once a system has been compromised by
one of the malware attacks, one or more Backdoors may be installed on the victim
computing system to facilitate the access of the cyber attacker to the target system
in the future. Backdoors can also be installed prior to the main malicious activities
allowing the cyber attackers entry without the consent of the user.
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Worm A computer Worm is a self-replicating malicious software that duplicates
itself to spread from one system to another. Worm typically spreads itself over a
network of computers, relying on security failures on the target computer. Another
characteristic that distinguishes Worms from other forms of malware is that they are
standalone software that is able to operate and propagate autonomously, without the
requirement of being activated by a host file on the target computer. Worms often
deploy the invisible parts of an operating system to the user to exploit the computer
system vulnerability. Once the computer system is infected by this attack, the Worm
can perform different malicious activities to make the system more vulnerable and
to degrade overall system performance.

Ransomware It is a recent malicious cyber-attack in which the user’s information
on the target system is locked usually through encryption algorithms while a
payment is demanded from the user to restore access. The files are still available
on the target computer but inaccessible by the user. After receiving the payment
from the victim, the ransomed data is unlocked and decrypted. It is notable that the
goal of Ransomware is mostly fraud, and unlike other types of malware, the victim
is usually notified that an exploit has occurred and is given instructions on how to
recover from the attack. While initially targeting individuals, recent ransomware
cyber-attacks have been tailored toward larger groups such as businesses and
organizations with the purpose of demanding larger payouts.

Blended Threat A.k.a. hybrid malware that combines the characteristics of two or
more types of malware to build a more powerful and sophisticated malware attack. It
can cause harm to the infected system or network as they propagate, using multiple
infection methods while exploiting the systems’ vulnerabilities to create various
points of entry subject to attack.

Example 12.1 (Characterization of Malware Attacks)
Problem: Categorize different classes of malware.
Solution: This example characterizes various malicious software types
comprising the security of computer systems and highlights important char-
acteristics of each malware attack type.

(continued)
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Example 12.1 (continued)

Virus: 
Spreads by user ac�on

Ransomware: 
Unlocks the data a�er a payment

Worm: 
Spreads automa�cally

Trojan: 
Conceals as a legi�mate so�ware

Rootkits: 
Hides within the system

Blended Threat: 
Mul�ple malware in one a�ack

Backdoor: 
Installs itself as an exploit

12.1.2 Microarchitectural Side-Channel Attacks

Microarchitectural side-channel attacks have posed serious threats to the security
of modern computing systems. Such attacks exploit side-channel vulnerabilities
stemming from fundamental performance-enhancing components such as cache
memories, out-of-order execution, and speculative execution units. Recently, cache-
based SCAs have shown powerful capabilities of stealing users’ critical information
such as secret keys of cryptographic applications within the same processing core
or cross-core residency of victim applications. Below, an overview of some of the
recently proposed microarchitectural SCAs is presented. Furthermore, Fig. 12.1
illustrates the working principles of three important cache-based SCAs discussed
in this section including Flush+Reload, Prime+Probe, and Flush+Flush attacks.

Flush+Reload Flush+Reload attack exploits the weakness of page de-duplication
and monitors memory access lines in shared pages. This attack flushes out the
victim’s data in the cache and waits for the victim’s execution. The attacker then
reloads data by accessing them and measures the accessing time. If accessing time
is shorter, it infers the data is accessed by the victim; else, it has not been accessed
by the victim [365].

Flush+Flush In this type of SCA, the setup and first stage are the same as Flush
Reload. In the second stage, instead of reloading the shared memory blocks, the
adversary still flushes the blocks. If the victim fetches a block into the cache, then
flushing it will take a longer time than when it is out of the cache. So Flush has the
same effect as Reload. Besides, a single Flush operation can serve as Check for the
current round as well as Set for the next round [366].
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Fig. 12.1 Working principle
of three cache-based
side-channel attacks. (a)
Flush+Reload. (b)
Prime+Probe. (c)
Flush+Flush

(a)

(b)

(c)

Prime+Probe This attack targets L1/L3 data caches. Prime Probe attack consists of
two stages: Prime and Probe. In the Prime stage, the attacker builds an eviction set
which is a group cache sets causing potential conflict with victims and fills cache
with the eviction sets. Next, the attacker waits for victim execution and then re-
accesses the eviction sets (Probe stage). If the accessing time is long enough, it
means the victim accessed the data; else, the victim does not access the data [367].

Spectre Speculative execution is used in commercial processors to boost perfor-
mance by executing the next execution path predicted by control flow [368]. When
CPU waits for data coming from the memory or disk, the current register state
is stored, and then the speculative instruction is executed. Once data arrives, the
processor validates the correctness of the executed speculative path. If the prediction
is right, the performance can be improved significantly; otherwise, the execution
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time is equal to being idle during the waiting period. And if the predicted execution
path is wrong, executed results will still be kept. Recent Spectre attack takes exploit
speculative execution by locating the instructions firstly and tricking the CPU into
speculative and erroneous execution of this instruction sequence which results in
information leakage.

Meltdown This type of attack exploits out-of-order execution of microprocessors
to leak secret information from user space and kernel space of the same process and
other processes [369]. Memory protection mechanism is provided in all processors
through an operating system that prevents a user-level program from reading data
from kernel space or from any other user-level program. However, side effects
generated by out-of-order execution make it possible to bypass this protection
mechanism. Even an unprivileged user level program can read all main memory with
Meltdown attack which is a two-step attack. In the first step, meltdown bypasses the
memory isolation by executing unprivileged instruction out-of-order. In the second
step, it performs cache-based side-channel attack to observe footprints of accessed
data from the cache.

12.2 Challenges Associated with Traditional Security
Mechanisms

As mentioned in the prior section, due to the exceedingly challenging task of
detection of new variants of malicious applications and emerging microarchitectural
side-channel attacks, and to keep on combating the increase in malicious cyber-
attacks, there is an urgent need to develop intelligent countermeasures to enhance
the security of the system and protect legitimate users from these threats. Malware
detection techniques are typically classified into two categories including signature-
based detection and anomaly-based detection methods. The former looks for
signatures of known malware traces to detect malicious patterns and the latter
models the normal structure/behavior of programs or systems and attempts to
detect deviations from this predefined detection model. Existing traditional malware
detection methods such as Anti-Virus (AV) tools are mostly signature-based detec-
tion and semantics-based anomaly detection techniques. These are all considered
software-based solutions, which often incur significant computational overheads to
the system, making them unfit for computing devices, especially those with limited
available computational and memory resources such as embedded systems and
IoT devices [290]. In particular, these software-based malware detection methods
like AV software pose several drawbacks. First, they rely on static signature-based
detection in order to detect malicious patterns of the infected application. Such a
detection mechanism searches for suspicious byte patterns in the program, whereas
an attacker can deceive AV software by programming and crafting malware in
such a way that its signature appears as benign software. Second, AV software is
prone to misuse like any other software that can ultimately compromise protection
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if exploited. Third, AV software tools are slow and resource hungry. They mostly
impose significant complexity and computational overheads on the system. Condi-
tions become even worse for metamorphic viruses, as effective detection of such
attacks is an NP-complete problem.

In addition to the aforementioned shortcomings of traditional malware detection
mechanisms, the emergence of new malware threats requires patching or updating
the software-based malware detection solutions (such as off-the-shelf anti-virus
software) that need a vast memory footprint and a large amount of hardware
resources, which is not feasible for emerging computing systems, especially in
embedded mobile and IoT devices. The emerging embedded systems, which
account for a wide range of applications, are often highly resource-constrained,
challenging the conventional software-based methods traditionally deployed for
detecting and containing malware in general-purpose computing systems. In addi-
tion to the complexity and cost (computing and storage), software-based malware
detection methods mostly rely on the static signature analysis of running programs,
requiring continuous software updates in the field to remain accurate in capturing
emerging malware. This is not affordable for embedded systems which are limited
in computing and communication bandwidth. Moreover, most of these advanced
analysis techniques are architecture-dependent, i.e., dependent on the underlying
hardware. Hence, this makes existing traditional software-based malware detection
techniques hard to apply effectively to emerging embedded computing devices.

12.3 Deployment of Hardware Performance Counters for
Computer Architecture Security

The complexity of today’s computing systems has tremendously increased com-
pared to the prior systems. Hierarchical cache subsystems and pipeline, non-uniform
memory, simultaneous multithreading, and out-of-order execution have a significant
impact on the performance of modern processors. Performance monitoring is
an essential feature of a microprocessor. Access to the performance monitoring
hardware is usually provided in the form of hardware performance counters. Recent
studies have demonstrated that malicious activities at the hardware level ranging
from application-based malware to microarchitecture side-channel attacks can be
effectively recognized by classifying anomalies in the low-level feature spaces such
as microarchitectural events collected by Hardware Performance Counters (HPCs)
registers using Machine Learning (ML) techniques.

HPCs are special purpose registers embedded inside modern microprocessors
to monitor and capture different microarchitectural events. The primary purpose
of HPC is to analyze and tune the architectural level performance of running
applications. There exist numerous low-level features (e.g., bus-cycles, instructions,
cache-misses, branch instructions, branch-misses, cache references, etc.) that are
captured by HPC registers using different monitoring tools such as Perf, Intel V-
Tune, and AMD uProf. Recent works have proposed to utilize the HPCs for securing
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the hardware systems against both malware (application execution based attacks)
and side-channel attacks. Hardware-based detectors offer fast online detection,
efficiency in resource utilization, and invulnerability from getting infected by
attackers which make them suitable for mitigating newer threats. These features
are collected by profiling the applications (benign vs. malicious programs) on the
target system to build an extensive dataset that will be used to train and test the ML
models used for hardware-based malware and side-channel attacks detection.

Example 12.2 (Hardware Performance Counter Events Description)
Problem: Describe different hardware performance counter events in Intel
processor related to the caches.
Solution: As mentioned earlier, functional components in a processor deliver
different HPC events that are considered as the applications’ signature that
are left on underlying processor architecture. In this example, briefly describe
each of the following hardware performance counter events that could be
monitored from applications execution and used in applied ML for computer
architecture security:

– Cache-misses: The number of misses in the last level cache references.
– L1-dcache-loads: The number of retired memory load operations.
– Branch-misses: The number of branch instructions that are mispredicted.
– Cache references: The total number of last level cache references.
– L1-icache-load-misses The number of instruction misses in the first level

instructions cache.
– iTLB-load-misses: The number of misses in instruction TLB (Translation

Lookaside Buffer) during load operations.
– L1-icache-load-misses The number of instruction misses in the first level

instructions cache.
– iTLB-load-misses: The number of misses in instruction TLB during load

operations.
– L1-dcache-load-misses: The number of cache lines transferred into the first

level cache (L1) from DRAM main memory.

While HPCs are finding their way in various processor platforms from high-
performance to low-power embedded processors and IoT devices, they are limited in
the number of microarchitectural events that can be captured simultaneously. This is
mainly due to the limited number of physical registers on the processor chip because
of the high price. A variety of processor platforms such as Intel, ARM, and AMD
includes HPCs on its processors. The number of physical registers present on each
core usually ranges from 2 to 8. For example, the number of counter registers in
the Intel Ivy-bridge and Intel Broadwell CPUs is limited to only four per processor
core, meaning that only four HPCs can be captured simultaneously. In addition, Intel
SandyBridge and Haswell architectures both have total 8 general-purpose counters
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per core. This limitation can be mitigated by multiplexing performance counters,
but at the cost of accuracy degradation.

These registers are easily programmable across all platforms and are able to
count a variety of low-level events such as cache memories access and misses, TLB
hits and misses, branch mispredictions, and core stalls of the chip that are used for
various optimization targets such as performance, energy-efficiency, and security
enhancement. In particular, HPCs are programmed to issue an interrupt when a
counter overflows or even be set to start the counter from the desired value.

12.4 Application of Machine Learning for Computer
Architecture Security Countermeasures

Machine learning algorithms have been extensively deployed to enhance the secu-
rity of computing systems. Machine learning-based countermeasures are trained
by low-level microarchitectural features and continuously learn by analyzing the
HPC data to identify the malicious patterns by accurately detecting malware
and protecting the processor architecture against information leakage caused by
emerging SCAs.

12.4.1 Feature Selection: Key Microarchitectural Features

Determining the most significant low-level features is an important step for devel-
oping effective ML-based countermeasures. As there exist numerous microarchi-
tectural events (e.g., +100 in Intel Xeon), each of them representing a different
functionality, collecting all features leads to high-dimensional data. Furthermore,
processing raw dataset involves computational complexity and induces delay. In
addition, incorporating irrelevant features would result in lower detection accuracy
and performance for the ML classifiers. This poses two research questions. First,
which low-level features are relevant to be employed to detect and classify a class
of malicious attacks? Second, how to perform feature reduction of collected data to
alleviate unnecessary computational overheads? Hence, to perform an efficient ML-
based security countermeasure to detect security attacks with minimal overhead, a
minimal set of HPCs is determined that can effectively represent the application
behavior.

Feature selection methods are capable of enhancing the performance of learning
process, decreasing the computational complexity, building better generalizable ML
models, and reducing the required storage and memory on the computing systems.
In the process of hardware-level malware and SCAs detection using machine
learning techniques, the feature selection step intends to identify a set of critical
HPCs that can effectively represent the attack application behavior. For effective



392 12 Applied Machine Learning for Computer Architecture Security

run-time malware detection in embedded and resource-limited systems having a
limited number of available HPCs, feature reduction even plays a more crucial role
in which it determines the minimal set of critical HPCs that can effectively represent
the malware class behavior and are feasible to collect in a single run even on low-
end processors with few HPCs to perform HMD with minimal overhead avoiding
multiple runs [290].

Therefore, instead of accounting for all captured features, irrelevant features
need to be identified and removed using a feature reduction algorithm and a
subset of HPC events is selected that represents the most important features for
classification. The selected features are then supplied to each ML-based detector.
The detector attempts to find a correlation between the feature values and the
application behavior to predict the benign or attack type. Principle Component
Analysis (PCA), correlation attribute evaluation, Information Gain Ratio, and Fisher
Score (FS) are some well-known feature selection techniques that have been used in
ML-based security countermeasures.

12.5 ML for Hardware-Assisted Malware Detection:
Comparative Analysis

To address the traditional malware detection shortcomings, Hardware-assisted
Malware Detection (HMD), by employing low-level features captured by HPCs,
has emerged as a promising solution. HMD solutions reduce the latency of the
detection process by order of magnitude with small hardware overhead [290].
Demme et al. [286] was the first study that proposed to deploy HPCs for malware
detection and demonstrated the effectiveness of using ML models for hardware-
based malware detection. They showed high detection accuracy results for Android
malware by applying complex ML algorithms like Artificial Neural Network (ANN)
and K-Nearest Neighbor (KNN). Tang et al. [362] further discussed the feasibility
of complex unsupervised learning on low-level features to detect buffer overflow
attacks that incur large overhead and sophisticated analysis. Ozsoy et al. [363] used
sub-semantic features to detect malware using Logistic Regression (LR) and ANN
algorithms. Moreover, they suggested changes in microprocessor pipeline to detect
malware in a truly real-time nature which increases the overhead and complexity.

The research in [290] proposed ensemble learning techniques for effective run-
time hardware-assisted malware detection and improved the performance of HMD
by accounting for the impact of reducing the number of HPC features on the
performance of malware detectors. In [370], a machine learning-based HMD is
proposed that uses various traditional classifiers that requires 8 or more features to
achieve high accuracy which makes it less suitable for online malware detection. In
addition, recent work in [7] proposed a two-stage machine learning-based approach
for run-time malware detection in which in the first level classifies applications using
a multiclass classification technique into either benign or one of the malware classes
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(Virus, Rootkit, Backdoor, and Trojan). In the second level, to have a high detection
performance, the authors deploy an ML model that works best for each class of
malware and further apply effective ensemble learning to enhance the performance
HMD.

In this section, we describe an effective hardware-assisted approach that takes
advantage of machine learning algorithms to classify malware and benign programs.
In this research, we deploy HPCs information to construct a vector of microarchi-
tectural features by profiling malware and benign applications. We take advantage
of the HPC registers to collect execution traces for various microarchitectural
events by executing malware and benign applications in an isolated environment
(details will be discussed in Sect. 12.5.1). The profiling process shows that if two
different programs are executed on a processor, they generate different performance
counter traces providing a unique opportunity to detect the behavior of the running
application using effective machine learning-based predictive modeling.

Example 12.3 (Sample Malware and Benign HPC Traces)
Problem: Demonstrate the effectiveness of HPCs in classifying malicious and
benign programs.
Solution: As an example to demonstrate the effectiveness of using HPC
traces for malicious pattern detection, below we illustrate the trace of branch
instructions and branch-misses features for normal and malware applications.
As seen, the malware traces are significantly different from benign appli-
cations for both examined HPC features. Using this observation, malware
can be distinguished from normal applications by its different HPC values.
This further highlights the goal of hardware-assisted malware detection that
learns malware behavior with the aid of machine learning methods based on
microarchitectural features captured by a limited number of available HPCs
from various applications.
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12.5.1 Experimental Setup and Data Collection

This section provides the details of the experimental setup and data collection
process. The applications (both malware and benign) are executed on an Intel
Xeon X5550 machine running Ubuntu 14.04 with Linux 4.4 Kernel. In order to
extract the HPC information, we deployed Perf tool available under Linux. Perf
provides rich generalized abstractions over hardware-specific capabilities exploiting
perf-event-open function call in the background which can measure multiple
events simultaneously. For this problem, we have executed more than 100 benign
and malware applications for HPC data collection. Benign applications include
MiBench [371] and SPEC2006 [372], Linux system programs, browsers, and text
editors. For malware applications, Linux malware is collected from virustotal.com
[373]. Malware applications include Linux ELFs, python scripts, Perl scripts, and
bash scripts which are created to perform malicious activities.

Figure 12.2 depicts a general overview of the data collection process and
proposed run-time HMD framework. It is primarily composed of various stages
including feature extraction, feature reduction, and ML classifiers implementation.
In this framework, HPC information is captured by executing all applications in
Linux Containers (LXC) which is an isolated environment [374]. We have extracted
44 low-level CPU events available under Perf tool using static performance
monitoring approach where we can profile applications several times measuring
different events each time. In other words, since Intel Xeon processor hosts only
4 HPC registers physically available [375], we can only measure 4 events at a time.
As a result, multiple runs are required to fully capture all events. We divide 44 events
into 11 batches of 4 events and run each application 11 times at a sampling time of
10 ms to gather all microarchitectural events. Running malware inside the container
can contaminate the environment which may negatively impact subsequent data
collection. As a result, to ensure that there is no contamination in the collected data
due to the previous run, the container is destroyed after each run.
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Fig. 12.2 Overview of the hardware-assisted malware detection using ML
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12.5.2 Feature Selection and ML Classifiers Implementation

Training ML classifiers involves profiling the incoming application with Perf tool
and extracting low-level feature values for each training program, reducing the
extracted features to the most vital HPCs, and developing a learning model from
the training data. It is important to note that the input variables in our classifiers
are the HPCs extracted every 10 ms interval from running applications, and the
output variable is the class of an application. In order to validate each of the utilized
ML classifiers, a standard 70%–30% dataset split for training (known applications)
and testing (unknown applications) is followed. To ensure a non-biased splitting,
70% benign-70% malware application for training and 30% benign-30% malware
applications for testing are used. In order to identify the most important HPC
features for effective malware detection, we applied a two-level feature selection
as described below.

(a) Manual Feature Reduction We first analyze the collected HPC events manually
and exclude events which are obviously not related to the target variable (malware
behavior). Out of all 44 events, there are certain features provided by Linux kernel
that is included as software events under Perf. We exclude a total of 12 events from
the final selected features list. These events are alignment-faults, context-switches,
cpu clock, cpu migrations, emulation-faults, major-faults, dummy, minor-faults,
page-faults, and task-clock. In addition, events like cpu-cycles and ref-cycles do
not represent uniqueness in terms of program phase. Thus, they are also excluded
from the final list. Hence, a total of 12 events are removed using manual feature
reduction.

(b) Algorithmic Feature Reduction Following the manual approach, we deploy
Correlation Attribute Evaluation to rank 32 remaining features under WEKA. Cor-
relation evaluation algorithm calculates Pearson correlation between each attribute
and class as follows:

ρ(i) = cov(Xi, C)√
(var(Xi)var(C))

, (12.1)

where ρ is the Pearson correlation coefficient. Xi is an input dataset of any
performance counter event i. C is an output dataset contains different classes,
“Malware” or “No Malware” in our case. Value of i represents any feature out of
32 features and cov(Xi;C) measures covariance between input dataset and output
dataset. The var(Xi) and var(C) also measure variance of both input and output
dataset, respectively. Based on the ranking of ρ, the top 16 features are selected
for analysis. This algorithm finds correlation coefficient for all 32 features as per
above equation in which the branch instruction has the highest value of ρ than other
features. Equation (12.1) can be elaborated further as shown below:
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Table 12.1 Hardware
performance counters in order
of importance

Rank HPC feature Rank HPC feature

1 branch instructions 9 dTLB-stores

2 branch loads 10 iTLB-loads

3 iTLB-load-misses 11 L1-icache-load-misses

4 dTLB-load-misses 12 branch-load-misses

5 dTLB-store-misses 13 branch-misses

6 L1-dcache-stores 14 LLC-store-misses

7 cache-misses 15 node-stores

8 node-loads 16 L1-dcache-load-misses

ρ(i) =
n∑

k=1

(xk,i − x̄i )(ck − c̄)
√∑n

k=1(xk,i − x̄i )2
∑n
k=1(ck − c̄)2

, (12.2)

where i represents the index of feature (i = 1, ..32); k is the number of input values;
x(k,i) is kth value in input dataset for feature i; and ck is kth value in output dataset.
The mean of input for feature i is denoted by x̄i , and that for the output data by
c̄. Based on the ranking of ρ, the top 16 features are selected for analysis. This
algorithm finds correlation coefficient for all 32 features as per above equation. We
list the top 16 features with the highest correlation coefficient value. These reduced
features are described in Table 12.1. These events have a mixture of branch-related
events representing core behavior and cache related events representing memory
behavior in which the branch instruction has the highest value of ρ than other
features.

12.5.3 Evaluation Results of ML-Based Malware Detectors

Detection Accuracy To evaluate the detection accuracy of our malware classifiers,
we calculate the percentage value of samples that are correctly classified. Table 12.2
shows the accuracy results of various ML classifier used for malware detection.
We have implemented five different ML classifiers and calculated their accuracy in
classifying malware and benign applications. The accuracy of malware detection
with two sets of hardware performance counters (8 and 4) are reported. It is
notable that the OneR classifier performs well even after feature reduction. The
reason that OneR classifier is not affected by feature reduction and shows almost
constant accuracy results are that it only selects one performance counter (branch
instructions) to predict the malware behavior.

Hardware Implementation As mentioned earlier, the software implementation of
ML classifiers for malware detection is slow in the range of tens of milliseconds
which is an order of magnitude higher than the latency needed to capture the
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Table 12.2 Accuracy results
of ML-based malware
detectors

ML classifier 8HPCs 4HPCs

BayesNet 85 81

OneR 81 81

MLP 85 81

JRIP 83 84

J48 82 82

malware at run-time. Therefore, we develop a hardware implementation of the
machine learning-based malware detectors. To this aim, we use Vivado High-
Level Synthesis (HLS) compiler to develop the Hardware Description Language
(HDL) implementation of the classifiers and deploy it on Xilinx Virtex 7 FPGA.
FPGA (Field Programmable Gate Array) is a target in our study, as few modern
microprocessors have on-chip FPGAs available for programmable logic implemen-
tation. Such arrangement makes it feasible to implement reprogrammable low-level
malware detection logic (ML model) which can detect malware by reading the CPU
hardware performance counters through a shared memory bus. As a result, when it
comes to choosing the ML classifiers for hardware implementation, the accuracy of
an algorithm is not the only parameter in decision-making. Design area and response
time (latency) overhead of ML classifiers also play a key role in selecting the cost-
efficient hardware solution. While complex algorithms such as neural networks can
deliver high accuracy, they will also add significant overhead in terms of hardware
implementation cost. Also, given their complexity, they can be slow in detecting
malware.

For synthesizing ML classifier models, we assume that the logic of fetching
counter values periodically from CPU is already implemented and is the same for
all studied classifiers. Hence, we are excluding data fetching logic for latency, area,
and power estimation. Moreover, we assume that vectors with all HPC events are
already available at the input to classifier. Every model is treated as a black box
which accepts HPC event vector of size 8 and outputs binary value “malware” or
“not malware.” During high-level synthesis latency and area/utilization of all ML
classifiers are collected. To collect the total power estimation of the implemented
model, IP core is synthesized in Vivado. Power estimation is collected for 100 MHz
clock attached to the IP core. Power estimation contains both static power and
dynamic power consumption of digital logic. Results of estimated latency, area, and
power are shown in Table 12.3. The latency unit is in terms of the number of clock
cycles required to classify the input vector. Area unit is the total number of utilized
LUTs, FFs, and DSP units inside Virtex 7 FPGA. The unit for power consumption
is Watt.

To evaluate the efficiency of machine learning-based malware detectors in
Fig. 12.3, we present the results comparison in terms of accuracy over the unit of
hardware area for various implemented ML classifiers. The reason for considering
such metric is that area and accuracy comparison is putting more emphasis on
silicon area budget. We use the ratio of Accuracy over Area to list down ML
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Table 12.3 Hardware
implementation results of the
ML-based malware detectors

ML classifier Latency Power Area overhead

BayesNet 14 0.445 6794

OneR 1 324 1258

MLP 302 1.03 36,252

JRIP 4 0.436 1504

J48 9 0.436 1801

Fig. 12.3 Efficiency analysis
(Accuracy/Area) of
implemented ML-based
malware detectors

classifiers which require small area and yet can predict with high accuracy. Classifier
with a higher ratio is considered better than with a lower ratio. As the results
show, rule-based and tree-based classifiers are performing significantly better in
terms of accuracy per area compared to highly accurate but complex Bayesnet and
MultiLayerPerceptron classifier.

12.6 ML for Microarchitectural SCAs Detection:
Comparative Analysis

The detection work in [376] monitors HPCs trace of both victim and attack
processes and compares the effectiveness of three ML classifiers: neural network,
decision tree C4.5, and K-nearest neighbors. The work in [377] proposes a detection
system containing one analytic server and one or more monitored computing devices
to detect SCAs, including Spectre and Meltdown. The analytic server receives HPCs
data from monitored devices and identifies suspicious core activity. Once detected,
application level monitors will be deployed on the computing devices and take
corrective actions as soon as they find suspicious application activity. Recent work
[378] uses cache latency to build cache occupancy of victims and attacks. Based on
the cache occupancy relation of the two processes, SCAs can be deduced.

Chiappetta et al. [287] collected HPC features for building the ML classifiers and
compared three different attacks scenarios including finding a correlation between
victims and attacks, building supervised machine learning models based on HPCs
from victims and attacks, and detecting anomalies by validating attack HPCs as
samples and other processes as outliers. This work shows that tweaking the attack
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Fig. 12.4 Overview of the real-time SCAs detection methodology based on victim application
HPCs

application can easily result in bypassing the detection mechanism indicating that
profiling attack applications and building the ML models based on the attacks HPCs
can lead to potential vulnerabilities in the detection system.

Similarly, in [379] the authors presents CloudRadar which aims at detecting
cross-VM side-channel attacks by deploying HPC patterns. The work in [380]
proposes an online detection of Spectre by monitoring microarchitectural features
using time-series classification.

In this section, we first present the motivation for using victims’ HPC data for
SCAs detection. Then we follow similar steps in malware for collection and feature
selection. Lastly, the machine learning-based detector shown in Fig. 12.4 will be
introduced. As shown, the detector is comprised of different steps such as data col-
lection, feature reduction, training phase, testing phase. First, for feature extraction,
the “under no attack” and “under attack” HPC data will be collected within (a)
isolated scenario, and (b) non-isolated scenario. The “isolated” environment refers
to the case that a computer only processes victim applications, whereas the “non-
isolated” environment denotes that a computer system processes victim applications
on one core while benign applications are being executed on the rest of the cores.
Then the importance of HPCs is evaluated and only 4 most prominent HPCs are
selected for ML-based detection. Next, the trained models will be employed in the
testing phase.

12.6.1 Detection Based on Victim Applications’ HPCs Data

Current SCAs intentionally cause influence victim applications’ cache or branch
predictor by flushing/priming cache, mistraining branch predictors and then observe
accessing time of the cache sets, which changes caching victims’ data and microar-
chitectural behaviors of victim applications. This also provides the opportunity of
detecting SCAs by observing the alteration in microarchitectural behaviors.
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Example 12.4 (Sample Victim Application with SCA)
Problem: Explain the effectiveness of HPCs in detecting side-channel
attacks.
Solution: As an example to show the effectiveness of using HPC traces for
the purpose of side-channel attacks detection, the following graph indicates
that there exists a clear difference between the behavior of victim under attack
and victim application under no attack conditions. In this motivational case
study, the HPC traces of L1 HIT for the tested victim application under no
attack (RSA) and under L3 Flush Reload attack (RSA with FR) are illustrated.
It can be observed that the L1 HIT of VA shows a significantly different
trend compared to that of victim under no attack condition. This observation
highlights the effectiveness of using HPCs data of only victim applications
(excluding the impact of attack applications’ HPCs) for detecting the behavior
of SCAs.

12.6.2 ML Classifiers Implementation

Following a similar process introduced in Sect. 12.5.1, HPCs for victim under attack
and victim under no attacks are collected. All data is split into 70% and 30% for
training and testing. Then, the importance of HPCs is evaluated with Correlation
Attribute Evaluation detailed in Sect. 12.5.2.

For the purpose of a thorough analysis of various types of ML classifiers,
NavieBayes, MLP, SGD, IBK, OneR, and J48 ML algorithms are deployed as
our final classification models. The rationale for selecting these machine learning
models are: firstly, they are from different branches of ML: Bayes-based, neural
network, SVM-based, lazy learning, rule-based, and tree-based techniques covering
a diverse range of learning algorithms which are inclusive of model both linear
and non-linear problems; secondly, the prediction model produced by these learning
algorithms can be a binary classification model which is compatible with the SCA
detection problem in our work. As mentioned before, only four HPCs can be
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Table 12.4 The collected HPC features and their importance ranking

Ranking HPC name Ranking HPC Name

1 L1 HIT 9 L1 MISSES

2 UOPS_RETIRED 10 BRANCHES MISPREDICTED

3 BR_NONTAKEN_CONDICTIONAL 11 L2 HIT

4 ALL BRANCHES RETIRED 12 TAKEN_INDIRECT_NEAR_CALL

5 INST_RETIRED_ANY 13 L3 HIT

6 L2 MISSES 14 ITLB_MISSES

7 BR_TAKEN_CONDITIONAL 15 DTLB_STORE_MISSES

8 L3 MISSES 16 DTLB_LOAD_MISSES

Fig. 12.5 Prediction accuracy comparison among various machine classifiers

collected for most processors at once due to a limited number of registers for storing
them. Hence, reducing the number of HPCs required for ML models is important
to eliminate the need for multiple runs. For this purpose, various numbers of HPCs
from 16 to 4 (16, 12, 8, and 4 selected based on the ranking in Table 12.4) are
examined to evaluate the influence of reduced HPCs on classification accuracy and
highlight the importance and motivation of using a lower number of HPCs (only 4)
for effective real-time SCA detection.

12.6.3 Evaluation Results of ML-Based SCAs Detectors

In this section, we present the detection accuracy and efficiency (F-Measure/latency)
that can be used for evaluating ML-based SCAs detector.

Detection Accuracy As shown in Fig. 12.5, the detection accuracy of the six
different ML classifiers for 30% split testing accuracy results ranges from 85%
to 99%. NaiveBayes and SGD result in significantly lower detection accuracy
compared with the rest four classifiers, less than 90%. IBK and J48 give above 99%
detection accuracy, indicating they are more effective in capturing SCAs.
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Fig. 12.6 Efficiency comparison among various classifiers

Efficiency Analysis: F-measure vs. Latency Though important, detection accuracy
and F-measure are not the only evaluation metrics used in analyzing the effec-
tiveness of machine learning algorithms used for attack detection. As a result, for
the purpose of comprehensive analysis, here we further evaluate the efficiency of
ML classifiers in terms of F-measure vs. Latency. As mentioned in Sect. 1.7.5,
F-measure is a more comprehensive evaluation metric over accuracy (percentage
of correctly classified samples) since it takes both the precision and the recall into
consideration. Moreover, latency here represents the duration that predictive models
take for delivering the “under no attack” or “under attack” results.

To accordingly account for both SCAs detection rate and cost of ML classifiers,
in Fig. 12.6 we compare the detection rate over a computational latency (F-
measure/Latency) for various ML classifiers. We use F-measure over latency to
identify the SCA detectors that require small cost and yet can detect the malicious-
ness of program with high accuracy and performance. A classifier with a higher
ratio is considered a more efficient detector than the classifier with a lower ratio.
As shown in Fig. 12.6, a clear trade-off is seen between detection rate and latency
achievable for real-time hardware-assisted SCAs detection. The ML classifiers such
as IBK achieves high detection rate, but also higher computational overhead. The
techniques such as NaiveBayes, MLP, SGD, IBK, OneR, and J48 show relatively
smaller timing costs with high SCAs F-measure. For highly resource-constrained
embedded systems, techniques such as J48 provide the smallest computational
overhead, while achieving an F-measure of close to 0.993 on average. Clearly, the
results show trade-offs between F-measure and latency. Therefore, it is important to
compare ML classifiers for effective SCAs detection by taking all these parameters
into consideration.
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12.7 Exercise Problems

Problem 12.1 Explain three major shortcomings of software-based malware detec-
tion techniques in securing the modern computer systems.

Problem 12.2 What is hardware performance counter and how it could be used to
detect emerging security threats?

Problem 12.3 Write functions to read in a CSV dataset and perform a train-
test split. Description: Create a Jupyter Notebook to read the data file named
in the same folder “4HPCSsmallersamplenolabels.csv” into Pandas’s dataframe,
then use sklearn library to do a train-test split at 70% train—30% test to split
the dataset into training and testing sets. Save both training and testing datasets
to disk for later use. Name them “4HPCSsmallersamplenolabels_train.csv” and
“4HPCSsmallersamplenolabels_test.csv”, respectively.

Problem 12.4 For this problem, use the saved training dataset from Problem 3
(named “4HPCSsmallersamplenolabels_train.csv”) to train a binary classifier from
a list of machine learning algorithms below to better realize each model’ detection
accuracy and save all models to disk. Make sure to do a train-test split to ensure
model evaluation is based on the validation dataset. (a) Decision Tree, (b) Random
Forest, (c) KNN, (d) SVM

Problem 12.5 Use the test dataset from Problem 3 to test on the pre-trained
Random Forest model in Problem 4 to output confusion matrix. In this problem, read
in the test dataset from Problem 3 named “4HPCSsmallersamplenolabels_test.csv”
to predict on the previously trained and saved Random Forest model from Problem
4. Use true label and predicted label to obtain the confusion matrix. Plot the
confusion matrix.

Problem 12.6 This problem is focused on the application of the Information Gain
feature selection method for malware detection problems to identify the most critical
features. Using the provided binary classification dataset implement the Information
Gain feature selection algorithm and show the ranking of each feature to narrow
down to the top 4 suitable features for malware detection.

Problem 12.7 In this problem, using the reduced binary classification dataset with
4HPC features from Problem 6, implement Random Forest algorithm for malware
detection and report the precision, recall, and F-measure results. Please note that
the top 4 features identified by Information Gain feature selection method in the
previous example should be used to train the ML model.

Problem 12.8 For this problem, using the reduced binary classification dataset
with 4HPC features from Problem 3, implement K-Nearest Neighbor algorithm for
malware detection and compare its precision, recall, and F-measure results with the
Random Forest classifier in Problem 12.7.
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Problem 12.9 Refer to the hardware performance counter-based binary dataset of
side-channel attack and benign application, named as “binary.csv”. Choosing one of
the feature evaluation algorithms in Scikit-Learn library to evaluate the importance
of all provided 16 HPC events for SCA detection. Specify the importance score of
each HPC and plot a bar chart for it.

Problem 12.10 Refer to the hardware performance counter-based multiclass
dataset of side-channel attack and benign application, named as “multiclass.csv”.
Choosing one of the feature evaluation algorithms in Scikit-Learn library to evaluate
the importance of all provided 16 HPC events for SCA detection. Specify the
importance score of each HPC and plot a bar chart for it.

Problem 12.11 Use the 16 HPCs from the HPCs importance ranking performed in
Question 9, and classify benign or SCAs samples using a SVM binary classifier.
Report the ML implementation results including (a) Training accuracy, (b) Testing
accuracy, and (c) False positive rate.

Problem 12.12 In this problem, implement an SVM-based SCA detector using the
4 most important events determined in Problem 11. Compare the training accuracy,
testing accuracy, false positive rate with the SVM classifier built with 16HPCs from
Problem 12.11.

Problem 12.13 Repeat the task described in the Problem 12.12 using the 4 least
important HPC events. Compare the implementation results including training
accuracy, testing accuracy, false positive rate. Provide your conclusion.

Problem 12.14 In this problem, implement a MultiLayer Perceptron-based SCA
detector using the 4 most important events determined in Problem 12.9. Compare
the training accuracy, testing accuracy, false positive rate with the SVM classifier
built from Problem 12.12.

Problem 12.15 Measure and compare the execution time of SVM and MLP built
with the 4 most prominent HPCs based on the binary file in Problems 12.12
and 12.14.



Chapter 13
Applied Machine Learning for Cloud
Resource Management

13.1 Introduction

The continuous increase in the volume of data due to the rise of social media,
Internet-of-Things (IoT), and multimedia has produced an overwhelming flow of
data referred to as big data. In order to efficiently process such massive data,
scale-out architecture has gained interest as a promising solution that is designed
to provide a massively scalable computer architecture. Recent improvements in
networking, storage, energy-efficiency, and infrastructure management have made
Cloud (the best example of scale-out architecture) a preferable approach to respond-
ing to the new computing challenges.

Cloud computing is a significant paradigm shift in service for enterprise appli-
cations and has become a powerful scale-out architecture to perform large-scale
computing. Today, cloud computing platforms host a wide range of applications
such as scientific computing workloads, latency-sensitive web services, machine
learning, large-scale distributed data analytics, etc. The advantages of cloud com-
puting include parallel processing, security, scalable data storage, and virtualized
environment.

13.1.1 Challenge of Diversity

Virtualization is a process of resource sharing and isolation of underlying hardware
to increase computer resource utilization, efficiency, and scalability. However, from
the application perspective, as different applications have different characteristics,
we are experiencing that one architectural configuration fits all does not provide
the best performance and energy efficiency for every application. Therefore, the
cloud service providers offer a wide range of cloud configuration choices such
as Virtual Machine (VM) instances with a variety of CPUs, memory, disk, and
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Fig. 13.1 Impact of resource provisioning on the cloud’s aspects

network configurations, and also customized VMs for analytics applications. At the
same time, the advancements of hardware architecture designs lead to datacenters
with diverse hardware systems. This hardware diversification at different levels is
marking the beginning of an era of super-heterogeneous datacenters.

The super-heterogeneous datacenter makes determining the best cloud config-
uration for a given application by brute-force search expensive and exhaustive.
Choosing the right cloud configuration is essential, as a non-optimal configuration
results in more cost for the same performance target as different analytic jobs
have diverse behaviors and resource requirements. As Fig. 13.1 illustrates, efficient
resource provisioning impacts three different aspects of the cloud. It fulfills service-
level agreements (SLA) and meets cloud customers’ requirements. It guarantees
cloud obligations to its users. It also prevents resource waste, thereby reducing
energy consumption and operational cost. The reduction of energy consumption
leads to a decrease in carbon emission, which facilitates green computing. Hence,
energy-aware resource provisioning is also important for reducing cost and for
increasing revenue that improves the profit of cloud providers.

A more challenging problem is that the behavior and resource requirements
of applications running on the cloud vary during different phases of execution.
Each application faces various phases of execution, each with different memory
and processing requirements. Based on the top-down methodology, three major
phases can be identified in an application, namely I/O-bound phase, memory-bound
phase, and compute-bound phase. These phases are different in terms of their
microarchitectural behavior, therefore requiring different processing and memory
resources for performance and energy-efficiency optimization. For instance, the
compute-bound phase requires more cores, higher core frequency, and higher
DRAM bandwidth.

Figure 13.2 illustrates the microarchitectural differences between those three
phases. The micro-op (µop) queue of an out-of-order processor is used to abstract
the microarchitectural behavior. The op queue is classified into four broad cate-
gories: Retiring, Front-end bound, Bad speculation, and Back-end bound. Out of
these categories, only the Retiring is classified as “useful work,” while the rest
prevents the workload from utilizing the full core bandwidth. In addition to µop
queues, C0 (active state residency of processor) is a metric that can be used to
differentiate among phases. As the figure shows, the main difference between
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Fig. 13.2 Microarchitectural
break-down of workloads for
different phases
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memory-bound and I/O-bound is C0 residency. This can be explained as follows:
in I/O intensive phase, the core is waiting for I/O; hence, the core changes its state
to save power. Therefore, C0 residency drops.

There are thousands of applications running at the same time in a cloud, and
each requires different processing and memory resources to be allocated at different
phases of run-time. It is, therefore, necessary that the resource management system
identifies those phases at run-time to be able to allocate resources accordingly.
Hence, this makes existing traditional reactive resource allocation methodologies
achieve a sub-optimal performance gain and hard to apply effectively to emerging
cloud computing services.

13.2 Modern Resource Provisioning Systems: ML Comes to
the Rescue

Challenges described in the previous section have motivated several researchers
to devise a new resource management methodology for the cloud. A resource
provisioning system facilitates various services, including resource efficiency,
security, fault tolerance, and monitoring, to achieve the performance goals while
maximizing the utilization of available resources in the cloud. Researchers have
utilized machine learning solutions to overcome the challenge of applications’
diversity and heterogeneity of resources in the cloud and they were successful to
significantly improve the utilization.

Several machine learning-based resource provisioning systems have been pro-
posed for the cloud such as PARIS, Quasar, CherryPick, and Ernest. We will discuss
their details later in this section. Table 13.1 summarizes the recent works and
differentiates them from each other. In the system column, after the name of each
system, we have provided the name and the conference in which the research has
been published. Moreover, in this table, proactive means to act before a significant
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change occurs in the behavior of an application and influences the performance of
the system.

As we mentioned, the RPS attempts to meet the user performance requirements
and provider efficiency in terms of multiple aspects such as load balancing among
servers, minimum number of active hosts, and least response time, to avoid service-
level agreement violations in the cloud platform. Hence, RPSs or schedulers to fulfill
their objectives must have two main tasks:(1) instance initialization and (2) periodic
monitoring of applications.

During the instance initialization stage, when an instance is created and sub-
mitted to a scheduler, the scheduler profiles the application and based on the
application’s behavior determines the resources required for meeting its SLA.
Machine learning can be used in this stage to identify the application’s character-
istics and determine its basic requirements. After that, the scheduler allocates the
instance to a host in the infrastructure.

During the periodic monitoring stage, the scheduler monitors the application’s
behavior to guarantee the SLA all the time. In the case that application’s behavior
changes, the scheduler attempts to reschedule and migrate the instance to a new host
to provide required resources to meet the SLA agreement. In this stage, machine
learning can be leveraged to first detect the behavior change, and secondly to model
the performance, cost, or even the energy of the application for determining the best
instance that can cope with the change of the application’s requirements.

Figure 13.3 shows how a general ML-based RPS works. First, the system moni-
tors the application and extracts its microarchitectural and system-level information.
Then based on the current behavior and server configuration, it may predict the
performance of the application to make sure that the performance of the application
will not be degraded. If the RPS identifies a performance degradation, then by
leveraging optimization techniques, it determines another suitable configuration and
host for the application.

One of the most popular RPS proposed so far is Quasar [381] that leverages
machine learning and collaborative filtering to quickly determine which applica-
tions can be co-scheduled on the same machine without destructive interference.
CherryPick [382] is another successful system that leverages Bayesian Optimization
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Fig. 13.3 ML-based resource provisioning system
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and Regression technique to build performance models for various applications to
distinguish the close-to-the-best configuration. Ernest [383] uses common machine
learning kernels and statistical techniques for selecting the optimal configuration on
the cloud. PARIS [384] is another ML-assisted system that uses Random Forest for
predicting performance from the application’s microarchitectural behavior to find
the best VM type configuration.

There are several works that have focused on other aspects of resource provi-
sioning such as energy-efficient resource provisioning for cloud. Zhang et al. [385]
provided a control-theoretic solution to the dynamic capacity provisioning problem
that minimizes the total energy-cost while meeting the performance objective in
terms of task scheduling delay. Guevara et al. [386] studied how heterogeneous
platforms bring energy efficiency for cloud applications. Guenter et al. [387]
proposed an automated server provisioning system that aims to meet workload
demand while minimizing energy consumption in datacenters. Altomare et al.
[388] developed a system for energy-aware allocation of virtual machines on cloud
physical nodes.

Delimitrou and Kozyrakis [389], Kousiouris et al. [390], Delimitrou
and Kozyrakis [391] were proposed to address QoS-aware, performance-aware,
and cost-aware scheduling and resource allocation. REF [392] is a method to
provide a fair set of resources for each user at cloud. Kulkarni et al. [393], and
Bolt[394] are other works related to heterogeneity and security. Kousiouris et al.
[390] proposed to use a two-layer service in cloud to translate high-level application
parameters (workload and QoS based on Service Level Agreement) to resource
level attributes. Their work did not consider any performance model to select the
optimum configuration. Also, they have not considered the cost efficiency.

There are other systems that adaptively allocate resources based on feedback.
RightScale [395] creates additional VM instances when a load of an application
crosses a threshold for EC2. YARN [396] decides resource needs based on requests
from the application. Other systems have explicit models to inform the control
system, e.g., [397]. Wrangler [398] identifies overloaded nodes in map-reduce
clusters and delays scheduling jobs on them. Interference is creating challenge in
accurate performance estimation. In recent works [399] and [400] explore placing
applications on particular resources to reduce interference, by co-scheduling appli-
cations with disjoint resource requirements[399]. However, users requesting VM
types in cloud services like Amazon EC2 cannot usually control what applications
are co-scheduled. None of these studies have focused on the influence of system
parameters such as memory or storage on the performance and cost in the cloud. In
this chapter, we cover all parameters to shed light on all aspects.
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13.3 Applications of Machine Learning in Resource
Provisioning Systems

RPS is a configuration tuning methodology that automatically adjusts the hardware
configuration assigned to a VM in a proactive manner in order to dynamically
optimize a target metric such as energy consumption, execution time, or even the
cost of a given program on a given heterogeneous cluster of servers. A general
RPS usually should consist of four major components: a predictor to be able to act
proactively, an estimator that can model the target metric, an explorer to optimize
and search for the best solution, and a decision maker to put all information together
from different components and make the final decision about the resource allocation.
In the following, we elaborate more about each component and discuss how a
machine learning technique can be utilized to improve the functionality of that
component.

Figure 13.4 illustrates the block diagram of a modern RPS. RPS server must
maintain a database of per-host state and update it on each monitoring interval.
RPS may predict the next phase of an application and its microarchitectural
signature based on the current and previous states. Given the predicted signature and
corresponding server configuration, RPS can estimate the target metric. Next, RPS
would search for the best platform and configuration that minimizes or maximizes
the target metric for a given application. There is a searching component (explorer)
in the RPS to automatically search for the configuration that achieves the optimal
target metric. Overall, the estimator component of RPS relies on the results of
the predictor, and the explorer component selects the best configuration from the
outcome of the estimator.
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13.3.1 Monitoring and Prediction of Applications’ Behavior

Online Monitoring

RPS must run a monitoring agent on each host to be able to continuously monitor
each host’s state. The monitoring agent should extract information such as archi-
tectural information and resource utilization of application during each execution
monitoring period (window) and report it periodically to the manager server. The
window can be defined as a sufficient amount of time that a VM on a particular
physical server can be maintained without migration. The architectural information
can be collected through profiling tools such as the Intel Performance Counter
Monitor tool (PCM), DSTAT, Perf, Intel VTune, and AMD uProf. Architectural
information includes memory and processor behavior. Although the reports of the
power consumption of CPU and memory can be gathered for energy and power
modeling. The key features that can be easily collected as a representation of an
application’s behavior (or signature of an application) are architectural features.
Example 13.1 shows few system-level and microarchitectural-level features.

Example 13.1 (Sample Features of Application’s Signature)
Problem: Discuss different classes of application’s signature on different
system components.
Solution: One can see various types of microarchitectural information can
be used for monitoring the state of a server in the cloud.

1. Memory related: Available virtual, physical, and shared memory, the
cache and buffer space, memory bandwidth utilization, etc.

2. Disk related: Ratio of free to total disk space, storage bandwidth utiliza-
tion, etc.

3. Network related: Bytes sent and received, etc.
4. CPU related: L2, and Last Level Cache (LLC) hits ratio, instruction per

cycle (IPC), core C0 state residency, CPU idle time, system time, user time,
etc.

The dimensionality reduction technique can be used to reduce the number
of features and it is called the Principal Component Analysis (PCA). It is a
powerful technique that arises from linear algebra and probability theory. In
essence, it computes a matrix that represents the variation of your data (covariance
matrix/eigenvectors), and ranks them by their relevance (explained variance/eigen-
values).
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Phase Prediction

As an effective RPS needs to be proactive to determine an optimal server config-
uration for the running application, act before a significant change occurs in the
behavior of an application and influences the performance of the system, it should
be equipped with a phase predictor.

The goal of the phase predictor in the RPS is to predict the future behavior
of the application based on the current and previous behavior of that application.
The accurate prediction is important as other components of RPS depend on the
predicted phase of the application. Based on the accurate prediction, RPS can assign
an appropriate resource to the application in advance before the performance is
degraded or resource utilization drops.

In this section, we briefly introduce few simple ML techniques such as time-
series neural network, hidden Markov model, and K-nearest neighborhood that can
be used as a predictor in any RPS. Each ML technique has its own trade-offs. We
also explain the ensemble method that uses a combination of multiple learning
algorithms to obtain better predictive performance than could be obtained from any
of the constituent learning techniques alone.

Time-Series Neural Network

Time-series neural network or TSNN is an eager learning technique. The training
of TSNNs can be done offline. The time-series neural network module is based on a
non-linear autoregressive network with an exogenous inputs network. The following
formula shows the basic function to predict the future behavior. A simple way to
determine the architecture of TSNN is Grid Search for reaching the highest possible
accuracy.

Y (t) = F(Y (t − 1), Y (t − 2), . . . , Y (t − n)).

Hidden Markov Model

The hidden Markov model (HMM) is another eager technique employed for
effective prediction. The HMM is used extensively for performance modeling and
performance-prediction analysis, where the HMM can predict the future state of
a target system based on its current state. In reality, as the relationship between
the observed time and the observed state is not one to one, a group of probability
distributions for two stochastic processes are involved, called the HMM. In an
HMM, the states are not observable, but when we visit a state, an observation is
recorded that is a probabilistic function of the state.
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K-Nearest Neighbors (KNN) Regression

KNN is a lazy learning technique that does not require training. Suppose the dataset
has m samples that each sample xi is described by n input variables and an output
variable yi such as xi = {xi1, . . . , xin|yi}. The goal is to learn a mapping function
F: x –> y known as a regression function that captures and models the relationship
between input variable x and an output variable y. The KNN regression estimates the
function by taking a local average of the dataset. Locality is defined in terms of the
k samples nearest to the estimation sample. As the performance of KNN algorithm
strongly depends on the parameter k, finding the best values of k is essential. A large
k value decreases the effect of noise and minimizes the prediction losses. However,
a small k value allows simple implementation and efficient queries.

Ensemble Method

Ensemble learning is a branch of machine learning, which is used to improve
the accuracy and performance of general ML predictors. Using ensemble learning
enables the RPS to use both eager learning techniques and lazy learning technique
that does not require training. Using lazy learning technique enables RPS to be more
flexible and have better accuracy for unknown applications. A common ensemble
method is Bagging, or Bootstrap Aggregation. It is a statistical prediction technique
where a future state of an application is estimated from voting of prediction results
of few models. Each model is exploited to make a prediction and the results are
voted to give a more robust and generalized prediction. If the prediction of all ML
techniques is different from each other, then the voter can select the current state as
the predicted result.

13.3.2 Using ML for Performance/Cost/Energy Estimation

In this section, it has been shown how a machine learning technique can be
leveraged to formulate the performance, cost, or energy efficiency of different
applications in a scale-out environment. The first part of this section is devoted
to performance modeling. The second part is to formulate the dependency of the
price that subscribers must pay for utilizing different server configurations. Then
the developed models to formulate the performance improvement of applications
with respect to the baseline hardware configuration will be presented. These models
can be exploited by the optimizer in the next step to select the most performance- or
cost-efficient server configuration for a given application.
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Example 13.2 (Performance Modeling)
Problem: Describe the performance model space for graph analytic work-
loads.
Solution: Here, we present the performance model space for the graph
analytic workload from Flink framework.

One of the most important components of RPS is to dynamically generate a
performance model for each phase of applications. This leads to a more accurate
model and helps the optimizer to select the best configuration. Example 13.2 is
presented to illustrate that each application has a different performance model
depending on its phase and the server platform. Example 13.2 shows a subset
of generated performance models for three different phases of graph analytic
application in Flink framework. In each sub-figure, X represents the number of cores
and Y stands for the other parameter. If we model the performance of applications
as a convex function of servers’ parameters such as core count and core’s frequency,
then a generic performance model can be developed. However, this generic model
has to be adopted for each application.

The simplest way to formulate the server performance is to use the product
of processor performance and the number of processor in each server. There are
several parameters that can be configured in a server such as the number of cores,
core frequency, DRAM bandwidth and capacity, storage bandwidth, and network
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parameters. As the performance does not scale linearly with its parameters , a non-
linear modeling is required. To clarify this concept, we demonstrate a simple generic
performance model example, generated by regression technique, and it has been
used in Example 13.3:

Example 13.3 (Binomial Equation as a Generic Performance Model )
Problem: How to model the speedup of a server based on different system
components?
Solution: We present an equation that can be used as a performance model:

Speedup = α1x
2 + β1y

2 + α2x + β2y + ωxy + γ,

where x, y ∈ {core, f req,DRAMBW,DRAMcap, StorageBW } and x 
=
y.

The advantage of generating an accurate performance model of applications at
each phase of their execution for various types of servers is to improve the server
selection. An appropriate resource provisioning will decrease the execution time
of the subscriber’s job, increases the resource utilization of scale-out infrastructure
and eventually brings economic benefits for both subscriber and provider. This is
important because performance improvement in datacenters translates into millions
of dollars revenue per year for cloud provider and also it decreases the cost for
subscriber and makes cloud services more attractive for the end users.

To model the cost of a server, first, the parameters that influence the pricing of
a server must be analyzed. The goal of cost modeling is to establish a relationship
between the performance of applications and the cost of a server running those appli-
cations. The server price can be determined as a function of server configuration as
follows:

Cserver = Cprocessor + Cmemory + Cdisk + Cnetwork.

The per-server costs usually include configurable DRAM, configurable proces-
sor, disk, and network costs. Any machine learning technique (the simplest one is
regression technique) can be used to derive a cost equation for storage, memory, and
processor.

To evaluate the accuracy of the predictor and the estimator, we use equation of
the RMSE (Root Mean Squared Error):

RelativeRMSE =
√√
√
√ 1

N

N∑

n=1

(pi − ai
ai

)2 × 100, (13.1)
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where N is the number of samples, and pi and ai are the predicted and actual
values of the sample, respectively. We want the % relative RMSE to be as low as
possible. RMSE is a standard metric in regression, which is sensitive to scalability.
For example, an RMSE of 1 s in runtime prediction is not acceptable if the actual
runtime is 2 s but can be acceptable if the actual runtime is 1000 s. Expressing the
error as a percentage of the actual value solves this issue.

13.3.3 Explore and Optimize the Selection

The purpose of the Explorer component is to find the best configuration that
minimizes or maximizes the target metric. Therefore, it is an optimization problem
in which the optimization variables are the server’s configuration, and the cost
function is the target metric. In order to solve this optimization problem, Explorer
should use an optimization engine (OE). Popular optimization algorithms such as
genetic algorithm (GA), imperialist competitive algorithm (ICA), Discrete Particle
Swarm Optimization (PSO), and Bat algorithm can be used for this purpose. There
exist other techniques for navigating complex configuration spaces, e.g., recursive
random search and pattern search. Random recursive search has shown to be
ineffective since it is more likely to be locked in local optima, preventing the system
from achieving maximum efficiency. Pattern search typically suffers from slow local
(asymptotic) convergence rates and is not suitable to be used in the RPS.

Figure 13.5 describes a simple configuration search procedure, which consists of
six steps, as shown in Fig. 13.4.

Fig. 13.5 Explorer functionality
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The configuration vector is as follows:

Conf = {c1, c2, . . . , c10}, (13.2)

where Conf is the configuration vector and ci is the value of the ith configuration
parameter such as number of sockets, number of cores, core frequency, cache
size, memory capacity, memory frequency, number of memory channels, storage
capacity, storage speed, and network bandwidth. The estimator estimated the target
metric based on the signature of application and server configuration, e.g., Sign and
Conf . The target metric model is described by:

T arget_metric = f (Conf, Sign). (13.3)

Note that f (Conf, Sign) is a data model, which means it can be modeled by a
machine learning model such as neural network.

In step 1, RPS runs the application on a random platform (random configuration)
and starts monitoring its microarchitectural behavior for N execution windows.
Then, RPS extracts the architectural information to predict the next phase of the
application using the predictor component. In step 3, RPS inputs the initial values
of the configuration parameters and architectural signature of the next phase of
application to the estimator. In step 4, RPS passes the estimated target metric and
configuration parameter values to the OE. Note that the configuration parameters are
randomly selected. In this way, OE generates a new set of configuration parameter
values. In step 5, these configuration parameter values are fed to the estimator again
to estimate a new target metric’s value and then, it will be passed to the OE again to
check if the stop condition is satisfied or not. Steps from 3 to 5 are repeated a number
of times until the optimum configuration is found. The next step (6) includes sending
the optimal configuration to the decision maker. All steps are repeated for the next
window of operation until the execution of the application finishes.

For a given application and workload, our goal is to find the optimal or a
near-optimal server configuration that simultaneously satisfies the performance
requirements with minimal operational cost. For this purpose, we use Bounded
Knapsack algorithm to solve the aforementioned optimization problem.

Bounded Knapsack Solution
If the optimization is constrained by a Budget, then Bounded Knapsack algorithm is
a quick and simple solution to select the optimal server configuration. The bounded
knapsack problem can be implemented using dynamic programming:

Maximize Σni=1Perfi × Confi ,
Subject to Σni=1Costi × Confi ≤ Budget and mini ≤ Confi ≤ maxi ,

where Confi represents the number or the value of parameter i, and mini and
maxi are the minimum and the maximum available resource for parameter i. Also,
Costi presents the cost corresponding to Confi . Similarly, Perfi presents the
performance improvement corresponding to Confi . The result of this optimization
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is the recommended configuration for decision maker. Budget is a constraint that
the user provides. The result of solving the optimization problem is a set of
configurations such as the number of sockets, number of nodes, the number of cores,
core frequency, memory capacity, memory bandwidth, storage capacity, and storage
bandwidth. The OE recommends this configuration to the decision maker. It is the
responsibility of decision maker to decide about the action that needs to be taken for
scaling the current platform to make it as close as the recommended configuration
for the targeted VM.

13.3.4 Decision Making

After finding the optimum configuration, it is time for decision maker component
to determine which actions can be executed for efficient resource allocation in the
cloud infrastructures. RPS usually makes a decision based on a defined policy. As
the cloud gets more complicated, the complexity of developing a policy to handle
the resource management increases too. Therefore, designers and researchers are
replacing the old school policy making by latest machine learning techniques such
as reinforcement learning, e.g., Q-learning. Reinforcement learning enables the
system to find the best policy for the resource allocation tasks by itself.

Example 13.4 shows few reallocation actions that can be considered by decision
maker.

Example 13.4 (Reallocation Actions’ Samples)
Problem: List different actions that can be taken by decision maker.
Solution: (1) Increase CPU frequency. (2) Decrease CPU frequency. (3)
Increase CPU core. (4) Decrease CPU core. (5) Add allocated storage.
(6) Remove allocated storage. (7) Increase memory capacity. (8) Decrease
memory capacity. (9) Migrate VM to different node.

Changing the CPU frequency can be performed by Dynamic Voltage Frequency
Scaling (DVFS). The first escalation level ("change VM configuration") can be
done locally on a host and can change the host resources. This operation can be
performed by hot-(un)plugging of resources (memory and cores). For example,
mounting storage or adding memory to the VM is more lightweight than migrating
VMs. If there is no appropriate VM available on the host, the decision maker should
create a new VM on an appropriate host or migrate the VM to a host that has enough
available resources.

Considering Migration Time



420 13 Applied Machine Learning for Cloud Resource Management

The decision maker must take into account the live migration time overhead for
deciding whether it is beneficial to migrate the VM or not. Therefore, a performance
model of live migration is required to estimate the time that it takes to migrate a VM
from host A to host B and resume the job. Performance modeling of live migration
involves three main factors: the size of VM memory (VMem), the memory dirtying
rate (D), and network transmission rate (J). Live VM migration achieves negligible
application downtime by iteratively pre-copying the pages dirtied at the previous
round of transmission.

Resource Sharing Consideration
Another aspect to consider is resource sharing. If running multiple VMs on a host
is required, decision maker can use Resource Elasticity Fairness (REF) [392] in
order to allocate the resources among VMs, as co-scheduling multiple VMs on a
single server could result in interference. REF is a fair allocation mechanism, which
satisfies three game-theoretic properties (sharing incentives (SI), envy-freeness
(EF), and Pareto efficiency (PE)) using Cobb–Douglas utility function. For that
purpose, RPS can begin with the space of possible allocations. Then it adds
constraints to identify allocations with the desired properties as follows:

Suppose multiple VMs share a server with R types of hardware resources. Let
xi = {xi1,. . . ,xiR}denote i-th VM’s hardware allocation. Further, let ui(xi) denote
i-th VM’s utility. The following equation defines utility within the Cobb–Douglas
preference domain:

ui(xi) = ai0 �Rr=1 xir
air .

The parameters ai={ai1,...,aiR} quantify the elasticity with which a VM demands
a resource. Let Cr denote the total capacity of resource r in the system. RPS can find
fair multi-resource allocations given Cobb–Douglas preferences with the following
feasibility problem for N virtual machines and R resources:
Find x subject to:

(1) ui(xi) ≥ ui(xj ) i, j ∈[1,N]
(2) air

ais

xis
xir

= ajr
ajs

xjs
xjr

i, j ∈[1,N]; r, s ∈[1,R]
(3) ui(xi) ≥ ui(C/N) i ∈[1,N]
(4)

∑N
i=1 xir ≤ Cr r ∈[1,R]

Where C/N={C1/N,. . . ,CR/N}. In this formulation, the four constraints enforce
EF, PE, SI, and capacity. The outcome of applying Cobb–Douglas utility function is
a fair resource allocation among multiple VMs running on a server.

13.4 Security Threats in Cloud Rooted from ML-Based RPS

We discussed that maximizing utilization, i.e., sharing of resources, is key to
achieving cost efficiency in the cloud. However, it also opens the door for security
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and privacy vulnerabilities. In particular, these resources will be shared among
different users due to the multi-tenancy capability of hosts in the cloud, which
facilitate a platform for performing a wide range of resource sharing-based attacks,
including transient execution attacks, rowhammer attacks, distributed side-channel
attacks and distributed denial of service (DDoS) attacks, data leakage exploitation,
and attacks that pinpoint target VMs in a cloud system. Mounting such attacks
is trivial once the attacker is co-located with the victim. Therefore, the biggest
challenge of attacks that exploit resource sharing in cloud environments is co-
location.

Unfortunately, RPSs can become a blind spot and vulnerability that can be
exploited to solve the co-location challenge of resource sharing-based attacks. In
particular, adversarial attacks against machine learning models can be adopted
to force RPSs to co-locate the attacker with the victim. These attacks work by
adding specially crafted perturbations to the input data, i.e., an image, of machine
learning models to manipulate their outcome. However, pixels of an image can be
easily manipulated independently without changing the appearance of the image
since images have high entropy. In contrast, adding adversarial perturbations to
attack programs has different challenges since the attacker needs to ensure that the
adversarial perturbations do not alter the malicious payload.

These attacks not only show that current RPSs can be exploited to facilitate a
wide range of attacks by solving the co-location challenge in the cloud but also
highlight a serious need for new techniques to be invented that guarantee security.
Specifically, although there is a large number of defense classes that were developed
against computer vision-based adversarial attacks, these defenses are limited in
defending against such attacks to RPSs. In particular, these defenses assume that
the attacker has a budget, i.e., the maximum amount of perturbation that can be
added to an image without changing its content. This is important in the computer
vision domain since the goal of adversaries is to perturb an image to fool a specific
machine learning classifier but can still be classified correctly by a human. However,
for program perturbations, there is no such budget/constraint, allowing the attacker
to have an unlimited degree of freedom to add perturbations without the risk of
increasing the possibility of being detected.

After co-locating the adversarial VMs with the targeted victim, attackers face two
more challenges, namely detection and migration. Specifically, the RPS job does not
stop after the instance initialization phase, i.e., the initial deployment of a VM on a
suitable host. It has been shown that periodic monitoring after the initial deployment
can be unitized to improve both security and performance. For security, the trace
information can be used to detect attacks based on a computational anomaly. For
performance, the trace can be utilized to detect performance degradation due to
resource contention or behavioral change of the running application and migrate the
VM to a different host. However, attacks can evolve to bypass such detection as well
as avoiding VM migration.
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13.4.1 Adversarial Machine Learning Attack to RPS

Adversaries are rarely interested in a random service running on a public cloud.
They need to pinpoint where the target resides in a practical manner to be able
to perform denial of service (DoS) attacks, resource freeing attack (RFA), or
side channel (SC) attacks. This requires a launch strategy for co-location and
a mechanism for co-residency detection. The attack is practical if the target is
located with high accuracy, in reasonable time and with modest resource costs.
Performing any distributed attack requires a number of prerequisite steps detailed in
the following sections.

Finding Physical Hosts Running Victim Instances

To perform any attacks based on co-location, the attacker needs several VM
launching strategies to achieve co-residency with the victim instance, which is
impractical and not feasible. A pre-condition for the attack is that the malicious
VMs reside on the same physical host as victim VMs, as side-channel and RFA
attacks are performed locally. The first and main step is thus to find the location of
physical hosts running victim VMs. Several placement variables such as datacenter
region, time interval, and instance type are important to achieve co-residency.
These variables may be different among IaaS clouds. However, the application type
is considered an effective factor in the placement strategy. Let P(mmali) be the
probability of instancemmali to be co-resident with instance victimmvici . The value
of P will be raised by increasing the number of launched attack instances. To make
sure that both attacker and victim VMs achieve co-resident placement, the adversary
can perform co-residency detection techniques such as network probing. The
attacker can also use data mining techniques to detect the type and characteristics
of a running application in the victim VM by analyzing interferences introduced in
the different resources to increase the accuracy of co-residency detection.

Evasion from Detection and Migration

There are various techniques to detect an attack in a virtualized environment. For
example, as side-channel attacks are very fine-grained attacks, the detection of
such attacks requires high-resolution information, mainly provided by Hardware
Performance Counters (HPCs). The HPCs are a set of special-purpose registers built
into modern microprocessors to capture the trace of hardware-related events such
as LLC load misses, branch instructions, branch misses, and executed instructions
while executing an application. Those events are basically used to profile a program
behavior for optimization purposes and are available for any application in the user
space. These events are also used in the detection of abnormal behaviors in computer
systems. We distinguish two different methods of detection: (1) signature based and



13.4 Security Threats in Cloud Rooted from ML-Based RPS 423

(2) threshold based. Signature-based approaches create the signature of the attack
based on received information from HPCs and compare the behavior of the system
with the generated signature to identify any eventual malicious activity. On the other
hand, threshold-based approaches utilize the HPCs trace to flag anomaly resource
utilization that goes beyond a pre-specified threshold.

Overview of Attack

In any resource sharing-based attack, the instance initialization phase of RPS
plays a preventive role in such attacks by avoiding a malicious instance to be co-
localized with a targeted victim instance on the same physical machine. This phase
of the VM placement algorithm is undocumented for security reasons by cloud
service providers. However, it is possible that an adversary can bypass the instance
initialization phase and get co-located by victims with high probability. Moreover,
periodic monitoring and rescheduling are leveraged to mitigate co-residency attacks
when the attack is detected. However, it is still possible to disguise the malicious
behavior of the adversary’s VM and remain on the same host with the victim and
avoid the migration.

Figure 13.6 shows the overview of Adversarial Machine Learning Attack to RPS.
The attacker can use a fake trace generator (FTG) to wrap it around an adversary
application in order to first get co-located with a targeted victim and subsequently
evade detection and migration. At instance initialization phase, the FTG goal is to
perform a trace mimicry task that will mimic the behavior of the targeted victim
application to increase the chance of co-location. If the desired server has not
been assigned to the adversary VM (co-residency with the victim can be detected
by network probing), then the adversary VM terminates, and a new VM must be
reinstantiated as the cost of forcing RPS to migrate the adversary VM to another
host that may have the victim is high. After co-residency, FTG will change its
mode to constantly generate a new specialized trace that changes the behavior of
the adversary application to evade not only detection but also migration.

To create FTG, attackers can use the concept of adversarial sample in machine
learning where they can add specially crafted perturbations to an input signal to fool
the machine learning models. In particular, their goal is to change the model’s output
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Fig. 13.6 Overview of adversarial machine learning attack to RPS
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Fig. 13.7 Fast gradient sign method

decision to a specific output, i.e., output that is similar to the targeted victim output.
For this purpose, the attack should be performed in two phases. First, they need to
reverse engineer the RPS using a machine learning model to have access to how the
RPS makes decisions. Second, they should utilize the reversed engineering results
to craft a specialized FTG; an FTG that will add perturbations to the adversary’s
application trace to force the RPS to co-locate it with a targeted victim. This
perturbation is the trace that must be generated by FTG. The adversarial perturbation
can be calculated based on the gradient loss, as shown in Fig. 13.7, similar to the Fast
Gradient Sign Method and is given by:

xadv = x + εsign(∇xL(θ, x, y)).

13.4.2 Isolation as a Remedy

After co-location, a wide range of attacks can be mounted due to the lack of strictly
enforced resource isolation between co-scheduled instances, as shown in Fig. 13.8.

In order to study the effects of resource isolation, we enforce several resource
partitioning and isolation techniques. We employ core isolation (thread pinning to
physical cores), to constrain interference context switching. We employ the Cache
Allocation Technology (CAT) available in Intel chips to isolate the LLC. The size
of cache partitions can be changed at runtime by reprogramming MSR registers.
We also use the outbound network bandwidth partitioning capabilities of Linux’s
traffic control. We employ the qdisc to enforce bandwidth limits. To perform
DRAM bandwidth partitioning, RPS can monitor the DRAM bandwidth usage of
each application using Intel PCM to co-locate jobs on the same machine where it
can accommodate their aggregate peak memory bandwidth usage.

Figure 13.9 shows the impact of isolation techniques on the effectiveness of
attacks that we have implemented on a local cluster. The numbers presented here are
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Fig. 13.8 Security threats in the cloud

based on a controlled experimental setup, and the purpose is to provide an insight
on this issue.

As expected, when no isolation is used, attacks have a significantly higher
success rate. As a result, introducing thread pinning benefits since it reduces
core contention. The dominant resource usage of each application determines
which isolation technique benefits it the most. Thread pinning mostly benefits
workloads bound by on-chip resources, such as L1/L2 caches and cores. Adding
network bandwidth partitioning lowers success rate for DoS attacks. It primarily
benefits network-bound workloads, for which network interference conveys the
most information for detection of co-residency. Cache partitioning has the most
dramatic reduction in success rate of SCA, as they are LLC-bound applications.
Enforcing core isolation is also sufficient to degrade the success rate of RFAs.
Finally, memory bandwidth isolation further reduces success rate by 10% on
average, benefiting jobs dominated by DRAM traffic. It is more effective on DoS
and RFA and has less impact on SCAs.

The number of co-residents also affects the extent to which isolation helps. The
more co-scheduled applications exist per machine, the more isolation techniques
degrade success rate, as they make distinguishing between co-residents harder.
Improving security using isolation, however, comes at a performance penalty of
32% on average in execution time, as threads of the same job are forced to contend
with one another. Alternatively, users can overprovision their resource reservations
to avoid performance degradation, which results in a 47% drop in utilization. This
means that the cloud provider cannot leverage CPU idleness to share machines,
decreasing the cost benefits of cloud computing.

Our analysis highlights a design problem with current datacenter platforms.
Traditional multicores are prone to contention, which will only worsen as more
cores are integrated into each server, and multi-tenancy becomes more pronounced.
Existing isolation techniques are insufficient to mitigate security vulnerabilities, and
techniques that provide reasonable security guarantees sacrifice performance or cost
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efficiency, through low utilization. This highlights the need for new techniques to
be invented that guarantee security at high utilization for shared resources.

13.5 Exercise Problems

Problem 13.1 In this problem, using the link provided below provide the descrip-
tion of the following CPU metrics: CPI Rate, IPC, Back-End Bound, Port Utiliza-
tion, Bad Speculation, Cache Bound, Front-End Bound, Hardware Event Count, L1
Bound, Memory Bound, DRAM Bound, Retire Stalls, and Retiring.
URL: https://software.intel.com/content/www/us/en/develop/documentation/vtune-
help/top/reference/cpu-metrics-reference.html

Problem 13.2 In this problem, using the application’s trace dataset (model_knn.csv),
implement a K-nearest neighborhood model to predict the EDP of the application
based on K steps.

Problem 13.3 In this problem, find the root mean squared error rate for different k
values of the previous problem.

Problem 13.4 In this problem, sweep the number of previous steps (K) from 1 to
25 and draw the graph of accuracy based on K for the KNN model developed in the
previous problem and find the best K.

Problem 13.5 In this problem, using the application’s signature dataset provided
for you (model.csv), implement a simple fully connected neural network to classify
applications into the following categories: I/O bound or CPU bound. Use pandas
library to read CSV file, sklearn library for processing the dataset, and Keras
library for implementing a sequential model with dense layers. Use 15% of data for
testing and 15% of data for validation.

https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/cpu-metrics-reference.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/cpu-metrics-reference.html
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Problem 13.6 By using grid search (changing the number of dense layers and the
number of neurons in each layer), find the minimum number of neurons required in
the hidden layer of your neural network trained for the previous problem to reach
an accuracy of more than 90% on the testing set.

Problem 13.7 By using grid search (changing the number of epoch and batch size),
find the best number of training steps for the previous problem to reach an accuracy
of more than 90% on the testing set.

Problem 13.8 In this problem, by using the application’s signature dataset
(model_knn.csv) implement Random Forest algorithm for the classification task.

Problem 13.9 Using Random Forest model generated in the previous problem,
show the ranking of each feature to select the most suitable feature for application
classification.

Problem 13.10 Train new random forest with only the two most important vari-
ables that you found in the previous problem. Report the ML implementation results
including (a) recall and (b) F1-score.

Problem 13.11 Visualize the application’s signature dataset with PCA algorithm,
understanding the dimension reduction for visualization.

Problem 13.12 Explain how isolation can mitigate the security risk in the cloud?
List pros and cons.

Problem 13.13 What is Resource Elasticity Fairness (REF)? Name three game-
theoretic properties that REF can satisfy.

Problem 13.14 What types of microarchitectural information can be used for
monitoring the state of a server in the cloud? Name four tools that can collect
system-level or low-level architectural information for performance analysis.

Problem 13.15 What are the major components of a modern machine learning-
based resource provisioning system? What are the main tasks of a resource
provisioning system?
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356. J. Ćwik and J. Mielniczuk, “Estimating density ratio with application to discriminant
analysis,” Communications in Statistics–Theory and Methods, vol. 18, no. 8, pp. 3057–3069,
1989.

357. H. Daume Iii, “From zero to reproducing kernel hilbert spaces in twelve pages or less,” Mar
2004.

358. J. C. Spall, Introduction to Stochastic Search and Optimization, 1st ed. New York, NY, USA:
John Wiley & Sons, Inc., 2003.

359. P. Bartlett and H. Lei, “Representer theorem and kernel examples,” 2008.
360. D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “A public domain dataset for

human activity recognition using smartphones,” in ESANN, 2013.
361. M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, “The WEKA

data mining software: An update,” SIGKDD Explor. Newsl., vol. 11, no. 1, pp. 10–18, Nov.
2009.

362. A. Tang, S. Sethumadhavan, and S. J. Stolfo, “Unsupervised anomaly-based malware detec-
tion using hardware features,” in International Workshop on Recent Advances in Intrusion
Detection (RAID’14). Springer, 2014, pp. 109–129.

363. M. Ozsoy, C. Donovick, I. Gorelik, N. Abu-Ghazaleh, and D. Ponomarev, “Malware-aware
processors: A framework for efficient online malware detection,” in HPCA’15, Feb 2015, pp.
651–661.

364. B. Singh, D. Evtyushkin, J. Elwell, R. Riley, and I. Cervesato, “On the detection of kernel-
level rootkits using hardware performance counters,” in ASIACCS’17, 2017.

365. Y. Yarom and et.all, “Flush+ reload: A high resolution, low noise, l3 cache side-channel
attack.” in USENIX Security Symposium, 2014.

366. D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+ flush: a fast and stealthy
cache attack,” in International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer, 2016, pp. 279–299.

367. C. Disselkoen, D. Kohlbrenner, L. Porter, and D. Tullsen, “Prime+ abort: A timer-free high-
precision L3 cache attack using intel TSX,” in 26th USENIX Security Symposium (USENIX
Security 17),(Vancouver, BC), 2017, pp. 51–67.

368. P. Kocher and et.all, “Spectre attacks: Exploiting speculative execution,” arXiv preprint
arXiv:1801.01203, 2018.

369. M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard, P. Kocher, D. Genkin,
Y. Yarom, and M. Hamburg, “Meltdown,” arXiv preprint arXiv:1801.01207, 2018.

370. N. Patel, A. Sasan, and H. Homayoun, “Analyzing hardware based malware detectors,” in
DAC’17. ACM, 2017, pp. 25:1–25:6.

371. M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown,
“Mibench: A free, commercially representative embedded benchmark suite,” in Fourth
Annual IEEE International Workshop on Workload Characterization (IISWC’01), Dec 2001,
pp. 3–14.

372. J. L. Henning, “Spec cpu2006 benchmark descriptions,” SIGARCH Comput. Archit. News,
vol. 34, no. 4, pp. 1–17, Sep. 2006.

373. V. intelligence service, “virusshare.com,” in http://www.virustotal.com/intelligence/, April
2018.

374. M. Helsely, “Lxc: Linux container tools,” in IBM developer works technical library, 2009.
375. Intel, “Intel 64 and ia-32 architectures software developer manual, volume 3b: System

programming guide,” 2016.
376. Z. Allaf, M. Adda, and A. E. Gegov, “A comparison study on flush+ reload and prime+ probe

attacks on AES using machine learning approaches,” in UK Workshop on Computational
Intelligence, 2017.

377. I. Prada, F. D. Igual, and K. Olcoz, “Detecting time-fragmented cache attacks against AES
using performance monitoring counters,” arXiv preprint arXiv:1904.11268, 2019.

378. F. Yao, H. Fang, M. Doroslovacki, and G. Venkataramani, “Towards a better indicator for
cache timing channels,” arXiv preprint arXiv:1902.04711, 2019.

http://www.virustotal.com/intelligence/


References 447

379. T. Zhang and et.all, “Cloudradar: A real-time side-channel attack detection system in clouds,”
in RAID. Springer, 2016.

380. C. Li and J.-L. Gaudiot, “Online detection of spectre attacks using microarchitectural traces
from performance counters,” in 2018 30th SBAC-PAD. IEEE.

381. C. Delimitrou and C. Kozyrakis, “Quasar: resource-efficient and QoS-aware cluster man-
agement,” in ACM SIGARCH Computer Architecture News, vol. 42, no. 1. ACM, 2014, pp.
127–144.

382. O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and M. Zhang, “Cherrypick:
Adaptively unearthing the best cloud configurations for big data analytics,” in 14th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI} 17), 2017, pp. 469–
482.

383. S. Venkataraman, Z. Yang, M. Franklin, B. Recht, and I. Stoica, “Ernest: efficient performance
prediction for large-scale advanced analytics,” in 13th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 16), 2016, pp. 363–378.

384. N. J. Yadwadkar, B. Hariharan, J. E. Gonzalez, B. Smith, and R. H. Katz, “Selecting the best
VM across multiple public clouds: A data-driven performance modeling approach,” in ACM
SoCC, 2017.

385. Q. Zhang et al., “Dynamic energy-aware capacity provisioning for cloud computing environ-
ments,” in ACM ICAC, 2012, pp. 145–154.

386. M. Guevara, B. Lubin, and B. C. Lee, “Navigating heterogeneous processors with market
mechanisms,” in High Performance Computer Architecture (HPCA2013), 2013 IEEE 19th
International Symposium on. IEEE, 2013, pp. 95–106.

387. B. Guenter, N. Jain, and C. Williams, “Managing cost, performance, and reliability tradeoffs
for energy-aware server provisioning,” in IEEE INFOCOM, 2011.

388. A. Altomare, E. Cesario, and A. Vinci, “Data analytics for energy-efficient clouds: design,
implementation and evaluation,” Journal of Parallel, Emergent and Distributed Systems,
2018.

389. C. Delimitrou and C. Kozyrakis, “Paragon: Qos-aware scheduling for heterogeneous datacen-
ters,” in ACM SIGPLAN Notices, vol. 48, no. 4. ACM, 2013, pp. 77–88.

390. G. Kousiouris et al., “Dynamic, behavioral-based estimation of resource provisioning based
on high-level application terms in cloud platforms,” Elsevier Future Generation Computer
Systems, 2014.

391. C. Delimitrou and C. Kozyrakis, “Hcloud: Resource-efficient provisioning in shared cloud
systems,” ACM SIGOPS Operating Systems Review, vol. 50, no. 2, pp. 473–488, 2016.

392. S. M. Zahedi and B. C. Lee, “Ref: Resource elasticity fairness with sharing incentives for
multiprocessors,” ACM SIGARCH Computer Architecture News, vol. 42, no. 1, pp. 145–160,
2014.

393. N. Kulkarni, F. Qi, and C. Delimitrou, “Leveraging approximation to improve datacenter
resource efficiency,” IEEE Computer Architecture Letters, vol. 17, no. 2, pp. 171–174, 2018.

394. C. Delimitrou and C. Kozyrakis, “Bolt: I know what you did last summer... in the cloud,” in
ACM SIGARCH Computer Architecture News, vol. 45, no. 1. ACM, 2017, pp. 599–613.

395. Rightscale Inc. 2017. Amazon EC2: Rightscale. http://www.rightscale.com/, 2017.
396. Y. Apache Hadoop, “Yet another resource negotiator,” Proceedings of ACM SoCC, 2013.
397. P. Bodik, R. Griffith, C. Sutton, A. Fox, M. I. Jordan, and D. A. Patterson, “Automatic

exploration of datacenter performance regimes,” in Proceedings of the 1st workshop on
Automated control for datacenters and clouds. ACM, 2009, pp. 1–6.

398. N. J. Yadwadkar, G. Ananthanarayanan, and R. Katz, “Wrangler: Predictable and faster jobs
using fewer resources,” in Proceedings of the ACM Symposium on Cloud Computing. ACM,
2014, pp. 1–14.

399. A. K. Maji, S. Mitra, B. Zhou, S. Bagchi, and A. Verma, “Mitigating interference in cloud
services by middleware reconfiguration,” in Proceedings of the 15th International Middleware
Conference. ACM, 2014, pp. 277–288.

400. F. Romero and C. Delimitrou, “Mage: Online interference-aware scheduling in multi-scale
heterogeneous systems,” arXiv preprint arXiv:1804.06462, 2018.

http://www.rightscale.com/


Index

A
Accelerated Q-learning, 221–223
Action-state pairs, 225
Activation function, 109–111
Activity recognition, 359
Adagrad, 113
Adam, 114
Adaptive Boosting (AdaBoost), 135–136
Adversarial attacks, 323–324

basic iterative method (BIM), 309–311
Carlini and Wagner attack (CW), 316
DeepFool (DF), 315
fast gradient sign method (FGSM),

307–309
Jacobian-based saliency map attack

(JSMA), 315
momentum iterative method (MIM),

311–313
one-pixel attack, 317
projected gradient descent attack, 313–315
universal perturbation, 317

Adversarial defenses
adversarial training, 318–319
autoencoders, 321–322
defensive distillation, 319–320
detecting adversaries, 320–321
gradient regularization, 320
random ensemble, 320

Adversarial machine learning, see Adversarial
attacks; Adversarial defenses

Adversarial samples, 305, 306
Adversarial training, 305, 324–326
Amazon EC2, 409
Anaconda, 13, 191
AND gate, 107

Anomaly detection, 90, 243, 248, 255, 388
ANOVA RBF kernel, 131
Anti-Virus (AV) tools, 388
Applied machine learning, 4

application and data, 7–13
data exploration, 17
exploratory data analysis, 18

box plot, 24
cumulative distribution function, 24
data analysis, 27–30
histogram plot, 23
loading data, 19–20
pair-plot, 21–23
performance evaluation metrics, 30–32
required libraries for, 19
2D scatter plot, 20–21
univariate, bivariate and multivariate

analysis, 25–26
violin plots, 24–25

metadata extraction and data pre-
processing, 15–17

Python, 13–14
Artificial Intelligence (AI), 3
Artificial neural networks (ANNs), 392

logical gates, 107–108
MLP (see Multi-layer perceptron (MLP))
neuron modeling, 105–107

Artificial neurons, 105
Autoencoders, 321–322

architecture, 146
convolutional autoencoder, 150–152
denoising autoencoder, 155–158
input image, 147
overcomplete autoencoder, 146
reconstructed image, 148

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Rafatirad et al., Machine Learning for Computer Scientists and Data Analysts,
https://doi.org/10.1007/978-3-030-96756-7

449

https://doi.org/10.1007/978-3-030-96756-7


450 Index

Autoencoders (cont.)
recurrent autoencoder, 154–155
sparse autoencoder, 152–154
stacked autoencoder, 148–150
undercomplete autoencoder, 146
variational autoencoders (VAE), 158–160

AutoRegressive Integrated Moving Average
(ARIMA) model, 250

Autoregression, 99, 100
Autoregressive Moving Average (ARMA)

model, 99–100, 249
AV software tools, 388–389

B
Backdoor, 384
Backpropagation neural networks (BPNN),

111
Backwardpass, 338
Bagging, 133–135
Bag-of-Words (BOW), 15
Basic iterative method (BIM), 309–311
Bayesian linear regression, 101–103
Bayesian model averaging (BMA), 141
Bayesian model combination (BMC), 141
Bayesian Optimization and Regression

technique, 409–410
Bayes’ law, 40, 141
Bernoulli distribution, 56
Best Matching Unit (BMU), 178
Binary classification, 131
Binary step function, 107
Binomial distribution, 56–57
Bivariate analysis, 25–26
Blended Threat, 385
Bootstrap, 137
Bootstrap aggregation, 133–135
Box plot, 24
Branch-misses, 390

C
Cache Allocation Technology (CAT), 424
Cache-misses, 390
Cache references, 390
Carlini Wagner (CW) attack techniques,

305
CherryPick, 407
Cloud computing, 405, 410, 416
Clustering techniques

Cosine distance, 163, 164
Euclidean distance, 163, 164
hierarchical clustering, 170–175
K-Means clustering, 165–170

mixture models, 175–177
unlabeled data, 164

Cobb–Douglas utility function, 421
Collaborative filtering

latent factor model, 264–266
incorporating rating bias, 266
matrix factorization, 264, 265
regularization, 266
zero-sum square errors, 265

memory-based collaborative filtering
rating aggregation, 262–264
user similarity, 261–262

Common distributions, 55–56
continuous distributions

exponential distribution, 61–62
Gaussian (normal) distribution, 59–61
memory-less property of exponential

distribution, 62
uniform distribution, 62–63

discrete distributions
Bernoulli distribution, 56
binomial distribution, 56–57
multinomial distributions, 57–58
Poisson distribution, 58–59

Computational capability, 306
Computation to communication (CTC) ratio,

352
Content-based approach

matching user and item profiles, 260
profiling items, 258–259
profiling users, 259–260

Continuous distributions
exponential distribution, 61–62
Gaussian (normal) distribution, 59–61
memory-less property of exponential

distribution, 62
uniform distribution, 62–63

Continuous random variable, 50
expectation, 53–54
probability density function, 50–53
variance, 54–55

Conventional software-based methods, 389
Convolutional autoencoder, 150–152
Convolutional neural networks (CNNs),

120–123, 305
Correlation, 70–72
Correlation attribute evaluation, 392
Correlation matrix, 9
Cosine distance, 163, 164
Covariance, 68–70
Cross-subject transfer learning algorithm, 361
Cross-user variations, 359
Cumulative distribution function (CDF), 24,

44–45
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D
Data about data, 7
Data exploration, 17
Data interpretability, 270
Data pre-processing, 15–17, 89, 90
Data sampling, 5, 137
Data visualization, 6, 9, 17

box plot, 24
cumulative distribution function (CDF),

24
histogram plot, 23
pair-plot, 21–22
probability distribution function (PDF),

23
2D scatter plot, 20–21
univariate, bivariate and multivariate

analysis, 25–26
violin plots, 24–25

Deep belief nets (DBN)
applying, 188
code implementation, 188
description, 186
dimensionality reduction, 189
training, 187–188
UnsupervisedDBN class, 188

Deep convolutional neural networks (DCNN),
331

DeepFool (DF), 315
Deep neural networks (DNNs), 305

convolutional neural network, 120–123
long short term-memory neural networks,

126–127
radial basis functions neural network,

123
recurrent neural networks, 123–126

Deep Q-learning, 225–226
Delta rule, 111
Denoising autoencoder, 155–158
Differential evolution (DE), 317
Discrete distributions

Bernoulli distribution, 56
binomial distribution, 56–57
multinomial distributions, 57–58
Poisson distribution, 58–59

Discrete random variable, 40–41
cumulative distribution function, 44–45
expectation, 46–47
probability mass function, 41–43
variance, 47–50

DRAM bandwidth, 406
Dynamic Time Warping (DTW), 331
Dynamic Voltage Frequency Scaling (DVFS),

420

E
Eigendecomposition, 75–76
Eigen vector, 74
Eigenvalue decomposition, 74–76
Electrocardiogram (ECG), 127
Energy efficiency, 355
Ensemble learning

AdaBoost, 135–136
bagging, 133–135
bootstrap, 137
gradient boosting, 138–139
stacking, 139–140
weak learners, 133

Environment exploration, Q-learning, 221–223
Ernest, 407
Euclidean distance, 163, 164
Evasive attacks, 305
Expectation

continuous random variable, 53–54
discrete random variable, 46–47

Exploratory data analysis (EDA), 5, 6, 9,
17–18

box plot, 24
cumulative distribution function, 24
data analysis, 27–30

interquartile range, 29
mean absolute deviation, 30
mean/average, 27
median, 28
percentiles, 28–29
quantile, 29
standard deviation, 27
variance, 28

histogram plot, 23
loading data, 19–20
pair-plot, 21–23
performance evaluation metrics, 30–32
required libraries for, 19
2D scatter plot, 20–21
univariate, bivariate and multivariate

analysis, 25–26
violin plots, 24–25

Exponential distribution, 61–62

F
Fake trace generator (FTG), 423
Fast gradient sign method (FGSM), 305, 424
Feature extraction, 331, 394, 395, 399
Feature selection methods, 391
Fisher Score (FS), 392
Flush + Flush, 386, 387
Flush + Reload attack, 386, 387
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F-measure and latency, 402
Follow-the-Regularized-Leader-Proximal

(FTRL-Proximal) algorithm,
242–243

Forward-Looking Subgradients (FOBOS)
algorithm, 241

Forwardpass, 337
FPGA Performance, 352–353

G
Gaussian (normal) distribution, 59–61
Gaussian kernel, 130
Gaussian radial basis function (RBF), 130
Generative adversarial network (GAN)

model architecture, 183
Speech2Face model, 183
standalone discriminator model, 183–186

Global bias, 263, 268, 275
Google Page Ranking algorithm, 213–215
Gradient-based policy optimization, 230
Gradient boosting, 138–139
Gradient regularization, 320
GradientUpdate, 338
Graph learning

approximation theory, 280–281
eigendecomposition, 278–280
graph representations, 281–282
graph signal, 281–282
matrix manipulation, 278
spectral graph theory, 283–285

Graph neural network models
application and resources

chemistry, 300
computer vision, 300–301
knowledge graph, 301
natural language processing, 301
physics, 300
traffic network, 301

categories of, 302
generative graph model, 300
graph aggregation, 286–287
graph convolutional networks (GCNs), 285
matrix implementation, 286–287
sequential GNN, 300
spatial-based methods

ARMA filter, 296
autoregression, 294
ChebNet, 292
graph convolutional network (GCN),

289–290
graph isomorphism network (GIN), 292
GraphSAGE, 290–291
linear aggregation function, 288–289

Node2Vec, 293
personalized PageRanking (PPNP),

294–295
polynomial aggregation function, 292
rational propagation function, 293–294
simple graph convolution (SGC), 293

spectral methods
frequency response function, 296
graph convolutional network, 297
graph isomorphism network (GIN),

297–298
GraphSAGE, 297
linear filter function, 297
polynomial filter function, 298–299
polynomial function, 296
rational filter function, 299
time complexity and expressive power,

299–300

H
Hardware-based detectors, 390
Hardware implementation, 396–398
Hardware Performance Counters (HPCs), 389,

422
Hardware isolation, 405, 424–426
HART dataset, 382
Hierarchical clustering, 170–175
Histogram plot, 23
Hyperbolic tangent kernel, 131

I
Importance-weighted least-squares

probabilistic classifier (IWLSPC),
361–362

Independence, 40
Independent Component Analysis (ICA),

203–206
Information Gain Ratio, 392
Instance initialization, 409
Internet of Things (IoT), 4, 331, 383, 405
Interquartile range (IQR), 29
iTLB-load-misses, 390

J
Jacobian-based saliency map attack (JSMA),

315
Joint CDF, 65, 67
Joint probability distributions, 64

continuous random variables, 66–67
joint CDF, 67
marginal PDF, 67–68
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correlation, 70–72
covariance, 68–70
discrete random variables, 64–65

joint CDF, 65
marginal PMF, 65–66

multivariate Gaussian distribution, 72–73
Jupyter notebook, 354

K
Karush–Kuhn–Tucker (KKT) conditions, 128
Keras API, 353
Kernels, 130–131
K-means clustering, 165–170
K-nearest neighbor (KNN), 331, 392
Kullback–Leibler (KL) divergence, 320

L
Lagrange multiplier, 128
Laplace RBF kernel, 131
Latency, 352
LBFGS algorithm, 307
L1-dcache-load-misses, 390
L1-dcache-loads, 390
L1-icache-load-misses, 390
Linear regression, 91–94
Linear spikes kernel, 131
Linux malware, 394
Location-based social networks (LBSNs), 271
Logic gates, 107–108
Logistic Regression (LR), 103–105, 392
Long short term-memory (LSTM) neural

network, 126–127
Loss function, 112, 115, 117, 120, 152, 158,

311
Low-power devices, see SensorNet

M
Machine learning (ML), 3–5, 389

autoencoders
architecture, 146
convolutional autoencoder, 150–152
denoising autoencoder, 155–158
input image, 147
overcomplete autoencoder, 146
reconstructed image, 148
recurrent autoencoder, 154–155
sparse autoencoder, 152–154
stacked autoencoder, 148–150
undercomplete autoencoder, 146
variational autoencoders (VAE),

158–160

Bayesian model combination, 141
classifiers implementation, 400–401
for computer architecture security

countermeasures, 391–392
exercise problems, 402–404
for hardware-assisted malware detection,

392–398
machine learning pipeline, 5–7
malware, 383–386
for microarchitectural SCAs detection,

398–402
microarchitectural side-channel attacks,

386–388
ML-based SCAs detectors, 401–402
modern resource provisioning systems,

407–410
Random forest technique, 141–143
in resource provisioning systems

decision making, 419–420
explore and optimize, 417–419
online monitoring, 412
for performance/cost/energy estimation,

414–417
phase prediction, 413–414

security threats in, 420–426
tree-based algorithms, 143–145

Machine learning pipeline, 5–7
Marginal PDF, 67–68
Marginal PMF, 65–66
Markov decision process (MDP), 221
Matrix decomposition, 74

eigenvalue decomposition, 74–76
singular value decomposition, 76–77

Max-pooling, 333–334, 351
Mean absolute deviation, 30
Mean, 46, 59, 60, 73
Mean/average, 27
Median, 28, 89
Memory management, 412, 419, 425
Memory protection mechanism, 388
Metadata, 7
Metadata extraction, 15–17
Method of moments, 189–191
Micro-op queue, 406
Mini-batch gradient descent, 112–113
Mixture models, 175–177
MNIST Digit, 305, 322
MNIST Fashion, 322, 323, 326
Momentum iterative method (MIM), 311–313
M-P model, 105
Multiclass classification, 131–132
Multi-dimensional scaling (MDS)

advantages and disadvantages, 211
description, 209
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Multi-dimensional scaling (MDS) (cont.)
iris dataset, 211, 212
sample data, 210
2D plane for visualization, 211

Multi-layer perceptron (MLP), 334
activation function, 109–111
deep neural networks

convolutional neural network, 120–123
long short term-memory neural

networks, 126–127
radial basis functions neural network,

123
recurrent neural networks, 123–126

hidden or output layer, 108–109
inference, 114
overfitting

adding more layers or neurons, 117
data augmentation, 116
decreasing regularization parameter,

117
dropout, 116–117
lack of generalization, 115
limited training, 116
lowering the model complexity, 115
regularization, 115–116
training data, 118

overfitting vs underfitting
multiple optimum points, 120
scaling of inputs, 118–119

training
Adagrad, 113
Adam, 114
Delta rule, 111
mini-batch gradient descent, 112–113
stochastic gradient descent, 111–112

Multinomial distributions, 57–58
Multi-variable Adaptive Regression Splines

(MARS), 96–98
Multi-variable linear regression, 93–96
Multivariate analysis, 25–26
Multivariate Gaussian distribution, 72–73
Multivariate (multimodal) signals, 331

N
Natural Language Processing (NLP), 16
Natural Language Toolkit (NLTK), 16
Network Architecture, 322
Neural collaborative filtering (NCF)

framework, 268–269
Node-level embeddings, 285, 288, 290
Non-EEG physiological signals, 342
Non-negative Matrix Factorization (NMF),

206–209

Normal classification accuracy, 322–323
Numpy Library, 355

O
1-D vectors, 347
One-hot-encoding, 16
Online gradient descent (OGD) algorithm,

238–239
Online learning

anomaly detection, 255
application and resources

application-driven toolbox, 252
combined with deep learning, 251
information retrieval (IR), 250–251
Online Portfolio Selection (OLPS), 251
SOL, ODL, KOL, and LIBOL, 252
time series prediction, 249–250
Vowpal Wabbit, 252–253

characteristics of, 254
defined, 235
dimension reduction methods, 254
supervised learning (see Supervised online

learning)
unsupervised learning (see Unsupervised

online learning)
Online Portfolio Selection (OLPS), 251
Optimization, 236–238, 241, 242
Overcomplete autoencoder, 146

P
PageRank algorithm, 213–215
Pair-plot, 21–23
Pandas Library, 355
Parallelism, 350–352
Pareto efficiency (PE), 421
PARIS, 407
Passive aggressive algorithm, 236–238
Pearson correlation coefficient (PCC),

201–203, 395
Percentiles, 28–29
Performance evaluation metrics, 30–32
Physical Activity Monitoring dataset

(PAMAP2), 338, 339, 348
Poisoning attack, 305
Poisson distribution, 58–59
Polynomial kernel, 130
Prime + Probe, 387
Principal Component Analysis (PCA), 392

covariance matrix computation, 192
eigenvectors and eigenvalues, 192
feature vector, 193
recast data, 193
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standardization, 192
2-component PCA for Iris dataset, 195

Probability density function (PDF), 50–53
Probability mass function (PMF), 41–43
Probability theory, 35

common distributions, 55–56
continuous distributions, 59–63
discrete distributions, 56–59

fundamental of, 36–40
independence, 40
joint probability distributions, 64

continuous random variables, 66–68
correlation, 70–72
covariance, 68–70
discrete random variables, 64–66
multivariate Gaussian distribution,

72–73
Product recommendation, 142, 257
Profiling process, 393
Projected gradient descent attack, 313–315
Python, 13–14

Q
Q-learning, 218–223, 419
Quantile, 29
Quasar, 407

R
Radial basis functions (RBF) neural network,

123
Random forest technique, 141–143, 161
Random modules, 320
Random variables, 36, 38, 40

See also Discrete random variable
Ransomware, 385
Real-world datasets, 6
Recommender learning, see Recommendation

techniques
Recommendation techniques

applications
article recommendation, 271
e-commerce platforms, 270–271
location-based social networks

(LBSNs), 271
movie recommendation, 271–272

collaborative filtering
latent factor model, 264–266
memory-based collaborative filtering,

261–264
content-based approach

matching user and item profiles, 260
profiling items, 258–259

profiling users, 259–260
content information, 258
deep learning models, 268–270, 273–274
factorization machine (FM), 266–268, 273
neural collaborative filtering (NCF)

framework, 268–269
rating matrix, 257–258
The Recommendation problem, 258
resources, 272

Rectified Linear Unit (ReLU), 335, 337, 349
Recurrent autoencoder, 154–155
Recurrent neural networks (RNNs), 123–126,

331
Regression analysis

autoregressive moving average, 99–100
Bayesian linear regression, 101–103
data prediction, 90
linear regression, 91–94
logistic regression, 103–105
multi-variable adaptive regression splines,

96–98
multi-variable linear regression, 93–96
seasonality in stock market price of firm, 91

Regularized Dual Averaging (RDA) algorithm,
241–242

REINFORCE, 226
action value expression, 228–229
per-step, 227–228
per-trajectory, 227
unbiased expressions and estimators, 230
variance reduction by baseline, 229

Reinforcement learning, 217
deep Q-learning, 225–226
gradient-based policy optimization, 230
policy optimization

REINFORCE, 226–230
stochastic policy gradient, 226

Q-learning, 218–223
SARSA learning algorithm, 224–225
TD(λ)-learning, 223–224

Reshape, 337
Resource Elasticity Fairness (REF), 421
Restricted Boltzmann Machine (RBM), 186
Retraining, 326, 327
Reward function, 217, 221
Rootkit, 384

S
SARSA learning algorithm, 224–225
Scikit learn library, 109, 112–114, 129, 142,

179, 180, 200, 354, 404
Second-order perceptron (SOP) algorithm,

239, 240
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Self-organizing maps (SOM)
advantages of, 181
Best Matching Unit (BMU), 178
description, 178
Gaussian neighborhood function, 180
implementation, 179
iris data distribution in clusters, 179, 182
learning rate self-explanatorily, 181
sigma, 180
U-Matrix, 181

Semi-structured data, 7
Sensor modalities, 331
SensorNet

activation functions, 349–350
convolutional layers, 344–345
deep convolutional neural network

(DCNN), 332
deep neural network

activation functions, 335–336
convolutional layers, 332–333
fully connected layers, 334–335
pooling layers, 333–334

evaluation
physical activity monitoring, 339–340
Stand-Alone Dual-Mode Tongue Drive

System (sdTDS), 341–342
stress detection, 342–343

exercise problems, 354–357
filter shapes, 347–348
hardware architecture for, 350–351
hardware performance parameters,

352–353
neural network architecture, 336–338
number of filters, 345–347
optimization and complexity reduction,

343–344
parallelism, 351–352
resource-bounded settings, 332
resources, 355–354
signal preprocessing, 336
zero-padding, 348–349

Service-level agreements (SLA), 406
Side-Channel Attacks (SCAs), 383, 390
Sigmoid function, 107
Sigmoid kernel, 131
Signal preprocessing, 336
Signal processing techniques, 331
Singular value decomposition (SVD), 76–77
Software-based malware detection methods,

388
Sparse autoencoder, 152–154
Spatial-based graph convolution networks

ARMA filter, 296
autoregression, 294

ChebNet, 292
graph convolutional network (GCN),

289–290
graph isomorphism network (GIN),

292
GraphSAGE, 290–291
linear aggregation function, 288–289
Node2Vec, 293
personalized PageRanking (PPNP),

294–295
polynomial aggregation function, 292
rational propagation function, 293–294
simple graph convolution (SGC), 293

Spatial uncertainty, 359
Spectral-based graph convolution networks

frequency response function, 296
graph convolutional network, 297
graph isomorphism network (GIN),

297–298
GraphSAGE, 297
linear filter function, 297
polynomial filter function, 298–299
polynomial function, 296
rational filter function, 299
time complexity and expressive power,

299–300
Spectre, 387–388
Speech2Face model, 183
Stacked autoencoder, 148–150
Stacking, 139–140
Stand-alone dual-mode Tongue Drive System

(sdTDS), 338
Standard deviation, 27
Stochastic gradient descent (SGD), 111–112
Stochastic policy gradient, 226
Storage, 405, 410, 412, 415, 416, 418, 419
Structured data, 7
Student-teacher learning, 361
Super-heterogeneous datacenters, 406
Supervised classification, 81–82, 143
Supervised learning

advantages, 81
classification, 160–161
data preparation

data abstraction, 83–87
dealing with missing data, 87–90
imbalanced datasets, 90

primary application, 160
regression analysis

autoregressive moving average, 99–100
Bayesian linear regression, 101–103
data prediction, 90
linear regression, 91–94
logistic regression, 103–105
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multi-variable adaptive regression
splines, 96–98

multi-variable linear regression, 93–96
seasonality in stock market price of

firm, 91
SVMs (see Support vector machines

(SVMs))
Supervised online learning, 235, 236

online gradient descent (OGD) algorithm,
238–239

passive aggressive algorithm, 236–238
with regularization, 239, 240

FOBOS algorithm, 241
FTRL-Proximal algorithm, 242–243
RDA algorithm, 241–242
TGD method, 240–241

second-order perceptron (SOP) algorithm,
239, 240

Supervised regression, 82
Support vector machines (SVMs), 375, 400

basic process, 129
binary classification, 128
ECG signal, 127
hyper-plane, 128, 129
kernels, 130–131
multiclass classification, 131–132
Scikit Learn library, 129
traditional classifiers, 129

System-supervised learning approach, 361

T
Target metric model, 418
t-distributed Stochastic Neighbor Embedding

(t-SNE), 195–201
TD(λ)-learning, 223–224
TensorFlow, 355
Term Frequency/Inverse Document Frequency

(TF/IDF), 15, 259, 273
Throughput, 352
Time-series classification, 331, 399
Time-series data, 331
Training set, 3
transELMAR, 361
TransFall, 361–372
Transfer learning

adaptive label fusion method, 361
IWLSPC, 362
problem statement, 362–364
system-supervised learning approach, 361
TransFall framework design

horizontal transformation, 368–369
label estimation, 370–372
vertical transformation, 365–367

validation approach
classification model, 376
comparison approach and performance

metric, 375
cross-domain transfer learning

scenarios, 374–375
cross-platform transfer learning results,

376–377
cross-subject transfer learning results,

377–378
datasets, 373–374
exercise problems, 381–382
hybrid transfer learning results,

378
parameter examination, 380–381
transformation module analysis,

378–380
Tree-based algorithms, 143–145
Trojan, 384
Truncated Gradient Descent (TGD) method,

240–241
2D scatter plot, 20–21

U
U-Matrix, 181
Undercomplete autoencoder, 146
Uniform distribution, 62–63
Univariate analysis, 25–26
Unstructured data, 7
Unsupervised and Reinforcement learning

techniques, 81
Unsupervised learning technique

clustering
Cosine distance, 163, 164
Euclidean distance, 163, 164
hierarchical clustering, 170–175
K-Means clustering, 165–170
mixture models, 175–177
unlabeled data, 164

deep belief nets (DBN)
applying, 188
code implementation, 188
description, 186
dimensionality reduction, 189
training, 187–188
UnsupervisedDBN class, 188

feature selection techniques
Independent Component Analysis

(ICA), 203–206
Non-negative Matrix Factorization

(NMF), 206–209
Pearson correlation coefficient (PCC),

201–203
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Unsupervised learning technique (cont.)
Principal Component Analysis (PCA),

192–195
t-distributed Stochastic Neighbor

Embedding (t-SNE), 195–201
generative adversarial network (GAN)

model architecture, 183
Speech2Face model, 183
standalone discriminator model,

183–186
Google Page Ranking algorithm, 213–215
method of moments, 189–191
multi-dimensional scaling (MDS)

advantages and disadvantages, 211
description, 209
iris dataset, 211, 212
sample data, 210
2D plane for visualization, 211

self-organizing maps (SOM)
advantages of, 181
Best Matching Unit (BMU), 178
description, 178
Gaussian neighborhood function, 180
implementation, 179
iris data distribution in clusters, 179,

182
learning rate self-explanatorily, 181
sigma, 180
U-Matrix, 181

Unsupervised neural networks
deep belief nets (DBN), 186–189
generative adversarial network (GAN),

182–186
self-organizing maps (SOM), 178–182

Unsupervised online learning
anomaly detection, 248–249
online clustering

density-based clustering algorithms,
246

grid-based online clustering, 247
mini-batch K-means, 245, 246
partition-based online clustering,

244–246
Small-space algorithm, 244
STREAM algorithm, 244, 245

online density estimation, 248
online dimension reduction, 247

V
Variance, 28

continuous random variable, 54–55
discrete random variable, 47–50

Variational autoencoders (VAE), 158–160
Violin plots, 24–25
Virtualization, 405
Virtual Machine (VM), 405
Virus, 384

W
Waterfall-like structure, 361, 364
Wearable devices, 331
Wearable sensor technologies, 359
WEKA (Waikato Environment for Knowledge

Analysis) platform, 374, 395
Window Frames, 356
Worm, 385
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